WO2024004710A1 - 非水電解質二次電池用正極活物質及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質及び非水電解質二次電池 Download PDF

Info

Publication number
WO2024004710A1
WO2024004710A1 PCT/JP2023/022396 JP2023022396W WO2024004710A1 WO 2024004710 A1 WO2024004710 A1 WO 2024004710A1 JP 2023022396 W JP2023022396 W JP 2023022396W WO 2024004710 A1 WO2024004710 A1 WO 2024004710A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
transition metal
active material
composite oxide
metal composite
Prior art date
Application number
PCT/JP2023/022396
Other languages
English (en)
French (fr)
Inventor
政一 東郷
勝哉 井之上
毅 小笠原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024004710A1 publication Critical patent/WO2024004710A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • lithium nickelate (LiNiO 2 ) has a high energy density, and by replacing some of the Ni with Co, Al, Mn, etc., battery characteristics such as reliability can be improved. Can be done.
  • Patent Document 1 discloses that by using a positive electrode active material in which a predetermined ratio of Sr is dissolved in an NCM-based lithium transition metal composite oxide containing Ni, Co, and Mn, the charge/discharge cycle of a secondary battery can be improved. Techniques are disclosed to improve properties and safety.
  • a lithium-transition metal composite oxide with a Ni content of 80% or more has a large initial discharge capacity, but tends to cause side reactions with the non-aqueous electrolyte, so the charge-discharge cycle characteristics may deteriorate.
  • the technique described in Patent Document 1 does not consider improving battery characteristics using a lithium transition metal composite oxide with a high Ni content, and there is still room for improvement.
  • An object of the present disclosure is to provide a positive electrode active material that contributes to increasing the capacity and improving charge/discharge cycle characteristics of a nonaqueous electrolyte secondary battery.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery which is an embodiment of the present disclosure, includes a lithium transition metal composite oxide, the lithium transition metal composite oxide contains Ni and Ca, and primary particles do not aggregate.
  • the Gini coefficient on the surface of the Ca secondary particles is 0.85 or less.
  • the Gini coefficient of Ca inside the secondary particle is 0.6 or less, and the ratio of the normalized intensity I Ca_OUT of Ca on the surface of the secondary particle to the normalized intensity I Ca_IN of Ca inside the secondary particle I Ca_OUT /I Ca_IN is 1 or more and 5 or less.
  • a non-aqueous electrolyte secondary battery that is one aspect of the present disclosure is characterized by comprising a positive electrode containing the above-described positive electrode active material for a non-aqueous electrolyte secondary battery, a negative electrode, and a non-aqueous electrolyte.
  • the initial discharge capacity and charge/discharge cycle characteristics of a nonaqueous electrolyte secondary battery can be improved.
  • FIG. 1 is a longitudinal cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment.
  • a transition metal layer, a Li layer, and an oxygen layer are present, and Li ions present in the Li layer reversibly move in and out, thereby allowing the charge/discharge reaction of the battery to proceed.
  • a lithium transition metal composite oxide containing Ni as a main component is known as a high-capacity positive electrode active material.
  • lithium-transition metal composite oxides with a Ni content of 80% or more tend to cause side reactions with nonaqueous electrolytes, so the products generated by the side reactions adhere to the surface of the lithium-transition metal composite oxides. Charge/discharge cycle characteristics may deteriorate.
  • Patent Document 1 discloses that the charge/discharge cycle characteristics of a secondary battery can be improved by using a positive electrode active material in which a predetermined ratio of Sr is dissolved in an NCM-based lithium transition metal composite oxide containing Ni, Co, and Mn. and discloses technology that improves safety.
  • Patent Document 1 does not consider improving battery characteristics using a lithium transition metal composite oxide with a high Ni content, and there is still room for improvement.
  • the present inventors have found that by using a lithium transition metal composite oxide in which Ca is present at a predetermined ratio on the surface and inside of the secondary particles, battery capacity and charging can be improved. It has been found that both discharge cycle characteristics can be achieved. It is presumed that by ensuring that Ca is appropriately dispersed in the lithium transition metal composite oxide, side reactions with the nonaqueous electrolyte during charging and discharging are suppressed.
  • a cylindrical battery in which a wound type electrode body is housed in a cylindrical exterior body is illustrated, but the electrode body is not limited to the wound type, and a plurality of positive electrodes and a plurality of negative electrodes are housed in a separator. It may also be of a laminated type in which the sheets are alternately laminated one by one. Further, the exterior body is not limited to a cylindrical shape, and may be, for example, square, coin-shaped, etc., or may be a battery case made of a laminate sheet including a metal layer and a resin layer.
  • FIG. 1 is an axial cross-sectional view of a cylindrical secondary battery 10 that is an example of an embodiment.
  • the secondary battery 10 includes a wound electrode body 14, an electrolyte, and an exterior body 16 that houses the electrode body 14 and the electrolyte.
  • the electrode body 14 includes a positive electrode 11, a negative electrode 12, and a separator 13, and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound with the separator 13 in between.
  • the exterior body 16 is a bottomed cylindrical metal container with an opening on one side in the axial direction, and the opening of the exterior body 16 is closed by a sealing body 17 .
  • the sealing body 17 side of the battery will be referred to as the top
  • the bottom side of the exterior body 16 will be referred to as the bottom.
  • the positive electrode 11, the negative electrode 12, and the separator 13 that constitute the electrode body 14 are all rectangular elongated bodies, and are wound in a spiral shape in the longitudinal direction so that they are arranged alternately in the radial direction of the electrode body 14. Laminated. Separator 13 isolates positive electrode 11 and negative electrode 12 from each other.
  • the negative electrode 12 is formed to be one size larger than the positive electrode 11 in order to prevent precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal and lateral directions.
  • the two separators 13 are formed to be at least one size larger than the positive electrode 11, and are arranged to sandwich the positive electrode 11, for example.
  • the electrode body 14 includes a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • the longitudinal direction of the positive electrode 11 and the negative electrode 12 is the winding direction
  • the lateral direction of the positive electrode 11 and the negative electrode 12 is the axial direction. That is, the end surfaces of the positive electrode 11 and the negative electrode 12 in the lateral direction form the end surfaces of the electrode body 14 in the axial direction.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 passes through the through hole of the insulating plate 18 and extends toward the sealing body 17, and the negative electrode lead 21 passes through the outside of the insulating plate 19 and extends toward the bottom side of the exterior body 16.
