WO2024004937A1 - 二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池 - Google Patents

二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池 Download PDF

Info

Publication number
WO2024004937A1
WO2024004937A1 PCT/JP2023/023568 JP2023023568W WO2024004937A1 WO 2024004937 A1 WO2024004937 A1 WO 2024004937A1 JP 2023023568 W JP2023023568 W JP 2023023568W WO 2024004937 A1 WO2024004937 A1 WO 2024004937A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
lithium
positive electrode
electrode active
moles
Prior art date
Application number
PCT/JP2023/023568
Other languages
English (en)
French (fr)
Inventor
義智 宮下
健太 河井
泰弘 吉田
昌宏 村山
主弥 石川
譲太 森本
Original Assignee
日亜化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023097504A external-priority patent/JP2024007364A/ja
Application filed by 日亜化学工業株式会社 filed Critical 日亜化学工業株式会社
Publication of WO2024004937A1 publication Critical patent/WO2024004937A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for a secondary battery, a method for manufacturing the same, and a positive electrode for a secondary battery and a secondary battery using the same.
  • Lithium-ion batteries are secondary batteries with excellent energy density and cycle characteristics.
  • all-solid-state batteries have recently been developed that use solid electrolytes instead of conventional organic solvents, and are expected to achieve higher safety than conventional batteries.
  • high conductivity has been achieved with sulfide-based solid electrolytes that contain sulfur.
  • sulfide-based solid electrolytes have problems such as side reactions between the positive electrode layer and the sulfide-based solid electrolyte and the formation of a high-resistance layer at the interface between the positive electrode active material and the solid electrolyte.
  • JP 2018-125214 A discloses coating the surface of a positive electrode active material with lithium niobate to suppress the formation of a high resistance layer at the contact interface between the sulfide solid electrolyte and the positive electrode active material, and further A technique for preventing side reactions between a sulfide solid electrolyte and a positive electrode active material has been disclosed.
  • lithium-transition metal composite oxides with high nickel content still have the problem of high battery resistance even if the surface is coated with niobium compounds such as lithium niobate, and further improvements in output characteristics are required. It is being One aspect of the present invention aims to provide a positive electrode active material for a secondary battery that reduces battery resistance, a method for manufacturing the same, and a positive electrode for a secondary battery and a secondary battery using the same.
  • the first aspect has a layered structure, the ratio of the number of moles of nickel to the total number of moles of metals other than lithium is 0.5 or more and less than 1, and the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium.
  • the cobalt-adhered composite oxide is first heat-treated at a temperature higher than 600°C and lower than 800°C to obtain a first heat-treated product, and the first heat-treated product is brought into contact with a niobium raw material to produce a niobium-adhered composite oxide.
  • a positive electrode active material for a secondary battery comprising: obtaining an oxide; and performing a second heat treatment on the niobium-attached composite oxide at a temperature of more than 300°C and less than 500°C to obtain a second heat-treated product. This is a manufacturing method.
  • the second aspect has a layered structure, wherein the ratio of the number of moles of nickel to the total number of moles of metals other than lithium is 0.5 or more and less than 1, and the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium.
  • the lithium transition metal composite oxide contains a lithium transition metal composite oxide having a composition in which the number ratio is 0.01 or more and less than 0.5, and the lithium transition metal composite oxide is a secondary particle containing a niobium compound on at least a part of the particle surface.
  • the first region has a surface and the depth from the surface of the secondary particle is around 60 nm, and the second region is around 10 nm from the surface of the secondary particle. This is also a positive electrode active material for a secondary battery in which the second region has a higher cobalt concentration.
  • a third aspect is a positive electrode for a secondary battery comprising a positive electrode active material layer containing the positive electrode active material for a secondary battery of the second aspect.
  • a fourth aspect is a secondary battery comprising the positive electrode for a secondary battery according to the third aspect, a negative electrode, and an electrolyte.
  • a positive electrode active material for a secondary battery that reduces battery resistance, a method for manufacturing the same, and a positive electrode for a secondary battery and a secondary battery using the same.
  • Example 1 is an example of a SEM image of the positive electrode active material of Example 1.
  • 1 is an example of SEM-EDX line analysis results regarding the positive electrode active material of Example 1.
  • each component in the composition when there are multiple substances corresponding to each component in the composition, unless otherwise specified, the content of each component in the composition refers to the total amount of the multiple substances present in the composition. means.
  • Embodiments of the present disclosure will be described in detail below. However, the embodiments shown below exemplify a positive electrode active material for a secondary battery and a method for manufacturing the same for embodying the technical idea of the present disclosure, and the present disclosure does not apply to the secondary batteries shown below.
  • the present invention is not limited to the cathode active material for use and the manufacturing method thereof.
  • a method for manufacturing a positive electrode active material for a secondary battery (hereinafter also simply referred to as "positive electrode active material”) has a layered structure, and a Prepare a lithium transition metal composite powder in which the ratio of the number of moles of nickel is 0.5 or more and less than 1, and the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium is 0 or more and less than 0.5.
  • a first adhesion step of contacting the lithium-transition metal composite powder with a cobalt raw material to obtain a cobalt-attached composite oxide a first heat treatment step of performing a first heat treatment at a temperature to obtain a first heat-treated product; a second adhesion step of contacting the first heat-treated product with a niobium raw material to obtain a niobium-adhered composite oxide; and a second adhesion step of obtaining a niobium-adhered composite oxide.
  • the lithium ion conductivity within the positive electrode active material is improved by increasing the cobalt concentration near the secondary particle surface of the lithium transition metal composite powder having a high nickel ratio. Furthermore, by providing a coating portion with a niobium compound on the surface of the secondary particles of the positive electrode active material, formation of a high resistance layer between the solid electrolyte and the positive electrode is suppressed. Therefore, it is thought that an all-solid-state secondary battery including this can achieve high output characteristics.
  • the lithium transition metal composite oxide has a layered structure, the ratio of the number of moles of nickel to the total number of moles of metals other than lithium is 0.5 or more and less than 1, and the number of moles of cobalt is A lithium transition metal composite powder having a composition in which the ratio of 0 to 0.5 is prepared.
  • the lithium transition metal composite powder contains at least lithium and nickel, and may further contain at least one metal element selected from the group consisting of cobalt, manganese, and aluminum.
  • the lithium transition metal composite powder may be prepared as a gift or by manufacturing a lithium transition metal composite powder having a desired composition and structure.
  • the ratio of the number of moles of nickel to the total number of moles of metals other than lithium in the composition of the lithium-transition metal composite powder prepared in the preparation step may be 0.5 or more and less than 1.
  • the ratio of the number of moles of nickel to the total number of moles of metals other than lithium may be preferably 0.6 or more, and more preferably 0.7 or more.
  • the ratio of the number of moles of nickel to the total number of moles of metals other than lithium may be preferably 0.95 or less, more preferably 0.92 or less, particularly preferably 0.9 or less. good.
  • the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium in the composition of the lithium-transition metal composite powder prepared in the preparation step may be 0 or more. From the viewpoint of output characteristics, the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium in the lithium-transition metal composite powder is preferably 0.01 or more, or 0.02 or more, and more preferably It may be 0.03 or more. Further, the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium in the lithium transition metal composite powder may be, for example, 0.5 or less, and preferably 0.3 or less from the viewpoint of charge/discharge capacity. more preferably 0.2 or less, still more preferably 0.12 or less, or 0.09 or less. Within the above range, the output characteristics can be further improved while keeping costs down.
  • the lithium transition metal composite powder prepared in the preparation step may further include in its composition a metal element M1 containing at least one selected from the group consisting of manganese and aluminum.
  • the ratio of the number of moles of M1 to the total number of moles of metals other than lithium may be greater than 0, for example, and from the viewpoint of safety, it is preferably 0. 03 or more, more preferably 0.05 or more, or 0.07 or more.
  • the ratio of the number of moles of M1 to the total number of moles of metals other than lithium may be, for example, 0.5 or less, preferably 0.4 or less in terms of charge/discharge capacity, and more preferably 0.3. or less, or 0.25 or less.
  • the lithium transition metal composite powder prepared in the preparation process has a composition of boron, sodium, magnesium, silicon, phosphorus, sulfur, potassium, calcium, titanium, vanadium, chromium, zinc, strontium, yttrium, zirconium, and niobium. , molybdenum, indium, tin, barium, lanthanum, cerium, neodymium, samarium, europium, gadolinium, tantalum , tungsten, and bismuth.
  • the ratio of the number of moles of M2 to the total number of moles of metals other than lithium may be, for example, greater than 0, preferably 0.0005 or more, particularly preferably It may be 0.001 or more, or 0.002 or more.
  • the ratio of the number of moles of M 2 to the total number of moles of metals other than lithium may for example be less than or equal to 0.1, preferably less than or equal to 0.05, particularly preferably less than or equal to 0.02, less than or equal to 0.01, or less than or equal to 0.0. It may be 006 or less.
  • the ratio of the number of moles of lithium to the total number of moles of metals other than lithium in the composition of the lithium transition metal composite powder prepared in the preparation step may be, for example, 0.95 or more, preferably 0.98 or more, Or it may be 1 or more.
  • the ratio of the number of moles of lithium to the total number of moles of metals other than lithium may be, for example, 1.5 or less, preferably 1.3 or less, or 1.1 or less.
  • composition of the lithium-transition metal composite powder prepared in the preparation step may be, for example, a composition represented by the following formula (1).
  • M1 includes at least one selected from the group consisting of Al and Mn.
  • M2 is B, Na, Mg, Si, P, S, K, Ca, Ti, V, Cr, Zn, Sr, Y, Zr, Nb, Mo, In, Sn, Ba, La, Ce, Nd, Sm , Eu, Gd, Ta, W, and Bi.
  • p may be 0.98 ⁇ p, 0.1 ⁇ p, p ⁇ 1.3, or p ⁇ 1.1.
  • x may be 0.6 ⁇ x, 0.7 ⁇ x, x ⁇ 0.95, x ⁇ 0.92 or x ⁇ 0.9.
  • y may be 0.01 ⁇ y, 0.03 ⁇ y, y ⁇ 0.3, y ⁇ 0.2, y ⁇ 0.12.
  • z may be 0.03 ⁇ z, 0.05 ⁇ z, z ⁇ 0.5, z ⁇ 0.4 or z ⁇ 0.3.
  • w may be 0 ⁇ w, 0.0005 ⁇ w, 0.001 ⁇ w, w ⁇ 0.05, w ⁇ 0.02.
  • x+y+z+w may be 0.9 ⁇ x+y+z+w ⁇ 1.
  • the lithium transition metal composite powder prepared in the preparation step may be composed of secondary particles in which more than 20 primary particles are aggregated, but the lithium transition metal composite powder may be composed of secondary particles having 20 or less, preferably 10 or less primary particles. It is preferable that the particles be composed of secondary particles consisting of a particle or a single particle, that is, a so-called single particle.
  • the lithium transition metal composite powder in the form of a single particle has a ratio D 50 /D SEM of the 50% particle diameter D 50 in the volume-based cumulative particle size distribution to the average particle diameter D SEM based on electron microscopy (SEM) observation. The number may be greater than or equal to 4.
  • D 50 /D SEM In the lithium transition metal composite powder prepared in the preparation step, the closer D 50 /D SEM is to 1, the smaller the number of primary particles constituting the secondary particles contained in the lithium transition metal composite powder. , D 50 /D SEM of 1 indicates that the particle is almost composed of only a single particle. From the viewpoint of durability, D 50 /D SEM is preferably 1 or more and 4 or less, and from the viewpoint of output density, it is preferably 3.5 or less, more preferably 3 or less, even more preferably 2.5 or less, and especially 2 or less. , or preferably 1.5 or less. It can be expected that the closer the value of D 50 /D SEM is to 1, the more remarkable the effect of improving the output characteristics when the second region has a higher cobalt concentration than the first region. In this specification, independently existing particles are considered to be secondary particles, regardless of whether D 50 /D SEM is different from 1 or 1.
  • the average particle diameter D SEM based on electron microscopy may be, for example, 0.1 ⁇ m or more, and from the viewpoint of durability, it is preferably 0.3 ⁇ m or more. , more preferably 0.5 ⁇ m or more, or 1 ⁇ m or more.
  • the average particle diameter D SEM based on electron microscopy observation may be, for example, 20 ⁇ m or less, more preferably 10 ⁇ m or less from the viewpoint of output density and electrode filling property, even more preferably 8 ⁇ m or less, and 5 ⁇ m or less, 4 ⁇ m or less, or 3 ⁇ m or less. Particularly preferred.
  • the average particle diameter D SEM based on electron microscopy is the average value of the sphere-equivalent diameter of primary particles measured from a scanning electron microscopy (SEM) image.
  • the average particle diameter D SEM is determined as follows. ⁇ 1> Using a scanning electron microscope, set the magnification so that the number of secondary particles whose outlines can be confirmed is 10 or more and 20 or less. At this time, secondary particles whose particle size is less than half of D10 are not included in the number. ⁇ 2> For all secondary particles observed at the above magnification, whose particle size is more than half of D10 and whose outline can be confirmed, image processing software is applied to the primary particles constituting each secondary particle.
  • the outline length of each primary particle is determined by tracing the outline of the primary particle using . Calculate the equivalent sphere diameter from the contour length. ⁇ 3> Repeat ⁇ 1> and ⁇ 2> above until the number of primary particles whose sphere equivalent diameter was calculated exceeds 100, and then repeat ⁇ 1> and ⁇ 2> to obtain the sphere equivalent diameter of the primary particles.
  • the average particle size D SEM is determined as the arithmetic mean value of the .
  • the 50% particle size D50 of the lithium-transition metal composite powder prepared in the preparation step may be, for example, 1 ⁇ m or more and 30 ⁇ m or less.
  • the thickness is preferably 1.5 ⁇ m or more, and more preferably 2.5 ⁇ m or more. Further, from the viewpoint of output density, the thickness is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less.
  • the 50% particle size D 50 is determined as the particle size corresponding to 50% of the cumulative particle size from the small diameter side in the volume-based cumulative particle size distribution measured under wet conditions using a laser diffraction particle size distribution measuring device.
  • the 90% particle size D 90 and the 10% particle size D 10 which will be described later, are determined as particle sizes corresponding to cumulative 90% and cumulative 10% from the small diameter side, respectively.
  • the ratio of the 90% particle size D 90 to the 10% particle size D 10 in the volume-based cumulative particle size distribution of the lithium transition metal composite powder prepared in the preparation process indicates the spread of the particle size distribution, and the smaller the value, the larger the particles. This shows that the particle sizes are uniform.
  • D 90 /D 10 may be, for example, 4 or less, preferably 3 or less, and more preferably 2.5 or less from the viewpoint of output density.
  • D 90 /D 10 may be, for example, 1.2 or more. The smaller the value of D 90 /D 10 is, the more uniform the particle diameters are, which can be expected to result in more uniform coating with the niobium compound.
  • JP 2017-188443A US Published Patent Publication 2017-0288221
  • JP 2017- 188444 US Published Patent No. 2017-0288222
  • JP 2017-188445 JP 2017-188445
  • A US Published Patent No. 2017-0288223
  • the lithium transition metal composite powder prepared in the preparation step contains nickel in its composition.
  • the lithium transition metal composite oxide should have a disorder of nickel element of 6% or less, 5% or less, or 4.0% or less as determined by X-ray diffraction method. It is preferably 2.0% or less, and more preferably 2.0% or less.
  • the disorder of nickel element means chemical disorder of transition metal ions (nickel ions) that should occupy original sites.
  • a typical example is the exchange of ions. The smaller the disorder of the nickel element, the better the initial efficiency tends to be.
  • the disorder of the nickel element in the lithium transition metal transition metal composite oxide can be determined by X-ray diffraction.
  • the X-ray diffraction spectrum of the lithium transition metal transition metal composite oxide is measured using CuK ⁇ rays.
  • the lithium transition metal composite powder prepared in the preparation step can be prepared as follows.
  • the method for preparing a lithium transition metal composite powder may include, for example, a precursor preparation step of preparing a precursor, and a synthesis step of synthesizing a lithium transition metal composite oxide from the precursor and a lithium compound.
  • a precursor containing a complex oxide containing nickel (hereinafter also simply referred to as complex oxide) is prepared.
  • the precursor may be prepared as a gift, or may be prepared by preparing a complex oxide having a desired structure by a conventional method.
  • Methods for obtaining a composite oxide having a desired composition include a method in which raw materials (hydroxide, carbonate compounds, etc.) are mixed according to the desired composition and decomposed into a composite oxide by heat treatment, and a method in which raw materials soluble in a solvent are mixed.
  • Examples include a coprecipitation method in which a precipitate having a desired composition is obtained by dissolving the precipitate in a solvent, adjusting the temperature, adjusting the pH, adding a complexing agent, etc., and then heat-treating the precipitate to obtain a composite oxide.
  • An example of a method for producing a composite oxide will be described below.
  • the method of obtaining a composite oxide by the coprecipitation method includes a seed generation step in which seed crystals are obtained by adjusting the pH etc. of a mixed solution containing metal ions at a desired composition ratio, and a seed generation step in which the generated seed crystals are grown to obtain the desired crystal.
  • the method can include a crystallization step for obtaining a composite hydroxide having characteristics, and a step for heat-treating the obtained composite hydroxide to obtain a composite oxide.
  • JP-A No. 2003-292322 JP-A No. 2011-116580 (US Patent Publication No. 2012-0270107), and the like.
  • a liquid medium containing seed crystals is prepared by adjusting the pH of a mixed solution containing nickel ions at a desired composition ratio, for example, from 11 to 13.
  • the seed crystals can include, for example, a hydroxide containing nickel in a desired proportion.
  • a mixed solution can be prepared by dissolving nickel salt in water in a desired ratio. Examples of nickel salts include sulfates, nitrates, hydrochlorides, and the like. In addition to the nickel salt, the mixed solution may optionally contain other metal salts in a desired composition ratio.
  • the temperature in the seed generation step can be, for example, from 40°C to 80°C.
  • the atmosphere in the seed generation step can be a low oxidizing atmosphere, and for example, the oxygen concentration can be maintained at 10% by volume or less.
  • the generated seed crystals are grown to obtain a nickel-containing precipitate having a desired composition.
  • the growth of the seed crystals can be carried out, for example, by adding nickel ions and optionally other metal ions to a liquid medium containing the seed crystals, while maintaining the pH of the liquid medium, for example, from 7 to 12.5, preferably from 7.5 to 12. This can be done by adding a mixed solution containing The addition time of the mixed solution is, for example, 1 hour to 24 hours, preferably 3 hours to 18 hours.
  • the temperature in the crystallization step can be, for example, from 40°C to 80°C.
  • the atmosphere in the crystallization step is the same as in the seed generation step.
  • the pH in the seed generation step and the crystallization step can be adjusted using an acidic aqueous solution such as a sulfuric acid aqueous solution or a nitric acid aqueous solution, an alkaline aqueous solution such as a sodium hydroxide aqueous solution, or an aqueous ammonia solution.
  • an acidic aqueous solution such as a sulfuric acid aqueous solution or a nitric acid aqueous solution
  • an alkaline aqueous solution such as a sodium hydroxide aqueous solution
  • an aqueous ammonia solution aqueous ammonia solution
  • the precipitate obtained in the crystallization step (for example, containing a composite hydroxide) is heat-treated to obtain a composite oxide.
  • the heat treatment in the step of obtaining the composite oxide can be carried out by heating the composite hydroxide precipitate, for example, at a temperature of 500°C or lower, preferably at 450°C or lower. Further, the temperature of the heat treatment is, for example, 100° C. or higher, preferably 200° C. or higher, and the time of the heat treatment can be, for example, 0.5 to 48 hours, preferably 5 to 24 hours.
  • the atmosphere for the heat treatment may be the air or an atmosphere containing oxygen.
  • the heat treatment can be performed using, for example, a box furnace, rotary kiln, pusher furnace, roller hearth kiln, or the like.
  • the resulting composite oxide may contain cobalt in addition to nickel.
  • the mixed solution may contain other metal ions in a desired configuration in the seed generation step and the crystallization step.
  • a composite oxide having a desired composition can be obtained by making the precipitate contain nickel, cobalt, and other metals, and heat-treating the precipitate.
  • the resulting composite oxide may contain other metal elements M1 in addition to nickel.
  • the other metal element M1 include Mn, Al, etc., and at least one selected from the group consisting of these is preferable, and it is more preferable that at least Mn is included.
  • the mixed solution in the seed generation step and the crystallization step may contain other metal ions in a desired configuration. Thereby, a composite oxide having a desired composition can be obtained by making the precipitate contain nickel and other metal elements and heat-treating the precipitate.
  • the average particle size of the composite oxide may be, for example, 2 ⁇ m or more and 20 ⁇ m or less, preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size of the composite oxide is a volume average particle size, and is a value at which the volume integrated value from the small particle size side in the volume-based particle size distribution obtained by the laser scattering method is 50%.
  • a mixture containing lithium obtained by mixing a composite oxide and a lithium compound is heat-treated to obtain a heat-treated product.
  • the obtained heat-treated product has a layered structure and contains a lithium transition metal composite oxide containing nickel.
  • Examples of the lithium compound to be mixed with the composite oxide include lithium hydroxide, lithium carbonate, and lithium oxide.
  • the particle size of the lithium compound used for mixing may be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, and preferably 2 ⁇ m or more and 20 ⁇ m or less, as a 50% average particle size of a volume-based cumulative particle size distribution.
  • the ratio of the total number of moles of lithium to the total number of moles of metal elements constituting the composite oxide in the mixture may be, for example, 0.95 or more and 1.5 or less.
  • the composite oxide and the lithium compound can be mixed using, for example, a high-speed shear mixer.
  • the mixture may further contain metal elements M 1 or M 2 other than lithium, nickel, and cobalt.
  • the other metal element M1 is preferably at least one metal element selected from the group consisting of manganese and aluminum.
  • Other metal elements M2 include B, Na, Mg, Si, P, S, K, Ca, Ti, V, Cr, Zn, Sr, Y, Zr, Nb, Mo, In, Sn, Ba, and La. , Ce, Nd, Sm, Eu, Gd, Ta, W, Bi, etc., and at least one selected from the group consisting of these is preferred.
  • the mixture can be obtained by mixing the other metal element alone or a metal compound with the composite oxide and the lithium compound.
  • metal compounds containing other metal elements include oxides, hydroxides, chlorides, nitrides, carbonates, sulfates, nitrates, acetates, oxalates, and the like.
  • the ratio of the total number of moles of the metal elements constituting the composite oxide to the total number of moles of the other metal elements is, for example, 1:0.001 to 1:0.3. Yes, preferably from 1:0.01 to 1:0.15.
  • the heat treatment temperature of the mixture may be, for example, 550°C or higher and 1100°C or lower, preferably 600°C or higher and 1080°C or lower, and more preferably 700°C or higher and 1080°C or lower.
  • the heat treatment of the mixture may be performed at a single temperature, it is preferably performed at a plurality of temperatures from the viewpoint of discharge capacity at high voltage.
  • a heat-treated product may be obtained by heat treatment.
  • heat treatment at a third temperature during the temperature drop for a predetermined period of time tends to have the effect of reducing the disorder value of the nickel element described above.
  • the first temperature may be, for example, 300°C or more and 600°C or less, preferably 350°C or more and 550°C or less.
  • the second temperature may be, for example, 800°C or more and 1100°C or less, preferably 850°C or more and 1050°C or less.
  • the third temperature may be, for example, 600°C or more and 850°C or less, preferably 700°C or more and 800°C or less.
  • the heat treatment time in the case of heat treatment at a single temperature may be, for example, 1 hour or more and 20 hours or less, and preferably 5 hours or more and 15 hours or less. Further, when heat treatment is performed at a plurality of temperatures, the heat treatment time at the first temperature may be, for example, 1 hour or more and 20 hours or less. The heat treatment time at the second temperature may be, for example, 1 hour or more and 20 hours or less.
  • the heat treatment times at each temperature may be the same or different, and may be performed continuously or independently.
  • the atmosphere for the heat treatment may be the air or an atmosphere containing oxygen.
  • the heat treatment can be performed using, for example, a box furnace, rotary kiln, pusher furnace, roller hearth kiln, or the like.
  • the heat-treated product is subjected to a dispersion treatment if necessary.
  • Lithium transition metal composite oxide particles with a narrow particle size distribution and uniform particle size can be obtained by dissociating the sintered primary particles through a dispersion process rather than a crushing process that involves strong shearing force or impact.
