WO2024005107A1 - アクリル樹脂延伸フィルム - Google Patents

アクリル樹脂延伸フィルム Download PDF

Info

Publication number
WO2024005107A1
WO2024005107A1 PCT/JP2023/024077 JP2023024077W WO2024005107A1 WO 2024005107 A1 WO2024005107 A1 WO 2024005107A1 JP 2023024077 W JP2023024077 W JP 2023024077W WO 2024005107 A1 WO2024005107 A1 WO 2024005107A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic resin
stretched film
resin stretched
stretching
peak
Prior art date
Application number
PCT/JP2023/024077
Other languages
English (en)
French (fr)
Inventor
輝久 市原
かおり 平郡
真一 笠原
雅 品川
果令 糸永
みのり 向井
Original Assignee
東洋鋼鈑株式会社
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社, 日東電工株式会社 filed Critical 東洋鋼鈑株式会社
Publication of WO2024005107A1 publication Critical patent/WO2024005107A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to an acrylic resin stretched film, and more particularly to an acrylic resin stretched film with excellent crack resistance and breakage resistance.
  • Liquid crystal display devices are often used as display devices for various electronic devices. In recent years, such electronic devices have become increasingly smaller, and liquid crystal display devices are also required to be smaller and lighter.
  • liquid crystal display devices use various functional films such as polarizer protective films, diffusion films, and light-condensing films to protect polarizers. There is.
  • Patent Document 1 proposes a stretched film containing an amorphous thermoplastic resin that satisfies the following conditions (i) and (ii) at the same time. ing.
  • the degree of in-plane orientation Dpl in polarized Raman spectrum measurement is 0.3 or more and 3.0 or less.
  • the thickness orientation degree Dth in polarized Raman spectrum measurement is 0.1 or more and 0.25 or less, or 4 or more and 10 or less.
  • the present invention was made in view of the above circumstances, and an object of the present invention is to provide an acrylic resin stretched film with excellent crack resistance and breakage resistance.
  • Xs 2930-2970 is the second derivative peak of the peak in the wave number range of 2930 to 2970 cm -1 obtained by measuring the polarized Raman spectrum in parallel (X direction) to the winding direction (MD direction) of the acrylic resin stretched film.
  • Yd 970-1010 is the second derivative peak of the peak in the wave number range of 970 to 1010 cm -1 obtained by polarized Raman spectrum measurement perpendicular (Y direction) to the winding direction (MD direction) of the acrylic resin stretched film.
  • Ys 2930-2970 is the second derivative peak of the peak in the wave number range of 2930 to 2970 cm -1 obtained by polarized Raman spectrum measurement perpendicular (Y direction) to the winding direction (MD direction) of the acrylic resin stretched film.
  • Zd 970-1010 is the minimum value of the second derivative peak of the peak in the wave number range of 970 to 1010 cm ⁇ 1 obtained by measuring the polarized Raman spectrum in the thickness direction (Z direction) of the acrylic resin stretched film
  • Zs 2930-2970 is the minimum value of the second derivative peak of the peak in the wave number range of 2930 to 2970 cm ⁇ 1 obtained by measuring the polarized Raman spectrum in the thickness direction (Z direction) of the acrylic resin stretched film.
  • Tg glass transition temperature
  • Acrylic resin stretched film [8] The acrylic resin stretched film according to any one of [5] to [7], wherein the ring structure is a lactone ring structure. [9] The acrylic resin stretched film according to any one of [1] to [8], wherein the acrylic resin contains an ultraviolet absorber. [10] The acrylic resin stretched film according to any one of [1] to [9], which has a film thickness of 35 to 45 ⁇ m.
  • a polarizer protective film comprising the acrylic resin stretched film according to any one of [1] to [10].
  • a method for producing the acrylic resin stretched film according to any one of [1] to [10] comprising: Equipped with a stretching process to stretch the acrylic resin film, A method for producing an acrylic resin stretched film, in which the stretching temperature in the stretching step is glass transition point Tg + 25° C. to 29° C., and the stretching strain rate is 90 to 600%/min.
  • an acrylic resin stretched film with excellent crack resistance and breakage resistance can be provided.
  • FIG. 1 is a diagram showing an example of a method for manufacturing an acrylic resin stretched film according to an embodiment of the present invention.
  • FIG. 2A is a diagram showing the measurement direction of polarized Raman spectra.
  • FIG. 2B is a diagram showing a profile obtained by polarized Raman spectrum measurement in the X direction of the stretched acrylic resin film of Example 1.
  • FIG. 2C is a diagram showing the second-order differential profile of the polarized Raman spectrum in the X direction of the acrylic resin stretched film of Example 1.
  • the acrylic resin stretched film of the present invention is an acrylic resin stretched film formed by molding an acrylic resin, and Zn/Xn and Zn/Yn obtained by polarized Raman spectrometry have the following formula (1) and the following formula ( This is an acrylic resin stretched film that satisfies 2). Zn/Xn ⁇ 1.00 (1) Zn/Yn ⁇ 1.00 (2)
  • the acrylic resin stretched film of the present invention is a film formed by molding an acrylic resin, and therefore contains an acrylic resin. Moreover, the acrylic resin used in the present invention is a resin containing a (meth)acrylic polymer.
  • the (meth)acrylic polymer contained in the acrylic resin used in the present invention is a polymer having a structural unit derived from a (meth)acrylic ester monomer, that is, a (meth)acrylic ester monomer unit. It is a combination.
  • the content of (meth)acrylic acid ester monomer units in the (meth)acrylic polymer is usually 10% by mass or more, preferably 30% by mass or more, more preferably 50% by mass or more, particularly preferably 70% by mass. That's all.
  • Examples of the (meth)acrylic ester constituting the (meth)acrylic ester monomer unit include methyl (meth)acrylate, ethyl (meth)acrylate, n-propyl (meth)acrylate, and (meth)acrylate.
  • n-butyl acrylate t-butyl (meth)acrylate, n-hexyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, chloromethyl (meth)acrylate, (meth)acrylate
  • Examples include 2-chloroethyl acid, 2-hydroxyethyl (meth)acrylate, (meth)aloxyhexyl acid, and 2,3,4,5-tetrahydroxypentyl (meth)acrylate.
  • the (meth)acrylic polymer preferably has a methyl (meth)acrylate monomer unit, and by containing the methyl (meth)acrylate monomer unit, it improves the optical properties and thermal stability of the acrylic resin stretched film. You can improve your sexuality.
  • the (meth)acrylic polymer may have two or more types of (meth)acrylic acid ester monomer units.
  • the (meth)acrylic polymer may contain copolymerizable monomer units other than (meth)acrylic acid ester units.
  • copolymerizable monomers include styrene, vinyltoluene, ⁇ -methylstyrene, ⁇ -hydroxymethylstyrene, ⁇ -hydroxyethylstyrene, acrylonitrile, methacrylonitrile, ethylene, propylene, 4-methyl-1 -pentene, vinyl acetate, 2-hydroxymethyl-1-butene, methyl vinyl ketone, N-vinylpyrrolidone, N-vinylcarbazole, and the like.
  • the (meth)acrylic polymer may contain two or more types of copolymerizable monomer units.
  • the (meth)acrylic polymer may have a ring structure, and when it has a ring structure, it preferably has a ring structure in the main chain.
  • the ring structure can be formed by, for example, copolymerizing a (meth)acrylic ester monomer with a monomer having a ring structure, or after polymerizing a monomer group containing a (meth)acrylic ester monomer. It can be introduced into the main chain of the (meth)acrylic polymer by a method of advancing the cyclization reaction.
  • the (meth)acrylic polymer is preferably formed by copolymerizing a monomer having a hydroxyl group and/or a carboxylic acid group.
  • monomers having a hydroxyl group include methyl 2-(hydroxymethyl)acrylate, ethyl 2-(hydroxymethyl)acrylate, isopropyl 2-(hydroxymethyl)acrylate, and butyl 2-(hydroxymethyl)acrylate. , methyl 2-(hydroxyethyl)acrylate, methallyl alcohol, allyl alcohol, and the like.
  • the monomer having a carboxylic acid group include acrylic acid, methacrylic acid, crotonic acid, 2-(hydroxymethyl)acrylic acid, and 2-(hydroxyethyl)acrylic acid. Two or more types of these monomers may be used.
  • the ring structure is selected from, for example, a lactone ring structure, a glutarimide structure, a glutaric anhydride structure, an N-substituted maleimide structure, and a maleic anhydride structure. It is preferable that it is at least one type. From the viewpoint of being able to further improve optical properties, a lactone ring structure and a glutarimide structure are preferred, and a lactone ring structure is more preferred.
  • lactone structure examples include the structure disclosed in JP-A No. 2004-168882, but from the viewpoint of further improving optical properties, the structure represented by the following general formula (1) is preferred. is preferred.
  • R 1 , R 2 and R 3 are each independently a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • the organic group in general formula (1) is, for example, an alkyl group having 1 to 20 carbon atoms such as a methyl group, ethyl group, or propyl group, or an unsaturated aliphatic hydrocarbon having 2 to 20 carbon atoms such as an ethenyl group or a propenyl group.
  • alkyl groups, unsaturated aliphatic hydrocarbon groups, and aromatic hydrocarbon groups have at least one hydrogen atom. , a hydroxyl group, a carboxyl group, an ether group, and an ester group.
  • the glutarimide structure is not particularly limited, but a structure represented by the following general formula (2) is preferable from the viewpoint of further improving optical properties.
  • R 4 and R 5 in the above general formula (2) are each independently a hydrogen atom or a methyl group
  • R 6 is a hydrogen atom, a straight-chain alkyl group having 1 to 6 carbon atoms, a cyclopentyl group, a cyclohexyl group, It is a benzyl group or a phenyl group.
  • the content of monomer units forming the ring structure is preferably 1 to 80% by weight, more preferably 5 to 70% by weight.
  • the content is more preferably 10 to 60% by weight.
  • Examples of (meth)acrylic polymers having a lactone ring structure in the main chain include JP-A Nos. 2000-230016, 2001-151814, 2002-120326, and 2002-254544. , and the polymers described in JP-A-2005-146084, and can be synthesized by the methods described in these publications.
  • examples of (meth)acrylic polymers having a glutarimide structure in the main chain include JP-A No. 2006-309033, JP-A No. 2006-317560, JP-A No. 2006-328329, and JP-A No. 2006-328334.
  • JP 2006-337491, JP 2006-337492, JP 2006-337493, JP 2006-337569, JP 2007-009182, etc. can be synthesized by the methods described in these publications.
  • the weight average molecular weight of the (meth)acrylic polymer is preferably 10,000 to 500,000, more preferably 20,000 to 400,000, and still more preferably 30,000 to 300,000.
  • the weight average molecular weight of the (meth)acrylic polymer can be determined as a polystyrene equivalent value using GPC.
  • the acrylic resin used in the present invention preferably contains the above-mentioned (meth)acrylic polymer, and its glass transition temperature Tg is preferably 100°C or higher and 200°C or lower, more preferably 110°C or higher.
  • the temperature is 160°C or less, more preferably 120°C or more and 130°C or less, and most preferably 125°C or more and 130°C or less.
  • the acrylic resin stretched film of the present invention is formed by molding the above-described acrylic resin, and is obtained by polarized Raman spectrometry.
  • This is an acrylic resin stretched film in which Zn/Xn and Zn/Yn satisfy the following formula (1) and the following formula (2).
  • Xd 970-1010 is the secondary peak in the wave number range of 970 to 1010 cm -1 obtained by polarized Raman spectrum measurement parallel to the winding direction (MD direction) of the acrylic resin stretched film (X direction).
  • Xs 2930-2970 is the second derivative peak of the peak in the wave number range of 2930 to 2970 cm -1 obtained by measuring the polarized Raman spectrum in parallel (X direction) to the winding direction (MD direction) of the acrylic resin stretched film.
  • Yd 970-1010 is the second derivative peak of the peak in the wave number range of 970 to 1010 cm -1 obtained by polarized Raman spectrum measurement perpendicular (Y direction) to the winding direction (MD direction) of the acrylic resin stretched film.