  • the positive electrode lead 20 is connected by welding or the like to the lower surface of the internal terminal plate 23 of the sealing body 17, and the cap 27, which is the top plate of the sealing body 17 and electrically connected to the internal terminal plate 23, serves as a positive electrode terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the exterior body 16 by welding or the like, and the exterior body 16 serves as a negative electrode terminal.
  • a gasket 28 is provided between the exterior body 16 and the sealing body 17 to ensure airtightness inside the battery.
  • the exterior body 16 is formed with a grooved portion 22 that supports the sealing body 17 and has a part of the side surface protruding inward.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the exterior body 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 is fixed to the upper part of the exterior body 16 by the grooved portion 22 and the open end of the exterior body 16 caulked to the sealing body 17 .
  • the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their respective central portions, and an insulating member 25 is interposed between their respective peripheral portions.
  • the positive electrode 11, negative electrode 12, separator 13, and non-aqueous electrolyte that constitute the secondary battery 10 will be explained in detail, especially the positive electrode 11.
  • the positive electrode 11 includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer is preferably formed on both sides of the positive electrode current collector.
  • a metal foil such as aluminum or an aluminum alloy that is stable in the potential range of the positive electrode 11, a film having the metal disposed on the surface, or the like can be used.
  • the thickness of the positive electrode current collector is, for example, 10 ⁇ m to 30 ⁇ m.
  • the positive electrode mixture layer includes, for example, a positive electrode active material, a conductive agent, and a binder.
  • the thickness of the positive electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the positive electrode current collector.
  • the positive electrode 11 can be made, for example, by coating a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, etc. on the surface of a positive electrode current collector, drying the coating film, and then rolling the positive electrode mixture layer to form a positive electrode current collector. It can be produced by forming it on both sides of.
  • Examples of the conductive agent contained in the positive electrode mixture layer include carbon-based particles such as carbon black (CB), acetylene black (AB), Ketjen black, carbon nanotubes (CNT), graphene, and graphite. These may be used alone or in combination of two or more.
  • binder contained in the positive electrode mixture layer examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyimide resins, acrylic resins, polyolefin resins, and polyacrylonitrile ( PAN), etc. These may be used alone or in combination of two or more.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyimide resins, acrylic resins, polyolefin resins, and polyacrylonitrile ( PAN), etc. These may be used alone or in combination of two or more.
  • the positive electrode active material contained in the positive electrode mixture layer contains a lithium transition metal composite oxide.
  • the lithium transition metal composite oxide contains Ni and Ca.
  • the Ni content in the lithium-transition metal composite oxide is 80 mol% or more based on the total number of moles of metal elements excluding Li. Thereby, battery capacity can be improved.
  • the Ni content is preferably 85 mol% or more, more preferably 90 mol% or more. Further, the Ni content is preferably 95 mol% or less from the viewpoint of stabilizing the structure.
  • the Ca content in the lithium transition metal composite oxide is preferably 0.01 mol% to 5 mol%, more preferably 0.1 mol% to 4 mol%, based on the total number of moles of metal elements excluding Li. It is mol%, more preferably 0.25 mol% to 3 mol%.
  • the lithium transition metal composite oxide may further contain one or more elements selected from the group consisting of Co, Al, and Mn.
  • the content of Co, Al, and Mn in the lithium transition metal composite oxide is, for example, 0 mol % to 10 mol %, respectively, based on the total number of moles of metal elements excluding Li. Further, the total content of Co, Al, and Mn is, for example, 0 mol% to 18 mol%.
  • the lithium transition metal composite oxide may further contain one or more elements selected from the group consisting of Nb, Ti, Zr, W, and Si.
  • the content of Nb, Ti, Zr, W, and Si in the lithium transition metal composite oxide is, for example, 0 mol % to 1 mol %, respectively, based on the total number of moles of metal elements excluding Li. Further, the total content of Nb, Ti, Zr, W, and Si is, for example, 0 mol% to 2 mol%.
  • ICP-AES inductively coupled plasma emission spectrometer
  • the lithium transition metal composite oxide includes secondary particles formed by agglomeration of primary particles.
  • the particle size of the primary particles is, for example, 0.02 ⁇ m to 2 ⁇ m.
  • the particle size of a primary particle is measured as the diameter of a circumscribed circle in a particle image observed by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average particle diameter of the secondary particles is, for example, 2 ⁇ m to 30 ⁇ m.
  • the average particle diameter means the volume-based median diameter (D50).
  • D50 means a particle size at which the cumulative frequency is 50% from the smallest particle size in the volume-based particle size distribution, and is also called the median diameter.
  • the particle size distribution of the secondary particles can be measured using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.) using water as a dispersion medium.
  • Ca exists on the surface of the secondary particles and inside the secondary particles. Ca exists inside the secondary particles, for example, on the surface of the primary particles, and is not solidly dissolved inside the primary particles. Thereby, the effect of suppressing side reactions between the nonaqueous electrolyte and the lithium transition metal composite oxide becomes remarkable.
  • Ca may exist as a compound containing Ca on the surface of the secondary particle and inside the secondary particle. Examples of the compound containing Ca include CaO, CaCO 3 and the like.
  • the presence of Ca on the surface of the secondary particles and inside the secondary particles can be confirmed by, for example, energy dispersive X-ray spectroscopy (TEM-EDX) in addition to the time-of-flight secondary ion mass spectrometry described below.
  • TEM-EDX energy dispersive X-ray spectroscopy
  • the Gini coefficient on the surface of the Ca secondary particles was 0.85 or less, and the Ca The Gini coefficient inside the secondary particle is 0.6 or less, and the ratio of the normalized intensity I Ca_OUT of Ca on the surface of the secondary particle to the normalized intensity I Ca_IN of Ca inside the secondary particle is 1.
  • ⁇ I Ca_OUT /I Ca_IN ⁇ 5 hereinafter, I Ca_OUT /I Ca_IN is referred to as the normalized intensity ratio of Ca).