  • the dispersion treatment may be carried out in a dry or wet manner, and is preferably carried out in a dry manner.
  • the dispersion treatment can be performed using, for example, a ball mill, a jet mill, or the like.
  • the conditions for the dispersion treatment can be set, for example, so that the D 50 /D SEM of the lithium-transition metal composite powder after the dispersion treatment falls within a desired range, for example, from 1 to 4.
  • resin media when performing the dispersion treatment with a ball mill, resin media can be used.
  • the material of the resin media include urethane resin and nylon resin.
  • alumina, zirconia, or the like is used as a material for the media of a ball mill, and particles are pulverized by these media.
  • the sintered primary particles are dissociated without pulverizing the particles.
  • the size of the resin media can be, for example, ⁇ 5 mm to 30 mm.
  • the body (shell) for example, urethane resin, nylon resin, etc. can be used.
  • the time for the dispersion treatment may be, for example, from 3 minutes to 60 minutes, preferably from 10 minutes to 30 minutes.
  • the amount of media, rotation or amplitude speed, dispersion time, media specific gravity, etc. may be adjusted so that the desired D 50 /D SEM can be achieved.
  • the supply pressure, the crushing pressure, etc. may be adjusted so that the desired D 50 /D SEM can be achieved without pulverizing the primary particles.
  • the supply pressure can be, for example, from 0.1 MPa to 0.6 MPa
  • the crushing pressure can be, for example, from 0.1 MPa to 0.6 MPa.
  • First adhesion step In the first adhesion step, the prepared lithium-transition metal composite powder and cobalt raw material are brought into contact to obtain a cobalt-adhered composite oxide in which the cobalt raw material is attached to the surface of the lithium-transition metal composite powder.
  • the lithium-transition metal composite powder and the cobalt raw material may be brought into contact in a dry or wet manner.
  • the lithium transition metal composite powder and the cobalt raw material can be mixed and brought into contact with each other.
  • cobalt raw materials include cobalt hydroxide, cobalt oxide, and cobalt carbonate.
  • Examples of the mixing method include a high-speed shear mixer, a Henschel mixer, a high-speed mixer, a bead mill, and a ball mill.
  • the lithium transition metal composite powder and the cobalt raw material can be brought into contact by bringing the lithium transition metal composite powder into contact with a liquid medium containing the cobalt raw material.
  • the liquid medium may be stirred if necessary.
  • the liquid medium containing the cobalt raw material may be a solution of the cobalt raw material or a dispersion of the cobalt raw material.
  • the lithium transition metal composite powder may be suspended in a solution of the cobalt raw material, and the cobalt raw material may be precipitated in the solution by adjusting the pH, temperature, etc., and the cobalt raw material may be attached to the surface of the lithium transition metal composite powder. good.
  • examples of the cobalt raw material contained in the solution used for contacting the cobalt raw material include cobalt sulfate, cobalt nitrate, and cobalt chloride.
  • examples of the cobalt raw material contained in the dispersion liquid used for contacting with the cobalt raw material include cobalt hydroxide, cobalt oxide, and cobalt carbonate.
  • the liquid medium may contain water, for example, and may contain a water-soluble organic solvent such as alcohol in addition to water.
  • the concentration of the cobalt raw material in the liquid medium can be, for example, 1% by mass or more and 8.5% by mass or less.
  • the total number of moles of cobalt atoms contained in the cobalt raw material that is brought into contact with the lithium-transition metal composite powder is, for example, 0.5 with respect to the total number of moles of metal atoms other than lithium contained in the lithium-transition metal composite powder.
  • the content may be mol % or more and 15 mol % or less, preferably 1 mol % or more and 10 mol % or less.
  • the contact temperature between the lithium transition metal composite powder and the cobalt raw material may be, for example, 40°C or higher and 80°C or lower, preferably 40°C or higher and 60°C or lower. Further, the contact temperature may be, for example, 20° C. or higher and 80° C. or lower.
  • the contact time may be, for example, 30 minutes or more and 180 minutes or less, preferably 30 minutes or more and 60 minutes or less.
  • the cobalt-adhered composite oxide After being brought into contact with a liquid medium containing a cobalt raw material, the cobalt-adhered composite oxide may be subjected to treatments such as filtration, washing with water, and drying, if necessary. Further, preliminary heat treatment may be performed depending on the type of cobalt raw material to be attached.
  • the temperature may be, for example, 100°C or more and 350°C or less, preferably 120°C or more and 320°C or less.
  • the treatment time may be, for example, 5 hours or more and 20 hours or less, preferably 8 hours or more and 15 hours or less.
  • the atmosphere for the preliminary heat treatment may be, for example, an atmosphere containing oxygen or an air atmosphere.
  • the cobalt-attached composite oxide obtained in the first attachment step is heat treated at a predetermined temperature of more than 600° C. and less than 800° C. to obtain a heat treated product. It is possible to obtain a positive electrode active material containing a lithium-transition metal composite oxide having a desired cobalt concentration gradient depending on the heat treatment temperature, and it is possible to achieve excellent output characteristics in an all-solid-state secondary battery constructed using this material. can.
  • the manufacturing method may include, before the first heat treatment step, a mixing step of mixing the cobalt-attached composite oxide and the lithium compound to obtain a mixture.
  • Examples of the lithium compound to be mixed with the cobalt-attached composite oxide include lithium hydroxide, lithium carbonate, and lithium chloride.
  • the amount of the lithium compound added is such that the molar ratio of lithium and cobalt (Li:Co) to the amount of cobalt deposited in the first deposition step is, for example, from 0.95:1 to 1.50:1, preferably 1.
  • Mixing can be performed using, for example, a high-speed shear mixer.
  • the temperature of the first heat treatment of the cobalt-attached composite oxide may be, for example, higher than 600°C and lower than 800°C.
  • the first heat treatment temperature may be preferably 650°C or higher, more preferably 675°C or higher, or 690°C or higher. Further, the first heat treatment temperature may be preferably 760°C or lower, or 750°C or lower, more preferably 725°C or lower, or 715°C or lower.
  • the time for the first heat treatment may be, for example, 1 hour or more and 20 hours or less, preferably 3 hours or more and 10 hours or less.
  • the atmosphere for the heat treatment preferably contains oxygen.
  • the amount of residual lithium can be suppressed, and sintering between particles can be suppressed more effectively.
  • the heat treatment atmosphere contains oxygen, its content is preferably 15% by volume or more, more preferably 30% by volume or more, and even more preferably 80% by volume or more.
  • the first heat-treated product after the first heat treatment may be subjected to treatments such as crushing, pulverization, classification operations, and sizing operations, as necessary.
  • the cobalt ratio in the surface composition of the first heat-treated product may be 10 mol% or more, preferably 15 mol% or more, and more preferably 25 mol% or more. Moreover, the cobalt ratio is preferably 40 mol% or less. When the content is 40 mol% or less, sufficient discharge capacity tends to be obtained.
  • the surface composition of the first heat-treated product can be determined by stirring the first heat-treated product in an acidic solvent for a short time and using high-frequency inductively coupled plasma emission spectroscopy (ICP) on the eluate. Although detailed conditions will be described later, this method is referred to herein as surface elution analysis.
  • ICP inductively coupled plasma emission spectroscopy
  • the first heat-treated product obtained as described above contains a lithium transition metal composite oxide having a cobalt concentration gradient.
  • the first heat-treated product is brought into contact with a niobium raw material to obtain a niobium-adhered composite oxide.
  • the contact between the first heat-treated product and the niobium raw material may be carried out in a dry manner or in a wet manner.
  • the first heat-treated product and the niobium raw material can be mixed and brought into contact with each other.
  • the niobium raw material include niobium oxide.
  • Examples of the mixing method include a high-speed shear mixer, a Henschel mixer, a high-speed mixer, a bead mill, and a ball mill.
  • the first heat-treated product When carrying out the wet process, the first heat-treated product can be brought into contact with a liquid medium containing the niobium raw material. At this time, the liquid medium may be stirred if necessary.
  • the liquid medium containing the niobium raw material may be a solution of the niobium raw material or a dispersion of the niobium raw material.
  • the first heat-treated product may be suspended in a solution of the niobium raw material, and the niobium raw material may be precipitated in the solution by adjusting the pH, temperature, etc., and the niobium raw material may be attached to the surface of the first heat-treated product.
  • the niobium raw material may be attached to the surface of the first heat-treated product using a fluidized bed dryer.
  • niobium raw material contained in the solution examples include niobic acid, pentaethoxyniobium, niobium chloride, and the like.
  • niobium raw material contained in the dispersion examples include niobic acid, pentaethoxyniobium, and niobium chloride.
  • the liquid medium may contain, for example, water, and may contain alcohol, hydrogen peroxide solution, ammonia water, etc. in addition to water.
  • concentration of the niobium raw material in the liquid medium can be, for example, 0.5% by mass or more and 3% by mass or less.
  • the total number of moles of niobium atoms contained in the niobium raw material that is brought into contact with the first heat-treated product is, for example, 0.1 mol% or more or more than 5 moles with respect to the total number of moles of metal atoms other than lithium contained in the first heat-treated product. % or less, preferably from 0.5 mol% to 3 mol%, or from 0.8 mol% to 2 mol%.
  • the contact temperature between the first heat-treated product and the niobium raw material may be, for example, 20°C or more and 200°C or less, preferably 40°C or more and 150°C or less.
  • the contact time may be, for example, 30 minutes or more and 180 minutes or less, preferably 30 minutes or more and 120 minutes or less.
  • the niobium-adhered composite oxide After contacting with a liquid medium containing a niobium raw material, the niobium-adhered composite oxide may be subjected to treatments such as filtration, washing with water, and drying, if necessary.
  • Second heat treatment step In the second heat treatment step, the niobium-attached composite oxide obtained in the second attachment step is heat treated at a predetermined temperature of more than 300° C. and less than 500° C. to obtain a second heat treated product.
  • the niobium-attached composite oxide subjected to the second heat treatment may be a mixture with a lithium compound. That is, the manufacturing method may include, before the heat treatment step, a mixing step of mixing the niobium-adhered composite oxide and the lithium compound to obtain a mixture.
  • Examples of the lithium compound to be mixed with the cobalt-attached composite oxide include lithium hydroxide, lithium carbonate, and lithium chloride.
  • the amount of the lithium compound added is such that the molar ratio of lithium to niobium (Li:Nb) is, for example, 0.95:1 to 1.50:1, preferably 1.00:1 to the amount of niobium deposited in the deposition step.
  • Mixing can be performed using, for example, a high-speed shear mixer.
  • the temperature of the second heat treatment of the niobium-attached composite oxide may be, for example, higher than 300°C and lower than 500°C.
  • the second heat treatment temperature may be preferably 320°C or higher, more preferably 340°C or higher. Further, the second heat treatment temperature may be preferably 450°C or lower, more preferably 400°C or lower, 380°C or lower, or 360°C or lower.
  • the time for the second heat treatment may be, for example, 1 hour or more and 20 hours or less, preferably 3 hours or more and 10 hours or less.
  • the atmosphere for the second heat treatment is, for example, an atmosphere containing oxygen, and may be an air atmosphere.
  • the heat-treated product after the second heat treatment may be subjected to treatments such as crushing, pulverization, classification operations, and sizing operations, as necessary.
  • the second heat-treated product obtained as described above contains a lithium transition metal composite oxide, has a cobalt concentration gradient, and may have a secondary particle surface containing a niobium compound on at least a part of the particle surface. . That is, in the lithium transition metal composite oxide, the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium is 0 or more in the first region where the depth from the surface of the secondary particle is around 60 nm. It may be 0.15 or more in the second region where the depth from the surface of the secondary particle is around 10 nm.
  • the first region can be a region whose depth from the surface of the secondary particle is, for example, in a range of 50 nm to 70 nm, or 55 nm to 65 nm
  • the second region can be a region whose depth from the surface of the secondary particle is, for example, 5 nm. 15 nm.
  • Positive electrode active material for secondary batteries has a layered structure, the ratio of the number of moles of nickel to the total number of moles of metals other than lithium is 0.5 or more and less than 1, and the number of moles of metal other than lithium is 0.5 or more and less than 1.
  • the lithium transition metal composite oxide includes a lithium transition metal composite oxide having a composition in which the ratio of the number of moles of cobalt to the total number of moles of metal is 0.01 or more and less than 0.5, and the lithium transition metal composite oxide has a A region having a secondary particle surface containing a niobium compound at least in part and having a depth of approximately 60 nm from the surface of the secondary particle is referred to as a first region, and a region approximately 10 nm from the surface of the coating portion is referred to as a second region. When this happens, the second region has a higher cobalt concentration than the first region.
  • the surface of a secondary particle includes a first region and a second region in which the ratio of moles of nickel in the composition is within a specific range, the cobalt concentration in the second region is higher than the cobalt concentration in the first region, and the surface contains a niobium compound.
  • a positive electrode active material comprising a lithium-transition metal composite oxide having the following can achieve high charge/discharge capacity and excellent output characteristics in an all-solid-state secondary battery configured using the positive electrode active material. For example, by increasing the mole ratio of nickel in the composition, the charge/discharge capacity increases, but on the other hand, the lithium ion conductivity decreases, which can be alleviated by having a high cobalt concentration in the second region. This is thought to be due to the fact that Furthermore, it is considered that by having a niobium compound on the surface of the secondary particles, it is possible to prevent a high resistance layer from being formed between the secondary particles and the solid electrolyte.
  • the ratio of the molar amount of niobium atoms contained in the niobium compound may be 0.1 mol% or more with respect to the total number of moles of metal atoms other than lithium contained in the lithium-transition metal composite oxide. From the viewpoint of suppressing side reactions with the solid electrolyte, the content may be 0.5 mol% or more, more preferably 0.8 mol% or more.
  • the ratio of the molar amount of niobium atoms contained in the niobium compound may be 5 mol% or less with respect to the total number of moles of the lithium transition metal composite oxide, and from the viewpoint of resistance and capacity, it may be 4 mol% or less, more preferably 3 mol% or less. It may be contained in an amount of mol % or less, 2 mol % or less, or 1.5 mol % or less.
  • niobium compound examples include lithium niobate.
  • the surface of the secondary particles of the lithium transition metal composite oxide is coated with a niobium compound such as lithium niobate, thereby preventing the formation of a high resistance layer at the interface between the lithium transition metal composite oxide and the sulfide solid electrolyte. It is expected to be effective and improve output. Furthermore, by suppressing side reactions between the lithium-transition metal composite oxide and the sulfide solid electrolyte, it is possible to suppress deterioration of the positive electrode and improve cycle characteristics.
  • the thickness of the niobium compound may be, for example, 30 nm or less, and preferably 20 nm or less from the viewpoint of resistance and capacity.
  • composition of the lithium transition metal composite oxide contained in the positive electrode active material can be considered to be the composition of the lithium transition metal composite oxide before the niobium raw material is attached in the production method described above, with the niobium raw material deposited taken into account. Can be done.
  • cobalt is unevenly distributed in the second region, and its concentration is high.
  • the form of cobalt present in the second region is not clear, but for example, cobalt is solid-solved in the second region of a lithium transition metal composite oxide, or a cobalt compound such as lithium cobalt oxide exists in the second region. Possible forms etc. Thereby, when a battery is constructed using such a positive electrode active material, output characteristics can be improved. Although the reason for this is not clear, it can be inferred as follows, as an example.
  • the lithium ion conductivity of the lithium cobalt oxide is higher than that of the first region with a high nickel ratio or the coated part with a niobium compound. It is conceivable that lithium ions are more easily diffused throughout the positive electrode active material and the output characteristics are improved.
  • the effect of improving the output characteristics due to the uneven distribution of cobalt in the second region of the secondary particles is that compared to the case of so-called agglomerated particles, which are composed of a large number of primary particles agglomerated and have a D 50 /D SEM greater than 4, This is more effective in the case of single particles having a D 50 /D SEM of 4 or less.
  • this can be considered as follows. Since a three-dimensional grain boundary network is formed in agglomerated particles, it is thought that grain boundary conduction improves the output characteristics. On the other hand, with single particles, it is difficult to fully utilize grain boundary conduction, but cobalt unevenly distributed in the second region of the particle improves lithium conductivity more effectively, resulting in improved output characteristics. be able to.
  • the lithium transition metal composite oxide may be composed of secondary particles in which more than 20 primary particles are aggregated, but the secondary particles are composed of 20 or less, preferably 10 or less primary particles. It is preferable that the particles be composed of particles or single particles, that is, so-called single particles.
  • the lithium transition metal composite powder in the form of a single particle has a ratio D 50 /D SEM of the 50% particle diameter D 50 in the volume-based cumulative particle size distribution to the average particle diameter D SEM based on electron microscopy (SEM) observation. The number may be greater than or equal to 4.
  • the lithium transition metal composite oxide contained in the positive electrode active material may have a D 50 /D SEM of, for example, 1 or more and 4 or less, preferably 3.5 or less, more preferably 3 or less, from the viewpoint of output density. It is more preferably 2.5 or less, particularly preferably 2 or less, or 1.5 or less. It can be expected that the closer the value of D 50 /D SEM is to 1, the more remarkable the effect of improving the output characteristics when the second region has a higher cobalt concentration than the first region.
  • the methods for measuring the average particle size D SEM and 50% particle size D 50 based on electron microscopic observation are as described above.
  • the average particle diameter D SEM based on electron microscopy may be, for example, 0.1 ⁇ m or more and 20 ⁇ m or less from the viewpoint of durability.
  • the average particle diameter D SEM based on electron microscopic observation is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more or 1 ⁇ m or more, from the viewpoint of output density and electrode filling property.
  • the average particle diameter D SEM based on electron microscopic observation is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, even more preferably 8 ⁇ m or less, particularly preferably 5 ⁇ m or less, 4 ⁇ m or less, or 3 ⁇ m or less.
  • the 50% particle size D50 of the lithium transition metal composite oxide may be, for example, 1 ⁇ m or more and 30 ⁇ m or less, preferably 1.5 ⁇ m or more, more preferably 3 ⁇ m or more, and preferably 10 ⁇ m or less from the viewpoint of power density, and 5 ⁇ m or more. More preferably, the thickness is .5 ⁇ m or less.
  • D 90 /D 10 of the lithium transition metal composite oxide may be, for example, 4 or less, preferably 3 or less, and more preferably 2.5 or less from the viewpoint of output density.
  • D 90 /D 10 may be, for example, 1.2 or more.
  • the ratio of the number of moles of nickel to the total number of moles of metals other than lithium in the first region, which is approximately 60 nm deep from the surface of the secondary particle may be, for example, 0.5 or more or 0.6 or more, preferably 0.7 or more or 0.8 or more.
  • the nickel ratio in the first region may be, for example, 1 or less, preferably 0.95 or less, or 0.9 or less.
  • the nickel ratio in the second region where the depth from the surface of the secondary particle is around 10 nm may be, for example, 0.8 or less or 0.7 or less, preferably 0.6 or less or 0.55 or less. It's good to be there.
  • the nickel ratio in the second region may be, for example, 0.4 or more or 0.5 or more. Further, the value obtained by dividing the nickel ratio in the second region by the nickel ratio in the first region may be, for example, less than 1, preferably 0.9 or less or 0.8 or less. Further, the value obtained by dividing the nickel ratio in the second region by the nickel ratio in the first region may be, for example, 0.3 or more, preferably 0.4 or more, or 0.5 or more. When the nickel ratio of the first region and the second region is within the above range, the effect of improving the output is more noticeable when the surface of the secondary particles has a Co concentration gradient.
  • the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium (hereinafter also simply referred to as "cobalt ratio”) is larger in the second region than in the first region.
  • the cobalt ratio in the first region may be, for example, 0 or more, preferably 0.02 or more, or 0.03 or more.
  • the cobalt ratio in the first region may be, for example, 0.5 or less, preferably 0.3 or less, more preferably 0.2 or less, still more preferably 0.1 or less. It may be particularly preferably 0.05 or less.
  • the cobalt ratio in the second region may be, for example, 0.1 or more, preferably 0.2 or more, 0.22 or more, or 0.25 or more.
  • the cobalt ratio in the second region may be, for example, 0.5 or less, 0.4 or less, or 0.3 or less.
  • the value obtained by dividing the cobalt ratio in the second region by the sum of the cobalt ratio in the first region and the cobalt ratio in the second region may be, for example, greater than 1, preferably 3 or more, and more preferably 5 or more.
  • the nickel ratio and cobalt ratio in the first region and the second region can be calculated by performing line analysis using SEM-EDX on a cross section of the lithium-transition metal composite oxide.
  • the cobalt ratio may decrease continuously or discontinuously from the surface of the secondary particle to the inside of the secondary particle.
  • a certain cobalt concentration gradient may be, for example, 0.0002 (nm -1 ) or more, preferably 0.001 or more, more preferably 0.002 or more, 0.0025 or more, or 0.003. It may be more than that.
  • the cobalt concentration gradient which is the absolute value of the value divided by the difference in depth from the surface of the first region and the second region, may be, for example, 0.2 (nm ⁇ 1 ) or less, and preferably 0.08 ( nm ⁇ 1 ) or less, more preferably 0.04 (nm ⁇ 1 ) or less, 0.02 (nm ⁇ 1 ) or less, 0.01 (nm ⁇ 1 ) or less, or 0.005 (nm ⁇ 1 ) or less. 1 )
  • the cobalt concentration gradient is calculated by subtracting the cobalt ratio in the first region from the cobalt ratio in the second region, and subtracting the depth from the surface of the second region from the depth from the surface of the first region. It is calculated by dividing by the value.
  • composition of the lithium-transition metal composite oxide contained in the positive electrode active material can be considered to be the composition of the lithium-transition metal composite oxide before the cobalt raw material is deposited in the production method described above, with the cobalt raw material deposited taken into account. Can be done.
  • the uniformity of the niobium compound in the surface composition of the lithium-transition metal composite oxide can be evaluated using an index called SED standard deviation by analyzing SEM-EDX data. Although a specific measurement method will be described later, it is preferable that the SED standard deviation value is lower because the niobium compound on the surface of the lithium transition metal composite oxide is more uniformly distributed. When the niobium compound is uniformly distributed, coating with the niobium compound is carried out in just the right amount, which can be expected to have the effect of preventing side reactions with the solid electrolyte in exposed areas and reduction in conductivity in overly coated areas.
  • the SED standard deviation may be 6 or less, preferably 5 or less, more preferably 4 or less, even more preferably 3 or less.
  • the ratio of the number of moles of nickel to the total number of moles of metals other than lithium in the composition of the lithium transition metal composite oxide contained in the positive electrode active material may be, for example, 0.5 or more and less than 1.
  • the ratio of the number of moles of nickel to the total number of moles of metals other than lithium may be preferably 0.6 or more, and more preferably 0.7 or more.
  • the ratio of the number of moles of nickel to the total number of moles of metals other than lithium may be preferably 0.95 or less, more preferably 0.92 or less, particularly preferably 0.9 or less. good.
  • the ratio of the number of moles of nickel is determined, for example, by analyzing the metal composition ratio of the positive electrode active material using an inductively coupled plasma emission spectrometer.
  • the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium in the composition of the lithium-transition metal composite oxide contained in the positive electrode active material may be, for example, 0 or more, and from the viewpoint of output characteristics, it is preferably 0. 01 or more, or 0.02 or more, and more preferably 0.03 or more.
  • the ratio of the number of moles of cobalt to the total number of moles of metals other than lithium may be, for example, 0.5 or less, preferably 0.3 or less in terms of charge/discharge capacity, and more preferably 0.2 or less. It may be.
  • the composition of the lithium transition metal composite oxide contained in the positive electrode active material may further include a metal element M1 containing at least one selected from the group consisting of manganese and aluminum.