  • Ys 2930-2970 is the second derivative peak of the peak in the wave number range of 2930 to 2970 cm -1 obtained by polarized Raman spectrum measurement perpendicular (Y direction) to the winding direction (MD direction) of the acrylic resin stretched film.
  • Zd 970-1010 is the minimum value of the second derivative peak of the peak in the wave number range of 970 to 1010 cm ⁇ 1 obtained by measuring the polarized Raman spectrum in the thickness direction (Z direction) of the acrylic resin stretched film
  • Zs 2930-2970 is the minimum value of the second derivative peak of the peak in the wave number range of 2930 to 2970 cm ⁇ 1 obtained by measuring the polarized Raman spectrum in the thickness direction (Z direction) of the acrylic resin stretched film.
  • the present inventors investigated the orientation state in the winding direction (X direction) of the acrylic resin stretched film and the winding direction (X direction) of the acrylic resin stretched film.
  • X direction winding direction
  • X direction winding direction of the acrylic resin stretched film
  • the peaks in the wave number range of 970 to 1010 cm ⁇ 1 obtained by polarized Raman spectrum measurement in the winding direction (X direction), the direction perpendicular to this (Y direction), and the thickness direction (Z direction), It focuses on peaks in the wave number range of 2930 to 2970 cm -1 , and by controlling Xn, Yn, and Zn within specific ranges obtained using the minimum values of these second-order differential peaks, the durability can be improved. They discovered that it is possible to obtain excellent crack resistance and breakage resistance, and have completed the present invention. In particular, the inventors have investigated that in stretched films such as acrylic resin stretched films, improving either crack resistance or breakage resistance tends to reduce the other.
  • the Raman intensity ratio (Zn/Xn), which is the ratio between Zn and Xn, and the Raman intensity ratio (Zn/Yn), which is the ratio between Zn and Yn, is set in a specific range. be.
  • the essence of this study is that while conventional orientation control by stretching optimizes the orientation state of the stretched film plane (XY plane), in the present invention, orientation is extremely slightly imparted in the thickness direction. This suppresses cracks during cutting and significantly improves crack resistance.
  • Xn, Yn, and Zn can be determined by performing polarized Raman spectrum measurement on the stretched acrylic resin film. Specifically, polarized Raman spectra were measured parallel to the winding direction (MD direction) of the acrylic resin stretched film (X direction), and perpendicular to the winding direction (MD direction) of the acrylic resin stretched film (Y direction). It can be determined by performing polarized Raman spectrum measurement in the direction (direction) and polarized Raman spectrum measurement in the thickness direction (Z direction) of the stretched acrylic resin film.
  • a laser Raman spectrophotometer (product name "NRS-5500", manufactured by JASCO Corporation) is used as the measuring device, and the polarized Raman spectrum is measured with a wave number of 970 to 970 in each measurement direction.
  • calculation software or the like provided in the laser Raman spectrophotometer may be used to calculate the second derivative peak.
  • FIGS. 2B and 2C show profiles obtained by polarized Raman spectrum measurement of the stretched acrylic resin film of Example 1.
  • FIG. 2A is a diagram showing the measurement direction of the polarized Raman spectrum
  • FIG. 2B is a diagram showing the profile obtained by polarized Raman spectrum measurement in the X direction of the acrylic resin stretched film of Example 1.
  • FIG. 2C is a diagram showing the second-order differential profile of the polarized Raman spectrum in the X direction of the acrylic resin stretched film of Example 1.
  • the winding direction (MD direction: Machine Direction) of the acrylic resin stretched film is defined as the direction in which the unstretched acrylic resin film is stretched and the film travels (machine direction) when it is made into an acrylic resin stretched film. be.
  • Zn/Xn and Zn/Yn may satisfy the above formula (1) and the above formula (2), but the winding direction (MD direction) and the direction perpendicular to the winding direction (TD direction: Transverse Direction), the number of folds (MIT number) satisfies the following formula (3) and the following formula (4) It is preferable that 0.74 ⁇ Number of MITs in TD direction/Number of MITs in MD direction ⁇ 1.35 (3) 40 ⁇ (number of MITs in MD direction + number of MITs in TD direction)/2 ⁇ 197...(4)
  • the folding durability test may be performed in accordance with JIS P8115, and the number of folding durability tests (MIT number) measured in accordance with JIS P8115 must satisfy the above formula (3) and the above formula (4). is preferred.
  • the number of folding cycles (MIT number) satisfies the above formulas (3) and (4), thereby making it possible to effectively suppress the breakage of the film while providing excellent crack resistance.
  • the number of folding cycles (MIT number) satisfies the following formula (5) and the following formula (6). 0.95 ⁇ Number of MITs in TD direction/Number of MITs in MD direction ⁇ 1.32 (5) 45 ⁇ (number of MITs in MD direction + number of MITs in TD direction)/2 ⁇ 166 (6)
  • the acrylic resin stretched film of the present invention preferably has an impact strength in the range of 1.90 to 2.15 kJ/m, more preferably in the range of 1.94 to 2.12 kJ/m.
  • the impact strength (kJ/m) can be determined, for example, by measuring the impact value (kJ) when a stretched acrylic resin film is hit with a hammer having a hammer capacity of 1.5 J and a hammer tip diameter of 1 inch.
  • the acrylic resin stretched film of the present invention preferably has an in-plane retardation R0 for light with a wavelength of 589 nm of 10 nm or less, more preferably 0 to 5 nm, and even more preferably 0 to 3 nm.
  • the acrylic resin stretched film of the present invention preferably has a thickness direction retardation Rth of -10 to +10 nm, more preferably -5 to +5 nm, and even more preferably -3 to +3 nm for light with a wavelength of 589 nm. be.
  • the glass transition temperature Tg of the acrylic resin stretched film of the present invention is preferably 100°C or more and 200°C or less, more preferably 110°C or more and 160°C or less, still more preferably 120°C or more and 130°C or less, and most preferably Preferably the temperature is 125°C or higher and 130°C or lower.
  • the thickness (film thickness) of the acrylic resin stretched film of the present invention is not particularly limited and may be selected appropriately depending on the application, but is 35 to 45 ⁇ m, preferably 37 to 43 ⁇ m, and more preferably 39 to 41 ⁇ m. .
  • the method for producing an acrylic resin stretched film of the present invention is not particularly limited, but will be described below from the viewpoint that Zn/Xn and Zn/Yn obtained by polarized Raman spectroscopy can be suitably controlled within the above ranges.
  • the manufacturing method of the present invention is preferred.
  • the manufacturing method of the present invention a step of preheating an unstretched acrylic resin film; A stretching step of stretching an unstretched acrylic resin film in one or two directions while heating it to a stretching temperature T E [°C]; A thermal relaxation step of thermally relaxing the stretched acrylic resin film by heating it at a relaxation temperature T R [°C],
  • FIG. 1 is a diagram showing an example of a method for manufacturing an acrylic resin stretched film according to an embodiment of the present invention. Below, the case where an acrylic resin stretched film is manufactured by the method shown in FIG. 1 is illustrated and demonstrated.
  • FIG. 1 is a diagram showing a method for simultaneously stretching an acrylic resin film in the length direction and width direction using a simultaneous biaxial stretching apparatus equipped with a preheating zone, a stretching zone, and a thermal relaxation zone.
  • a simultaneous biaxial stretching apparatus equipped with a preheating zone, a stretching zone, and a thermal relaxation zone.
  • an unstretched acrylic resin film is preheated in a preheating zone and simultaneously stretched in the length and width directions while being heated in a stretching zone using a simultaneous biaxial stretching device.
  • a thermal relaxation treatment is performed in which heating is performed to uniformize the molecular orientation (orientation angle) of the film in the relaxation zone.
  • the stretching method is not limited to simultaneous biaxial stretching using the simultaneous biaxial stretching apparatus shown in FIG. 1, etc., and may be, for example, sequential stretching. In the case of sequential stretching, for example, a tenter stretching machine equipped with a preheating zone, a stretching zone, and a heat relaxation zone can be used.
  • the stretching process is a process of preheating the film 100 in a preheating zone shown in FIG. 1, and heating and stretching the preheated film 100 in the length direction and width direction in a stretching zone.
  • the film 100 is continuously fed out from a roll or the like, the film 100 is gripped at regular intervals using a plurality of clips 200, and the film 100 is stretched by moving each clip 200. Transfer to a simultaneous biaxial stretching device.
  • the film 100 is preheated in the preheating zone shown in FIG. Stretch by pulling in the width direction.
  • a pair of guide rails are installed for the clip 200 to move so as to pass through the simultaneous biaxial stretching apparatus.
  • the pair of guide rails are installed at the position of the clip 200 that grips the upper side of the film 100 and the position of the clip 200 that grips the lower side of the film 100 shown in FIG. They move away from each other in the width direction of the film 100 and become parallel to each other in the thermal relaxation zone.
  • the distance between the pair of guide rails may be made closer to each other in the width direction, taking into consideration shrinkage during solidification of the film.
  • the clip 200 holding the film 100 moves along such a guide rail to transport and stretch the film 100.
  • the film 100 can be obtained, for example, by melt-extruding a thermoplastic resin from a T-die.
  • T E Tg+25 to Tg+29 in relation to the glass transition temperature Tg [°C] of the acrylic resin constituting the film 100.
  • Zn/Xn and Zn/Yn can be suitably controlled within the above ranges. That is, when the glass transition temperature Tg [°C] of the acrylic resin is, for example, 125°C, the stretching temperature T E [°C] in the stretching step is set in a very limited range of 150 to 154°C. It is.
  • the glass transition temperature Tg [°C] of the acrylic resin is defined as the midpoint of the displacement of the endothermic profile observed by performing differential scanning calorimetry (DSC) (displacement starting temperature and displacement (glass transition temperature specified by the midpoint method).
  • DSC differential scanning calorimetry
  • the glass transition temperature Tg (midpoint glass transition temperature) and extrapolated glass transition start temperature Tig of the acrylic resin can be determined using, for example, a differential scanning calorimeter (product name "DSC8500", PerkinElmer) as a differential scanning calorimetry (DSC) device. The temperature can be determined using the analysis software attached to the device from the DSC curve obtained by measuring at a heating rate of 10° C./min.
  • the stretching ratio in the stretching step is not particularly limited, but the longitudinal stretching ratio (stretching ratio in the MD direction) is preferably 1.5 to 3.0 times, more preferably 2.0 to 2.5 times.
  • the transverse stretching ratio (stretching ratio in the TD direction) is preferably 1.5 to 3.0 times, more preferably 2.0 to 2.5 times. If the stretching ratio is too low, the optical properties of the acrylic resin stretched film obtained may be insufficient, and if the stretching ratio is too high, the values of Zn/Xn and Zn/Yn are controlled within the above ranges. It may be difficult to do so.
  • the stretching strain rate in the stretching process is not particularly limited, but the longitudinal stretching strain rate (stretching strain rate in the MD direction) is preferably 90 to 600%/min, more preferably 150 to 250%/min.