  • the Gini coefficient on the surface of a secondary particle of Ca is the value obtained by doubling the area surrounded by the diagonal line and the Lorentz curve when the cumulative rate is expressed in order of intensity for the normalized intensity I Ca_OUT of Ca on the surface of the secondary particle.
  • the Gini coefficient inside the secondary particle of Ca is the value obtained by doubling the area enclosed between the diagonal line and the Lorentz curve when the cumulative rate is expressed in order of intensity for the normalized intensity I Ca_IN of Ca inside the secondary particle.
  • the Gini coefficient is 0 when it is completely uniform, and its value increases as the uniformity decreases.
  • the Gini coefficient inside the Ca secondary particle may be smaller than the Gini coefficient on the surface of the Ca secondary particle. That is, Ca may be more uniformly dispersed inside the secondary particles than on the surfaces of the secondary particles.
  • the normalized intensity ratio of Ca is obtained by measurement using a time-of-flight secondary ion mass spectrometer (TOF-SIMS5 manufactured by IONTOF) under the following conditions.
  • the image showing the concentration distribution of Ni and Ca obtained in the above measurement is divided into 256 ⁇ 256 pixels, and the detected intensities of Ni and Ca are calculated for each pixel. Furthermore, the ratio of the detected intensity of Ca to the detected intensity of Ni is calculated as the normalized intensity I Ca of Ca.
  • the range from the surface of the secondary particle recognized from the above image to 0.5 ⁇ m inside is defined as the surface of the secondary particle, and pixels included in the surface of this secondary particle (hereinafter referred to as surface pixels) are defined.
  • the set of I Ca corresponding to each surface pixel becomes I Ca_OUT .
  • the area inside the secondary particle surface defined above is defined as the interior of the secondary particle, and pixels included within the secondary particle (hereinafter referred to as internal pixels) are defined.
  • the set of I Ca corresponding to each internal pixel is I Ca_IN . From I Ca_OUT and I Ca_IN thus obtained, the normalized intensity ratio of Ca (I Ca_OUT /I Ca_IN ) is calculated.
  • the sample whose cross section is to be observed may be a sample in which a lithium transition metal composite oxide is embedded in a resin or the like, or a positive electrode mixture layer containing a lithium transition metal composite oxide.
  • the lithium transition metal composite oxide may have a layered structure.
  • Examples of the layered structure of the lithium transition metal composite oxide include a layered structure belonging to space group R-3m, a layered structure belonging to space group C2/m, and the like.
  • the lithium transition metal composite oxide preferably has a layered structure belonging to space group R-3m from the viewpoint of high capacity and stability of crystal structure.
  • the layered structure of the lithium-transition metal composite oxide may include a transition metal layer, a Li layer, and an oxygen layer.
  • the proportion of metal elements other than Li present in the Li layer is 8 mol% or less with respect to the total number of moles of metal elements other than Li in the lithium-transition metal composite oxide. It is. If the proportion of metal elements other than Li in the Li layer exceeds 8 mol %, the diffusivity of Li ions in the Li layer may decrease, resulting in a decrease in battery capacity.
  • the metal element other than Li present in the Li layer is mainly Ni, but may also contain other metal elements.
  • the proportion of metal elements other than Li in the Li layer is, for example, 0.1 mol% or more.
  • the proportion of metal elements other than Li present in the Li layer of the layered structure is obtained from the Rietveld analysis results of the X-ray diffraction pattern obtained by X-ray diffraction measurement of the lithium-transition metal composite oxide.
  • PDXL2 Rivest Cipher Co., Ltd.
  • Rietveld analysis software can be used for Rietveld analysis of the X-ray diffraction pattern.
  • the positive electrode mixture layer may contain other positive electrode active materials in addition to the positive electrode active material of this embodiment described above.
  • Other positive electrode active materials include, for example, a lithium transition metal composite oxide containing Ni and Ca and having a Gini coefficient of more than 0.85 on the surface of the Ca secondary particles, and a Gini coefficient inside the Ca secondary particles. Examples include lithium transition metal composite oxides having a Ca concentration of more than 0.6, and lithium transition metal composite oxides having a Ca normalized strength of less than 1 or more than 5.
  • a method for producing a positive electrode active material includes, for example, a step of mixing a metal oxide containing at least Ni, a Li raw material, and a Ca raw material to obtain a mixture, and firing the mixture to obtain a positive electrode active material. include.
  • a metal oxide containing at least Ni is prepared by adding an alkaline solution such as sodium hydroxide dropwise to a solution of a metal salt containing Ni, Co, Al, Mn, etc. while stirring, and adjusting the pH to an alkaline side (for example, 8.5). ⁇ 12.5), a composite hydroxide can be precipitated (co-precipitated), and the metal hydroxide can be produced by heat treatment.
  • the firing temperature is not particularly limited, but is, for example, in the range of 300°C to 600°C.
  • a mixture is obtained by mixing a metal oxide containing at least Ni, a Li raw material, and a Ca raw material.
  • the Li raw material include Li 2 CO 3 , LiOH, Li 2 O 2 , Li 2 O, LiNO 3 , LiNO 2 , Li 2 SO 4 , LiOH ⁇ H 2 O, LiH, and LiF.
  • Ca raw materials include Ca(OH) 2 , CaHPO4 , Ca ( H2PO4 ) 2 , Ca3 ( PO4 ) 2 , CaO, CaCO3 , CaSO4 , Ca( NO3 ) 2, CaCl2 , CaAlO. 4th grade is mentioned.
  • Me raw material may be mixed. Examples of the Me raw material include Nb 2 O 5 , TiO 2 , ZrO 2 , WO 3 , and SiO 2 .
  • a lithium transition metal composite oxide as a positive electrode active material is obtained.
  • the mixture is fired, for example, under an oxygen atmosphere.
  • the firing conditions are such that the first temperature increase rate is in the range of more than 1.0°C/min and 4.5°C/min or less at 300°C or more and 680°C or less, and the maximum temperature reached is 700°C or more and 850°C or less. range.