  • a metal element M1 containing at least one selected from the group consisting of manganese and aluminum may be, for example, greater than 0, and from the viewpoint of safety, it is preferably 0. 03 or more, more preferably 0.05 or more or 0.07 or more.
  • the ratio of the number of moles of M1 to the total number of moles of metals other than lithium may be, for example, 0.5 or less, preferably 0.4 or less in terms of charge/discharge capacity, and more preferably 0.3. It may be less than or equal to 0.25.
  • the composition of the lithium transition metal composite oxide contained in the positive electrode active material is boron, sodium, magnesium, silicon, phosphorus, sulfur, potassium, calcium, titanium, vanadium, chromium, zinc, strontium, yttrium, zirconium, niobium, molybdenum, It contains at least one member selected from the group consisting of indium, tin, barium, lanthanum, cerium, neodymium, samarium, europium, gadolinium, tantalum, tungsten, bismuth, etc., and further contains a metal element M 2 containing at least niobium.
  • the ratio of the number of moles of M 2 to the total number of moles of metals other than lithium may be, for example, greater than 0, preferably greater than or equal to 0.005, particularly preferably greater than or equal to 0.01.
  • the ratio of the number of moles of M 2 to the total number of moles of metals other than lithium may be, for example, 0.1 or less, preferably 0.05 or less, particularly preferably 0.03 or less.
  • the metal element M2 may contain at least niobium.
  • the ratio of the number of moles of niobium to the total number of moles of metals other than lithium in the lithium transition composite oxide is preferably 0.005 or more from the viewpoint of output characteristics, and preferably 0.03 or less from the viewpoint of initial capacity.
  • the metal element M 2 may further contain zirconium in addition to niobium.
  • M2 contains zirconium
  • the ratio of the number of moles of zirconium to the total number of moles of metals other than lithium in the lithium transition composite oxide may be 0.001 or more and 0.01 or less from the viewpoint of output characteristics, and 0. It may be .002 or more and 0.005 or less.
  • the ratio of the number of moles of lithium to the total number of moles of metals other than lithium in the composition of the lithium transition metal composite oxide contained in the positive electrode active material may be, for example, 0.95 or more and 1.5 or less, preferably 1 or more. It may be 1.3 or less.
  • lithium transition metal composite oxide contained in the positive electrode active material is expressed as a composition
  • a lithium transition metal composite oxide having a composition represented by the following formula (2) is preferable, for example. Li p Ni x Co y M 1 z M 2 w O 2 (2)
  • M 1 includes at least one selected from the group consisting of Al and Mn.
  • M2 is B, Na, Mg, Si, P, S, K, Ca, Ti, V, Cr, Zn, Sr, Y, Zr, Nb, Mo, In, Sn, Ba, La, Ce, Nd, Sm , Eu, Gd, Ta, W, and Bi, and includes at least Nb.
  • p may be 0.98 ⁇ p, 0.1 ⁇ p, p ⁇ 1.3, or p ⁇ 1.1.
  • x may be 0.6 ⁇ x, 0.7 ⁇ x, x ⁇ 0.95, x ⁇ 0.92 or x ⁇ 0.9.
  • y may be 0.02 ⁇ y, 0.03 ⁇ y, y ⁇ 0.3, or y ⁇ 0.2.
  • z may be 0.03 ⁇ z, 0.05 ⁇ z, z ⁇ 0.5, z ⁇ 0.4 or z ⁇ 0.3.
  • w may be 0.0005 ⁇ w, 0.001 ⁇ w, w ⁇ 0.05, or w ⁇ 0.02.
  • x+y+z+w may be 0.9 ⁇ x+y+z+w ⁇ 1.
  • the lithium transition metal composite oxide contained in the positive electrode active material has a nickel element disorder of 6% or less, 5% or less, or 4.0% or less as determined by X-ray diffraction method. It is preferably 2.0% or less, and more preferably 2.0% or less.
  • the disorder of the nickel element is as described above.
  • the tap density of the positive electrode active material may be 1.7 g/cm 3 or more. This is preferable because the volume energy density becomes sufficiently high. More preferably, it may be 2.0 g/cm 3 or more. There is no particular upper limit as long as the positive electrode active material can be taken as a powder. In reality, the upper limit is about 2.5 g/cm 3 .
  • the specific surface area of the positive electrode active material may be, for example, 0.2 m 2 /g or more and 3.0 m 2 /g or less, preferably 0.3 m 2 /g or more and 2.0 m 2 /g or less. When the specific surface area is within the above range, the contact area between the positive electrode active material and the electrolyte increases, which tends to improve the output.
  • the specific surface area of the positive electrode active material is measured by the BET method.
  • the ratio of the 90% particle size D 90 to the 10% particle size D 10 in the volume-based cumulative particle size distribution of the positive electrode active material indicates the spread of the particle size distribution, and the smaller the value, the more uniform the particle sizes are. .
  • D 90 /D 10 may be, for example, 4 or less, preferably 3 or less, and more preferably 2.5 or less from the viewpoint of output density.
  • D 90 /D 10 may be, for example, 1.2 or more.
  • D 50 /D SEM of the positive electrode active material is preferably 1 or more and 4 or less, from the viewpoint of output density, it is preferably 3.5 or less, more preferably 3 or less, and even more preferably 2.5 or less. , particularly preferably 2 or less or 1.5 or less.
  • Positive electrode for secondary batteries includes a current collector and a positive electrode active material layer disposed on the current collector and containing a positive electrode active material for secondary batteries.
  • a secondary battery equipped with such an electrode can achieve high output characteristics.
  • the positive electrode for a secondary battery may be a positive electrode for an all-solid-state secondary battery.
  • Examples of the material of the current collector include aluminum, nickel, and stainless steel.
  • the positive electrode active material layer is formed by applying a positive electrode mixture obtained by mixing the above-mentioned positive electrode active material, conductive material, binder, etc. with a solvent onto a current collector, and performing drying treatment, pressure treatment, etc. can be formed.
  • Examples of the conductive material include natural graphite, artificial graphite, and acetylene black.
  • Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, and polyamide acrylic resin.
  • the positive electrode active material layer preferably contains a solid electrolyte.
  • a positive electrode active material layer obtained by mixing a solid electrolyte with a positive electrode active material tends to exhibit higher ionic conductivity.
  • solid electrolytes sulfide-based, oxide-based, halogen-based, and other solid electrolytes have been reported.
  • Examples of the crystal structure of the sulfide solid electrolyte include a Thio-LISICON type crystal structure, an LGPS type crystal structure, and an argyrodite type crystal structure.
  • the proportion of the solid electrolyte in the positive electrode active material layer may be, for example, 1% by weight or more and 50% by weight or less. Further, it may be 5% by weight or more and 40% by weight or less, and may be 10% by weight or more and 30% by weight or less.
  • the secondary battery is equipped with the above-mentioned positive electrode for a secondary battery.
  • a secondary battery includes a negative electrode, an electrolyte, and the like in addition to a positive electrode for a secondary battery.
  • the secondary battery may be an all-solid-state secondary battery.
  • Regarding the negative electrode, solid electrolyte, etc. in all-solid-state secondary batteries for example, International Publication WO 2018/038037, JP 2022-25903, and JP 2018-125214 (the entire disclosure content of which is incorporated herein by reference) Those for all-solid-state secondary batteries, which are described in (incorporated in the specification) etc., can be used as appropriate.
  • the ratio of the number of moles of nickel atoms to the total number of moles of metal atoms other than lithium is 0.5 or more and less than 1
  • the ratio of the number of moles of nickel atoms to the total number of moles of metal atoms other than lithium is cobalt atoms preparing a lithium-transition metal composite powder having a molar ratio of 0 or more and less than 0.5, and contacting the lithium-transition metal composite powder with a cobalt raw material to obtain a cobalt-attached composite oxide and obtaining a first heat-treated product by first heat-treating the cobalt-adhered composite oxide at a temperature of more than 600°C and less than 800°C, and bringing the first heat-treated product into contact with a niobium raw material to produce niobium.
  • a positive electrode active for a secondary battery comprising: obtaining an adhered composite oxide; and performing a second heat treatment on the niobium adhered composite oxide at a temperature of more than 300°C and less than 500°C to obtain a second heat-treated product.
  • a method of manufacturing a substance comprising: obtaining an adhered composite oxide; and performing a second heat treatment on the niobium adhered composite oxide at a temperature of more than 300°C and less than 500°C to obtain a second heat-treated product.
  • the lithium transition metal composite powder has a ratio D 50 /D SEM of 50% particle diameter D 50 of the cumulative particle size distribution based on volume to the average particle diameter D SEM based on electron microscopic observation, which is 1 or more and 4 or less.
  • the lithium transition metal composite powder has a ratio of the number of moles of nickel atoms to the total number of moles of metal atoms other than lithium of 0.6 or more and less than 1.
  • obtaining the cobalt-attached composite oxide includes dry mixing the lithium transition metal composite powder and the cobalt raw material.
  • a method for producing a positive electrode active material includes dry mixing the lithium transition metal composite powder and the cobalt raw material.
  • the total molar amount of cobalt atoms contained in the cobalt raw material is relative to the total molar amount of metal atoms other than lithium contained in the lithium transition metal composite powder.
  • the total molar amount of niobium atoms contained in the niobium raw material is 0.0% relative to the total molar amount of metal atoms other than lithium contained in the first heat-treated product.
  • the lithium transition metal composite powder is any one of [1] to [11], wherein the ratio of the number of moles of nickel atoms to the total number of moles of metal atoms other than lithium is 0.6 or more and less than 0.8.
  • the lithium transition metal composite powder has a surface composition determined by surface elution analysis in which the ratio of the number of moles of cobalt atoms to the total number of moles of metal atoms other than lithium is 0.15 or more and 0.5 or less.
  • the method for producing a positive electrode active material for a secondary battery according to any one of [1] to [12].
  • Cobalt atoms have a layered structure, the ratio of the number of moles of nickel atoms to the total number of moles of metal atoms other than lithium is 0.5 or more and less than 1, and the ratio of the number of moles of nickel atoms to the total number of moles of metal atoms other than lithium
  • the lithium transition metal composite oxide includes a lithium transition metal composite oxide having a composition in which the molar ratio of is 0.01 or more and less than 0.5.
  • the first region has a secondary particle surface and the depth from the secondary particle surface is around 60 nm as a first region, and the region around 10 nm from the secondary particle surface as a second region.
  • the lithium transition metal composite oxide has a ratio D 50 /D SEM of 50% particle diameter D 50 of a volume-based cumulative particle size distribution to an average particle diameter D SEM based on electron microscopic observation, which is 1 or more and 4 or less.
  • the positive electrode active material for a secondary battery according to [15] or [16].
  • the difference in the ratio of the number of moles of cobalt atoms to the total number of moles of metal atoms other than lithium in the first region and the second region is determined by the difference in depth from the surface of the first region and the second region.
  • the absolute value of the difference is between 0.001 (nm -1 ) and 0.08 (nm -1 )
  • the positive electrode active material for a secondary battery according to any one of [17].
  • the lithium transition metal composite oxide has a ratio of the number of moles of nickel atoms to the total number of moles of metal atoms other than lithium of 0.6 or more and less than 0.8,
  • the positive electrode active material for a secondary battery according to any one of [15] to [18], wherein the surface of the secondary particles has an SED standard deviation for niobium of 5.0 or less as determined by SEM-EDX measurement.
  • M 2 contains B, Na, Mg, Si, P, S, K, Ca, Ti, V, Cr, Zn , Sr, Y, Zr, Nb, Mo, In, Sn, Ba, La, Ce, Nd, Sm, Eu, Gd, Ta, W and Bi, and at least Nb. include.
  • a positive electrode for a secondary battery comprising a positive electrode active material layer containing the positive electrode active material for a secondary battery according to [20].
  • a secondary battery comprising the positive electrode for a secondary battery according to [21], a negative electrode, and an electrolyte.
  • Example 1 First adhesion step and first heat treatment step 1000 g of the lithium transition metal composite powder prepared in Reference Example 1 and 17.6 g of cobalt oxide (Co 3 O 4 ) were mixed for 5 minutes using a dry mixer. The number of moles of cobalt atoms contained in the cobalt oxide used was 2.0% with respect to the total number of moles of metal atoms other than lithium contained in the lithium-transition metal composite powder. After that, heat treatment is performed at 705°C for 6 hours in an oxygen atmosphere to obtain a composition represented by the composition formula Li 1.03 Ni 0.866 Co 0.051 Mn 0.07 Al 0.01 Zr 0.003 O 2 A first heat-treated product was obtained.
  • Niobic acid Naobic acid
  • NH 3 ammonia
  • hydrogen peroxide H 2 O 2
  • concentration of niobium in this aqueous niobium solution was 0.11 mol/L
  • the concentration of ammonia was 0.44 mol/L
  • the concentration of hydrogen peroxide was 2.4 mol/L.
  • Example 1 having a composition represented by the formula: Li 1.02 Ni 0.856 Co 0.051 Mn 0.07 Al 0.01 Zr 0.003 Nb 0.01 O 2 was obtained.
  • Table 1 shows the composition ratios of metal elements other than Li. Note that Co in the compositional formula also includes Co in the second region.
  • FIG. 1 shows a SEM image of the obtained positive electrode active material.
  • Example 1 A positive electrode active material and a battery were produced in the same manner as in Example 1 except that the first adhesion step and the first heat treatment step were not performed.
  • Table 1 shows the composition ratio of metal elements other than Li.
  • Example 2 The prepared lithium transition metal composite powder is represented by Li 1.02 Ni 0.708 Co 0.081 Mn 0.202 Al 0.005 Zr 0.003 O 2 and the temperature of the first heat treatment step is 660°C.
  • the composition formula Li 1.03 Ni 0.688 Co 0.0981 Mn 0.196 Al 0.005 Zr 0.003 Nb 0.01 O 2 was prepared in the same manner as in Example 1 except that the temperature was A positive electrode active material according to Example 2 was obtained.
  • Example 3 The composition formula Li 1.03 Ni 0.688 Co 0.0981 Mn 0.196 Al 0.005 Zr 0.003 Nb 0 was prepared in the same manner as in Example 2 except that the temperature of the first heat treatment step was 700°C. A positive electrode active material according to Example 3, expressed as .01 O 2 , was obtained.
  • Example 4 The composition formula Li 1.03 Ni 0.688 Co 0.0981 Mn 0.196 Al 0.005 Zr 0.003 Nb 0 was prepared in the same manner as in Example 2 except that the temperature of the first heat treatment step was 740°C. A positive electrode active material according to Example 4, expressed as .01 O 2 , was obtained.
  • Example 5 The lithium transition metal composite powder to be prepared is represented by Li 1.02 Ni 0.723 Co 0.063 Mn 0.202 Al 0.005 Zr 0.003 O 2 and the cobalt oxide used in the first attachment step.
  • the composition formula Li 1.03 Ni 0.688 Co 0.0981 Mn 0.196 Al 0.005 Zr 0.003 Nb 0.01 O was prepared in the same manner as in Example 3 except that the amount of was 35.6 g.
  • a positive electrode active material according to Example 5, represented by No. 2 was obtained.
  • Example 6 The composition formula Li 1.03 Ni 0.688 Co 0.0981 Mn 0.196 Al 0.005 Zr 0.003 Nb 0 was prepared in the same manner as in Example 5 except that the temperature of the first heat treatment step was 740°C. A positive electrode active material according to Example 6, expressed as .01 O 2 , was obtained.
  • Example 7 The prepared lithium transition metal composite powder is represented by Li 1.00 Ni 0.739 Co 0.047 Mn 0.212 Al 0.005 Zr 0.003 O 2 and the cobalt oxide used in the first attachment step.
  • the composition formula Li 1.01 Ni 0.688 Co 0.0981 Mn 0.196 Al 0.005 Zr 0.003 Nb 0.01 O was prepared in the same manner as in Example 6 except that the amount of was 54.6 g.
  • a positive electrode active material according to Example 7, represented by No. 2 was obtained.
  • Comparative example 2 In the same manner as Comparative Example 1, except that the lithium transition metal composite powder to be prepared is represented by Li 1.08 Ni 0.700 Co 0.10 Mn 0.20 Al 0.005 Zr 0.003 O 2 , A positive electrode active material according to Comparative Example 2 represented by the composition formula Li 1.00 Ni 0.739 Co 0.047 Mn 0.212 Al 0.005 Zr 0.003 O 2 was obtained.
  • Reference example 2 A positive electrode active material having a compositional formula of Li 1.08 Ni 0.700 Co 0.10 Mn 0.20 Al 0.005 Zr 0.003 O 2 was prepared. Co coating and Nb coating were not performed.
  • Table 2 shows the lithium ratio, Co coating amount, and Nb coating amount for Examples 2 to 7 and Comparative Example 2.
  • Example 2 Evaluation of SED standard deviation SEM using FlatQuad (manufactured by Bruker) for each positive electrode active material obtained in Example 2, Example 3, Example 4, Example 6, Example 7, and Comparative Example 2 - EDX measurement was performed.
  • the measurement voltage was 5 kV
  • the current value/z coordinate was set so that the maximum count value was 1850 ⁇ 100 cps when a 50 ⁇ m thick Al foil was qualitatively analyzed at a magnification of 1000 times.
  • the resolution during mapping measurement was 640 x 480 pixels. Mapping measurements were performed at a magnification such that the number of particles entering one screen ranged from 1,000 to 3,000, and at a measurement time of 8,192 ⁇ sec/pixels.
  • the raw data (Nb, O) of the EDX measurement was converted into text in CSV format.
  • grain boundary separation was performed using the oxygen mapping results.
  • the overlap was separated using the watershed method.
  • Particle analysis was performed on the obtained images, and contour data of each particle was obtained.
  • Particle analysis was performed for each particle in the Nb mapping image using contour data obtained from the oxygen mapping image, and the area (pixel) and average GRAY level of each particle were obtained.
  • a histogram was created from the obtained results, with the horizontal axis representing the average gray level and the vertical axis representing the number of pixels. For gray level division, the step width was such that the distribution fell within 20 divisions.
  • the surface compositions of the lithium transition metal composite powders prepared in Example 2, Example 3, Example 4, Example 6, Example 7, and Comparative Example 2 were determined according to the following procedure.
  • 0.20 g of lithium transition metal composite powder was accurately weighed in a polybeaker.
  • 10 mL of a buffer solution consisting of citric acid and trisodium citrate, having a pH of 5.8, and maintained at 20° C. was added to the polybeaker.
  • a filtrate was obtained by filtering the eluate using a plastic syringe equipped with a syringe filter.
  • 0.5 mL of 6M HCl was added to 1 mL of the filtrate, and the mixture was diluted to 50 mL with pure water to obtain a diluted solution.
  • the surface composition of the lithium-transition metal composite powder was determined by performing ICP measurement on the diluted solution.
  • the cobalt ratio (Co/Me) is the molar ratio of cobalt to the total number of moles of metal components other than lithium
  • the nickel ratio (Ni/Me) is the molar ratio of nickel to the total number of moles of metal components other than lithium
  • the manganese ratio (Mn/Me) was defined as the molar ratio of manganese to the total number of moles of metal components other than lithium. The results are shown in Table 3.
  • Solid Electrolyte An argyrodite-type sulfide having an average particle size of 10 ⁇ m and a composition of Li 5.4 PS 4.4 Cl 1.6 was used as the solid electrolyte.
  • a positive electrode composite material was obtained by mixing 70 parts by mass of the positive electrode active material obtained in Example 1 and Comparative Example 1, 27 parts by mass of solid electrolyte, and 3 parts by mass of VGCF (registered trademark), which is vapor grown carbon fiber. .
  • a cylindrical lower mold with an outer diameter of 11 mm was inserted into a cylindrical outer mold with an inner diameter of 11 mm from the bottom of the outer mold.
  • the upper end of the lower mold was fixed at a position in the middle of the outer mold.
  • 100 mg of solid electrolyte was poured from the upper part of the outer mold to the upper end of the lower mold.
  • a cylindrical upper mold with an outer diameter of 11 mm was inserted from the top of the outer mold.
  • a pressure of 50 MPa was applied from above the upper mold to mold the solid electrolyte into a solid electrolyte layer.
  • the upper mold was pulled out from the upper part of the outer mold, and 20 mg of the positive electrode mixture was put into the upper part of the solid electrolyte layer from the upper part of the outer mold.
  • the upper mold was inserted again, and this time a pressure of 600 MPa was applied to mold the positive electrode composite material to form a positive electrode active material layer.
  • the upper mold was fixed, the lower mold was released and pulled out from the lower part of the outer mold, and the LiAl alloy as the negative electrode active material was introduced from the lower part of the lower mold to the lower part of the solid electrolyte layer.
  • the lower mold After charging, the lower mold was inserted again, and a pressure of 50 MPa was applied from below the lower mold to mold the negative electrode active material to form a negative electrode active material layer.
  • the lower mold was fixed under pressure, and the positive electrode terminal and the negative electrode terminal were attached to the upper mold and the lower mold, respectively, to obtain an all-solid-state secondary battery for evaluation.
  • D SEM Measurement D SEM of the positive electrode active materials according to Example 1, Comparative Example 1, Reference Example 1, and Reference Example 2 was determined according to the following procedure. ⁇ 1> Using a scanning electron microscope (Hitachi High-Technologies Corporation, SU8230), the magnification was set so that the number of secondary particles whose outlines could be confirmed was 10 or more and 20 or less. Specifically, the acceleration voltage was 1.5 kV and the magnification was 4000 times. At this time, secondary particles whose particle size was less than half of D10 were not included in the number. ⁇ 2> For all the secondary particles with a particle size of half or more of D10 , which are imaged at the above magnification, use image processing software (ImageJ) to analyze the primary particles that constitute each of them.
  • ImageJ image processing software
  • the BET specific surface area of each positive electrode active material was measured using a BET specific surface area measuring device (manufactured by Mountec: Macsorb) by a gas adsorption method (one point method) using nitrogen gas. The results are shown in Table 5.
  • Particle Size Evaluation Physical property values of each positive electrode active material were measured as follows. Using a laser diffraction particle size distribution measuring device (SALD-3100 manufactured by Shimadzu Corporation), the volume-based cumulative particle size distribution was measured, and D50 was defined as the particle size corresponding to 50% of the cumulative size from the small diameter side. Similarly, D 10 was determined as the particle size corresponding to 10% accumulation, D 90 was determined as the particle diameter corresponding to 90% accumulation, and D 90 /D 10 was determined from the obtained values. The results are shown in Table 5.
  • Tap Density A tapping type powder reduction meter TPM-3P (Tsutsui Rikagaku Kikai) was used to measure the tap density. 20 g of each positive electrode active material was placed in a 20 mL measuring cylinder as a measurement container, the number of shaking was set to 150, and the volume density after shaking was determined as the tap density. The results are shown in Table 5.
  • Nickel Disorder and Crystallinity X-ray diffraction spectra (tube current 200 mA, tube voltage 45 kV) were measured using CuK ⁇ rays for each of the positive electrode active materials obtained in Example 1, Comparative Example 1, and Reference Example. Further, the crystallinity was calculated by substituting the peak position and integral width due to the lattice plane (104) obtained from the measured X-ray diffraction spectrum into the Scherrer equation.
  • Nb content of the positive electrode active materials obtained in Example 1 and Comparative Example 1 was measured using an inductively coupled plasma emission spectrometer (ICP-AES; manufactured by PerkinElmer). Table 5 shows the determined mass content of Nb in the positive electrode active material.
  • Example 1 the amount of LiOH and the amount of Li 2 CO 3 are smaller than those in Comparative Example 1 and Reference Example. This is considered to be because cobalt oxide was consumed by reacting with excess lithium on the particle surface.
  • Example 2 SEM-EDX-ray analysis After each of the positive electrode active materials obtained in Example 1 was dispersed in an epoxy resin and solidified, the secondary particles of the positive electrode active material were cross-sectioned using a cross-section polisher (manufactured by JEOL). A measurement sample was prepared. The cross-sectional measurement sample was subjected to line analysis using a scanning electron microscope (SEM)/energy dispersive X-ray analysis (EDX) device (manufactured by Hitachi High-Technologies, acceleration voltage 3 kV) to determine the surface area and internal area. A compositional analysis was conducted. The results of the composition analysis by line analysis are shown in FIG. 2, and the results of the Co concentration gradient determined from the analysis results are shown in Table 6.
  • SEM scanning electron microscope
  • EDX energy dispersive X-ray analysis
  • the all-solid-state secondary battery for evaluation was charged and set to a state of charge (SOC) of 50%. It was connected to an AC power source at 25° C. and resistance was measured using the AC impedance method.
  • the frequency of the AC power source was varied logarithmically from 1 MHz to 0.1 Hz. Assuming an equivalent circuit, the diameter of an arc appearing in a frequency range of 1000 Hz or more and 5000 Hz or less was determined as the resistance derived from the positive electrode active material (resistance component in the impedance of the positive electrode/electrolyte interface) by fitting using the least squares method. The results are shown in Table 7.
  • the produced evaluation battery was charged and discharged under conditions of 2.2V to 4.0V using a charging and discharging test device (TOSCAT-3100, manufactured by Toyo System Co., Ltd.).
  • the discharge current is the current value when taking out the 0.1C capacity, and after reaching the set voltage, the current is passed to keep the voltage constant, and when the current value reaches the equivalent of 0.02C, charging and discharging is started. It ended.
  • Table 7 shows the obtained charging capacity, discharging capacity, and charging/discharging efficiency.
  • Example 1 was lower than that of Comparative Example 1. This is because the positive electrode active material according to Example 1 has a Co concentration gradient due to the second region, and it is considered that this improves the resistance.
  • Example 1 exceeds Comparative Example 1 in charge capacity, discharge capacity, and charge/discharge efficiency, and this is considered to be due to a decrease in overvoltage due to a decrease in resistance.
  • Japanese Patent Application No. 2022-105831 (filed date: June 30, 2022), Japanese Patent Application No. 2022-122790 (filed date: August 1, 2022), and Japanese Patent Application No. 2023-097504 (filed Date: June 14, 2023) is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