  • the transverse stretching strain rate (stretching strain rate in the TD direction) is preferably 90 to 600%/min, more preferably 150 to 250%/min. If the stretching strain rate is too low or too high, it may be difficult to control the values of Zn/Xn and Zn/Yn within the above ranges.
  • the stretching time in the stretching zone is not particularly limited, but is preferably 20 to 40 seconds, more preferably 22 to 30 seconds.
  • the width of the film 100 before stretching is preferably 200 to 2000 mm, more preferably 800 to 1200 mm, and the thickness of the film 100 before stretching is preferably 70 to 250 ⁇ m, more preferably 100 to 200 ⁇ m. be.
  • the heating temperature when preheating the film 100 in the preheating zone shown in FIG. The temperature is ⁇ 21°C higher.
  • the film 100 stretched in the stretching zone is conveyed to a thermal relaxation zone as shown in FIG. Thermal relaxation treatment is performed by heating at .
  • the film 100 has uniform molecular orientation, and has excellent optical properties, strength, and durability.
  • the thermal relaxation time in the thermal relaxation zone is not particularly limited, but is preferably 5 to 15 seconds, more preferably 9 to 11 seconds.
  • an acrylic resin stretched film in which the values of Zn/Xn and Zn/Yn are controlled within the above ranges can be produced.
  • the acrylic resin stretched film of the present invention has Zn/Xn and Zn/Yn values controlled within the above ranges, and has excellent crack resistance and breakage resistance. Therefore, the acrylic resin stretched film of the present invention can be suitably used for various optical applications, such as polarizer protective films, diffusion films, light-condensing films, reflective films, light guiding films, etc. In particular, it can be suitably used as a polarizer protective film, and by taking advantage of its excellent crack resistance, it can be particularly suitably used as a polarizer protective film applied to frameless liquid crystal display devices. .
  • the glass transition temperature Tg (midpoint glass transition temperature) and extrapolated glass transition start temperature Tig of the acrylic resin were determined by differential scanning based on JIS K7121 using a differential scanning calorimeter (product name "DSC8500", manufactured by PerkinElmer). It was carried out according to the calorimetric method. In a nitrogen gas atmosphere, approximately 10 mg of the sample was held at 0°C for 1 minute, then raised from 0°C to 290°C at a temperature increase rate of 10°C/min, held for 3 minutes, and then heated to 0°C at a cooling rate of 200°C/min. The DSC curve obtained by lowering the temperature to Ta.
  • the winding direction (MD direction) of the film is the X direction
  • the width direction (TD direction) of the film is the Y direction
  • the thickness direction of the film is the Z direction
  • square measurement samples of 20 mm each in both the X and Y directions are taken. Cut out accurately. The cut samples were set on a sample holder with their axes aligned so that the XY plane could be measured.
  • the minimum value of the second derivative peak in the range of 970 to 1010 cm -1 is defined as Xd 970-1010 as a peak dependent on polymer orientation, and the second derivative peak in the range of 2930 to 2970 cm -1 as a peak independent of polymer orientation.
  • FIG. 2A is a diagram showing the measurement direction of the polarized Raman spectrum
  • FIG. 2B is a diagram showing the profile obtained by polarized Raman spectrum measurement in the X direction of the acrylic resin stretched film of Example 1.
  • FIG. 2C is a diagram showing the second-order differential profile of the polarized Raman spectrum in the X direction of the acrylic resin stretched film of Example 1.
  • the thickness direction retardation value Rth is determined by tilting the average refractive index n ave of the film measured with an Abbe refractometer (product name "NAR-1T SOLID ", manufactured by Atago Co., Ltd.) by 40 degrees with the slow axis as the tilt axis.
  • the three-dimensional refractive indexes n x , ny , and nz were obtained from the measured retardation value R ⁇ .
  • R0 [nm] (n x - ny ) x d
  • Rth [nm] ⁇ (n x + n y )/2-n z ⁇ d
  • n x is the refractive index in the direction of the slow axis where the refractive index in the plane of the stretched acrylic resin film is maximum
  • n y is the refractive index in the direction perpendicular to the slow axis
  • n z is, It is the refractive index in the thickness direction of the acrylic resin stretched film
  • d is the thickness [nm] of the acrylic resin stretched film.
  • the acrylic resin stretched films obtained in each example and comparative example were measured using a film impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.) as a measuring device.
  • the test piece was a square of 100 mm x 100 mm, and the test was conducted with a hammer capacity of 1.5 J and a hammer tip diameter of 1 inch.
  • the test temperature was 23°C, and the impact strength [kJ/m] was the average value of 10 measurements.
  • devolatilization treatment was performed at a rotational speed of 120 rpm and a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg), a polymer filter treatment was performed.
  • zinc octylate (Nikka Octyx Zinc, manufactured by Nippon Kagaku Sangyo Co., Ltd.) is obtained as a foaming inhibitor in the form of a toluene solution between the second and third fore vents. It was injected at a concentration of 1,400 ppm relative to the acrylic copolymer. A water tank filled with filtered clean cooling water is placed at the tip of the twin-screw extruder, and the strands are cooled and introduced into the pelletizer, allowing the strands to be separated from structural units having lactone rings and aromatic monomers. Transparent pellets of heat-resistant acrylic resin having structural units were obtained. When the glass transition temperature Tg and extrapolated glass transition start temperature Tig of the obtained resin were measured according to the above method, the glass transition temperature Tg was 125°C, and the extrapolated glass transition start temperature Tig was 123°C. Ta.
  • a lactone ring-containing acrylic resin was produced according to the method described in Examples of Japanese Patent No. 5,574,787. That is, a resin was produced using a tandem reaction extruder in which two extrusion reactors were arranged in series. Regarding the tandem type reaction extruder, both the first extruder (1) and the second extruder (2) are co-intermeshing type with a diameter of 75 mm and L/D (ratio of extruder length L to diameter D) of 74. A twin-screw extruder was used, and a constant weight feeder (manufactured by Kubota Corporation) was used to supply raw material resin to the first extruder raw material supply port.
  • a constant weight feeder manufactured by Kubota Corporation
  • the degree of pressure reduction of each vent in the first extruder and the second extruder was set to -0.095 MPa.
  • the internal pressure control mechanism connects the first extruder and the second extruder with a pipe with a diameter of 38 mm and a length of 2 m, and connects the resin discharge port of the first extruder and the raw material supply port of the second extruder.
  • a constant flow pressure valve was used.
  • the resin (strand) discharged from the second extruder was cooled by a cooling conveyor and then cut into pellets by a pelletizer.
  • a resin pressure gauge was provided at the outlet of the second extruder at the center of the machine connection part.
  • imide resin intermediate 1 was produced using polymethyl methacrylate resin (Mw: 105,000) as a raw material resin and monomethylamine as an imidizing agent.
  • Mw polymethyl methacrylate resin
  • monomethylamine as an imidizing agent.
  • the maximum temperature of the extruder was 280° C.
  • the screw rotation speed was 55 rpm
  • the feed rate of raw resin was 150 kg/hour
  • the amount of monomethylamine added was 2.0 parts per 100 parts of raw resin.
  • a constant flow pressure valve was installed just before the raw material supply port of the second extruder, and the pressure of the monomethylamine press-in section of the first extruder was adjusted to 8 MPa.
  • a mixed solution of dimethyl carbonate and triethylamine is added as an esterifying agent to produce imide resin intermediate 2. did.
  • the temperature of each barrel of the extruder was 260°C
  • the screw rotation speed was 55 rpm
  • the amount of dimethyl carbonate added was 3.2 parts per 100 parts of raw resin
  • the amount of triethylamine added was 0.2 parts per 100 parts of raw resin. There were 8 parts.
  • the resin composition was extruded through a strand die, cooled in a water tank, and then pelletized with a pelletizer to obtain a resin composition.
  • Example 1 The resin pellets obtained in Production Example 1 were melt-extruded at a temperature of 265°C to form an unstretched film with a width of 1000 mm and a thickness of 180 ⁇ m.Then, both ends of the film were gripped with clips, and the simultaneous double-layer film shown in FIG. It was supplied to an axial stretching machine. After heating to 145°C in a preheating zone, it was heated to 150°C in a stretching zone and stretched by 2.0 times in length and 2.2 times in width at a longitudinal strain rate of 150%/min and a transverse strain rate of 150%/min. . After stretching, relaxation treatment was performed at 125° C. in a thermal relaxation zone to obtain a stretched film with an average thickness of 40 m.
  • Example 2 A stretched film was obtained in the same manner as in Example 1 except that the temperature of the stretching zone was 151°C.
  • Example 3 A stretched film was obtained in the same manner as in Example 1, except that the temperature of the stretching zone was 153°C.
  • Example 4 A stretched film was obtained in the same manner as in Example 1 except that the temperature of the stretching zone was 154°C.
  • Example 5 The resin pellets obtained in Production Example 1 were melt-extruded at a temperature of 265° C. to form an unstretched film with a width of 300 mm and a thickness of 130 ⁇ m, thereby obtaining an unstretched film with an average thickness of 130 ⁇ m.
  • a square unstretched film sample of 95 mm in both the winding direction (X direction) and the width direction (Y direction) was accurately cut out from the obtained unstretched film.
  • the cut unstretched film sample was simultaneously biaxially stretched using a biaxial stretching device (product name "X6H-S", manufactured by Toyo Seiki Seisakusho Co., Ltd.) to obtain a stretched film with an average thickness of 35 ⁇ m.
  • the stretching was carried out at a stretching temperature of 150°C, a stretching ratio of 2.0 times in the X direction, a stretching speed of 200%/min in the X direction, a stretching ratio of 2.0 times in the Y direction, and a stretching speed of 200%/min in the Y direction.
  • Example 6> The same procedure as in Example 5 was carried out except that the stretching temperature was 151°C.
  • the first stage of stretching was performed in the X direction at a stretching temperature of 150°C, a stretching ratio of 3.0 times, and a stretching rate of 1000%/min
  • the second stage of stretching was performed in the Y direction at a stretching temperature of 150°C and a stretching ratio of 3.0.
  • the stretching was carried out at a stretching speed of 1000%/min.
  • the cut out unstretched film sample was uniaxially stretched at the free end in the X direction using a Tensilon universal material testing machine (product name "RTA-500", manufactured by Orientech Co., Ltd.) with the distance between the chucks set to 50 mm, and the average film thickness was determined. A stretched film of 46 ⁇ m was obtained. Note that the stretching was performed in the X direction at a stretching temperature of 130° C., a stretching ratio of 2.8 times, and a stretching speed of 1000%/min.
  • RTA-500 Tensilon universal material testing machine
  • Table 1 also shows the measurement results of the in-plane orientation degree Dpl in polarized Raman spectrum measurement and the thickness orientation degree Dth in polarized Raman spectrum measurement, which were measured by the method disclosed in JP-A-2010-58455.
  • the stretching strain rate stretch rate in MD direction
  • the transverse stretching strain rate stress rate in TD direction
  • the obtained acrylic resin stretched film Zn/Xn and Zn/Yn obtained by polarized Raman spectroscopy can suitably satisfy the following formulas (1) and (2), thereby providing excellent crack resistance and It was possible to achieve breakage resistance (Examples 1 to 6).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