  • the second temperature increase rate from over 680° C. to the maximum temperature reached may be, for example, 0.1° C./min to 3.5° C./min. Further, the maximum temperature reached may be maintained for 1 hour or more and 10 hours or less.
  • this firing step may be a multi-stage firing, and a plurality of first temperature increase rates and second temperature increase rates may be set for each temperature range as long as they are within the ranges defined above. For example, by increasing the temperature at a low rate, the value of the Gini coefficient of Ca on the surface of the secondary particles and inside the secondary particles can be reduced.
  • the produced lithium transition metal composite oxide may then be washed with water and dried. Washing with water and drying can be performed using known methods and conditions. Note that a Ca raw material or a Me raw material may be added to the cake-like composition after washing with water.
  • the negative electrode 12 includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer is preferably formed on both sides of the negative electrode current collector.
  • a metal foil such as copper or copper alloy that is stable in the potential range of the negative electrode 12, a film having the metal disposed on the surface layer, or the like can be used.
  • the thickness of the negative electrode current collector is, for example, 5 ⁇ m to 30 ⁇ m.
  • the negative electrode mixture layer includes, for example, a negative electrode active material and a binder. The thickness of the negative electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the negative electrode current collector.
  • the negative electrode 12 is made, for example, by coating a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. on the surface of a negative electrode current collector, drying the coating film, and then rolling the negative electrode mixture layer to form a negative electrode current collector. It can be made by forming it on both sides of the body.
  • the negative electrode active material contained in the negative electrode mixture layer is not particularly limited as long as it can reversibly absorb and release lithium ions, and carbon materials such as graphite are generally used.
  • the graphite may be natural graphite such as flaky graphite, lumpy graphite, or earthy graphite, or artificial graphite such as lumpy artificial graphite or graphitized mesophase carbon microbeads.
  • metals that alloy with Li such as Si and Sn, metal compounds containing Si, Sn, etc., lithium titanium composite oxide, etc. may be used.
  • those provided with a carbon coating may also be used.
  • fine particles of Si may be present in a Si-containing compound represented by SiO x (0.5 ⁇ x ⁇ 1.6) or in a lithium silicate phase represented by Li 2y SiO (2+y) (0 ⁇ y ⁇ 2).
  • a dispersed Si-containing compound or the like may be used in combination with graphite.
  • binder contained in the negative electrode mixture layer examples include styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), carboxymethyl cellulose (CMC) or its salt, polyacrylic acid (PAA) or its salt (PAA), etc. -Na, PAA-K, etc. (may also be partially neutralized salts), polyvinyl alcohol (PVA), and the like. These may be used alone or in combination of two or more.
  • a porous sheet having ion permeability and insulation properties is used.
  • porous sheets include microporous thin films, woven fabrics, and nonwoven fabrics.
  • Suitable materials for the separator include polyolefins such as polyethylene and polypropylene, cellulose, and the like.
  • the separator 13 may have a single layer structure or a laminated structure. Further, the surface of the separator 13 may be provided with a resin layer having high heat resistance such as an aramid resin, and a filler layer containing an inorganic compound filler.
  • the non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and mixed solvents of two or more of these.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a portion of hydrogen in these solvents is replaced with a halogen atom such as fluorine.
  • halogen-substituted product examples include fluorinated cyclic carbonate esters such as fluoroethylene carbonate (FEC), fluorinated chain carbonate esters, fluorinated chain carboxylic acid esters such as methyl fluoropropionate (FMP), and the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylic acid esters
  • esters examples include cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), and methylpropyl carbonate.
  • chain carbonate esters such as ethylpropyl carbonate and methyl isopropyl carbonate
  • cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, and methyl propionate (MP).
  • chain carboxylic acid esters such as ethyl propionate (EP), and the like.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 - Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butylphenyl ether, pentylphenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl
  • the electrolyte salt is a lithium salt.
  • lithium salts include LiBF4 , LiClO4 , LiPF6 , LiAsF6 , LiSbF6 , LiAlCl4 , LiSCN, LiCF3SO3 , LiCF3CO2 , Li(P( C2O4 ) F4 ) , LiPF 6-x (C n F 2n+1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic carboxylic acid lithium, Li 2 B 4 O 7 , borates such as Li(B(C 2 O 4 )F 2 ), LiN(SO 2 CF 3 ) 2 , LiN(C 1 F 2l+1 SO 2 )(C m F 2m+1 SO 2 ) ⁇ l , m is an integer of 0 or more ⁇ .
  • the lithium salts may be used alone or in combination.
  • LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, etc.
  • the concentration of the lithium salt is, for example, 0.5 mol to 2 mol per liter of nonaqueous solvent.
  • vinylene carbonate or propane sultone additives may be added.
  • Example 1-1 [Preparation of positive electrode active material]
  • the composite hydroxide represented by [Ni 0.90 Co 0.05 Al 0.05 ](OH) 2 obtained by the coprecipitation method was calcined at 500°C for 8 hours to form a metal oxide (Ni 0.90 Co 0.05 Al 0.05 O 2 ) was obtained.
  • Ca(OH) 2 is added to the metal oxide so that the molar ratio of Ca to the total amount of Ni, Co, and Al is 0.25 mol%, and further, Ni, Co, Al, and Ca are added to the metal oxide.
  • Lithium hydroxide monohydrate (LiOH.H 2 O) was mixed so that the molar ratio of Li to the total amount of was 103 mol% to obtain a mixture.
  • This mixture was fired from room temperature to 650°C at a first heating rate of 2°C/min under an oxygen stream with an oxygen concentration of 95% (flow rate of 5 L/min per 1 kg of mixture), and then a second heating rate of 2°C/min.
  • a lithium transition metal composite oxide was obtained by firing from 650°C to 720°C at a temperature rate of 1°C/min. This lithium transition metal composite oxide was washed with water and dried to obtain a positive electrode active material of Example 1-1.
  • the elements shown in Table 1 below were confirmed as elements other than Li and O.
  • the normalized intensity ratio of Ca (I Ca_OUT /I Ca_IN ) was 1.4, and the Ca The Gini coefficients inside and on the surface of the secondary particles were 0.39 and 0.60, respectively.
  • the proportion of metal elements other than Li present in the Li layer was 1.8 mol% with respect to the total number of moles of metal elements other than Li in the lithium-transition metal composite oxide.