電池抵抗が改良される電池を構成可能な二次電池用の正極活物質材料の製造方法が提供される。層状構造を有し、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.5以上1未満であり、リチウム以外の金属原子の総モル数に対する、コバルト原子のモル数の比が0以上0.5未満であるリチウム遷移金属複合粉体を準備することと、前記リチウム遷移金属複合粉体と、コバルト原料とを接触させてコバルト付着複合酸化物を得ることと、前記コバルト付着複合酸化物を、600℃を超えて800℃未満の温度で第1熱処理して第1熱処理物を得ることと、前記第1熱処理物と、ニオブ原料とを接触させてニオブ付着複合酸化物を得ることと、前記ニオブ付着複合酸化物を、300℃を超えて500℃未満の温度で第2熱処理して第2熱処理物を得ることと、を含む二次電池用正極活物質の製造方法である。

Description

二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池
 本開示は、二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池に関する。
 リチウムイオン電池はエネルギー密度とサイクル特性に優れた二次電池である。その中でも昨今は、電解質に従来の有機溶媒の代わりに固体を用いた全固体電池の開発がなされており、従来よりも高い安全性の達成が期待されている。特に固体電解質に硫黄が含まれる硫化物系固体電解質では高い導電率が達成されている。一方で、硫化物系固体電解質には、正極層と硫化物系固体電解質の副反応や、正極活物質と固体電解質との界面での高抵抗層の形成といった課題が存在している。
 特開2018-125214号公報には、ニオブ酸リチウムによって正極活物質の表面を被覆して、硫化物固体電解質と正極活物質との接触界面に高抵抗層が形成されることを抑制し、更に硫化物固体電解質と正極活物質との副反応を防ぐ技術が開示されている。
 しかしながら、ニッケル含有率が高いリチウム遷移金属複合酸化物においては、ニオブ酸リチウム等のニオブ化合物により表面を被覆しても、未だ電池抵抗が高いといった課題が存在し、更なる出力特性の向上が求められている。本発明の一態様は、電池抵抗が軽減される二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池を提供することを目的とする。
 第一態様は、層状構造を有し、リチウム以外の金属の総モル数に対する、ニッケルのモル数の比が0.5以上1未満であり、リチウム以外の金属の総モル数に対する、コバルトのモル数の比が0以上0.5未満であるリチウム遷移金属複合粉体を準備することと、前記リチウム遷移金属複合粉体と、コバルト原料とを接触させてコバルト付着複合酸化物を得ることと、前記コバルト付着複合酸化物を、600℃を超えて800℃未満の温度で第1熱処理して第1熱処理物を得ることと、前記第1熱処理物と、ニオブ原料とを接触させてニオブ付着複合酸化物を得ることと、前記ニオブ付着複合酸化物を、300℃を超えて500℃未満の温度で第2熱処理して第2熱処理物を得ることと、を含む、二次電池用正極活物質の製造方法である。
 第二態様は、層状構造を有し、リチウム以外の金属の総モル数に対する、ニッケルのモル数の比が0.5以上1未満であり、リチウム以外の金属の総モル数に対する、コバルトのモル数の比が0.01以上0.5未満である組成を有するリチウム遷移金属複合酸化物を含み、前記リチウム遷移金属複合酸化物は、その粒子表面の少なくとも一部にニオブ化合物を含む二次粒子表面を有しており、前記二次粒子表面からの深さが60nm付近である領域を第1領域、前記二次粒子表面から10nm付近の領域を第2領域としたときに、第1領域よりも第2領域の方が高いコバルト濃度を有する、二次電池用正極活物質である。
 第三態様は、第二態様の二次電池用正極活物質を含む正極活物質層を備える二次電池用正極である。第四態様は、第三態様の二次電池用正極と、負極と、電解質とを備える二次電池である。
 本開示の一態様によれば、電池抵抗が軽減される二次電池用正極活物質およびその製造方法並びにそれを用いた二次電池用正極及び二次電池を提供することができる。
実施例1の正極活物質に係るSEM画像の一例である。 実施例1の正極活物質に係るSEM-EDXの線分析結果の一例である。
 本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。以下、本開示の実施形態を詳細に説明する。ただし、以下に示す実施形態は、本開示の技術思想を具体化するための、二次電池用正極活物質およびその製造方法を例示するものであって、本開示は、以下に示す二次電池用正極活物質およびその製造方法に限定されない。
二次電池用正極活物質の製造方法
 二次電池用正極活物質(以下、単に「正極活物質」ともいう)の製造方法は、層状構造を有し、リチウム以外の金属の総モル数に対する、ニッケルのモル数の比が0.5以上1未満であり、リチウム以外の金属の総モル数に対する、コバルトのモル数の比が0以上0.5未満であるリチウム遷移金属複合粉体を準備する準備工程と、前記リチウム遷移金属複合粉体と、コバルト原料とを接触させてコバルト付着複合酸化物を得る第1付着工程と、前記コバルト付着複合酸化物を、600℃を超えて800℃未満の温度で第1熱処理して第1熱処理物を得る第1熱処理工程と、前記第1熱処理物と、ニオブ原料とを接触させてニオブ付着複合酸化物を得る第2付着工程と、前記ニオブ付着複合酸化物を、300℃を超えて500℃未満の温度で第2熱処理して第2熱処理物を得る第2熱処理工程と、を含む。本製造方法により得られる正極活物質においては、高いニッケル比率を有するリチウム遷移金属複合粉体の二次粒子表面付近のコバルト濃度が高くなることで正極活物質内のリチウムイオン伝導性が向上する。さらに正極活物質の二次粒子表面にニオブ化合物による被覆部を設けることで、固体電解質と正極間での高抵抗層の形成が抑制される。そのため、これを含んで構成される全固体二次電池では、高い出力特性を達成することができると考えられる。
準備工程
 準備工程では、層状構造を有するリチウム遷移金属複合酸化物であって、リチウム以外の金属の総モル数に対する、ニッケルのモル数の比が0.5以上1未満であり、コバルトのモル数の比が0以上0.5未満である組成を有するリチウム遷移金属複合粉体を準備する。リチウム遷移金属複合粉体は、少なくともリチウムとニッケルとを含み、コバルト、マンガン及びアルミニウムからなる群から選択される少なくとも1種の金属元素を更に含んでいてもよい。リチウム遷移金属複合粉体は、譲り受け等で準備してもよく、所望の組成及び構造を有するリチウム遷移金属複合粉体を製造して準備してもよい。
 準備工程にて準備されるリチウム遷移金属複合粉体の組成におけるリチウム以外の金属の総モル数に対するニッケルのモル数の比は、0.5以上1未満であってよい。リチウム以外の金属の総モル数に対するニッケルのモル数の比は、好ましくは0.6以上であってよく、より好ましくは0.7以上であってよい。リチウム以外の金属の総モル数に対するニッケルのモル数の比は、好ましくは0.95以下であってよく、より好ましくは0.92以下であってよく、特に好ましくは0.9以下であってよい。ニッケルのモル比が上述した範囲であると、得られる正極活物質を用いた二次電池における出力特性改善の効果がより顕著に現れる傾向がみられる。
 準備工程にて準備されるリチウム遷移金属複合粉体の組成におけるリチウム以外の金属の総モル数に対するコバルトのモル数の比は、0以上であってよい。出力特性の点から、リチウム遷移金属複合粉体におけるリチウム以外の金属の総モル数に対するコバルトのモル数の比は、好ましくは0.01以上、または0.02以上であってよく、より好ましくは0.03以上であってよい。また、リチウム遷移金属複合粉体におけるリチウム以外の金属の総モル数に対するコバルトのモル数の比は、例えば0.5以下であってよく、充放電容量の点から好ましくは0.3以下であってよく、より好ましくは0.2以下、更に好ましくは0.12以下、または0.09以下であってよい。上述の範囲であると、コストを抑えつつ出力特性をより向上させることができる。
 準備工程にて準備されるリチウム遷移金属複合粉体は、その組成に、マンガン及びアルミニウムからなる群から選択される少なくとも1種を含む金属元素Mを更に含んでいてもよい。リチウム遷移金属複合粉体が金属元素Mを含む場合、リチウム以外の金属の総モル数に対するMのモル数の比は、例えば0より大きくてよく、安全性の点から、好ましくは0.03以上であってよく、より好ましくは0.05以上、または0.07以上であってよい。リチウム以外の金属の総モル数に対するMのモル数の比は例えば0.5以下であってよく、充放電容量の点から好ましくは0.4以下であってよく、より好ましくは0.3以下、または0.25以下であってよい。
 準備工程にて準備されるリチウム遷移金属複合粉体は、その組成に、ホウ素、ナトリウム、マグネシウム、ケイ素、リン、硫黄、カリウム、カルシウム、チタン、バナジウム、クロム、亜鉛、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、インジウム、スズ、バリウム、ランタン、セリウム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、タンタル、タングステン及びビスマスからなる群から選択される少なくとも1種を含む金属元素Mを更に含んでいてもよい。リチウム遷移金属複合粉体が金属元素Mを含む場合、リチウム以外の金属の総モル数に対するMのモル数の比は、例えば0より大きくてよく、好ましくは0.0005以上、特に好ましくは0.001以上、または0.002以上であってよい。リチウム以外の金属の総モル数に対するMのモル数の比は例えば0.1以下であってよく、好ましくは0.05以下、特に好ましくは0.02以下、0.01以下、または0.006以下であってよい。
 準備工程にて準備されるリチウム遷移金属複合粉体の組成におけるリチウム以外の金属の総モル数に対するリチウムのモル数の比は、例えば0.95以上であってよく、好ましくは0.98以上、または1以上であってよい。リチウム以外の金属の総モル数に対するリチウムのモル数の比は例えば1.5以下であってよく、好ましくは1.3以下、または1.1以下であってよい。
 準備工程にて準備されるリチウム遷移金属複合粉体の組成は、例えば下式(1)で表される組成であってよい。
   LiNiCo    (1)
 式(1)中、0.95≦p≦1.5、0.5≦x<1、0≦y<0.5、0≦z<0.5、0≦w≦0.1、0.8≦x+y+z+w≦1.2、MはAl及びMnからなる群より選択される少なくとも1種を含む。MはB、Na、Mg、Si、P、S、K、Ca、Ti、V、Cr、Zn、Sr、Y、Zr、Nb、Mo、In、Sn、Ba、La、Ce、Nd、Sm、Eu、Gd、Ta、W及びBiからなる群より選択される少なくとも1種を含む。
 式(1)中、pは、0.98≦p、0.1≦p、p≦1.3またはp≦1.1であってよい。xは、0.6≦x、0.7≦x、x≦0.95、x≦0.92またはx≦0.9であってよい。yは、0.01≦y、0.03≦y、y≦0.3、y≦0.2、y≦0.12であってよい。zは、0.03≦z、0.05≦z、z≦0.5、z≦0.4またはz≦0.3であってよい。wは、0<w、0.0005≦w、0.001≦w、w≦0.05、w≦0.02であってよい。x+y+z+wは、0.9≦x+y+z+w≦1であってよい。
 準備工程にて準備されるリチウム遷移金属複合粉体は、20個を越える複数の一次粒子が凝集した二次粒子で構成されていてもよいが、20個以下、好ましくは10個以下の一次粒子で構成される二次粒子からなる粒子または単一粒子、いわゆる単粒子の形態で構成されていることが好ましい。単粒子形態であるリチウム遷移金属複合粉体は、体積基準による累積粒度分布における50%粒径D50の、電子顕微鏡(SEM)観察に基づく平均粒径DSEMに対する比D50/DSEMが1以上4以下であってよい。
 準備工程にて準備されるリチウム遷移金属複合粉体において、D50/DSEMが1に近づくほど、リチウム遷移金属複合粉体に含まれる二次粒子を構成する一次粒子の数が少ないことを示し、D50/DSEMが1の場合、ほとんど単一粒子のみから構成されることを示す。D50/DSEMは、耐久性の観点から、1以上4以下が好ましく、出力密度の観点から、3.5以下が好ましく、3以下がより好ましく、2.5以下が更に好ましく、特に2以下、または1.5以下が好ましい。D50/DSEMが1に近い値であるほど、第1領域よりも第2領域の方が高いコバルト濃度を有する場合の出力特性改善の効果がより顕著になることが期待できる。本明細書では、D50/DSEMが1と異なる値であっても1であっても、独立して存在する粒子は二次粒子とみなす。
 準備工程にて準備されるリチウム遷移金属複合粉体においては、電子顕微鏡観察に基づく平均粒径DSEMは、例えば0.1μm以上であってよく、耐久性の観点から、0.3μm以上が好ましく、0.5μm以上または1μm以上がより好ましい。電子顕微鏡観察に基づく平均粒径DSEMは例えば20μm以下であってよく、出力密度及び極板充填性の観点から10μm以下がより好ましく、8μm以下が更に好ましく、5μm以下、4μm以下または3μm以下が特に好ましい。
 電子顕微鏡観察に基づく平均粒径DSEMは、走査型電子顕微鏡(SEM)画像から測定される一次粒子の球換算径の平均値である。平均粒径DSEMは具体的には以下のようにして求められる。
〈1〉走査型電子顕微鏡を用い、粒子の輪郭が確認できる二次粒子が10個以上20個以下となるような倍率に設定する。このとき、粒径がD10の半分未満である二次粒子については個数に含めないものとする。
〈2〉上記の倍率で観測された、粒径がD10の半分以上であり、輪郭が確認できるすべての二次粒子について、それぞれの二次粒子を構成する一次粒子に対して画像処理ソフトウエアを用いて、一次粒子の輪郭をトレースすることで各一次粒子の輪郭長を求める。輪郭長から球換算径を算出する。
〈3〉球換算径を算出した一次粒子の個数が100個を超えるまで上記〈1〉、〈2〉を繰り返し、〈1〉、〈2〉を繰り返すことで得られた一次粒子の球換算径の算術平均値として、平均粒径DSEMが求められる。
 また準備工程にて準備されるリチウム遷移金属複合粉体の50%粒径D50は、例えば1μm以上30μm以下であってよい。ハンドリング性の観点から1.5μm以上が好ましく、2.5μm以上がより好ましい。また出力密度の観点から10μm以下が好ましく、7μm以下がより好ましい。
 50%粒径D50は、レーザー回折式粒径分布測定装置を用いて、湿式条件で測定される体積基準の累積粒度分布において、小径側からの累積50%に対応する粒径として求められる。同様に、後述する90%粒径D90及び10%粒径D10は、それぞれ小径側からの累積90%及び累積10%に対応する粒径として求められる。
 準備工程にて準備されるリチウム遷移金属複合粉体の体積基準による累積粒度分布における90%粒径D90の10%粒径D10に対する比は、粒度分布の広がりを示し、値が小さいほど粒子の粒径がそろっていることを示す。D90/D10は、例えば4以下であってよく、出力密度の観点から、3以下が好ましく、2.5以下がより好ましい。D90/D10は、例えば1.2以上であってよい。D90/D10の値が小さいほど粒径がそろっており、それによりニオブ化合物による被覆がより均一になることが期待できる。
 準備工程にて準備されるD50/DSEMが1以上4以下であるリチウム遷移金属複合粉体については、例えば、特開2017-188443号公報(米国公開特許2017-0288221)、特開2017-188444号公報(米国公開特許2017-0288222)、特開2017-188445号公報(米国公開特許2017-0288223)等を参照することができる。
 準備工程にて準備されるリチウム遷移金属複合粉体は組成にニッケルを含む。リチウム遷移金属複合酸化物は、全固体二次電池における初期効率の観点から、X線回折法により求められるニッケル元素のディスオーダーが6%以下、5%以下または4.0%以下であることが好ましく、2.0%以下がより好ましい。ここで、ニッケル元素のディスオーダーとは、本来のサイトを占有すべき遷移金属イオン(ニッケルイオン)の化学的配列無秩序(chemical disorder)を意味する。層状構造のリチウム遷移金属遷移金属複合酸化物においては、Wyckoff記号で表記した場合に3bで表されるサイト(3bサイト、以下同様)を占有すべきアルカリ金属イオンと3aサイトを占有すべき遷移金属イオンの入れ替わりが代表的である。ニッケル元素のディスオーダーが小さいほど、初期効率が向上する傾向があり、好ましい。
 リチウム遷移金属遷移金属複合酸化物におけるニッケル元素のディスオーダーは、X線回折法により求めることができる。リチウム遷移金属遷移金属複合酸化物について、CuKα線によりX線回折スペクトルを測定する。組成モデルを(Li1-dNi)(NiCoMn)O(x+y+z=1)とし、得られたX線回折スペクトルに基づいて、リートベルト解析により構造最適化を行う。構造最適化の結果として算出されるdの百分率をニッケル元素のディスオーダーの値とする。
 準備工程にて準備されるリチウム遷移金属複合粉体は、具体的には以下のようにして調製することができる。リチウム遷移金属複合粉体の調製方法は、例えば、前駆体を準備する前駆体準備工程と、前駆体とリチウム化合物とからリチウム遷移金属複合酸化物を合成する合成工程とを含んでいてよい。
 前駆体準備工程では、ニッケルを含む複合酸化物(以下、単に複合酸化物ともいう)を含む前駆体を準備する。前駆体は、譲り受け等により準備してもよく、常法により所望の構成を有する複合酸化物を調製して準備してもよい。所望の組成を有する複合酸化物を得る方法としては、原料化合物(水酸化物、炭酸化合物等)を目的組成に合わせて混合し熱処理によって複合酸化物に分解する方法、溶媒に可溶な原料化合物を溶媒に溶解し、温度調整、pH調整、錯化剤投入等で目的の組成を有する沈殿物を得て、それら沈殿物の熱処理によって複合酸化物を得る共沈法などを挙げることができる。以下、複合酸化物の製造方法の一例について説明する。
 共沈法により複合酸化物を得る方法には、所望の構成比で金属イオンを含む混合溶液のpH等を調整して種晶を得る種生成工程と、生成した種晶を成長させて所望の特性を有する複合水酸化物を得る晶析工程と、得られる複合水酸化物を熱処理して複合酸化物を得る工程とを含むことができる。このような複合酸化物を得る方法の詳細については、例えば、特開2003-292322号公報、特開2011-116580号公報(米国公開特許2012-0270107)等を参照することができる。
 種生成工程では、所望の構成比でニッケルイオンを含む混合溶液のpHを、例えば11から13に調整することで種晶を含む液媒体を調製する。種晶は例えば、ニッケルを所望の比率で含む水酸化物を含むことができる。混合溶液は、ニッケル塩を所望の割合で水に溶解することで調製できる。ニッケル塩としては例えば、硫酸塩、硝酸塩、塩酸塩等を挙げることができる。混合溶液は、ニッケル塩に加えて、必要に応じて他の金属塩を所望の構成比で含んでいてもよい。種生成工程における温度は例えば40℃から80℃とすることができる。種生成工程における雰囲気は、低酸化性雰囲気とすることができ、例えば酸素濃度を10体積%以下に維持することができる。
 晶析工程では、生成した種晶を成長させて所望の組成を有するニッケルを含む沈殿物を得る。種晶の成長は例えば、種晶を含む液媒体に、そのpHを例えば7から12.5、好ましくは7.5から12に維持しつつ、ニッケルイオンと必要に応じて他の金属イオンとを含む混合溶液を添加することで行うことができる。混合溶液の添加時間は例えば1時間から24時間であり、好ましくは3時間から18時間である。晶析工程における温度は例えば40℃から80℃とすることができる。晶析工程における雰囲気は種生成工程と同様である。種生成工程及び晶析工程におけるpHの調整は、硫酸水溶液、硝酸水溶液等の酸性水溶液、水酸化ナトリウム水溶液、アンモニア水等のアルカリ性水溶液などを用いて行うことができる。
 複合酸化物を得る工程では、晶析工程で得られる沈殿物(例えば、複合水酸化物を含む)を、熱処理することにより複合酸化物を得る。複合酸化物を得る工程における熱処理は例えば500℃以下の温度で複合水酸化物沈殿物を加熱して行うことができ、好ましくは450℃以下で加熱することができる。また熱処理の温度は例えば100℃以上であり、好ましくは200℃以上である、熱処理の時間は例えば0.5時間から48時間とすることができ、好ましくは5時間から24時間である。熱処理の雰囲気は、大気中であっても、酸素を含む雰囲気であってもよい。熱処理は、例えばボックス炉、ロータリーキルン炉、プッシャー炉、ローラーハースキルン炉等を用いて行うことができる。
 得られる複合酸化物は、ニッケルに加えてコバルトを含んでいてもよい。複合酸化物が、他の金属を含む場合、種生成工程及び晶析工程において、混合溶液に所望の構成で他の金属イオンを含有させればよい。これにより、沈殿物にニッケル及びコバルトと他の金属を含有せしめ、沈殿物を熱処理することで所望の組成を有する複合酸化物を得ることができる。
 得られる複合酸化物は、ニッケルに加えて他の金属元素Mを含んでいてもよい。他の金属元素Mとしては、Mn、Al等が挙げられ、これらからなる群から選択される少なくとも1種が好ましく、少なくともMnを含むことがより好ましい。複合酸化物が、他の金属元素を含む場合、種生成工程及び晶析工程における混合溶液に、所望の構成で他の金属イオンを含有させればよい。これにより、沈殿物にニッケル及び他の金属元素を含有せしめ、沈殿物を熱処理することで所望の組成を有する複合酸化物を得ることができる。
 複合酸化物の平均粒径は、例えば2μm以上20μm以下であってよく、好ましくは3μm以上10μm以下であってよい。複合酸化物の平均粒径は、体積平均粒径であり、レーザー散乱法によって得られる体積基準の粒度分布における小粒径側からの体積積算値が50%となる値である。
 合成工程では、複合酸化物とリチウム化合物とを混合して得られるリチウムを含む混合物を熱処理して熱処理物を得る。得られる熱処理物は、層状構造を有し、ニッケルを含むリチウム遷移金属複合酸化物を含む。
 複合酸化物と混合するリチウム化合物としては、例えば、水酸化リチウム、炭酸リチウム、酸化リチウム等を挙げることができる。混合に用いるリチウム化合物の粒径は、体積基準による累積粒度分布の50%平均粒径として、例えば0.1μm以上100μm以下であってよく、2μm以上20μm以下が好ましい。
 混合物における複合酸化物を構成する金属元素の総モル数に対するリチウムの総モル数の比は例えば、0.95以上1.5以下であってよい。複合酸化物とリチウム化合物との混合は、例えば、高速せん断ミキサー等を用いて行うことができる。
 混合物は、リチウム、ニッケル、コバルト、以外の他の金属元素MあるいはMをさらに含んでいてもよい。他の金属元素Mとしてはマンガン及びアルミニウムからなる群から選択される少なくとも1種の金属元素が好ましい。他の金属元素Mとしては、B、Na、Mg、Si、P、S、K、Ca、Ti、V、Cr、Zn、Sr、Y、Zr、Nb、Mo、In、Sn、Ba、La、Ce、Nd、Sm、Eu、Gd、Ta、W、Bi等が挙げられ、これらからなる群から選択される少なくとも1種が好ましい。混合物が、他の金属元素を含む場合、他の金属元素の単体又は金属化合物を複合酸化物及びリチウム化合物と共に混合することで、混合物を得ることができる。他の金属元素を含む金属化合物としては、酸化物、水酸化物、塩化物、窒化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、蓚酸塩等を挙げることができる。
 混合物が、他の金属元素を含む場合、複合酸化物を構成する金属元素の総モル数と他の金属元素の総モル数との比は、例えば1:0.001から1:0.3であり、1:0.01から1:0.15が好ましい。
 混合物の熱処理温度は、例えば550℃以上1100℃以下であってよく、600℃以上1080℃以下が好ましく、700℃以上1080℃以下がより好ましい。混合物の熱処理は、単一の温度で行ってもよいが、高電圧時における放電容量の点から複数の温度で行うことが好ましい。複数の温度で熱処理する場合、例えば、第1温度を所定時間で保持した後、さらに昇温し、第2温度を所定時間で保持することが望ましく、更に第2温度よりも低い第3温度で熱処理して熱処理物を得てもよい。
 また第1温度又は第2温度での熱処理後、降温する途中の第3温度で所定時間熱処理することで、前述したニッケル元素のディスオーダー値を小さくする効果が得られる傾向がある。
 第1温度は、例えば300℃以上600℃以下であってよく、好ましくは350℃以上550℃以下であってよい。また第2温度は、例えば800℃以上1100℃以下であってよく、好ましくは850℃以上1050℃以下であってよい。また、第3温度は、例えば600℃以上850℃以下であってよく、好ましくは700℃以上800℃以下であってよい。
 単一の温度で熱処理する場合の熱処理時間は、例えば1時間以上20時間以下であってよく、5時間以上15時間以下が好ましい。また、複数の温度で熱処理する場合、第1温度での熱処理時間は、例えば1時間以上20時間以下であってよい。第2温度での熱処理時間は、例えば1時間以上20時間以下であってよい。それぞれの温度での熱処理の時間は同じであっても、異なっていてもよく、連続して行ってもよく、それぞれ独立して行ってもよい。
 熱処理の雰囲気は、大気中であっても、酸素を含む雰囲気であってもよい。熱処理は、例えばボックス炉、ロータリーキルン炉、プッシャー炉、ローラーハースキルン炉等を用いて行うことができる。
 熱処理物には、必要に応じて分散処理が行われる。強い剪断力や衝撃を伴う粉砕処理ではなく、分散処理によって焼結した一次粒子の解離を行うことで粒度分布が狭く、粒度の揃ったリチウム遷移金属複合酸化物粒子が得られる。分散処理は乾式で行っても、湿式で行ってもよく、乾式で行うことが好ましい。分散処理は、例えばボールミル、ジェットミル等を用いて行うことができる。分散処理の条件は、例えば分散処理後のリチウム遷移金属複合粉体のD50/DSEMが所望の範囲、例えば1以上4以下となるように設定することができる。
 例えば分散処理をボールミルで行う場合、樹脂メディアを用いることができる。樹脂メディアの材質としては、例えばウレタン樹脂、ナイロン樹脂等を挙げることができる。一般的にボールミルのメディアの材質としては、アルミナ、ジルコニア等が用いられ、これらのメディアによって粒子が粉砕される。これに対して樹脂メディアを用いることで、粒子が粉砕されることなく、焼結した一次粒子の解離が行われる。樹脂メディアの大きさは、例えばφ5mmから30mmとすることができる。また胴体(シェル)としては、例えばウレタン樹脂、ナイロン樹脂等を用いることができる。分散処理の時間は、例えば3分間から60分間であってよく、10分間から30分間が好ましい。ボールミルによる分散処理の条件としては、所望のD50/DSEMが達成できるように、メディア量、回転もしくは振幅速度、分散時間、メディア比重等を調整すればよい。