アクリル系樹脂を成形してなるアクリル樹脂延伸フィルムであって、偏光ラマンスペクトル測定によって得られる、Zn/Xn、Zn/Ynが、下記式(1)および下記式(2)を満たすアクリル樹脂延伸フィルムを提供する。 Zn/Xn≦1.00 ・・・(1) Zn/Yn≦1.00 ・・・(2)

Description

アクリル樹脂延伸フィルム
 本発明は、アクリル樹脂延伸フィルムに関し、さらに詳しくは、耐クラック性および耐破断性に優れたアクリル樹脂延伸フィルムに関する。
 各種電子機器の表示装置として、液晶表示装置が多く用いられている。このような電子機器においては、近年、小型化がますます進んでおり、液晶表示装置にも、小型化・軽量化が求められている。
 このような液晶表示装置には、その光学特性を所望のものとするために、偏光子を保護するための偏光子保護フィルムや、拡散フィルム、集光フィルム等の各種機能性フィルムが用いられている。
 たとえば、光学用途に用いられる機能性フィルムとして、特許文献1では、下記条件(i)、(ii)を同時に満足することを特徴とする、非晶性の熱可塑性樹脂を含む延伸フィルムが提案されている。
(i)偏向ラマンスペクトル測定における面内配向度Dplが0.3以上3.0以下。
(ii)偏向ラマンスペクトル測定における厚み配向度Dthが0.1以上0.25以下、或いは4以上10以下。
特開2010-58455号公報
 一方で、液晶表示装置においては、近年の高性能化の要求に伴い、たとえば、フレームレス化などが求められており、液晶表示装置を構成する各種機能性フィルムにも、フレームレス化への対応が求められている。フレームレス化に対応するという観点からは、機能性フィルムは、所望のサイズに切断した際に、クラックが抑制されていることが望まれている。特に、このようなクラックは、切断箇所近傍に発生することが多いことから、フレームを有する液晶表示装置に適用される場合には、切断箇所近傍にクラックが発生したとしても、フレームによって被覆することができるものの、フレームレスとした場合には、このようなクラックをフレームで被覆することができないことから、問題となってしまうこととなる。これに対し、上記特許文献1に開示の延伸フィルムなど従来の機能性フィルムは、耐クラック性が十分ではなく、そのため、上記のような観点より、耐クラック性の向上が望まれていた。
 本発明は、このような実状に鑑みてなされたものであり、耐クラック性および耐破断性に優れたアクリル樹脂延伸フィルムを提供することを目的とする。
 本発明者等は、上記目的を達成すべく鋭意検討を行った結果、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynが特定の範囲に制御されたアクリル樹脂延伸フィルムによれば、優れた耐クラック性および耐破断性を実現できることを見出し、本発明を完成させるに至った。
[1]アクリル系樹脂を成形してなるアクリル樹脂延伸フィルムであって、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynが、下記式(1)および下記式(2)を満たすアクリル樹脂延伸フィルム。
   Zn/Xn≦1.00      ・・・(1)
   Zn/Yn≦1.00      ・・・(2)
(Xnは、Xn=Xd970-1010/Xs2930-2970で算出される値であり、
 Ynは、Yn=Yd970-1010/Ys2930-2970で算出される値であり、
 Znは、Zn=Zd970-1010/Zs2930-2970で算出される値であり、
 Xd970-1010は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し平行(X方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Xs2930-2970は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し平行(X方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Yd970-1010は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し垂直(Y方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Ys2930-2970は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し垂直(Y方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Zd970-1010は、アクリル樹脂延伸フィルムの厚み方向(Z方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Zs2930-2970は、アクリル樹脂延伸フィルムの厚み方向(Z方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値である。)
[2]波長589nmの光に対する面内位相差R0が10nm以下である、[1]に記載のアクリル樹脂延伸フィルム。
[3]波長589nmの光に対する厚み方向位相差Rthが-10~+10nmである、[1]~[2]のいずれかに記載のアクリル樹脂延伸フィルム。
[4]ガラス転移温度(Tg)が100℃以上200℃以下である、[1]~[3]のいずれかに記載のアクリル樹脂延伸フィルム。
[5]前記アクリル系樹脂が、環構造を有する(メタ)アクリル重合体を含有する、[1]~[4]のいずれかに記載のアクリル樹脂延伸フィルム。
[6]前記アクリル系樹脂が、主鎖に環構造を有する(メタ)アクリル重合体を含有する、[5]に記載のアクリル樹脂延伸フィルム。
[7]前記環構造が、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、N-置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種である、[5]または[6]に記載のアクリル樹脂延伸フィルム。
[8]前記環構造が、ラクトン環構造である、[5]~[7]のいずれかに記載のアクリル樹脂延伸フィルム。
[9]前記アクリル系樹脂が、紫外線吸収剤を含む、[1]~[8]のいずれかに記載のアクリル樹脂延伸フィルム。
[10]膜厚が35~45μmである、[1]~[9]のいずれかに記載のアクリル樹脂延伸フィルム。
[11][1]~[10]のいずれかに記載のアクリル樹脂延伸フィルムを備える、偏光子保護フィルム。
[12][1]~[10]のいずれかに記載のアクリル樹脂延伸フィルムを製造する方法であって、
 アクリル系樹脂のフィルムを延伸する延伸工程を備え、
 延伸工程における、延伸温度がガラス転移点Tg+25℃~29℃であり、延伸歪速度が90~600%/分である、アクリル樹脂延伸フィルムの製造方法。
 本発明によれば、耐クラック性および耐破断性に優れたアクリル樹脂延伸フィルムを提供することができる。
図1は、本発明の一実施形態に係るアクリル樹脂延伸フィルムを製造する方法の一例を示す図である。 図2Aは、偏光ラマンスペクトルの測定方向を示す図である。 図2Bは、実施例1のアクリル樹脂延伸フィルムのX方向における偏光ラマンスペクトル測定により得られたプロファイルを示す図である。 図2Cは、実施例1のアクリル樹脂延伸フィルムのX方向における偏光ラマンスペクトルの二次微分プロファイルを示す図である。
<アクリル樹脂延伸フィルム>
 本発明のアクリル樹脂延伸フィルムは、アクリル系樹脂を成形してなるアクリル樹脂延伸フィルムであって、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynが、下記式(1および下記式(2)を満たすアクリル樹脂延伸フィルムである。
   Zn/Xn≦1.00      ・・・(1)
   Zn/Yn≦1.00      ・・・(2)
 本発明のアクリル樹脂延伸フィルムは、アクリル系樹脂を成形してなるフィルムであり、そのため、アクリル系樹脂を含有するものである。また、本発明で用いるアクリル系樹脂は、(メタ)アクリル重合体を含有する樹脂である。 
 本発明で用いるアクリル系樹脂に含有される、(メタ)アクリル重合体は、(メタ)アクリル酸エステル単量体に由来の構造単位、すなわち、(メタ)アクリル酸エステル単量体単位を有する重合体である。(メタ)アクリル重合体における(メタ)アクリル酸エステル単量体単位の含有率は、通常、10質量%以上、好ましくは30質量%以上、より好ましくは50質量%以上、特に好ましくは70質量%以上である。
 (メタ)アクリル酸エステル単量体単位を構成する(メタ)アクリル酸エステルとしては、たとえば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチルなどが挙げられる。
 (メタ)アクリル重合体は、(メタ)アクリル酸メチル単量体単位を有することが好ましく、(メタ)アクリル酸メチル単量体単位を含有することにより、アクリル樹脂延伸フィルムの光学特性および熱安定性をより高めることができる。(メタ)アクリル重合体は、2種以上の(メタ)アクリル酸エステル単量体単位を有していてもよい。
 (メタ)アクリル重合体は、(メタ)アクリル酸エステル単位以外の共重合可能な単量体の単位を含有していてもよい。このような共重合可能な単量体としては、スチレン、ビニルトルエン、α-メチルスチレン、α-ヒドロキシメチルスチレン、α-ヒドロキシエチルスチレン、アクリロニトリル、メタクリロニトリル、エチレン、プロピレン、4-メチル-1-ペンテン、酢酸ビニル、2-ヒドロキシメチル-1-ブテン、メチルビニルケトン、N-ビニルピロリドン、N-ビニルカルバゾールなどが挙げられる。(メタ)アクリル重合体は、共重合可能な単量体の単位を、2種以上含有していてもよい。
 また、(メタ)アクリル重合体は、環構造を有していてもよく、環構造を有する場合には、主鎖に環構造を有していることが好ましい。環構造を有することにより、耐熱性および光学特性により優れたものとすることができる。環構造は、たとえば、(メタ)アクリル酸エステル単量体と環構造を有する単量体とを共重合する方法や、(メタ)アクリル酸エステル単量体を含む単量体群を重合した後に環化反応を進行させる方法によって、(メタ)アクリル重合体の主鎖に導入することができる。
 重合後の環化反応により主鎖に環構造を導入する場合、(メタ)アクリル重合体は、水酸基および/またはカルボン酸基を有する単量体を共重合により形成することが好ましい。水酸基を有する単量体としては、たとえば、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸ブチル、2-(ヒドロキシエチル)アクリル酸メチル、メタリルアルコール、アリルアルコールなどが挙げられる。カルボン酸基を有する単量体としては、たとえば、アクリル酸、メタクリル酸、クロトン酸、2-(ヒドロキシメチル)アクリル酸、2-(ヒドロキシエチル)アクリル酸などが挙げられる。これらの単量体は、2種以上使用してもよい。
 (メタ)アクリル重合体が、主鎖に環構造を有する場合、環構造としては、たとえば、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、N-置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種であることが好ましい。光学特性をより高めることができるという観点からは、ラクトン環構造、グルタルイミド構造が好ましく、ラクトン環構造がより好ましい。
 ラクトン構造としては、たとえば、特開2004-168882号公報に開示の構造などが挙げられるが、光学特性をより高めることができるという観点より、下記一般式(1)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R、RおよびRは、互いに独立して、水素原子または炭素数1~20の有機基である。
 一般式(1)における有機基は、たとえば、メチル基、エチル基、プロピル基などの炭素数1~20のアルキル基、エテニル基、プロペニル基などの炭素数2~20の不飽和脂肪族炭化水素基、フェニル基、ナフチル基などの炭素数6~20の芳香族炭化水素基が挙げられ、これらアルキル基、不飽和脂肪族炭化水素基、芳香族炭化水素基は、水素原子の一つ以上が、水酸基、カルボキシル基、エーテル基、およびエステル基から選ばれる少なくとも1種類の基により置換されていてもよい。
 また、グルタルイミド構造としては、特に限定されないが、光学特性をより高めることができるという観点より、下記一般式(2)で表される構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(2)におけるR、Rは互いに独立して、水素原子またはメチル基であり、Rは、水素原子、炭素数1~6の直鎖アルキル基、シクロペンチル基、シクロヘキシル基、ベンジル基またはフェニル基である。
 (メタ)アクリル重合体が、主鎖に環構造を有する場合、環構造を形成する単量体単位の含有量は、好ましくは1~80重量%であり、より好ましくは5~70重量%であり、さらに好ましくは10~60重量%である。