  • Preparation of positive electrode Mix 95 parts by mass of the above positive electrode active material, 3 parts by mass of acetylene black (AB), and 2 parts by mass of polyvinylidene fluoride (PVDF), and further add an appropriate amount of N-methyl-2-pyrrolidone (NMP).
  • a positive electrode mixture slurry was prepared.
  • the positive electrode mixture slurry was applied to both sides of a positive electrode current collector made of aluminum foil with a thickness of 15 ⁇ m, and after drying the coating film, the coating film was rolled with a rolling roller and cut into a predetermined electrode size. A positive electrode was produced. Note that an exposed portion where the surface of the positive electrode current collector was exposed was provided in a part of the positive electrode.
  • Natural graphite was used as the negative electrode active material.
  • a negative electrode active material, sodium carboxymethyl cellulose (CMC-Na), and styrene-butadiene rubber (SBR) were mixed in an aqueous solution at a solid content mass ratio of 100:1:1 to prepare a negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to both sides of a negative electrode current collector made of copper foil, and after the coating film is dried, the coating film is rolled using a rolling roller and cut into a predetermined electrode size to produce a negative electrode. did. Note that an exposed portion where the surface of the negative electrode current collector was exposed was provided in a part of the negative electrode.
  • Ethylene carbonate (EC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 3:3:4.
  • a nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) in the mixed solvent to a concentration of 1.2 mol/liter.
  • a positive electrode lead is attached to the exposed part of the positive electrode, and a negative electrode lead is attached to the exposed part of the negative electrode, and the positive and negative electrodes are spirally wound through a polyolefin separator, and then press-formed in the radial direction to form a flat winding.
  • a circular electrode body was produced. This electrode body was housed in an exterior body made of an aluminum laminate sheet, and after the nonaqueous electrolyte was injected, the opening of the exterior body was sealed to obtain a test cell.
  • Example 1 except that in the preparation of the positive electrode active material, the amount of Ca(OH) 2 added was changed so that the molar ratio of Ca to the total amount of Ni, Co, and Al was the value shown in Table 1.
  • a test cell was prepared and evaluated in the same manner as in -1.
  • Example 1-5 A test cell was prepared in the same manner as in Example 1-1, except that the first temperature increase rate was changed to 3°C/min and the second temperature increase rate was changed to 2°C/min in the preparation of the positive electrode active material. It was manufactured and evaluated.
  • ⁇ Comparative example 1-1> In preparing the positive electrode active material, Ca(OH) 2 was not added to the metal oxide, and the cake-like material after washing with water was prepared so that the molar ratio of Ca to the total amount of Ni, Co, and Al was the value shown in Table 1. Adding CaCl 2 to the composition, changing the first temperature increase rate to 5°C/min, and changing the second temperature increase rate to 3°C/min. Except for this, a test cell was prepared and evaluated in the same manner as in Example 1-1.
  • ⁇ Comparative example 1-2> In the preparation of the positive electrode active material, the amount of Ca(OH) 2 added was changed so that the molar ratio of Ca to the total amount of Ni, Co, and Al was 0.01, and the first temperature increase rate was changed. The temperature was changed to 5°C/min and the second temperature increase rate was changed to 3°C/min. Except for this, a test cell was prepared and evaluated in the same manner as in Example 1-1.
  • Example 2-1> In the preparation of the positive electrode active material, the composition of the metal oxide was changed to Ni 0.93 Al 0.04 Mn 0.03 , and the molar ratio of Ca to the total amount of Ni, Al, and Mn was 0.30 mol%. A test cell was prepared and evaluated in the same manner as in Example 1-1, except that Ca(OH) 2 was added so that
  • Examples 2-2 to 2-4> In the preparation of the positive electrode active material, ZrO 2 , TiO 2 , or Nb 2 O 5 was added so that the molar ratio of Zr, Ti, or Nb to the total amount of Ni, Al, and Mn became the value shown in Table 2.
  • a test cell was prepared and evaluated in the same manner as in Example 2-1, except that a mixture was prepared by adding the following.
  • Example 2-5> A test cell was prepared and evaluated in the same manner as in Example 2-1, except that the first temperature increase rate was changed to 3° C./min in the preparation of the positive electrode active material.
  • Example 2-1 In preparing the positive electrode active material, Ca(OH) 2 was not added to the metal oxide, and the cake-like material was prepared after washing with water so that the molar ratio of Ca to the total amount of Ni, Co, and Al was the value shown in Table 2.
  • Example 2- except that Ca(OH) 2 was added to the composition, the first temperature increase rate was changed to 5°C/min, and the second temperature increase rate was changed to 3°C/min.
  • a test cell was prepared and evaluated in the same manner as in Example 1.
  • Example 3-1 In preparing the positive electrode active material, the composition of the metal oxide was changed to Ni 0.90 Co 0.04 Mn 0.06 , and the molar ratio of Ca to the total amount of Ni, Co, and Mn was 0.27 mol%. A test cell was prepared and evaluated in the same manner as in Example 1-1, except that Ca(OH) 2 was added so that
  • Example 3-2> A test cell was prepared and evaluated in the same manner as in Example 3-1, except that the second temperature increase rate was changed to 0.5° C./min in the preparation of the positive electrode active material.
  • Examples 3-3 to 3-9 In the preparation of the positive electrode active material, Nb 2 O 5 , ZrO 2 , A test cell was prepared and evaluated in the same manner as in Example 3-1, except that a mixture was prepared by adding WO 3 , TiO 2 , or SiO 2 .
  • Example 3-1 In preparing the positive electrode active material, Ca(OH) 2 was not added to the metal oxide, and the cake-like material after washing with water was prepared so that the molar ratio of Ca to the total amount of Ni, Co, and Al became the value shown in Table 3.
  • Example 3- except that Ca(OH) 2 was added to the composition, the first temperature increase rate was changed to 5°C/min, and the second temperature increase rate was changed to 3°C/min.
  • a test cell was prepared and evaluated in the same manner as in Example 1.