 例えば分散処理をジェットミルで行う場合、一次粒子が粉砕されずに、所望のD50/DSEMが達成できるように、供給圧、粉砕圧等を調整すればよい。供給圧は、例えば0.1MPaから0.6MPaとすることができ、粉砕圧は、例えば0.1MPaから0.6MPaとすることができる。
第1付着工程
 第1付着工程では、準備したリチウム遷移金属複合粉体とコバルト原料とを接触させて、リチウム遷移金属複合粉体の表面にコバルト原料が付着したコバルト付着複合酸化物を得る。リチウム遷移金属複合粉体とコバルト原料との接触は、乾式で行っても、湿式で行ってもよい。
 第1付着工程を乾式で行う場合、リチウム遷移金属複合粉体とコバルト原料とを混合して、これらの接触を行うことができる。コバルト原料としては、例えば、水酸化コバルト、酸化コバルト、炭酸コバルト等を挙げることができる。第1付着工程を乾式で行う場合、湿式に比べて工程数が少なくなることに加え、リチウム遷移金属複合粉体に含まれるリチウム量の減少を抑制できるといった利点が期待できる。
 混合を行う方法としては、例えば高速せん断ミキサー、ヘンシェルミキサー、ハイスピードミキサー、ビーズミル、ボールミル等が挙げられる。
 第1付着工程を湿式で行う場合、リチウム遷移金属複合粉体を、コバルト原料を含む液媒体と接触させることでリチウム遷移金属複合粉体とコバルト原料との接触を行うことができる。このとき必要に応じて液媒体を撹拌してもよい。コバルト原料を含む液媒体は、コバルト原料の溶液であっても、コバルト原料の分散液であってもよい。また、コバルト原料の溶液にリチウム遷移金属複合粉体を懸濁させ、pH調整、温度調整等によって溶液中にコバルト原料を析出させ、リチウム遷移金属複合粉体の表面にコバルト原料を付着させてもよい。
 第1付着工程を湿式で行う場合、コバルト原料との接触に用いられる溶液に含まれるコバルト原料としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト等を挙げることができる。コバルト原料との接触に用いられる分散液に含まれるコバルト原料としては、例えば水酸化コバルト、酸化コバルト、炭酸コバルト等を挙げることができる。液媒体は、例えば水を含んでいればよく、水に加えてアルコール等の水溶性有機溶剤を含んでいてもよい。液媒体におけるコバルト原料の濃度は、例えば1質量%以上8.5質量%以下とすることができる。
 リチウム遷移金属複合粉体に接触させる、コバルト原料に含まれるコバルト原子の総モル数は、リチウム遷移金属複合粉体に含まれるリチウム以外の金属原子の総モル数に対して、例えば、0.5モル%以上15モル%以下であってよく、好ましくは1モル%以上10モル%以下であってよい。
 リチウム遷移金属複合粉体とコバルト原料の接触温度は、例えば40℃以上80℃以下であってよく、好ましくは40℃以上60℃以下とすることができる。また、接触温度は、例えば20℃以上80℃以下であってもよい。接触時間は、例えば30分以上180分以下であってよく、好ましくは30分以上60分以下であってよい。
 コバルト原料を含む液媒体と接触させた後に、必要に応じて、コバルト付着複合酸化物に対して濾別、水洗、乾燥等の処理を行ってもよい。また、付着するコバルト原料の種類等に応じて、予備的な熱処理を行ってもよい。予備的な熱処理を行う場合、その温度は、例えば100℃以上350℃以下であってよく、好ましくは120℃以上320℃以下であってよい。また処理時間は、例えば5時間以上20時間以下であってよく、好ましくは8時間以上15時間以下であってよい。また、予備的な熱処理の雰囲気は、例えば、酸素を含む雰囲気であってよく、大気雰囲気であってよい。
第1熱処理工程
 第1熱処理工程では、第1付着工程で得られるコバルト付着複合酸化物を、600℃を超えて800℃未満の所定の温度で熱処理して熱処理物を得る。熱処理温度によって所望のコバルト濃度勾配を有するリチウム遷移金属複合酸化物を含む正極活物質を得る事ができ、これを用いて構成される全固体二次電池において、優れた出力特性を達成することができる。
 製造方法は、第1熱処理工程の前に、コバルト付着複合酸化物とリチウム化合物とを混合して混合物を得る混合工程を含んでいてよい。
 コバルト付着複合酸化物と混合するリチウム化合物としては、水酸化リチウム、炭酸リチウム、塩化リチウム等を挙げることができる。リチウム化合物の添加量は、第1付着工程で付着させたコバルト量に対してリチウムとコバルトのモル比(Li:Co)が、例えば0.95:1から1.50:1、好ましくは1.00:1から1.30:1となるように混合する。混合は、例えば高速せん断ミキサー等を用いて行うことができる。
 コバルト付着複合酸化物の第1熱処理の温度は、例えば600℃を超えて800℃未満であってよい。第1熱処理温度は、好ましくは650℃以上、より好ましくは675℃以上、または690℃以上であってよい。また第1熱処理温度は、好ましくは760℃以下、または750℃以下、より好ましくは725℃以下、または715℃以下であってよい。第1熱処理の時間は、例えば1時間以上20時間以下であってよく、好ましくは3時間以上10時間以下であってよい。熱処理の雰囲気は、酸素を含むことが好ましい。熱処理の雰囲気が酸素を含むことで、例えば残留リチウム量を抑制し、粒子間の焼結をより効果的に抑制することができる。熱処理の雰囲気が酸素を含む場合、その含有率は15体積%以上が好ましく、30体積%以上がより好ましく、80体積%以上が更に好ましい。
 第1熱処理後の第1熱処理物には、必要に応じて、解砕、粉砕、分級操作、整粒操作等の処理を行ってもよい。
 第1熱処理物の表面組成においては、リチウム以外の金属の総モル数に対するコバルトのモル数の比(以下、単に「コバルト比」ともいう)が大きい方が後述する第2付着工程後のニオブの付着が均一になりやすい傾向にある。第1熱処理物の表面組成におけるコバルト比は10モル%以上であってよく、好ましくは15モル%以上、更に好ましくは25モル%以上であってよい。またコバルト比は40モル%以下が好ましい。40モル%以下の場合、放電容量が十分に得られる傾向がある。
 第1熱処理物の表面組成は、第1熱処理物を短時間酸性溶媒中で撹拌して、その溶出液に対して高周波誘導結合プラズマ発光分光分析法(ICP)を用いることで求めることができる。詳細な条件については後述するが、この手法を本明細書中では表面溶出分析と称する。
 以上のようにして得られる第1熱処理物は、コバルト濃度勾配を有するリチウム遷移金属複合酸化物を含む。
第2付着工程
 第2付着工程では、前記第1熱処理物と、ニオブ原料とを接触させてニオブ付着複合酸化物を得る。第1熱処理物とニオブ原料との接触は、乾式で行っても、湿式で行ってもよい。
 乾式で行う場合、第1熱処理物とニオブ原料とを混合して、これらの接触を行うことができる。ニオブ原料としては、例えば、酸化ニオブ等を挙げることができる。
 混合を行う方法としては、例えば高速せん断ミキサー、ヘンシェルミキサー、ハイスピードミキサー、ビーズミル、ボールミル等が挙げられる。
 湿式で行う場合、第1熱処理物を、ニオブ原料を含む液媒体と接触させることができる。このとき必要に応じて液媒体を撹拌してもよい。ニオブ原料を含む液媒体は、ニオブ原料の溶液であっても、ニオブ原料の分散液であってもよい。また、ニオブ原料の溶液に第1熱処理物を懸濁させ、pH調整、温度調整等によって溶液中にニオブ原料を析出させ、第1熱処理物の表面にニオブ原料を付着させてもよく、転動流動層乾燥機を用いて第1熱処理物の表面にニオブ原料を付着させてもよい。
 溶液に含まれるニオブ原料としては、ニオブ酸、ペンタエトキシニオブ、塩化ニオブ等を挙げることができる。分散液に含まれるニオブ原料としては、例えばニオブ酸、ペンタエトキシニオブ、塩化ニオブ等を挙げることができる。液媒体は、例えば水を含んでいればよく、水に加えてアルコール、過酸化水素水、アンモニア水等を含んでいてもよい。液媒体におけるニオブ原料の濃度は、例えば0.5質量%以上3質量%以下とすることができる。
 第1熱処理物に接触させるニオブ原料に含まれるニオブ原子の総モル数は、第1熱処理物に含まれるリチウム以外の金属原子の総モル数に対して、例えば、0.1モル%以上5モル%以下であってよく、好ましくは0.5モル%以上3モル%以下、または0.8モル%以上2モル%以下であってよい。
 第1熱処理物とニオブ原料の接触温度は、例えば20℃以上200℃以下であってよく、好ましくは40℃以上150℃以下とすることができる。接触時間は、例えば30分以上180分以下であってよく、好ましくは30分以上120分以下である。
 ニオブ原料を含む液媒体と接触させた後に、必要に応じて、ニオブ付着複合酸化物に対して濾別、水洗、乾燥等の処理を行ってもよい。
第2熱処理工程
 第2熱処理工程では、第2付着工程で得られるニオブ付着複合酸化物を、300℃を超えて500℃未満の所定の温度で熱処理して第2熱処理物を得る。
 第2熱処理に供されるニオブ付着複合酸化物は、リチウム化合物との混合物であってもよい。すなわち、製造方法は、熱処理工程の前に、ニオブ付着複合酸化物とリチウム化合物とを混合して混合物を得る混合工程を含んでいてよい。
 コバルト付着複合酸化物と混合するリチウム化合物としては、水酸化リチウム、炭酸リチウム、塩化リチウム等を挙げることができる。リチウム化合物の添加量は、付着工程で付着させたニオブ量に対してリチウムとニオブのモル比(Li:Nb)が、例えば0.95:1から1.50:1、好ましくは1.00:1から1.30:1となるように混合する。混合は、例えば高速せん断ミキサー等を用いて行うことができる。
 ニオブ付着複合酸化物の第2熱処理の温度は、例えば300℃を超えて500℃未満であってよい。第2熱処理温度は、好ましくは320℃以上、より好ましくは340℃以上であってよい。また第2熱処理温度は、好ましくは450℃以下、より好ましくは400℃以下、380℃以下、または360℃以下であってよい。第2熱処理の時間は、例えば1時間以上20時間以下であってよく、好ましくは3時間以上10時間以下であってよい。第2熱処理の雰囲気は、例えば酸素を含む雰囲気であり、大気雰囲気であってよい。
 第2熱処理後の熱処理物は、必要に応じて、解砕、粉砕、分級操作、整粒操作等の処理を行ってもよい。
 以上のようにして得られる第2熱処理物は、リチウム遷移金属複合酸化物を含み、コバルト濃度勾配を有し、その粒子表面の少なくとも一部にニオブ化合物を含む二次粒子表面を有してよい。すなわち、リチウム遷移金属複合酸化物においては、リチウム以外の金属の総モル数に対するコバルトのモル数の比が、二次粒子表面からの深さが60nm近傍である第1領域において0以上であってよく、二次粒子表面からの深さが10nm近傍である第2領域において0.15以上となっていてよい。第1領域は二次粒子表面からの深さが、例えば50nmから70nm、または55nmから65nmの範囲である領域とすることができ、第2領域は二次粒子表面からの深さが、例えば5nmから15nmの範囲である領域とすることができる。
二次電池用正極活物質
 二次電池用正極活物質は、層状構造を有し、リチウム以外の金属の総モル数に対する、ニッケルのモル数の比が0.5以上1未満であり、リチウム以外の金属の総モル数に対する、コバルトのモル数の比が0.01以上0.5未満である組成を有するリチウム遷移金属複合酸化物を含み、前記リチウム遷移金属複合酸化物は、その粒子表面の少なくとも一部にニオブ化合物を含む二次粒子表面を有し、前記二次粒子表面からの深さが60nm付近である領域を第1領域、前記被覆部表面から10nm付近の領域を第2領域としたときに、第1領域よりも第2領域の方が高いコバルト濃度を有する。
 組成におけるニッケルのモル数の比が特定の範囲にある第1領域及び第2領域を有し、第2領域におけるコバルト濃度が第1領域におけるコバルト濃度よりも高く、ニオブ化合物を含む二次粒子表面を有するリチウム遷移金属複合酸化物を含んでなる正極活物質は、これを含んで構成される全固体二次電池において、高い充放電容量と優れた出力特性を達成することができる。これは例えば、組成におけるニッケルのモル数の比を大きくすることで充放電容量が高くなる反面、リチウムイオン伝導性が低下してしまうことを、第2領域において高いコバルト濃度を有することで軽減しているためと考えられる。さらに二次粒子表面にニオブ化合物を有することで固体電解質との間に高抵抗層が形成されるのを防ぐことができると考えられる。
 ニオブ化合物に含まれるニオブ原子のモル量の比は、リチウム遷移金属複合酸化物に含まれるリチウム以外の金属原子の総モル数に対して0.1モル%以上であってよい。固体電解質との副反応を抑えるという観点から0.5モル%以上、より好ましくは0.8モル%以上含まれていてよい。ニオブ化合物に含まれるニオブ原子のモル量の比はリチウム遷移金属複合酸化物の総モル数に対して5モル%以下であってよく、抵抗および容量の観点から4モル%以下、より好ましくは3モル%以下、2モル%以下または1.5モル%以下含まれていてよい。
 ニオブ化合物としては、ニオブ酸リチウム等が挙げられる。リチウム遷移金属複合酸化物の二次粒子表面が、ニオブ酸リチウム等のニオブ化合物で被覆されることにより、リチウム遷移金属複合酸化物と硫化物固体電解質との界面での高抵抗層の形成を防ぐ効果が得られ、出力の向上が期待される。さらにリチウム遷移金属複合酸化物と硫化物固体電解質との副反応を抑えることで正極の劣化を抑え、サイクル特性の向上等も見込める。
 ニオブ化合物の厚みは、例えば30nm以下であってよく、抵抗および容量の観点から20nm以下であることが好ましい。
 正極活物質に含まれるリチウム遷移金属複合酸化物の組成は、既述の製造方法におけるニオブ原料を付着させる前のリチウム遷移金属複合酸化物の組成に付着させたニオブ原料を加味した組成と考えることができる。
 正極活物質を構成するリチウム遷移金属複合酸化物では、第2領域においてコバルトが偏在して、その濃度が高くなっている。第2領域におけるコバルトの存在形態は明確ではないが、例えば、リチウム遷移金属複合酸化物の第2領域にコバルトが固溶している形態、コバルト酸リチウム等のコバルト化合物が第2領域に存在する形態等が考えられる。これにより、かかる正極活物質を用いて電池を構成する場合に出力特性を向上させることができる。この理由は定かではないが、一例として以下の様に推察できる。コバルトの存在形態の一様態として、第2領域においてコバルト酸リチウムとして存在する場合に、コバルト酸リチウムのリチウムイオン伝導性は、ニッケル比率の高い第1領域やニオブ化合物による被覆部よりも高いため、正極活物質全体としてのリチウムイオンの拡散が行われやすくなり出力特性が改善することが考えられる。
 コバルトが二次粒子の第2領域に偏在することによる出力特性の向上効果は、一次粒子が多数凝集して構成され、D50/DSEMが4より大きい、いわゆる凝集粒子の場合に比べて、D50/DSEMが4以下である単粒子の場合においてより効果的に奏される。これは例えば以下のように考えられる。凝集粒子では三次元的な粒界ネットワークが形成されるため、粒界伝導によって出力特性が向上すると考えられる。一方、単粒子では、粒界伝導を十分に利用することが難しいところ、粒子の第2領域に偏在するコバルトによるリチウム伝導性の向上がより効果的に奏されるため出力特性がより向上すると考えることができる。
 リチウム遷移金属複合酸化物は、20個を越える複数の一次粒子が凝集した二次粒子で構成されていてもよいが、20個以下、好ましくは10個以下の一次粒子で構成される二次粒子からなる粒子または単一粒子、いわゆる単粒子の形態で構成されていることが好ましい。単粒子形態であるリチウム遷移金属複合粉体は、体積基準による累積粒度分布における50%粒径D50の、電子顕微鏡(SEM)観察に基づく平均粒径DSEMに対する比D50/DSEMが1以上4以下であってよい。
 正極活物質に含まれるリチウム遷移金属複合酸化物は、D50/DSEMが、例えば1以上4以下であってよく、出力密度の観点から、3.5以下が好ましく、3以下がより好ましく、2.5以下が更に好ましく、特に2以下、または1.5以下が好ましい。D50/DSEMが1に近い値であるほど、第1領域よりも第2領域の方が高いコバルト濃度を有する場合の出力特性改善の効果がより顕著になることが期待できる。電子顕微鏡観察に基づく平均粒径DSEM及び50%粒径D50の測定方法ついては既述の通りである。
 リチウム遷移金属複合酸化物においては、電子顕微鏡観察に基づく平均粒径DSEMは、耐久性の観点から、例えば0.1μm以上20μm以下であってよい。電子顕微鏡観察に基づく平均粒径DSEMは、出力密度及び極板充填性の観点から、0.3μm以上が好ましく、0.5μm以上または1μm以上がより好ましい。また電子顕微鏡観察に基づく平均粒径DSEMは、15μm以下が好ましく、10μm以下がより好ましく、8μm以下が更に好ましく、5μm以下、4μm以下または3μm以下が特に好ましい。
 リチウム遷移金属複合酸化物の50%粒径D50は、例えば1μm以上30μm以下であってよく、1.5μm以上が好ましく、3μm以上がより好ましく、また出力密度の観点から10μm以下が好ましく、5.5μm以下がより好ましい。
 リチウム遷移金属複合酸化物のD90/D10は、例えば4以下であってよく、出力密度の観点から、3以下が好ましく、2.5以下がより好ましい。D90/D10は、例えば1.2以上であってよい。
 リチウム遷移金属複合酸化物では、二次粒子表面からの深さが60nm近傍である第1領域におけるリチウム以外の金属の総モル数に対する、ニッケルのモル数の比(以下、単に「ニッケル比」ともいう)が、例えば0.5以上または0.6以上であってよく、好ましくは0.7以上または0.8以上であってよい。第1領域のニッケル比は、例えば1以下であってよく、好ましくは0.95以下または0.9以下であってよい。また、二次粒子表面からの深さが10nm近傍である第2領域におけるニッケル比は、例えば0.8以下または0.7以下であってよく、好ましくは0.6以下または0.55以下であってよい。第2領域におけるニッケル比は、例えば0.4以上または0.5以上であってよい。さらに、第2領域のニッケル比を第1領域のニッケル比で除した値は、例えば1未満であってよく、好ましくは0.9以下または0.8以下であってよい。また、第2領域のニッケル比を第1領域のニッケル比で除した値は、例えば0.3以上であってよく、好ましくは0.4以上または0.5以上であってよい。第1領域及び第2領域のニッケル比が前記の範囲であると、二次粒子表面がCo濃度勾配を有する場合に、出力向上の効果がより顕著にみられる。
 さらにリチウム遷移金属複合酸化物では、リチウム以外の金属の総モル数に対するコバルトのモル数の比(以下、単に「コバルト比」ともいう)が、第1領域よりも第2領域において大きくなっている。第1領域のコバルト比は、例えば0以上であってよく、好ましくは0.02以上または0.03以上であってよい。第1領域のコバルト比は、例えば0.5以下であってよく、好ましくは0.3以下であってよく、より好ましくは0.2以下であってよく、更に好ましくは0.1以下であってよく、特に好ましくは0.05以下であってよい。また、第2領域のコバルト比は、例えば0.1以上であってよく、好ましくは0.2以上、0.22以上または0.25以上であってよい。第2領域のコバルト比は、例えば0.5以下、0.4以下または0.3以下であってよい。第1領域のコバルト比と第2領域のコバルト比の合計で第2領域のコバルト比を除した値は、例えば1より大きくてよく、好ましくは3以上、より好ましくは5以上であってよい。
 第1領域及び第2領域におけるニッケル比及びコバルト比は、リチウム遷移金属複合酸化物の断面において、SEM-EDXを用いて線分析を行うことで算出することができる。
 リチウム遷移金属複合酸化物では、二次粒子表面から二次粒子内部にかけてコバルト比が連続的または不連続的に減少していてよい。第1領域及び第2領域におけるリチウム以外の金属の総モル数に対するコバルトのモル数の比の差を、第1領域及び第2領域の表面からの深さの差で除した値の絶対値であるコバルトの濃度傾斜は、例えば、0.0002(nm-1)以上であってよく、好ましくは0.001以上であってよく、より好ましくは0.002以上、0.0025以上または0.003以上であってよい。第1領域及び第2領域の表面からの深さの差で除した値の絶対値であるコバルトの濃度傾斜は例えば0.2(nm-1)以下であってよく、好ましくは0.08(nm-1)以下であってよく、より好ましくは0.04(nm-1)以下、0.02(nm-1)以下、0.01(nm-1)以下または、0.005(nm-1)以下であってよい。具体的に、コバルトの濃度傾斜は、第2領域におけるコバルト比から第1領域におけるコバルト比を差し引いた値を、第1領域の表面からの深さから第2領域の表面からの深さを差し引いた値で除して求められる。
 正極活物質に含まれるリチウム遷移金属複合酸化物の組成は、既述の製造方法におけるコバルト原料を付着させる前のリチウム遷移金属複合酸化物の組成に付着させたコバルト原料を加味した組成と考えることができる。
 リチウム遷移金属複合酸化物の表面組成におけるニオブ化合物の均一性については、SEM-EDXのデータを分析することで、SED標準偏差という指標を用いて評価できる。具体的な測定方法については後述するが、SED標準偏差の値が低いほど、リチウム遷移金属複合酸化物の表面におけるニオブ化合物がより均一に分布するため好ましい。ニオブ化合物が均一に分布すると、ニオブ化合物による被覆が過不足なく行われるため、露出部分の固体電解質との副反応や、過剰被覆部分における伝導度の低下などを防ぐ効果が期待できる。SED標準偏差は6以下であってよく、好ましくは5以下、より好ましくは4以下、更に好ましくは3以下であってよい。
 正極活物質に含まれるリチウム遷移金属複合酸化物の組成におけるリチウム以外の金属の総モル数に対するニッケルのモル数の比は、例えば0.5以上1未満であってよい。リチウム以外の金属の総モル数に対するニッケルのモル数の比は、好ましくは0.6以上であってよく、より好ましくは0.7以上であってよい。リチウム以外の金属の総モル数に対するニッケルのモル数の比は、好ましくは0.95以下であってよく、より好ましくは0.92以下であってよく、特に好ましくは0.9以下であってよい。ニッケルのモル比が上述した範囲であると、全固体二次電池において、高電圧時の充放電容量とサイクル特性の両立を達成することができる。上記ニッケルのモル数の比は、例えば誘導結合プラズマ発光分光分析装置により正極活物質の金属組成比を分析することにより求められる。
 正極活物質に含まれるリチウム遷移金属複合酸化物の組成におけるリチウム以外の金属の総モル数に対するコバルトのモル数の比は、例えば0以上であってよく、出力特性の点から、好ましくは0.01以上、または0.02以上であってよく、より好ましくは0.03以上であってよい。リチウム以外の金属の総モル数に対するコバルトのモル数の比は例えば0.5以下であってよく、充放電容量の点から好ましくは0.3以下であってよく、より好ましくは0.2以下であってよい。
 正極活物質に含まれるリチウム遷移金属複合酸化物の組成は、マンガン及びアルミニウムからなる群から選択される少なくとも1種を含む金属元素Mを更に含んでいてもよい。リチウム遷移金属複合酸化物が金属元素Mを含む場合、リチウム以外の金属の総モル数に対するMのモル数の比は、例えば0より大きくてよく、安全性の点から、好ましくは0.03以上であってよく、より好ましくは0.05以上または0.07以上であってよい。リチウム以外の金属の総モル数に対するMのモル数の比は例えば0.5以下であってよく、充放電容量の点から好ましくは0.4以下であってよく、より好ましくは0.3以下または0.25以下であってよい。
 正極活物質に含まれるリチウム遷移金属複合酸化物の組成は、ホウ素、ナトリウム、マグネシウム、ケイ素、リン、硫黄、カリウム、カルシウム、チタン、バナジウム、クロム、亜鉛、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、インジウム、スズ、バリウム、ランタン、セリウム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、タンタル、タングステン、ビスマス等からなる群から選択される少なくとも1種を含み、少なくともニオブを含む金属元素Mを更に含む。リチウム以外の金属の総モル数に対するMのモル数の比は、例えば0より大きくてよく、好ましくは0.005以上、特に好ましくは0.01以上であってよい。リチウム以外の金属の総モル数に対するMのモル数の比は例えば0.1以下であってよく、好ましくは0.05以下、特に好ましくは0.03以下であってよい。
 金属元素Mは、少なくともニオブを含んでいてよい。リチウム遷移複合酸化物におけるリチウム以外の金属の総モル数におけるニオブのモル数の比は、出力特性の観点から0.005以上が好ましく、初期容量の観点から0.03以下が好ましい。
 金属元素Mは、ニオブに加えてジルコニウムを更に含んでいてよい。Mがジルコニウムを含む場合、リチウム遷移複合酸化物におけるリチウム以外の金属の総モル数におけるジルコニウムのモル数の比は、出力特性の観点から0.001以上0.01以下であってよく、0.002以上0.005以下であってよい。
 正極活物質に含まれるリチウム遷移金属複合酸化物の組成におけるリチウム以外の金属の総モル数に対するリチウムのモル数の比は、例えば0.95以上1.5以下であってよく、好ましくは1以上1.3以下であってよい。
 正極活物質に含まれるリチウム遷移金属複合酸化物を組成として表すと、例えば下式(2)で表される組成を有するリチウム遷移金属複合酸化物が好ましい。
   LiNiCo    (2)
 式(2)中、0.95≦p≦1.5、0.5≦x<1、0.01≦y<0.5、0≦z<0.5、0<w≦0.1、0.8≦x+y+z+w≦1.2、MはAl及びMnからなる群より選択される少なくとも1種を含む。MはB、Na、Mg、Si、P、S、K、Ca、Ti、V、Cr、Zn、Sr、Y、Zr、Nb、Mo、In、Sn、Ba、La、Ce、Nd、Sm、Eu、Gd、Ta、W及びBiからなる群より選択される少なくとも1種を含み、少なくともNbを含む。