 主鎖にラクトン環構造を有する(メタ)アクリル重合体としては、たとえば、特開2000-230016号公報、特開2001-151814号公報、特開2002-120326号公報、特開2002-254544号公報、特開2005-146084号公報に記載されている重合体などが挙げられ、これらの公報に記載されている方法により合成することができる。また、主鎖にグルタルイミド構造を有する(メタ)アクリル重合体としては、たとえば、特開2006-309033号公報、特開2006-317560号公報、特開2006-328329号公報、特開2006-328334号公報、特開2006-337491号公報、特開2006-337492号公報、特開2006-337493号公報、特開2006-337569号公報、特開2007-009182号公報に記載されている重合体などが挙げられ、これらの公報に記載されている方法により合成することができる。
 (メタ)アクリル重合体の重量平均分子量は、好ましくは1万~50万であり、より好ましくは2万~40万であり、さらに好ましくは3万~30万である。(メタ)アクリル重合体の重量平均分子量は、GPCを用いて、ポリスチレン換算の値にて求めることができる。
 本発明で用いるアクリル系樹脂は、上記(メタ)アクリル重合体を含有するものであることが好ましく、そのガラス転移温度Tgは、好ましくは100℃以上200℃以下であり、より好ましくは110℃以上160℃以下であり、さらに好ましくは120℃以上130℃以下であり、もっとも好ましくは125℃以上130℃以下である。
 そして、本発明のアクリル樹脂延伸フィルムは、上記したアクリル系樹脂を成形してなるものであり、偏光ラマンスペクトル測定によって得られる、
Zn/Xn、Zn/Ynが、下記式(1)および下記式(2)を満たすアクリル樹脂延伸フィルムである。
   Zn/Xn≦1.00      ・・・(1)
   Zn/Yn≦1.00      ・・・(2)
 ここで、上記Xnは、Xn=Xd970-1010/Xs2930-2970で算出される値であり、
 Ynは、Yn=Yd970-1010/Ys2930-2970で算出される値であり、
 Znは、Zn=Zd970-1010/Zs2930-2970で算出される値である。
 また、Xd970-1010は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し平行(X方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Xs2930-2970は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し平行(X方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Yd970-1010は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し垂直(Y方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Ys2930-2970は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し垂直(Y方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Zd970-1010は、アクリル樹脂延伸フィルムの厚み方向(Z方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
 Zs2930-2970は、アクリル樹脂延伸フィルムの厚み方向(Z方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値である。
 本発明者等は、アクリル樹脂延伸フィルムの耐クラック性および耐破断性を向上させるために、アクリル樹脂延伸フィルムの巻取り方向(X方向)における配向状態と、アクリル樹脂延伸フィルムの巻取り方向(X方向)に対し垂直な方向(Y方向)における配向状態と、アクリル樹脂延伸フィルムの厚み方向(Z方向)の配向状態の関係について、鋭意検討を行った。その結果、巻取り方向(X方向)およびこれと垂直な方向(Y方向)、厚み方向(Z方向)について、偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピーク、および波数2930~2970cm-1の範囲におけるピークに着目したものであり、これらの二次微分ピークの最小値を用いて得られる、Xn、Yn、および、Znを特定の範囲に制御することにより、耐クラック性および耐破断性に優れたものとすることができることを見出し、本発明を完成させるに至ったものである。特に、本発明者等が検討したところ、アクリル樹脂延伸フィルムなどの延伸フィルムにおいて、耐クラック性と耐破断性とはいずれか一方を向上させると、他方が低下する傾向にあるところ、これら耐クラック性と耐破断性とを同時に向上させることが困難であったところ、Xn、Yn、および、Znを特定の範囲に制御することにより、耐クラック性および耐破断性に優れたものとすることができることを見出したものである。
 より具体的には、配向に対する依存性がより高いピークとして、波数970~1010cm-1の範囲におけるピークおよびこの二次微分ピークの最小値に着目し、また、配向に対する依存性がより小さいピークとして、波数2930~2970cm-1の範囲におけるピークおよびこの二次微分ピークの最小値に着目し、本発明においては、これらを用いて算出される、Xn、Yn、および、Znを特定の範囲に制御するものである。より詳細には、ZnとXnとの比である、ラマン強度比(Zn/Xn)、および、ZnとYnとの比である、ラマン強度比(Zn/Yn)を特定の範囲とするものである。
 更に、本検討の本質は、従来の延伸による配向制御が、延伸フィルム平面(XY平面)の配向状態を最適化しているのに対し、本発明においては、極めて僅かに厚み方向に配向を付与することで、切断時のクラックを抑制し、耐クラック性を大幅に改善した点にある。
 アクリル樹脂延伸フィルムが、上記式(1)、上記式(2)のいずれかを満たさない場合には、切断方向によっては耐クラック性が劣るものとなってしまう。
 なお、Xn、Yn、Znは、アクリル樹脂延伸フィルムについて、偏光ラマンスペクトル測定を行うことにより求めることができる。具体的には、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し平行(X方向)に偏光ラマンスペクトル測定を行うとともに、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し垂直(Y方向)に偏光ラマンスペクトル測定を行うとともに、アクリル樹脂延伸フィルムの厚み方向(Z方向)に偏光ラマンスペクトル測定を行うことにより求めることができる。なお、偏光ラマンスペクトル測定は、たとえば、測定装置として、レーザーラマン分光光度計(製品名「NRS-5500」、日本分光社製)使用し、偏光ラマンスペクトル測定を行い、各測定方向における波数970~1010cm-1の範囲におけるピーク、波数2930~2970cm-1の範囲におけるピークから、これらの二次微分ピークを計算し、これらの波数範囲における二次微分ピークの最小値を求めXn=Xd970-1010/Xs2930-2970、Yn=Yd970-1010/Ys2930-2970、Zn=Zd970-1010/Zs2930-2970にしたがって算出することができる。なお、二次微分ピークの算出には、レーザーラマン分光光度計に備えられた算出ソフト等を用いればよい。
 図2B、図2Cに、実施例1のアクリル樹脂延伸フィルムの偏光ラマンスペクトル測定により得られたプロファイルを示す。ここで、図2Aは、偏光ラマンスペクトルの測定方向を示す図であり、図2Bは、実施例1のアクリル樹脂延伸フィルムのX方向における偏光ラマンスペクトル測定により得られたプロファイルを示す図であり、図2Cは、実施例1のアクリル樹脂延伸フィルムのX方向における偏光ラマンスペクトルの二次微分プロファイルを示す図である。
 なお、アクリル樹脂延伸フィルムの巻取り方向(MD方向:Machine  Direction)は、未延伸のアクリル樹脂フィルムを延伸し、これにより、アクリル樹脂延伸フィルムとする際における、フィルムの進行方向(流れ方向)である。
 また、本発明のアクリル樹脂延伸フィルムは、Zn/XnおよびZn/Ynが、上記式(1)および上記式(2)を満たすものであればよいが、アクリル樹脂延伸フィルムの巻取り方向(MD方向)、および巻取り方向に垂直な方向(TD方向:Transverse  Direction)にて行われる耐折試験による、耐折回数(MIT回数)が、下記式(3)および下記式(4)を満たすものであることが好ましい。  
0.74≦TD方向のMIT回数/MD方向のMIT回数≦1.35  ・・・(3)
   40≦(MD方向のMIT回数+TD方向のMIT回数)/2≦197 ・・・(4)
 耐折試験(MIT試験)は、JIS  P8115に準拠して行えばよく、JIS  P8115に準拠して測定される耐折回数(MIT回数)が上記式(3)および上記式(4)を満たすことが好ましい。耐折回数(MIT回数)が上記式(3)および上記式(4)を満たすことにより、フィルムの破断を有効に抑制しながら、耐クラック性により優れたものとすることができる。なお、耐折回数(MIT回数)は、下記式(5)および下記式(6)を満たすことがより好ましい。
 0.95≦TD方向のMIT回数/MD方向のMIT回数≦1.32 ・・・(5)
 45≦(MD方向のMIT回数+TD方向のMIT回数)/2≦166  ・・・(6)
 また、本発明のアクリル樹脂延伸フィルムは、衝撃強度が、1.90~2.15kJ/mの範囲であることが好ましく1.94~2.12kJ/mの範囲であることがより好ましい。衝撃強度を上記範囲とすることにより、フィルムの破断を有効に抑制しながら、耐クラック性により優れたものとすることができる。衝撃強度(kJ/m)は、たとえば、アクリル樹脂延伸フィルムにハンマー容量1.5J、ハンマー先端経1inchのハンマーを衝突させた際の衝撃値(kJ)を測定することにより求めることができる。
 本発明のアクリル樹脂延伸フィルムは、波長589nmの光に対する面内位相差R0が10nm以下であることが好ましく、より好ましくは0~5nmであり、さらに好ましくは0~3nmである。また、本発明のアクリル樹脂延伸フィルムは、波長589nmの光に対する厚み方向位相差Rthが-10~+10nmであることが好ましく、より好ましくは-5~+5nmであり、さらに好ましくは-3~+3nmである。面内位相差R0、厚み方向位相差Rthを上記範囲とすることで、偏光子保護フィルムとしての光学特性に優れたものとすることができる。面内位相差R0、厚み方向位相差Rthは、位相差測定装置から求めることができる。
 本発明のアクリル樹脂延伸フィルムのガラス転移温度Tgは、好ましくは100℃以上200℃以下であり、より好ましくは110℃以上160℃以下であり、さらに好ましくは120℃以上130℃以下であり、もっとも好ましくは125℃以上130℃以下である。
 本発明のアクリル樹脂延伸フィルムの厚み(膜厚)は、特に限定されず、用途に応じて適宜選択すればよいが、35~45μm好ましくは37~43μmであり、より好ましくは39~41μmである。
<アクリル樹脂延伸フィルムの製造方法>
 本発明のアクリル樹脂延伸フィルムの製造方法は、特に限定されないが、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynを、上記した範囲に好適に制御できるという観点より、以下に説明する本発明の製造方法が好ましい。
 すなわち、本発明の製造方法は、
 未延伸のアクリル樹脂フィルムを、予熱する工程と、
 未延伸のアクリル樹脂フィルムを、延伸温度T[℃]に加熱した状態で、一方向または二方向に延伸する延伸工程と、
 延伸後のアクリル樹脂フィルムを、緩和温度T[℃]にて加熱することで熱緩和する熱緩和工程と、を備え、
 延伸温度T[℃]を、アクリル系樹脂のガラス転移温度Tg[℃]との関係で、T=Tg+25~Tg+29の範囲に制御するものである。
 図1は、本発明の一実施形態に係るアクリル樹脂延伸フィルムを製造する方法の一例を示す図である。以下においては、図1に示す方法でアクリル樹脂延伸フィルムを製造する場合を例示して、説明する。
 図1は、予熱帯、延伸帯、および熱緩和帯を備える同時二軸延伸装置によって、アクリル系樹脂のフィルムを、長さ方向および幅方向に同時に延伸する方法を示す図である。図1に示す例においては、同時二軸延伸装置により、未延伸のアクリル樹脂フィルムを、予熱帯にて予備加熱し、延伸帯にて加熱しながら長さ方向および幅方向に同時に延伸し、熱緩和帯にてフィルムの分子配向(配向角)を均一化するための加熱を行う熱緩和処理を施す。なお、延伸方式は、図1に示す同時二軸延伸装置等を使用した同時二軸延伸に限定されるものではなく、たとえば、逐次延伸であってもよい。逐次延伸による場合には、たとえば、予熱帯、延伸帯、および熱緩和帯を備えるテンター延伸機を用いることができる。