  • Example 4-1 In the preparation of the positive electrode active material, the composition of the metal oxide was changed to Ni 0.90 Mn 0.10 , and the molar ratio of Ca was 0.28 mol% with respect to the total amount of Ni and Mn. A test cell was prepared and evaluated in the same manner as in Example 1-1, except that Ca(OH) 2 was added.
  • Tables 1 to 4 The evaluation results of the test cells of Examples and Comparative Examples are shown separately in Tables 1 to 4.
  • each of Tables 1 to 4 includes the composition of the metal oxide and the proportion of additives used in preparing the positive electrode active material, the normalized strength ratio and Gini coefficient of Ca, and the non-Li in the Li layer. The ratio of metal elements is also shown.
  • Table 1 the initial discharge capacity and capacity retention rate of test cells other than Comparative Example 1-1 are expressed relative to each other, with the initial discharge capacity and capacity retention rate of the test cell of Comparative Example 1-1 being 100. It is.
  • Table 2 the initial discharge capacity and capacity retention rate of test cells other than Comparative Example 2-1 are expressed relative to each other, with the initial discharge capacity and capacity retention rate of the test cell of Comparative Example 2-1 being 100.
  • the capacity retention rates of the test cells of Examples are higher than those of the test cells of Comparative Examples. Further, the initial discharge capacity of the test cell of the example is approximately the same as the initial discharge capacity of the test cell of the comparative example. Therefore, the Gini coefficient on the surface of the Ca secondary particle is 0.85 or less, the Gini coefficient inside the Ca secondary particle is 0.6 or less, and the normalized intensity of Ca inside the secondary particle I Ca_IN By including in the positive electrode active material a lithium transition metal composite oxide in which the ratio of the normalized strength of Ca on the surface of the secondary particles I Ca_OUT to It turns out that both can be achieved.
  • Configuration 1 A positive electrode active material for a nonaqueous electrolyte secondary battery containing a lithium transition metal composite oxide,
  • the lithium transition metal composite oxide contains Ni and Ca, and includes secondary particles formed by agglomeration of primary particles
  • the Gini coefficient of Ca on the surface of the secondary particle is 0.85 or less
  • the Gini coefficient of Ca inside the secondary particle is 0.6 or less
  • the ratio of the normalized Ca intensity I Ca_OUT on the surface of the secondary particles to the normalized Ca intensity I Ca_IN inside the secondary particles, I Ca_OUT /I Ca_IN is 1 or more and 5 or less.
  • Configuration 2 The non-aqueous material according to configuration 1, wherein the Ni content in the lithium-transition metal composite oxide is 80 mol% or more based on the total number of moles of metal elements other than Li in the lithium-transition metal composite oxide.
  • Positive electrode active material for electrolyte secondary batteries Configuration 3: The lithium transition metal composite oxide has a layered structure, Configuration 1 or 2. The positive electrode active material for a non-aqueous electrolyte secondary battery according to 2.
  • Configuration 4 The nonaqueous electrolyte secondary battery according to any one of configurations 1 to 3, wherein the lithium transition metal composite oxide further contains one or more elements selected from the group consisting of Co, Al, and Mn. Cathode active material for use.
  • Configuration 5 The lithium transition metal composite oxide further contains the nonaqueous compound according to any one of configurations 1 to 4, which further contains one or more elements selected from the group consisting of Nb, Ti, Zr, W, and Si.