 式(2)中、pは、0.98≦p、0.1≦p、p≦1.3またはp≦1.1であってよい。xは、0.6≦x、0.7≦x、x≦0.95、x≦0.92またはx≦0.9であってよい。yは、0.02≦y、0.03≦y、y≦0.3、y≦0.2であってよい。zは、0.03≦z、0.05≦z、z≦0.5、z≦0.4またはz≦0.3であってよい。wは、0.0005≦w、0.001≦w、w≦0.05、w≦0.02であってよい。x+y+z+wは、0.9≦x+y+z+w≦1であってよい。
 正極活物質に含まれるリチウム遷移金属複合酸化物は、二次電池における初期効率の観点から、X線回折法により求められるニッケル元素のディスオーダーが6%以下、5%以下または4.0%以下であることが好ましく、2.0%以下がより好ましい。ニッケル元素のディスオーダーについては既述の通りである。
 正極活物質のタップ密度は、1.7g/cm以上であってよい。これにより体積エネルギー密度が十分高くなるので好ましい。より好ましくは2.0g/cm以上であってよい。上限は正極活物質が粉体として取り得る値であれば特に存在しない。現実的には2.5g/cm程度が上限と言える。
 正極活物質の比表面積は、例えば、0.2m/g以上3.0m/g以下であってよく、好ましくは0.3m/g以上2.0m/g以下であってよい。比表面積が前記の範囲であると、正極活物質と電解質との接触面積が増えることで出力が向上しやすい。正極活物質の比表面積はBET法により測定される。
 正極活物質の体積基準による累積粒度分布における90%粒径D90の10%粒径D10に対する比は、粒度分布の広がりを示し、値が小さいほど粒子の粒径がそろっていることを示す。D90/D10は、例えば4以下であってよく、出力密度の観点から、3以下が好ましく、2.5以下がより好ましい。D90/D10は、例えば1.2以上であってよい。
 正極活物質のD50/DSEMは、耐久性の観点から、1以上4以下が好ましく、出力密度の観点から、3.5以下が好ましく、3以下がより好ましく、2.5以下が更に好ましく、特に2以下または1.5以下が好ましい。
二次電池用正極
 二次電池用正極は、集電体と、集電体上に配置され、二次電池用正極活物質を含む正極活物質層とを備える。これに係る電極を備える二次電池は、高い出力特性を達成することができる。二次電池用正極は全固体二次電池用正極であってよい。
 集電体の材質としては例えば、アルミニウム、ニッケル、ステンレス等が挙げられる。正極活物質層は、上記の正極活物質、導電材、結着剤等を溶媒と共に混合して得られる正極合剤を集電体上に塗布し、乾燥処理、加圧処理等を行うことで形成することができる。導電材としては例えば、天然黒鉛、人造黒鉛、アセチレンブラック等が挙げられる。結着剤としては例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリアミドアクリル樹脂等が挙げられる。
固体電解質
 正極活物質層は固体電解質を含有することが好ましい。正極活物質に固体電解質を混合して得られる正極活物質層は、より高いイオン伝導度を示す傾向にある。固体電解質としては例えば、硫化物系、酸化物系、ハロゲン系等の固体電解質が報告されている。
 硫化物固体電解質の結晶構造としては、例えば、Thio-LISICON型結晶構造、LGPS型結晶構造、アルジロダイト型結晶構造などが挙げられる。
 正極活物質層における固体電解質の割合は、例えば1重量%以上50重量%以下であってよい。また、5重量%以上40重量%以下であってよく、10重量%以上30重量%以下であってよい。
二次電池
 二次電池は、上記二次電池用正極を備える。二次電池は、二次電池用正極に加えて、負極、電解質等を備えて構成される。二次電池は全固体二次電池であってよい。全固体二次電池における、負極、固体電解質等については例えば、国際公開WO2018/038037号、特開2022-25903号公報、特開2018-125214号公報(これらは、その開示内容全体が参照により本明細書に組み込まれる)等に記載された、全固体二次電池用のためのものを適宜用いることができる。
 本開示にかかる発明は、例えば以下の態様を包含してよい。
[1]層状構造を有し、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.5以上1未満であり、リチウム以外の金属原子の総モル数に対する、コバルト原子のモル数の比が0以上0.5未満であるリチウム遷移金属複合粉体を準備することと、前記リチウム遷移金属複合粉体と、コバルト原料とを接触させてコバルト付着複合酸化物を得ることと、前記コバルト付着複合酸化物を、600℃を超えて800℃未満の温度で第1熱処理して第1熱処理物を得ることと、前記第1熱処理物と、ニオブ原料とを接触させてニオブ付着複合酸化物を得ることと、前記ニオブ付着複合酸化物を、300℃を超えて500℃未満の温度で第2熱処理して第2熱処理物を得ることと、を含む二次電池用正極活物質の製造方法。
[2]前記リチウム遷移金属複合粉体は、電子顕微鏡観察に基づく平均粒径DSEMに対する体積基準による累積粒度分布の50%粒径D50の比D50/DSEMが1以上4以下である[1]に記載の二次電池用正極活物質の製造方法。
[3]前記リチウム遷移金属複合粉体は、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.6以上1未満である[1]又は[2]に記載の二次電池用正極活物質の製造方法。
[4]前記コバルト付着複合酸化物を得ることにおいて、前記リチウム遷移金属複合粉体と前記コバルト原料を乾式で混合することを含む[1]から[3]のいずれかに記載の二次電池用正極活物質の製造方法。
[5]前記コバルト付着複合酸化物を得ることにおいて、前記コバルト原料に含まれるコバルト原子の総モル量が、前記リチウム遷移金属複合粉体に含まれるリチウム以外の金属原子の総モル量に対して1モル%以上20モル%以下である[1]から[4]のいずれかに記載の二次電池用正極活物質の製造方法。
[6]前記コバルト原料は、酸化コバルトである[1]から[5]のいずれかに記載の二次電池用正極活物質の製造方法。
[7]前記第1熱処理の温度が650℃以上750℃以下である[1]から[6]のいずれかに記載の二次電池用正極活物質の製造方法。
[8]前記ニオブ付着複合酸化物を得ることにおいて、前記ニオブ原料に含まれるニオブ原子の総モル量が、前記第1熱処理物に含まれるリチウム以外の金属原子総モル量に対して、0.1モル%以上5モル%以下である[1]から[7]のいずれかに記載の二次電池用正極活物質の製造方法。
[9]前記第2熱処理の温度が350℃以上450℃以下である[1]から[8]のいずれかに記載の二次電池用正極活物質の製造方法。
[10]前記ニオブ付着複合酸化物は、前記第1熱処理物と前記ニオブ原料を含む溶液を接触させて得ることを含む[1]から[9]のいずれかに記載の二次電池用正極活物質の製造方法。
[11]前記ニオブ原料は、ニオブ酸であることを含む[1]から[10]のいずれかに記載の二次電池用正極活物質の製造方法。
[12]前記リチウム遷移金属複合粉体は、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.6以上0.8未満である[1]から[11]のいずれかに記載の二次電池用正極活物質の製造方法。
[13]前記リチウム遷移金属複合粉体は、表面溶出分析によって求められる表面組成について、リチウム以外の金属原子の総モル数に対する、コバルト原子のモル数の比が0.15以上0.5以下である[1]から[12]のいずれかに記載の二次電池用正極活物質の製造方法。
[14]前記リチウム遷移金属複合粉体は、下式(1)で表される組成を有する[1]から[13]のいずれかに記載の二次電池用正極活物質の製造方法。
  LiNiCo   (1)
(0.95≦p≦1.5、0.5≦x<1、0≦y<0.5、0≦z<0.5、0≦w≦0.1、0.8≦x+y+z+w≦1.2、MはAl及びMnからなる群より選択される少なくとも1種を含む。MはB、Na、Mg、Si、P、S、K、Ca、Ti、V、Cr、Zn、Sr、Y、Zr、Nb、Mo、In、Sn、Ba、La、Ce、Nd、Sm、Eu、Gd、Ta、W及びBiからなる群より選択される少なくとも1種を含む。)
[15]層状構造を有し、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.5以上1未満であり、リチウム以外の金属原子の総モル数に対する、コバルト原子のモル数の比が0.01以上0.5未満である組成を有するリチウム遷移金属複合酸化物を含み、前記リチウム遷移金属複合酸化物は、その粒子表面の少なくとも一部にニオブ化合物を含む二次粒子表面を有しており、前記二次粒子表面からの深さが60nm付近である領域を第1領域、前記二次粒子表面から10nm付近の領域を第2領域としたときに、第1領域よりも第2領域の方が高いコバルト濃度を有する二次電池用正極活物質。
[16]前記リチウム遷移金属複合酸化物は、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.6以上1未満である[15]に記載の二次電池用正極活物質。
[17]前記リチウム遷移金属複合酸化物は、電子顕微鏡観察に基づく平均粒径DSEMに対する体積基準による累積粒度分布の50%粒径D50の比D50/DSEMが1以上4以下であることを含む[15]又は[16]に記載の二次電池用正極活物質。
[18]前記第1領域及び第2領域におけるリチウム以外の金属原子の総モル数に対するコバルト原子のモル数の比の差を、前記第1領域及び第2領域の表面からの深さの差で除した差の絶対値が0.001(nm-1)以上0.08(nm-1)以下である[15]
から[17]のいずれかに記載の二次電池用正極活物質。
[19]前記リチウム遷移金属複合酸化物は、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.6以上0.8未満であり、
 前記二次粒子表面は、SEM-EDX測定によって求められるニオブについてのSED標準偏差が5.0以下である[15]から[18]のいずれかに記載の二次電池用正極活物質。
[20]前記リチウム遷移金属複合酸化物は、下式(2)で表される組成を有する[15]から[19]のいずれかに記載の二次電池用正極活物質。
  LiNiCo   (2)
(0.95≦p≦1.5、0.5≦x<1、0.01≦y<0.5、0≦z<0.5、0<w≦0.1、0.8≦x+y+z+w≦1.2、MはAl及びMnからなる群より選択される少なくとも1種を含む。MはB、Na、Mg、Si、P、S、K、Ca、Ti、V、Cr、Zn、Sr、Y、Zr、Nb、Mo、In、Sn、Ba、La、Ce、Nd、Sm、Eu、Gd、Ta、W及びBiからなる群より選択される少なくとも1種を含み、少なくともNbを含む。)
[21][20]に記載の二次電池用正極活物質を含む正極活物質層を備える二次電池用正極。
[22][21]に記載の二次電池用正極と、負極と、電解質とを備える二次電池。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(参考例1)
 組成式:Li1.05Ni0.887Co0.03Mn0.07Al0.01Zr0.003で表される組成を有するリチウム遷移金属複合粉体を公知の方法により準備した。Li以外の金属元素の組成比を表1に示す。
(実施例1)
(第1付着工程及び第1熱処理工程)
 上記参考例1で準備したリチウム遷移金属複合粉体1000gと酸化コバルト(Co)17.6gを乾式ミキサーで5分間混合した。用いた酸化コバルトに含まれるコバルト原子のモル数は、リチウム遷移金属複合粉体に含まれるリチウム以外の金属原子の総モル数に対して2.0%であった。その後酸素雰囲気下、705℃で6時間熱処理をすることで組成式Li1.03Ni0.866Co0.051Mn0.07Al0.01Zr0.003で表される組成を有する第1熱処理物を得た。
(第2付着工程及び第2熱処理工程)
 溶媒としての水にニオブ酸(Nb・HO)、アンモニア(NH)、過酸化水素(H)を溶解させニオブ水溶液を得た。このニオブ水溶液中のニオブの濃度は0.11mol/L、アンモニアの濃度は0.44mol/L、過酸化水素の濃度は2.4mol/Lであった。転動流動層乾燥機に上記で得られたコバルト付着複合酸化物1000gを仕込み、風量:0.7m/hr、設定温度:140℃で流動させ、9g/minの流速で上記ニオブ水溶液の噴霧液を100分間噴霧した。その後、風量:0.7m/min、設定温度:140℃で10分流動化させて乾燥させた後、得られた複合酸化物を大気雰囲気下、350℃で5時間、熱処理を行い、組成式:Li1.02Ni0.856Co0.051Mn0.07Al0.01Zr0.003Nb0.01で表される組成を有する実施例1に係る正極活物質を得た。Li以外の金属元素の組成比を表1に示す。なお組成式のCoは、第2領域のCoも含むものとする。得られた正極活物質のSEM画像について図1に示す。
(比較例1)
 第1付着工程及び第1熱処理工程を行わない以外は実施例1と同様にして正極活物質及び電池を作成した。Li以外の金属元素の仕込みの組成比を表1に示す。
Figure JPOXMLDOC01-appb-T000001
実施例2
 準備したリチウム遷移金属複合粉体がLi1.02Ni0.708Co0.081Mn0.202Al0.005Zr0.003で表されることと、第1熱処理工程の温度が660℃であること以外は実施例1と同様にして、組成式Li1.03Ni0.688Co0.0981Mn0.196Al0.005Zr0.003Nb0.01で表される、実施例2に係る正極活物質を得た。
実施例3
 第1熱処理工程の温度が700℃であること以外は実施例2と同様にして、組成式Li1.03Ni0.688Co0.0981Mn0.196Al0.005Zr0.003Nb0.01で表される、実施例3に係る正極活物質を得た。
実施例4
 第1熱処理工程の温度が740℃であること以外は実施例2と同様にして、組成式Li1.03Ni0.688Co0.0981Mn0.196Al0.005Zr0.003Nb0.01で表される、実施例4に係る正極活物質を得た。
実施例5
 準備するリチウム遷移金属複合粉体がLi1.02Ni0.723Co0.063Mn0.202Al0.005Zr0.003で表されることと、第1付着工程で用いる酸化コバルトの量が35.6gであること以外は実施例3と同様にして、組成式Li1.03Ni0.688Co0.0981Mn0.196Al0.005Zr0.003Nb0.01で表される、実施例5に係る正極活物質を得た。
実施例6
 第1熱処理工程の温度が740℃であること以外は実施例5と同様にして、組成式Li1.03Ni0.688Co0.0981Mn0.196Al0.005Zr0.003Nb0.01で表される、実施例6に係る正極活物質を得た。
実施例7
 準備したリチウム遷移金属複合粉体がLi1.00Ni0.739Co0.047Mn0.212Al0.005Zr0.003で表されることと、第1付着工程で用いる酸化コバルトの量が54.6gであること以外は実施例6と同様にして、組成式Li1.01Ni0.688Co0.0981Mn0.196Al0.005Zr0.003Nb0.01で表される、実施例7に係る正極活物質を得た。
比較例2
 準備するリチウム遷移金属複合粉体がLi1.08Ni0.700Co0.10Mn0.20Al0.005Zr0.003で表されること以外は比較例1と同様にして、組成式Li1.00Ni0.739Co0.047Mn0.212Al0.005Zr0.003で表される、比較例2に係る正極活物質を得た。
参考例2
 組成式Li1.08Ni0.700Co0.10Mn0.20Al0.005Zr0.003の正極活物質を準備した。Coコート及びNbコートは行わなかった。
 実施例2から実施例7及び比較例2について、リチウム比、Coコート量、Nbコート量を表2に示す。
Figure JPOXMLDOC01-appb-T000002
SED標準偏差の評価
 実施例2、実施例3、実施例4、実施例6、実施例7及び比較例2で得られた各正極活物質に対して、FlatQuad(Bruker社製)を用いたSEM-EDX測定を行った。測定電圧は5kVとし、50μm厚のAl箔を1000倍の倍率で定性分析した際にカウント数の最大値が1850±100cpsとなる電流値/z座標に設定した。マッピング測定時の解像度は640×480pixelsとした。1画面に入る粒子数が1000から3000個となる倍率で、計測時間を8192μsec/pixelsの条件でマッピング測定を行った。測定後、EDX測定の生データ(Nb,O)をCSV形式にテキスト化した。まず酸素のマッピング結果を用いて粒界分離を行った。ヒストグラムに見える2つの山の間の最小値を閾値として2値化後、ウォーターシェッド法で重なりを分離した。得られた画像で粒子解析を実行し、各粒子の輪郭データを取得した。酸素のマッピング像から得られた輪郭データを用いてNbのマッピング像について各粒子についての粒子解析を行い、各粒子の面積(ピクセル)と平均GRAYレベルを取得した。得られた結果を横軸に平均グレイレベル、縦軸にピクセル数となるヒストグラムを作成した。グレイレベルの分割は、ステップ幅は分布が20分割内に収まる程度とした。ヒストグラムから平均値と標準偏差を求め、平均値を膜厚平均、標準偏差を粒子間の偏りとして、これをNbの均一性についての評価指数SED標準偏差とした。実施例1及び比較例1について、SED標準偏差の算出結果を表3に示す。
表面組成分析
 実施例2、実施例3、実施例4、実施例6、実施例7及び比較例2で準備したリチウム遷移金属複合粉体について下記の手順で表面組成を求めた。
(1)ポリビーカーにリチウム遷移金属複合粉体を0.20g精秤した。
(2)クエン酸およびクエン酸三ナトリウムからなり、pHが5.8であり、20℃に保った緩衝溶液10mLを前記ポリビーカー加えた。
(3)前記緩衝溶液の温度を20℃に保ちつつスターラーで4分間撹拌することで、前記リチウム遷移金属複合粉体の表面の金属が溶出した溶出液を得た。
(4)前記溶出液を、シリンジフィルターを装着したプラスチックシリンジを用いてろ過することでろ液を得た。
(5)前記ろ液1mLに対して、6MのHClを0.5mL加えた後に純水で50mLに希釈して希釈液を得た。
(6)前記希釈液についてICP測定を行うことで前記リチウム遷移金属複合粉体の表面組成を求めた。
 なお、コバルト比(Co/Me)は、リチウム以外の金属成分の合計のモル数に対するコバルトのモル比とし、ニッケル比(Ni/Me)は、リチウム以外の金属成分の合計モル数に対するニッケルのモル比とし、マンガン比(Mn/Me)は、リチウム以外の金属成分の合計のモル数に対するマンガンのモル比とした。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 リチウム遷移金属複合粉体の表面組成において、Co/Meが高い方がSED標準偏差が低い、つまりニオブ化合物による被覆の均一性が高い結果となった。これはCoコートによりリチウム遷移金属複合粉体の表面の余剰リチウムによるアルカリ成分が減少し、Nb化合物のアルカリ成分による凝集が抑えられたためと考えられる。
固体電解質
 平均粒径が10μmであり、Li5.4PS4.4Cl1.6の組成を持つアルジロダイト型の硫化物を固体電解質として使用した。
 実施例1及び比較例1で得られた正極活物質70質量部、固体電解質27質量部および気層法炭素繊維であるVGCF(登録商標)3質量部を混合して、正極合材を得た。
評価用電池の組み立て
 内径11mmの円筒状外型に外径11mmの円柱状下型を、外型下部から挿入した。下型の上端は外型の中間に位置に固定した。この状態で外型の上部から下型の上端に固体電解質100mgを投入した。投入後、外形11mmの円柱状上型を外型の上部から挿入した。挿入後、上型の上方から50MPaの圧力をかけて、固体電解質を成形して固体電解質層とした。成形後、上型を外型の上部から引き抜き、外型の上部から固体電解質層の上部に正極合材20mgを投入した。投入後、再度上型を挿入し、今度は600MPaの圧力をかけて正極合材を成形して正極活物質層とした。成形後、上型を固定し、下型の固定を解除して外型の下部から引き抜き、下型の下部から固体電解質層の下部に負極活物質であるLiAl合金を投入した。投入後、再度下型を挿入し、下型の下方から50MPaの圧力をかけて負極活物質を成形して負極活物質層とした。圧力をかけた状態で下型を固定し、上型に正極端子、下型に負極端子を取り付け、評価用の全固体二次電池を得た。
SEM測定
 以下の手順に従って実施例1、比較例1,参考例1及び参考例2に係る正極活物質についてのDSEMを求めた。
〈1〉走査型電子顕微鏡(株式会社日立ハイテクノロジーズ、SU8230)を用い、粒子の輪郭が確認できる二次粒子が10個以上20個以下となるような倍率に設定した。具体的には、加速電圧を1.5kV、倍率を4000倍とした。このとき、粒径がD10の半分未満である二次粒子については個数に含めなかった。
〈2〉上記の倍率で映った、粒径がD10の半分以上であるすべての二次粒子について、それぞれを構成する一次粒子に対して画像処理ソフトウエア(ImageJ)を用いて、一次粒子の輪郭をトレースすることで輪郭長を求める。輪郭長から球換算径を算出した。
〈3〉粒径を算出した一次粒子の個数が100個を超えるまで上記〈1〉、〈2〉を繰り返し、得られた球換算径の算術平均値として、平均粒径DSEMが求めた。また、DSEMに対するD50の比も求めた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 それぞれの正極活物質について、BET比表面積測定装置(マウンテック社製:Macsorb)を用い、窒素ガスを用いたガス吸着法(1点法)でBET比表面積を測定した。結果を表5に示す。
粒径評価
 各正極活物質について、以下のようにして物性値を測定した。レーザー回折式粒径分布測定装置((株)島津製作所製SALD-3100)を用いて、体積基準の累積粒度分布を測定し、小径側からの累積50%に対応する粒径としてD50を、同様に累積10%に対応する粒径としてD10を、累積90%に対応する粒径としてD90を求め、得られた値からD90/D10を求めた。結果を表5に示す。
タップ密度
 タップ密度の測定には、タッピング式粉体減少度測定器TPM-3P(筒井理化学器械)を用いた。測定容器にはとしての20mLメスシリンダーに各正極活物質を20g入れて、震盪回数を150回に設定し、震盪後の体積密度をタップ密度として求めた。結果を表5に示す。
ニッケルディスオーダー、結晶性の測定
 実施例1、比較例1および参考例で得られたそれぞれの正極活物質についてCuKα線によりX線回折スペクトル(管電流200mA、管電圧45kV)を測定した。また、結晶性は、測定したX線回折スペクトルより得られる格子面(104)面起因のピーク位置と積分幅をシェラー式に代入して算出した。リチウム遷移金属複合酸化物におけるニッケル元素のディスオーダーは、組成モデルを(Li1-dNi)(NiCoMn)O(x+y+z=1)とし、得られたX線回折スペクトルに基づいて、リートベルト解析による構造最適化を行うことで求めた。構造最適化の結果として算出される上記組成モデルのdの百分率をニッケル元素のディスオーダーの値とした。得られた結果を表5に示す。
Nb含有量の測定
 実施例1及び比較例1で得られた正極活物質について、誘導結合プラズマ発光分光分析装置(ICP-AES;PerkinElmer社製)を用いてNbの含有量を測定した。求められた正極活物質中のNbの質量含有率を表5に示す。
正極活物質の未反応リチウムの測定
 実施例1、比較例1及び参考例で得られた正極活物質に対する未反応リチウムの測定は以下の様に行った。まず、正極活物質それぞれ10g採取し、蓋付容器に入れ、純水50mLを加え、蓋をして60分撹拌した。静置後、上澄み液をろ過した。前記ろ液に対して、0.025mol/Lの硫酸標準溶液で滴定を行い、pHが8付近の変曲点を第1終点とし、pH=4付近の変曲点を第2終点とした。第1終点と第2終点の滴定値からWarder法の原理に基づきLiOH量及びLiCO量を算出した。得られた結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 実施例1は比較例1及び参考例に比べるとLiOH量及びLiCO量が少なくなっている。これは酸化コバルトが粒子表面の余剰リチウムと反応したことにより消費されたためと考えられる。
SEM-EDX線分析
 実施例1で得られた正極活物質をそれぞれエポキシ樹脂に分散させ固化した後、クロスセクションポリッシャ(日本電子製)を用いて、正極活物質の二次粒子の断面出しを行って測定サンプルを作製した。断面出しを行った測定サンプルについて、走査型電子顕微鏡(SEM)/エネルギー分散型X線分析(EDX)装置(日立ハイテクノロジーズ社製;加速電圧3kV)にて線分析を行って表面領域及び内部領域の組成分析を行った。ライン分析による組成分析の結果を図2に、分析結果から求められるCoの濃度勾配についての結果を表6にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000006
インピーダンス測定
 評価用の全固体二次電池を充電して、充電率(SOC)50%の状態に設定した。25℃で交流電源に接続し、交流インピーダンス法による抵抗測定を行った。交流電源の周波数は1MHzから0.1Hzまで対数的に変化させた。等価回路を仮定し、最小二乗法によるフィッティングにより1000Hz以上5000Hz以下の周波数範囲に現れる円弧の直径を正極活物質由来の抵抗(正極/電解質界面のインピーダンスにおける抵抗成分)とした。結果を表7に示す。
充放電評価
 作製した評価用電池について、充放電試験装置(TOSCAT-3100、東洋システム株式会社製)を用いて、2.2Vから4.0Vの条件にて充放電を行った。放電電流は0.1C容量を取り出すときの電流値を流し、設定電圧に達した後はその電圧を一定に保つように電流を流し、電流値が0.02C相当になった時点で充放電を終了とした。得られた充電容量、放電容量及び充放電効率を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7の結果より、比較例1に比べて実施例1はインピーダンスが低くなっていた。これは実施例1に係る正極活物質は第2領域を有することでCo濃度勾配を有しており、これにより抵抗が改善されたと考えられる。充電容量、放電容量及び充放電効率において実施例1が比較例1を上回っており、これは抵抗が下がったことで過電圧が下がったことに起因すると考えられる。
 日本国特許出願2022-105831号(出願日:2022年6月30日)、日本国特許出願2022-122790号(出願日:2022年8月1日)及び日本国特許出願2023-097504号(出願日:2023年6月14日)の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (22)