 延伸工程は、図1に示す予熱帯にてフィルム100を予熱し、予熱したフィルム100を、延伸帯にて長さ方向および幅方向に加熱延伸する工程である。具体的には、延伸工程では、まず、ロール等からフィルム100を連続的に送り出し、複数のクリップ200を用いてフィルム100を一定間隔ごとに把持し、各クリップ200を移動させることでフィルム100を同時二軸延伸装置に搬送する。次いで、フィルム100を、搬送しながら、図1に示す予熱帯にて予熱した後、延伸帯にて、フィルム100を延伸温度T[℃]に加熱した状態で、クリップ200により長さ方向および幅方向に引っ張ることで延伸する。
 なお、本実施形態においては、同時二軸延伸装置内を通過するようにして、クリップ200が移動するための一対のガイドレール(不図示)が設置されている。一対のガイドレールは、図1に示すフィルム100の上側を把持するクリップ200の位置と、下側を把持するクリップ200の位置にそれぞれ設置されており、予熱帯では互いに平行であり、延伸帯では互いにフィルム100の幅方向に離れていき、熱緩和帯ではまた互いに平行となっている。あるいは、熱緩和帯においては、フィルムの固化時の収縮分を考慮して、一対のガイドレール同士の距離を、幅方向に近づけるようにしてもよい。本実施形態においては、フィルム100を把持したクリップ200が、このようなガイドレールに沿って移動することで、フィルム100を搬送および延伸できるようになっている。
 フィルム100は、たとえば、熱可塑性樹脂をTダイスから溶融押出しすることで得ることができる。
 本発明の製造方法においては、延伸工程における延伸温度T[℃]を、フィルム100を構成するアクリル系樹脂のガラス転移温度Tg[℃]との関係で、T=Tg+25~Tg+29の範囲と極めて限定された範囲とするものであり、これにより、Zn/XnおよびZn/Ynを、上記した範囲に好適に制御できるものである。すなわち、アクリル系樹脂のガラス転移温度Tg[℃]が、たとえば、125℃である場合には、延伸工程における延伸温度T[℃]を、150~154℃と極めて限定された範囲とするものである。なお、本発明においては、アクリル系樹脂のガラス転移温度Tg[℃]は、示差走査熱量分析(DSC)を行うことにより観測される吸熱プロファイルの変位の中間点(変位の開始温度と、変位の終了温度との中間の温度、中間点ガラス転移温度)となる温度を意味する(中点法により特定されるガラス転移温度)。
 延伸温度T[℃]が、アクリル系樹脂のガラス転移温度Tg[℃]に対して、(Tg+25)[℃]未満である場合は上記式(1)、上記式(2)の値が大きくなりすぎてしまい、上記式(1)、上記式(2)を満たさないものとなってしまう。一方で(Tg+29)[℃]超の場合においては、上記式(1)、上記式(2)は満たすと想定されるが、耐破断性が著しく低下し生産できないものとなってしまうため、Zn/Xn、Zn/Ynについては、0.70以上が好ましく、0.93以上がより好ましい。
 なお、延伸温度T[℃]が、アクリル系樹脂のガラス転移温度Tg[℃]に対して、上記範囲であればよいが、アクリル系樹脂の補外ガラス転移開始温度Tig[℃]との関係で、T=Tig+27~Tg+31の範囲とすることが好ましい。アクリル系樹脂のガラス転移温度Tg(中間点ガラス転移温度)、補外ガラス転移開始温度Tigは、たとえば、示差走査熱量分析(DSC)装置として、示差走査熱量計(製品名「DSC8500」、パーキンエルマー社製)を使用し、昇温速度10℃/分の条件で測定を行い、得られたDSC曲線より、装置付属の解析ソフトを用いて、求めることができる。
 延伸工程における延伸倍率は、特に限定されないが、縦延伸倍率(MD方向の延伸倍率)が、好ましくは1.5~3.0倍であり、より好ましくは2.0~2.5倍であり、横延伸倍率(TD方向の延伸倍率)が、好ましく1.5~3.0倍であり、より好ましくは2.0~2.5倍である。延伸倍率が低すぎると、得られるアクリル樹脂延伸フィルムの光学特性が不十分となる場合があり、また、延伸倍率が高すぎると、Zn/XnおよびZn/Ynの値を、上記範囲に制御することが困難となる場合がある。
 また、延伸工程における延伸歪速度は、特に限定されないが、縦延伸歪速度(MD方向の延伸歪速度)が、好ましくは90~600%/分であり、より好ましくは150~250%/分であり、横延伸歪速度(TD方向の延伸歪速度)が、好ましくは90~600%/分であり、より好ましくは150~250%/分である。延伸歪速度が小さすぎても、あるいは、大きすぎても、Zn/Xn、Zn/Ynの値を、上記範囲に制御することが困難となる場合がある。なお、延伸帯における延伸時間は、特に限定されないが、好ましくは20~40秒、より好ましくは22~30秒である。
 延伸を行う前のフィルム100の幅は、好ましくは200~2000mm、より好ましくは800~1200mmであり、延伸を行う前のフィルム100の厚みは、好ましくは70~250μm、より好ましくは100~200μmである。
 フィルム100を図1に示す予熱帯で予熱する際の加熱温度は、フィルム100を構成するアクリル系樹脂のガラス転移温度Tg[℃]よりも、好ましくは15~29℃高い温度、より好ましくは19~21℃高い温度である。
 次いで、本発明の製造方法においては、延伸帯において延伸したフィルム100を、図1に示すように熱緩和帯に搬送し、熱緩和帯にて、フィルム100を構成する緩和温度T[℃]にて加熱することで、熱緩和処理を行う。これにより、フィルム100は、分子配向が均一化され、光学特性、強度および耐久性に優れたものとなる。
 熱緩和帯における緩和温度T[℃]は、特に限定されないが、フィルム100を構成するアクリル系樹脂のガラス転移温度Tg[℃]との関係で、T=Tg+10℃~Tg-10℃の範囲とすることが好ましく、T=Tg+5℃~Tg-5℃の範囲とすることがより好ましい。緩和温度T[℃]を上記範囲とすることで、Zn/Xn、Zn/Ynの値を、上記範囲に適切に制御することができる。なお、熱緩和帯における熱緩和時間は、特に限定されないが、好ましくは5~15秒、より好ましくは9~11秒である。
 以上のようにして、本発明の製造方法によれば、Zn/XnおよびZn/Ynの値が、上記範囲に制御されたアクリル樹脂延伸フィルムを製造することができる。
 本発明のアクリル樹脂延伸フィルムは、Zn/XnおよびZn/Ynの値が、上記範囲に制御されたものであり、耐クラック性および耐破断性に優れたものである。そのため、本発明のアクリル樹脂延伸フィルムは、各種光学用途に好適に用いることができ、たとえば、偏光子保護フィルム、拡散フィルム、集光フィルム、反射フィルム、導光フィルム、などに好適に用いることができ、とりわけ、偏光子保護フィルムとして好適に用いることができ、その優れた耐クラック性を利用し、フレームレスである液晶表示装置に適用される偏光子保護フィルムとして、特に好適に用いることができる。
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
 なお、各特性の評価方法は、以下のとおりである。
<アクリル系樹脂のガラス転移温度Tg、補外ガラス転移開始温度Tig>
 アクリル系樹脂のガラス転移温度Tg(中間点ガラス転移温度)、補外ガラス転移開始温度Tigは、示差走査熱量計(製品名「DSC8500」、パーキンエルマー社製)を用いてJIS  K7121に基づく示差走査熱量分析法に従い実施した。窒素ガス雰囲気下において、試料約10mgを0℃で1分保持後、昇温速度10℃/分で0℃から290℃まで昇温し3分間保持した後、降温速度200℃/分で0℃まで降温し、1分間保持し、次いで、昇温速度10℃/分で0℃から290℃まで昇温して測定を行うことで得られるDSC曲線より、装置付属の解析ソフトを用いて、求めた。
<アクリル樹脂延伸フィルムの偏光ラマンスペクトル測定>
 各実施例、比較例で得られたアクリル樹脂延伸フィルムについて、レーザーラマン分光光度計(製品名「NRS-5500」、日本分光社製)を使用し、レーザー波長532nm、測定範囲600から3500cm-1、グレーティングL600/500nm、対物レンズ100倍、スリットΦ25μm、アパーチャーΦ4000μm、偏光子0°、露光時間30秒~150秒(2930~2970cm-1の範囲におけるピーク強度が3000以上となるように調整)、レーザー強度3.5mWの条件で偏光ラマンスペクトル測定を行い、面内異方性Yn/Xn、及び厚み異方性Zn/Xnを算出した。測定、算出は以下の手順で行った。なお、レーザーの焦点は最表面から深さ方向に10μmの位置に設定した。
(1)フィルムの巻き取り方向(MD方向)をX方向、フィルムの幅方向(TD方向)をY方向、フィルムの厚み方向をZ方向とし、X方向、Y方向ともに20mmずつ正方形の測定サンプルを正確に切り出した。切り出したサンプルは、サンプルホルダーにXY平面を測定できるように軸をそろえてセットした。
(2)XY平面のX方向の偏光ラマンスペクトルを測定し、得られたラマンスペクトルについて、レーザーラマン分光光度計に備えられた解析ソフトを用いて二次微分処理(差分法、データ間隔21)を実施した。
(3)高分子配向に依存するピークとして970~1010cm-1の範囲における二次微分ピークの最小値をXd970-1010とし、高分子配向に依存しないピークとして2930~2970cm-1の範囲における二次微分ピークの最小値をXs2930-2970として求め、その2つのピークで規格化処理を実施し、Xnを算出した。なお、Xn=Xd970-1010/Xs2930-2970である。
(4)XY平面のY方向の偏光ラマンスペクトルを測定し、同様に、Ynを算出した。なお、Yn=Yd970-1010/Ys2930-2970である。
(5)XnとYnより、面方向異方性=Yn/Xnを算出した。
(6)次に、サンプルホルダーにウルトラミクロトーム(製品名「ULTRACUT UCT」、ライカ社製)により切り出したサンプルのXZ平面(切断面)を測定できるように軸をそろえてセットした。
(7)XY平面と同様に、XZ平面のX方向の偏光ラマンスペクトル、およびZ方向の偏光ラマンスペクトルを測定し、XnとZnを算出した。
Xn=Xd970-1010/Xs2930-2970
Zn=Zd970-1010/Zs2930-2970
(8)XnとZnより、厚み方向異方性 =Zn/Xnを算出した。
(9)上記より得られた Yn/Xn および Zn/Xn より、Zn/Ynを求めた。
 図2B、図2Cに、実施例1のアクリル樹脂延伸フィルムの偏光ラマンスペクトル測定により得られたプロファイルを示す。ここで、図2Aは、偏光ラマンスペクトルの測定方向を示す図であり、図2Bは、実施例1のアクリル樹脂延伸フィルムのX方向における偏光ラマンスペクトル測定により得られたプロファイルを示す図であり、図2Cは、実施例1のアクリル樹脂延伸フィルムのX方向における偏光ラマンスペクトルの二次微分プロファイルを示す図である。
<アクリル樹脂延伸フィルムの厚み測定>
 各実施例、比較例で得られたアクリル樹脂延伸フィルムの厚み(膜厚)は、デジマチックマイクロメーター(ミツトヨ社製)を用いて測定した。
<アクリル樹脂延伸フィルムの面内位相差R0、厚み方向位相差Rthの測定>
 各実施例、比較例で得られたアクリル樹脂延伸フィルムの、波長589nmにおける、面内位相差R0、及び厚み方向位相差Rthは、測定装置として位相差測定装置(製品名「KOBRA-WPR」、王子計測器社製)を用いて、低位相モードにて測定し、下記式にしたがって求めた。なお、厚み方向位相差値Rthは、アッベ屈折率計(製品名「NAR-1TSOLID」、アタゴ社製)で測定したフィルムの平均屈折率naveと遅相軸を傾斜軸として40°傾斜させて測定した位相差値Rθから三次元屈折率n、n、nの値を得た後、求めた。
  R0[nm]=(n-n)×d
  Rth[nm]={(n+n)/2-n}×d
 nは、アクリル樹脂延伸フィルム面内における屈折率が最大となる遅相軸の方向の屈折率であり、nは、上記遅相軸と直交する方向の屈折率であり、nは、アクリル樹脂延伸フィルムの厚み方向の屈折率であり、dは、アクリル樹脂延伸フィルムの厚み[nm]である。
<アクリル樹脂延伸フィルムの耐折試験(MIT試験)>
 各実施例、比較例で得られたアクリル樹脂延伸フィルムを100mm×15mmの大きさに切り出して試験片とし、MIT耐折度試験機(製品名「MIT耐折疲労試験機D-2型」、東洋精機製作所社製)を用いて、温度23℃、相対湿度50%の雰囲気中で荷重1000gfを加え、運動回数は175回/分、屈曲角度は135°とし、JIS P 8115:2001に準拠してMIT耐折度試験回数を測定した。測定はフィルムの幅方向3箇所からサンプリングし、各サンプルについて5点測定を行い、最大値と最小値を除いた3点×3箇所=計9点の平均値を耐折回数とした。測定は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し垂直に折り曲げる試験の結果を、MD方向のMIT回数とし、巻取り方向に垂直な方向(TD方向)に対し垂直に折り曲げる試験の結果(巻取り方向(MD方向)に対し平行に折り曲げる試験の結果)を、TD方向のMIT回数とした。