  • Positive electrode active material for electrolyte secondary batteries Configuration 6: A non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of configurations 1 to 5, a negative electrode, and a non-aqueous electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池の高容量で、充放電サイクル特性が向上した正極活物質を提供する。この非水電解質二次電池に含まれる正極活物質は、リチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物は、Ni及びCaを含有し、且つ、一次粒子が凝集して形成された二次粒子を含み、飛行時間型二次イオン質量分析法を用いたリチウム遷移金属複合酸化物断面の元素濃度分布において、Caの二次粒子表面におけるジニ係数が、0.85以下であり、Caの二次粒子内部におけるジニ係数が、0.6以下であり、二次粒子内部のCaの規格化強度ICa_INに対する二次粒子表面のCaの規格化強度ICa_OUTの比ICa_OUT/ICa_INが、1以上5以下である。

Description

非水電解質二次電池用正極活物質及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極活物質及び非水電解質二次電池に関する。
 従前より、ニッケル酸リチウム(LiNiO)は高いエネルギー密度を有することが知られており、Niの一部をCo、Al、Mn等に置換することで、信頼性等の電池特性を向上させることができる。
 特許文献1には、Ni、Co、及びMnを含有するNCM系のリチウム遷移金属複合酸化物に所定の割合でSrを固溶させた正極活物質を用いることで、二次電池の充放電サイクル特性及び安全性を向上させる技術が開示されている。
特許第6226430号公報
 ところで、Niの含有率が80%以上のリチウム遷移金属複合酸化物は、初期放電容量は大きいが、非水電解質と副反応を起こしやすいので、充放電サイクル特性が低下する場合がある。特許文献1に記載の技術は、Niの含有率が高いリチウム遷移金属複合酸化物を用いた電池特性の向上については検討しておらず、未だ改善の余地がある。
 本開示の目的は、非水電解質二次電池の高容量化と充放電サイクル特性の向上に寄与する正極活物質を提供することである。
 本開示の一態様である非水電解質二次電池用正極活物質は、リチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物は、Ni及びCaを含有し、且つ、一次粒子が凝集して形成された二次粒子を含み、飛行時間型二次イオン質量分析法を用いたリチウム遷移金属複合酸化物断面の元素濃度分布において、Caの二次粒子表面におけるジニ係数が、0.85以下であり、Caの二次粒子内部におけるジニ係数が、0.6以下であり、二次粒子内部のCaの規格化強度ICa_INに対する二次粒子表面のCaの規格化強度ICa_OUTの比ICa_OUT/ICa_INが、1以上5以下であることを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示の一態様である非水電解質二次電池用正極活物質によれば、非水電解質二次電池の初期放電容量と充放電サイクル特性を向上させることができる。
実施形態の一例である非水電解質二次電池の縦方向断面図である。
 リチウム遷移金属複合酸化物の層状構造は、遷移金属層、Li層、酸素層が存在し、Li層に存在するLiイオンが可逆的に出入りすることで、電池の充放電反応が進行する。一般に、Niを主成分とするリチウム遷移金属複合酸化物は、高容量の正極活物質として知られている。しかし、Niの含有率が80%以上のリチウム遷移金属複合酸化物は、非水電解質と副反応を起こしやすいので、副反応により生じた生成物がリチウム遷移金属複合酸化物の表面に付着し、充放電サイクル特性が低下する場合がある。
 特許文献1は、Ni、Co、及びMnを含有するNCM系のリチウム遷移金属複合酸化物に所定の割合でSrを固溶させた正極活物質を用いることで、二次電池の充放電サイクル特性及び安全性を向上させる技術を開示している。しかし、特許文献1は、Niの含有率が高いリチウム遷移金属複合酸化物を用いた電池特性の向上については検討しておらず、未だ改善の余地がある。
 本発明者らは、上記課題を解決するために鋭意検討した結果、二次粒子の表面と内部に所定の割合でCaを存在させたリチウム遷移金属複合酸化物を用いることで、電池容量と充放電サイクル特性を両立できることを見出した。リチウム遷移金属複合酸化物中でCaが適切な分散状態をとるようにすることで、充放電中の非水電解質との副反応が抑制されると推察される。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が円筒形の外装体に収容された円筒形電池を例示するが、電極体は、巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に1枚ずつ積層されてなる積層型であってもよい。また、外装体は円筒形に限定されず、例えば角形、コイン形等であってもよく、金属層及び樹脂層を含むラミネートシートで構成された電池ケースであってもよい。
 図1は、実施形態の一例である円筒形の二次電池10の軸方向断面図である。図1に示すように、二次電池10は、巻回型の電極体14と、電解液と、電極体14及び電解質を収容する外装体16とを備える。電極体14は、正極11、負極12、及びセパレータ13を含み、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装体16は、軸方向一方側が開口した有底円筒形状の金属製容器であって、外装体16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装体16の底部側を下とする。
 電極体14を構成する正極11、負極12、及びセパレータ13は、いずれも矩形形状の長尺体であって、長手方向に渦巻状に巻回されることで電極体14の径方向に交互に積層される。セパレータ13は、正極11及び負極12を相互に隔離している。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長手方向及び短手方向に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを備える。電極体14において、正極11及び負極12の長手方向が巻回方向となり、正極11及び負極12の短手方向が軸方向となる。即ち、正極11及び負極12の短手方向の端面は、電極体14の軸方向の端面を形成する。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装体16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装体16の底部内面に溶接等で接続され、外装体16が負極端子となる。
 外装体16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装体16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装体16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対してかしめられた外装体16の開口端部とにより、外装体16の上部に固定される。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に正極11について詳説する。
 [正極]
 正極11は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを有する。正極合剤層は、正極集電体の両面に形成されることが好ましい。正極集電体には、アルミニウム、アルミニウム合金など、正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極集電体の厚みは、例えば、10μm~30μmである。
 正極合剤層は、例えば、正極活物質と、導電剤と、結着剤とを含む。正極合剤層の厚みは、例えば、正極集電体の片側で10μm~150μmである。正極11は、例えば、正極集電体の表面に正極活物質、導電剤等を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧延して正極合剤層を正極集電体の両面に形成することにより作製できる。
 正極合剤層に含まれる導電剤としては、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ(CNT)、グラフェン、黒鉛等のカーボン系粒子などが挙げられる。これらは、単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 正極合剤層に含まれる結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリアクリロニトリル(PAN)などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 正極合剤層に含まれる正極活物質は、リチウム遷移金属複合酸化物を含む。リチウム遷移金属複合酸化物は、Ni及びCaを含有する。