  1.  層状構造を有し、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.5以上1未満であり、リチウム以外の金属原子の総モル数に対する、コバルト原子のモル数の比が0以上0.5未満であるリチウム遷移金属複合粉体を準備することと、
     前記リチウム遷移金属複合粉体と、コバルト原料とを接触させてコバルト付着複合酸化物を得ることと、
     前記コバルト付着複合酸化物を、600℃を超えて800℃未満の温度で第1熱処理して第1熱処理物を得ることと、
     前記第1熱処理物と、ニオブ原料とを接触させてニオブ付着複合酸化物を得ることと、
     前記ニオブ付着複合酸化物を、300℃を超えて500℃未満の温度で第2熱処理して第2熱処理物を得ることと、を含む二次電池用正極活物質の製造方法。
  2.  前記リチウム遷移金属複合粉体は、電子顕微鏡観察に基づく平均粒径DSEMに対する体積基準による累積粒度分布の50%粒径D50の比D50/DSEMが1以上4以下である請求項1に記載の二次電池用正極活物質の製造方法。
  3.  前記リチウム遷移金属複合粉体は、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.6以上1未満である請求項1又は2に記載の二次電池用正極活物質の製造方法。
  4.  前記コバルト付着複合酸化物を得ることにおいて、前記リチウム遷移金属複合粉体と前記コバルト原料を乾式で混合することを含む請求項1から3のいずれか1項に記載の二次電池用正極活物質の製造方法。
  5.  前記コバルト付着複合酸化物を得ることにおいて、前記コバルト原料に含まれるコバルト原子の総モル量が、前記リチウム遷移金属複合粉体に含まれるリチウム以外の金属原子の総モル量に対して1モル%以上20モル%以下である請求項1から4のいずれか1項に記載の二次電池用正極活物質の製造方法。
  6.  前記コバルト原料は、酸化コバルトである請求項1から5のいずれか1項に記載の二次電池用正極活物質の製造方法。
  7.  前記第1熱処理の温度が650℃以上750℃以下である請求項1から6のいずれか1項に記載の二次電池用正極活物質の製造方法。
  8.  前記ニオブ付着複合酸化物を得ることにおいて、前記ニオブ原料に含まれるニオブ原子の総モル量が、前記第1熱処理物に含まれるリチウム以外の金属原子総モル量に対して、0.1モル%以上5モル%以下である請求項1から7のいずれか1項に記載の二次電池用正極活物質の製造方法。
  9.  前記第2熱処理の温度が350℃以上450℃以下である請求項1から8のいずれか1項に記載の二次電池用正極活物質の製造方法。
  10.  前記ニオブ付着複合酸化物は、前記第1熱処理物と前記ニオブ原料を含む溶液を接触させて得ることを含む請求項1から9のいずれか1項に記載の二次電池用正極活物質の製造方法。
  11.  前記ニオブ原料は、ニオブ酸であることを含む請求項1から10のいずれか1項に記載の二次電池用正極活物質の製造方法。
  12.  前記リチウム遷移金属複合粉体は、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.6以上0.8未満である請求項1から11のいずれか1項に記載の二次電池用正極活物質の製造方法。
  13.  前記リチウム遷移金属複合粉体は、表面溶出分析によって求められる表面組成について、リチウム以外の金属原子の総モル数に対する、コバルト原子のモル数の比が0.15以上0.5以下である請求項1から12のいずれか1項に記載の二次電池用正極活物質の製造方法。
  14.  前記リチウム遷移金属複合粉体は、下式(1)で表される組成を有する請求項1から13のいずれか1項に記載の製造方法。
      LiNiCo   (1)
    (式(1)中、0.95≦p≦1.5、0.5≦x<1、0≦y<0.5、0≦z<0.5、0≦w≦0.1、0.8≦x+y+z+w≦1.2、MはAl及びMnからなる群より選択される少なくとも1種を含む。MはB、Na、Mg、Si、P、S、K、Ca、Ti、V、Cr、Zn、Sr、Y、Zr、Nb、Mo、In、Sn、Ba、La、Ce、Nd、Sm、Eu、Gd、Ta、W及びBiからなる群より選択される少なくとも1種を含む。)
  15.  層状構造を有し、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.5以上1未満であり、
     リチウム以外の金属原子の総モル数に対する、コバルト原子のモル数の比が0.01以上0.5未満である組成を有するリチウム遷移金属複合酸化物を含み、
     前記リチウム遷移金属複合酸化物は、その粒子表面の少なくとも一部にニオブ化合物を含む二次粒子表面を有しており、
     前記二次粒子表面からの深さが60nm付近である領域を第1領域、前記二次粒子表面から10nm付近の領域を第2領域としたときに、第1領域よりも第2領域の方が高いコバルト濃度を有する二次電池用正極活物質。
  16.  前記リチウム遷移金属複合酸化物は、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.6以上1未満である請求項15に記載の二次電池用正極活物質。
  17.  前記リチウム遷移金属複合酸化物は、電子顕微鏡観察に基づく平均粒径DSEMに対する体積基準による累積粒度分布の50%粒径D50の比D50/DSEMが1以上4以下であることを含む請求項15又は16に記載の二次電池用正極活物質。
  18.  前記第1領域及び第2領域におけるリチウム以外の金属原子の総モル数に対するコバルト原子のモル数の比の差を、前記第1領域及び第2領域の表面からの深さの差で除した差の絶対値が0.001(nm-1)以上0.08(nm-1)以下である請求項15から17のいずれか1項に記載の二次電池用正極活物質。
  19.  前記リチウム遷移金属複合酸化物は、リチウム以外の金属原子の総モル数に対する、ニッケル原子のモル数の比が0.6以上0.8未満であり、
     前記二次粒子表面は、SEMEDX測定によって求められるニオブについてのSED標準偏差が5.0以下である請求項15から18のいずれか1項に記載の二次電池用正極活物質。
  20.  前記リチウム遷移金属複合酸化物は、下式(2)で表される組成を有する請求項15から19のいずれか1項に記載の二次電池用正極活物質。
      LiNiCo   (2)
    (式(2)中、0.95≦p≦1.5、0.5≦x<1、0.01≦y<0.5、0≦z<0.5、0<w≦0.1、0.8≦x+y+z+w≦1.2、MはAl及びMnからなる群より選択される少なくとも1種を含む。MはB、Na、Mg、Si、P、S、K、Ca、Ti、V、Cr、Zn、Sr、Y、Zr、Nb、Mo、In、Sn、Ba、La、Ce、Nd、Sm、Eu、Gd、Ta、W及びBiからなる群より選択される少なくとも1種を含み、少なくともNbを含む。)
  21.  請求項20に記載の二次電池用正極活物質を含む正極活物質層を備える二次電池用正極。
  22.  請求項21に記載の二次電池用正極と、負極と、電解質とを備える二次電池。
PCT/JP2023/023568 2022-06-30 2023-06-26 二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池 WO2024004937A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-105831 2022-06-30
JP2022105831 2022-06-30
JP2022-122790 2022-08-01
JP2022122790 2022-08-01
JP2023-097504 2023-06-14
JP2023097504A JP2024007364A (ja) 2022-06-30 2023-06-14 二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池