<アクリル樹脂延伸フィルムの衝撃強度>
 各実施例、比較例で得られたアクリル樹脂延伸フィルムについて、測定装置として、フィルムインパクトテスター(東洋精機製作所社製)を用いて求めた。試験片は100mm×100mmの正方形とし、ハンマー容量1.5J、ハンマー先端経1inchとして試験を実施した。試験温度は23℃で、衝撃強度[kJ/m]は10回の測定の平均値とした。
<アクリル樹脂延伸フィルムの耐クラック試験>
 各実施例、比較例で得られたアクリル樹脂延伸フィルムについて、スーパーカッター(製品名「NZ1-0606」、荻野精機製作所社製)を使用して、MD方向、TD方向に300mmの長さで切断した。切断した試験片を、実体顕微鏡(製品名「SMZ1500、ニコン社製」を用いて観察し、切断端50mmの範囲のクラック発生数を求めた。MD方向、TD方向のクラック発生数から平均値を求めた。これを10回繰り返し、10回計測の平均値を求め、下記基準で評価を行った。
  〇:クラックの発生数平均が3個以下、
  △:クラックの発生数平均が6個以下、
  ×:クラックの発生数平均が7個以上
<アクリル樹脂延伸フィルムの耐破断試験>
 破断せずに安定して生産できる場合を〇、破断により安定して生産できない場合を×とした。
 以下に、本発明を実施例によってさらに詳述するが、本発明はこれによって限定されるものではない。
〔製造例1:ラクトン環含有アクリル系樹脂の製造〕
 特許第4928187号公報の実施例に記載の方法に従って、ラクトン環含有アクリル系樹脂を製造した。すなわち、攪拌装置、温度センサー、冷却管、窒素ガス導入管を備えた容量30Lの反応容器に、メタクリル酸メチル7.95kg、2-(ヒドロキシメチル)アクリル酸メチル1.5kg、スチレン5.5kg、トルエン10kgを仕込んだ。
  この反応容器に窒素ガスを導入しながら、105℃まで昇温し、還流したところで、重合開始剤として、t-アミルパーオキシイソナノエート12gを添加すると同時に、トルエン136gにt-アミルパーオキシイソナノエート24gを溶解した溶液を2時間かけて滴下しながら、還流下、約105~110℃で溶液重合を行い、さらに4時間かけて熟成を行った。 得られたアクリル系共重合体溶液に、リン酸ステアリル/リン酸ジステアリル混合物(Phoslex  A-18、堺化学工業(株)製)10gを添加し、加圧下、約120℃で5時間、環化縮合反応を行った。得られたアクリル系共重合体溶液に、リン酸オクチル(Phoslex  A-8、堺化学工業(株)製)10gを添加し、加圧下、約120℃で5時間、環化縮合反応を行った。次いで、得られたアクリル系共重合体溶液を、濾過精度が10μmのリーフディスク型ポリマーフィルター(5インチ(12.7cm))5枚、長瀬産業(株)製)を備え、リアベント数1個、フォアベント数4個のベントタイプスクリュー二軸押出機(φ=29.75mm、L/D=30)に、樹脂量換算で、2.0kg/hの処理速度で導入し、バレル温度240℃、回転数120rpm、減圧度13.3~400hPa(10~300mmHg)で脱揮処理を行うと同時に、ポリマーフィルター処理を行った。上記処理の際に、第2フォアベントと第3フォアベントとの中間で、発泡抑制剤としてオクチル酸亜鉛(ニッカオクチクス亜鉛、日本化学産業(株)製)を、トルエン溶液の形態で得られるアクリル系共重合体に対して、1,400ppmとなるように注入した。
  二軸押出機の先端部に、濾過処理した清浄な冷却水で満たした水槽を配置し、ストランドを冷却し、ペレタイザーに導入することにより、ラクトン環を有する構造単位と芳香族単量体由来の構造単位とを有する耐熱性アクリル樹脂の透明なペレットを得た。得られた樹脂について、上記方法にしたがって、ガラス転移温度Tg、補外ガラス転移開始温度Tigを測定したところ、ガラス転移温度Tgは125℃であり、補外ガラス転移開始温度Tigは123℃であった。
〔製造例2:グルタルイミド環含有アクリル系樹脂の製造〕
 特許第5574787号の実施例に記載の方法に従って、ラクトン環含有アクリル系樹脂を製造した。すなわち、押出反応機を2台直列に並べたタンデム型反応押出機を用いて、樹脂を製造した。タンデム型反応押出機に関しては、第1押出機(1)、第2押出機(2)共に直径75mm、L/D(押出機の長さLと直径Dの比)が74の同方向噛合型二軸押出機を使用し、定重量フィーダー(クボタ(株)製)を用いて、第1押出機原料供給口に原料樹脂を供給した。又、第1押出機、第2押出機に於ける各ベントの減圧度は-0.095MPaとした。更に、直径38mm、長さ2mの配管で第1押出機と第2押出機を接続し、第1押出機の樹脂吐出口と第2押出機原料供給口を接続する部品内圧力制御機構には定流圧力弁を用いた。第2押出機から吐出された樹脂(ストランド)は、冷却コンベアで冷却した後、ペレタイザーでカッティングしペレットとした。ここで、第1押出機の樹脂の吐出口と第2押出機原料供給口を接続する部品内圧力調整、又は押出変動を見極める為に、第1押出機出口、第1押出機と第2押出機接続部品中央部、第2押出機出口に樹脂圧力計を設けた。
  第1押出機に関して、原料の樹脂としてポリメタクリル酸メチル樹脂(Mw:10.5万)を使用し、イミド化剤として、モノメチルアミンを用いてイミド樹脂中間体1を製造した。この際、押出機最高温部温度を280℃、スクリュー回転数は55rpm、原料樹脂供給量は150kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して2.0部とした。又、定流圧力弁は第2押出機原料供給口直前に設置し、第1押出機モノメチルアミン圧入部圧力を8MPaになるように調整した。
  第2押出機に関して、リアベント及び真空ベントで残存しているイミド化反応試剤及び副生成物を脱揮したのち、エステル化剤として炭酸ジメチルとトリエチルアミンの混合溶液を添加しイミド樹脂中間体2を製造した。この際、押出機各バレル温度を260℃、スクリュー回転数は55rpm、炭酸ジメチルの添加量は原料樹脂100部に対して3.2部、トリエチルアミンの添加量は原料樹脂100部に対して0.8部とした。更に、ベントでエステル化剤を除去した後、ストランドダイから押し出し、水槽で冷却した後、ペレタイザーでペレット化することで、樹脂組成物を得た。
(光学フィルムの作製)
<実施例1>
 製造例1で得られた樹脂ペレットを、温度265℃で溶融押出して、幅1000mm、厚み180μmの未延伸フィルムを成膜し、次いで、フィルムの両端部をクリップで掴み、図1に示す同時二軸延伸機へ供給した。予熱帯で145℃まで加熱した後、延伸帯で150℃に加熱し縦2.0倍、横2.2倍、縦歪速度150%/分、横歪速度150%/分で延伸を行った。延伸後は熱緩和帯で125℃で緩和処理を行い、平均膜厚40mの延伸フィルムを得た。
<実施例2>
 延伸帯の温度を151℃にした以外は、実施例1と同様に実施し延伸フィルムを得た。
<実施例3>
 延伸帯の温度を153℃にした以外は、実施例1と同様に実施し延伸フィルムを得た。
<実施例4>
 延伸帯の温度を154℃にした以外は、実施例1と同様に実施し延伸フィルムを得た。
<実施例5>
 製造例1で得られた樹脂ペレットを、温度265℃で溶融押出して、幅300mm、厚み130μmの未延伸フィルムを成膜し、平均膜厚130μmの未延伸フィルムを得た。次に、得られた未延伸フィルムから、巻き取り方向(X方向)、幅方向(Y方向)ともに95mmの正方形の未延伸フィルムサンプルを正確に切り出した。
 切り出した未延伸フィルムサンプルを二軸延伸装置(製品名「X6H-S」、東洋精機製作所社製)により同時二軸延伸して、平均膜厚35μmの延伸フィルムを得た。なお、延伸は延伸温度150℃、X方向に延伸倍2.0倍、X方向の延伸速度200%/分、Y方向に延伸倍率2.0倍、Y方向の延伸速度200%/分で行った。
<実施例6>
 延伸温度を151℃としたこと以外は、実施例5と同様に実施した。
<比較例1~7>
 延伸帯の温度をそれぞれ、143℃、144℃、145℃、146℃、147℃、148℃、149℃とした以外は、実施例1と同様に実施し延伸フィルムを得た。
<比較例8>
 延伸帯の温度を155℃とした以外は、実施例1と同様に実施した。破断により延伸フィルムを得ることができなかった。
<比較例9>
 延伸を実施していない180μmの未延伸フィルムを用いた。
<比較例10>
 製造例2で得られた樹脂ペレットを、温度265℃で溶融押出して、幅1000mm、厚み180μmの未延伸フィルムを成膜し、次いで、フィルムの両端部をクリップで掴み、図1に示す同時二軸延伸機へ供給した。予熱帯で150℃まで加熱した後、延伸帯で145℃に加熱し縦2.0倍、横2.2倍、縦歪速度150%/分、横歪速度150%/分で延伸を行った。延伸後は熱緩和帯で125℃で緩和処理を行い、平均膜厚40mの延伸フィルムを得た。
<比較例11>
 製造例1で得られた樹脂ペレットを、温度265℃で溶融押出して、幅300mm、厚み130μmの未延伸フィルムを成膜し、平均膜厚130μmの未延伸フィルムを得た。次に、得られた未延伸フィルムから、巻き取り方向(X方向)、幅方向(Y方向)ともに95mmの正方形の未延伸フィルムサンプルを正確に切り出した。
 切り出した未延伸フィルムサンプルを二軸延伸装置(製品名「X6H-S」、東洋精機製作所社製)により逐次二軸延伸して、平均膜厚20μmの延伸フィルムを得た。なお、一段目の延伸はX方向に延伸温度150℃、延伸倍3.0倍、延伸速度1000%/分で行い、二段目の延伸はY方向に延伸温度150℃、延伸倍率3.0倍、延伸速度1000%/分で行った。
<比較例12>
 歪速度を1000%/分としたこと以外は、実施例5と同様に実施した。
<比較例13>
 延伸温度を151℃としたこと以外は、比較例12と同様に実施した。
<参考例>
 製造例1で得られた樹脂ペレットを、温度265℃で溶融押出して、幅300mm、厚み130μmの未延伸フィルムを成膜し、平均膜厚130μmの未延伸フィルムを得た。次に、得られた未延伸フィルムから、巻き取り方向(X方向)に90mm、幅方向(Y方向)に150mmの長方形の未延伸フィルムサンプルを正確に切り出した。
 切り出した未延伸フィルムサンプルをテンシロン万能材料試験機(製品名「RTA-500」、オリエンテック社製)により、チャック間距離を50mmに設定し、X方向に自由端一軸延伸して、平均膜厚46μmの延伸フィルムを得た。なお、延伸はX方向に延伸温度130℃、延伸倍率2.8倍、延伸速度1000%/分で行った。
 そして、得られたアクリル樹脂延伸フィルムを用いて、上記各測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 なお、表1中には、特開2010-58455号公報に開示の方法により測定した、偏向ラマンスペクトル測定における面内配向度Dpl、偏向ラマンスペクトル測定における厚み配向度Dthの測定結果も示した。
 表1に示すように、アクリル系樹脂を使用し、延伸温度T[℃]を、アクリル系樹脂のガラス転移温度Tg[℃]との関係で、T=Tg+25~Tg+29の範囲とし、縦延伸歪速度(MD方向の延伸歪速度)を90~600%/分、横延伸歪速度(TD方向の延伸歪速度)を90~600%/分とした場合には、得られるアクリル樹脂延伸フィルムを、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynが、下記式(1)および下記式(2)を適切に満たすものとすることができ、これにより、優れた耐クラック性および耐破断性を実現できるものであった(実施例1~6)。
   Zn/Xn≦1.00      ・・・(1)
   Zn/Yn≦1.00      ・・・(2)
 一方、延伸温度T[℃]を、アクリル系樹脂のガラス転移温度Tg[℃]との関係で、T<Tg+25とした場合には、得られるアクリル樹脂延伸フィルムは、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynが、上記式(1)および上記式(2)のいずれか一方を満たさなくなり、耐クラック性が劣るものであった(比較例1~7、比較例10)。
 一方、延伸温度T[℃]を、アクリル系樹脂のガラス転移温度Tg[℃]との関係で、T>Tg+29とした場合には、耐破断性が劣るものであった(比較例8)。
 また、延伸していない未延伸フィルムの場合であっても、製膜時に巻取り方向に引き取られるため、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynが、上記式(1)および上記式(2)のいずれか一方を満たさなくなり、本発明のフィルムの配向状態とは異なるものであった(比較例9)。
 生産機ではなく試験機の場合であっても、延伸温度、縦延伸歪速度および横延伸歪速度を好適な範囲から外れたものとした場合には、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynが、上記式(1)および上記式(2)のいずれか一方を満たさなくなり、耐クラック性が劣るものであった(実施例5~6、比較例11~13)。

Claims (12)

  1.  アクリル系樹脂を成形してなるアクリル樹脂延伸フィルムであって、偏光ラマンスペクトル測定によって得られる、Zn/XnおよびZn/Ynが、下記式(1)および下記式(2)を満たすアクリル樹脂延伸フィルム。
       Zn/Xn≦1.00      ・・・(1)
       Zn/Yn≦1.00      ・・・(2)
    (Xnは、Xn=Xd970-1010/Xs2930-2970で算出される値であり、
     Ynは、Yn=Yd970-1010/Ys2930-2970で算出される値であり、
     Znは、Zn=Zd970-1010/Zs2930-2970で算出される値であり、
     Xd970-1010は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し平行(X方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
     Xs2930-2970は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し平行(X方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値であり、
     Yd970-1010は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し垂直(Y方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
     Ys2930-2970は、アクリル樹脂延伸フィルムの巻取り方向(MD方向)に対し垂直(Y方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値であり、
     Zd970-1010は、アクリル樹脂延伸フィルムの厚み方向(Z方向)に偏光ラマンスペクトル測定をして得られる波数970~1010cm-1の範囲におけるピークの二次微分ピークの最小値であり、
     Zs2930-2970は、アクリル樹脂延伸フィルムの厚み方向(Z方向)に偏光ラマンスペクトル測定をして得られる波数2930~2970cm-1の範囲におけるピークの二次微分ピークの最小値である。)
  2.  波長589nmの光に対する面内位相差R0が10nm以下である、請求項1に記載のアクリル樹脂延伸フィルム。
  3.  波長589nmの光に対する厚み方向位相差Rthが-10~+10nmである、請求項1に記載のアクリル樹脂延伸フィルム。
  4.  ガラス転移温度(Tg)が100℃以上200℃以下である、請求項1に記載のアクリル樹脂延伸フィルム。
  5.  前記アクリル系樹脂が、環構造を有する(メタ)アクリル重合体を含有する、請求項1に記載のアクリル樹脂延伸フィルム。
  6.  前記アクリル系樹脂が、主鎖に環構造を有する(メタ)アクリル重合体を含有する、請求項5に記載のアクリル樹脂延伸フィルム。
  7.  前記環構造が、ラクトン環構造、グルタルイミド構造、無水グルタル酸構造、N-置換マレイミド構造および無水マレイン酸構造から選ばれる少なくとも1種である、請求項5に記載のアクリル樹脂延伸フィルム。
  8.  前記環構造が、ラクトン環構造である、請求項5に記載のアクリル樹脂延伸フィルム。
  9.  前記アクリル系樹脂が、紫外線吸収剤を含む、請求項1に記載のアクリル樹脂延伸フィルム。
  10.  膜厚が35~45μmである、請求項1に記載のアクリル樹脂延伸フィルム。
  11.  請求項1~10のいずれかに記載のアクリル樹脂延伸フィルムを備える、偏光子保護フィルム。
  12.  請求項1~10のいずれかに記載のアクリル樹脂延伸フィルムを製造する方法であって、
     アクリル系樹脂のフィルムを延伸する延伸工程を備え、
     延伸工程における、延伸温度がガラス転移点Tg+25℃~29℃であり、延伸歪速度が90~600%/分である、アクリル樹脂延伸フィルムの製造方法。
PCT/JP2023/024077 2022-06-30 2023-06-28 アクリル樹脂延伸フィルム WO2024005107A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-106476 2022-06-30
JP2022106476 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024005107A1 true WO2024005107A1 (ja) 2024-01-04

Family

ID=89382466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024077 WO2024005107A1 (ja) 2022-06-30 2023-06-28 アクリル樹脂延伸フィルム

Country Status (1)

Country Link
WO (1) WO2024005107A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294261A (ja) * 2008-06-02 2009-12-17 Fujifilm Corp 液晶表示装置、アクリルフィルムおよびその製造方法
JP2009292869A (ja) * 2008-06-02 2009-12-17 Fujifilm Corp アクリルフィルム、その製造方法、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
US20100047558A1 (en) * 2008-08-19 2010-02-25 David Schiraldi Diffusion barrier for electronic display devices
JP2017101225A (ja) * 2015-11-20 2017-06-08 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム、製造方法
JP2018080258A (ja) * 2016-11-16 2018-05-24 三菱ケミカル株式会社 熱可塑性樹脂組成物、およびそれよりなる透明フィルム
JP2018155813A (ja) * 2017-03-15 2018-10-04 日東電工株式会社 偏光子保護フィルムの製造方法
JP2022164227A (ja) * 2021-04-16 2022-10-27 株式会社カネカ 透明導電フィルム、及び透明導電フィルムの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294261A (ja) * 2008-06-02 2009-12-17 Fujifilm Corp 液晶表示装置、アクリルフィルムおよびその製造方法
JP2009292869A (ja) * 2008-06-02 2009-12-17 Fujifilm Corp アクリルフィルム、その製造方法、偏光板、光学補償フィルム、反射防止フィルムおよび液晶表示装置
US20100047558A1 (en) * 2008-08-19 2010-02-25 David Schiraldi Diffusion barrier for electronic display devices
JP2017101225A (ja) * 2015-11-20 2017-06-08 旭化成株式会社 メタクリル系樹脂、メタクリル系樹脂組成物、フィルム、製造方法
JP2018080258A (ja) * 2016-11-16 2018-05-24 三菱ケミカル株式会社 熱可塑性樹脂組成物、およびそれよりなる透明フィルム
JP2018155813A (ja) * 2017-03-15 2018-10-04 日東電工株式会社 偏光子保護フィルムの製造方法
JP2022164227A (ja) * 2021-04-16 2022-10-27 株式会社カネカ 透明導電フィルム、及び透明導電フィルムの製造方法

Similar Documents

Publication Publication Date Title
TWI308914B (en) Transparent heat-resistant resin optical material and film
EP2578609B1 (en) Acrylic thermoplastic resin and molded object thereof
KR101409208B1 (ko) 연속괴상중합법에 의한 광학 필름용 수지 조성물의 제조 방법, 이를 이용한 광학 필름의 제조 방법 및 편광판 제조 방법
KR101269673B1 (ko) 광학 필름용 수지 조성물 및 이를 이용한 광학 필름
JP2011112733A (ja) 位相差フィルムの製造方法
JP2020508377A (ja) メタクリル酸メチルの酸官能化コポリマー及びこれをベースとするアクリル樹脂組成物
JPWO2005108438A1 (ja) イミド樹脂とその製造方法、およびそれを用いた成形体
KR101335618B1 (ko) 광학 필름용 아크릴계 공중합체 수지의 제조방법 및 이를 이용한 광학필름의 제조방법
JP2010265396A (ja) アクリル樹脂フィルムおよびその製造方法
JP2010054750A (ja) 位相差フィルムの製造方法
JP2020509115A (ja) 高いガラス転移温度を有する樹脂成分をベースとする透明フィルム
JP4432513B2 (ja) 光学フィルム用樹脂組成物及び光学フィルム
WO2024005107A1 (ja) アクリル樹脂延伸フィルム
JP6591151B2 (ja) 光学フィルム
CN113467081B (zh) 头戴式显示器用树脂制导光体
JP2011137910A (ja) 位相差フィルムの製造方法
KR20140084096A (ko) 광학 필름 및 그것을 구비하는 액정 표시 장치
TW202415534A (zh) 丙烯酸樹脂延伸膜
JP2009041007A (ja) 光学等方性アクリル樹脂フィルムの製造方法およびその製造方法
CN103459490B (zh) 光学膜用树脂组合物以及使用该树脂组合物的光学膜
JP2019179124A (ja) 光学成形体及び光学製品
JP2012096461A (ja) 光学フィルムの製造方法
JP7314942B2 (ja) 光学フィルム、偏光板保護フィルムおよび偏光板
JP2008242167A (ja) 光学用フィルム及び偏光板
CN112513698B (zh) 光学膜、偏振片保护膜、光学膜的卷体以及光学膜的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831547

Country of ref document: EP

Kind code of ref document: A1