Publications (1)

Publication Number Publication Date
WO2024004937A1 true WO2024004937A1 (ja) 2024-01-04

Family

ID=89383060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023568 WO2024004937A1 (ja) 2022-06-30 2023-06-26 二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池

Country Status (1)

Country Link
WO (1) WO2024004937A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266433A (ja) * 2008-04-22 2009-11-12 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP2011070789A (ja) * 2008-09-26 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池
JP2015122299A (ja) * 2013-11-22 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
JP2018020949A (ja) * 2016-08-02 2018-02-08 エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. リチウム二次電池用リチウム複合酸化物及びその製造方法
JP2020009756A (ja) * 2018-06-27 2020-01-16 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
WO2021020531A1 (ja) * 2019-07-31 2021-02-04 日亜化学工業株式会社 ニッケルコバルト複合酸化物の製造方法、ニッケルコバルト複合酸化物、正極活物質、全固体リチウムイオン二次電池用正極および全固体リチウムイオン二次電池
WO2021153546A1 (ja) * 2020-01-27 2021-08-05 日亜化学工業株式会社 非水電解質二次電池用正極活物質及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009266433A (ja) * 2008-04-22 2009-11-12 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および、これを用いた非水系電解質二次電池
JP2011070789A (ja) * 2008-09-26 2011-04-07 Sanyo Electric Co Ltd 非水電解質二次電池
JP2015122299A (ja) * 2013-11-22 2015-07-02 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質の製造方法、非水系電解質二次電池用正極活物質及びこれを用いた非水系電解質二次電池
JP2018020949A (ja) * 2016-08-02 2018-02-08 エコプロ ビーエム コーポレイテッドEcopro Bm Co., Ltd. リチウム二次電池用リチウム複合酸化物及びその製造方法
JP2020009756A (ja) * 2018-06-27 2020-01-16 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法、リチウムイオン二次電池用正極、及び、リチウムイオン二次電池
WO2021020531A1 (ja) * 2019-07-31 2021-02-04 日亜化学工業株式会社 ニッケルコバルト複合酸化物の製造方法、ニッケルコバルト複合酸化物、正極活物質、全固体リチウムイオン二次電池用正極および全固体リチウムイオン二次電池
WO2021153546A1 (ja) * 2020-01-27 2021-08-05 日亜化学工業株式会社 非水電解質二次電池用正極活物質及びその製造方法

Similar Documents

Publication Publication Date Title
US10818921B2 (en) Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
KR101842823B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
CN105680032B (zh) 正极活性物质及非水系电解质二次电池
EP2492243B1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
KR101272411B1 (ko) 니켈 망간 복합 수산화물 입자와 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활성 물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
US11239464B2 (en) Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
WO2011067935A1 (ja) ニッケルコバルトマンガン複合水酸化物粒子とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
CN110392950A (zh) 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
KR20140047044A (ko) 비수계 이차 전지용 정극 활물질 및 그의 제조 방법, 및 그 정극 활물질을 이용한 비수계 전해질 이차 전지
JP6614202B2 (ja) 非水系電解質二次電池用正極活物質及びその製造方法
US20170288222A1 (en) Method of producing positive electrode active material for nonaqueous electrolyte secondary battery
EP2586085A1 (de) Verfahren zur herstellung von lithium-mischmetalloxiden und ihre verwendung als kathodenmaterial
US20240072253A1 (en) Positive electrode active material for nonaqueous secondary battery, and method for manufacturing same
US11837723B2 (en) Positive electrode active material for nonaqueous secondary battery, and method for manufacturing same
JP7452570B2 (ja) 非水系電解質二次電池用正極活物質
WO2021153546A1 (ja) 非水電解質二次電池用正極活物質及びその製造方法
JP7473828B2 (ja) 非水電解質二次電池用正極及びその製造方法
WO2024004937A1 (ja) 二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池
US20220255064A1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and method of manufacturing same
JP2024007364A (ja) 二次電池用正極活物質及びその製造方法並びにそれを用いた二次電池用正極及び二次電池
JP2022117956A (ja) 非水電解質二次電池用正極活物質およびその製造方法
JP2024096841A (ja) 非水電解質二次電池用正極の製造方法
WO2024014558A1 (ja) 金属複合水酸化物及びリチウム二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831377

Country of ref document: EP

Kind code of ref document: A1