 リチウム遷移金属複合酸化物におけるNiの含有率は、Liを除く金属元素の総モル数に対して、80モル%以上である。これにより、電池容量を向上させることができる。Niの含有率は、好ましくは85モル%以上であり、より好ましくは90モル%以上である。また、Niの含有率は、構造の安定化の観点から、95モル%以下であることが好ましい。
 リチウム遷移金属複合酸化物におけるCaの含有率は、Liを除く金属元素の総モル数に対して、好ましくは0.01モル%~5モル%であり、より好ましくは0.1モル%~4モル%であり、さらに好ましくは0.25モル%~3モル%である。
 リチウム遷移金属複合酸化物は、さらに、Co、Al、及びMnからなる群より選択された1つ以上の元素を含んでもよい。リチウム遷移金属複合酸化物におけるCo、Al、及びMnの含有率は、Liを除く金属元素の総モル数に対して、各々、例えば、0モル%~10モル%である。また、Co、Al、及びMnの含有率の合計は、例えば、0モル%~18モル%である。
 リチウム遷移金属複合酸化物は、さらに、Nb、Ti、Zr、W、及びSiからなる群より選択された1つ以上の元素を含んでもよい。リチウム遷移金属複合酸化物におけるNb、Ti、Zr、W、及びSiの含有率は、Liを除く金属元素の総モル数に対して、各々、例えば、0モル%~1モル%である。また、Nb、Ti、Zr、W、及びSiの含有率の合計は、例えば、0モル%~2モル%である。
 リチウム遷移金属複合酸化物は、例えば、一般式LiNiM1M2Ca2-b(式中、0.8≦a≦1.2、0.80≦x≦0.95、0≦M1≦0.18、0≦z≦0.02、0.0001≦s≦0.01、0≦b≦0.05、x+y+z+s=1、M1はCo、Al、及びMnからなる群より選択された1つ以上の元素、M2はNb、Ti、Zr、W、及びSiからなる群より選択された1つ以上の元素)で表される複合酸化物である。リチウム遷移金属複合酸化物に含有される金属元素の割合は、例えば、誘導結合プラズマ発光分光分析装置(ICP-AES)により測定できる。
 リチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子を含む。一次粒子の粒径は、例えば、0.02μm~2μmである。一次粒子の粒径は、走査電子顕微鏡(SEM)により観察される粒子画像において外接円の直径として測定される。二次粒子の平均粒子径は、例えば、2μm~30μmである。ここで、平均粒子径とは、体積基準のメジアン径(D50)を意味する。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。二次粒子の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 Caは、二次粒子表面及び二次粒子内部に存在する。Caは、二次粒子内部において、例えば、一次粒子の表面に存在し、一次粒子内部には固溶していない。これにより、非水電解質とリチウム遷移金属複合酸化物との副反応を抑制する効果が顕著となる。Caは、二次粒子表面及び二次粒子内部において、Caを含有する化合物として存在してもよい。Caを含有する化合物としては、例えば、CaO、CaCO等が挙げられる。二次粒子表面及び二次粒子内部におけるCaの存在は、後述する飛行時間型二次イオン質量分析法以外に、例えば、エネルギー分散型X線分光法(TEM-EDX)で確認することができる。
 飛行時間型二次イオン質量分析法(TOF-SIMS)を用いたリチウム遷移金属複合酸化物断面の元素濃度分布において、Caの二次粒子表面におけるジニ係数が、0.85以下であり、Caの二次粒子内部におけるジニ係数が0.6以下であり、二次粒子内部のCaの規格化強度ICa_INに対する二次粒子表面のCaの規格化強度ICa_OUTの比ICa_OUT/ICa_INが、1≦ICa_OUT/ICa_IN≦5を満たす(以下、ICa_OUT/ICa_INをCaの規格化強度比という)。これにより、二次電池10の初期放電容量と充放電サイクル特性を向上させることができる。二次粒子表面及び二次粒子内部において、二次粒子表面を含めた一次粒子表面が適切に保護されるためと推察される。
 Caの二次粒子表面におけるジニ係数は、二次粒子表面のCaの規格化強度ICa_OUTについて、強度順に累積率を表した時に、対角線とローレンツ曲線の間が囲む面積を2倍した値である。Caの二次粒子内部におけるジニ係数は、二次粒子内部のCaの規格化強度ICa_INについて、強度順に累積率を表した時に、対角線とローレンツ曲線の間が囲む面積を2倍した値である。ジニ係数は、完全に均一な場合に0となり、均一性の低下に伴って値が上昇する。Caの二次粒子内部におけるジニ係数は、Caの二次粒子表面におけるジニ係数よりも小さくてもよい。即ち、Caは、二次粒子表面よりも、二次粒子内部でより均一に分散していてもよい。
 Caの規格化強度比は、飛行時間型二次イオン質量分析装置(IONTOF社製TOF-SIMS5)を用い、以下の条件による測定によって得られる。
一次イオン:Bi
イオン電圧:30kV
イオン電流:0.03pA@100us
観察範囲:50μm×50μm
マスレンジ:60us(~310amu)
検出:4frame/scan、150scan
 上記の測定で得られたNi及びCaの濃度分布を示す画像を256×256のピクセルに分割し、ピクセル毎に、Ni及びCaの検出強度を各々算出する。さらに、Niの検出強度に対するCaの検出強度の比をCaの規格化強度ICaとして算出する。
 上記の画像から認識される二次粒子の表面から0.5μm内側までの範囲を二次粒子の表面とし、この二次粒子の表面に含まれるピクセル(以下、表面ピクセルという)を定める。各表面ピクセルに対応するICaの集合が、ICa_OUTとなる。また、上記で定めた二次粒子表面よりも内側を二次粒子の内部とし、この二次粒子の内部に含まれるピクセル(以下、内部ピクセルという)を定める。各内部ピクセルに対応するICaの集合が、ICa_INとなる。このようにして得られたICa_OUT及びICa_INから、Caの規格化強度比(ICa_OUT/ICa_IN)を算出する。また、ICa_OUT及びICa_INから、二次粒子表面におけるCaのジニ係数、及び二次粒子内部におけるCaのジニ係数を算出する。断面観察をする試料は、リチウム遷移金属複合酸化物を樹脂等に埋め込んだ試料でもよいし、リチウム遷移金属複合酸化物を含む正極合剤層でもよい。
 リチウム遷移金属複合酸化物は、層状構造を有してもよい。リチウム遷移金属複合酸化物の層状構造としては、例えば、空間群R-3mに属する層状構造、空間群C2/mに属する層状構造等が挙げられる。リチウム遷移金属複合酸化物は、高容量化、結晶構造の安定性の観点から、空間群R-3mに属する層状構造を有することが好ましい。リチウム遷移金属複合酸化物の層状構造は、遷移金属層、Li層、酸素層を含んでもよい。
 リチウム遷移金属複合酸化物の層状構造において、Li層に存在するLi以外の金属元素の割合は、リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対して、8モル%以下である。Li層におけるLi以外の金属元素の割合が8モル%超の場合は、Li層中のLiイオンの拡散性が低下し、電池容量が低下することがある。Li層に存在するLi以外の金属元素は、主にNiであるが、他の金属元素を含んでもよい。Li層におけるLi以外の金属元素の割合は、例えば、0.1モル%以上である。
 層状構造のLi層に存在するLi以外の金属元素の割合は、リチウム遷移金属複合酸化物のX線回折測定によるX線回折パターンのリートベルト解析結果から得られる。X線回折パターンのリートベルト解析には、例えば、リートベルト解析ソフトであるPDXL2(株式会社リガク)を使用することができる。
 X線回折パターンは、粉末X線回折装置(株式会社リガク製、商品名「RINT-TTR」、線源Cu-Kα)を用いて、以下の条件による粉末X線回折法によって得られる。
測定範囲:15-120°
スキャン速度:4°/min
解析範囲:30-120°
バックグラウンド:B-スプライン
プロファイル関数:分割型擬Voigt関数
束縛条件:Li(3a)+Ni(3a)=1
     Ni(3a)+Ni(3b)=α(αは各々のNi含有割合)
ICSD No.:98-009-4814
 正極合剤層は、上記の本実施形態の正極活物質以外に、その他の正極活物質を含んでもよい。その他の正極活物質としては、例えば、Ni及びCaを含有し、Caの二次粒子表面におけるジニ係数が0.85超であるリチウム遷移金属複合酸化物や、Caの二次粒子内部におけるジニ係数が0.6超であるリチウム遷移金属複合酸化物や、Caの規格化強度が、1未満又は5超であるリチウム遷移金属複合酸化物が挙げられる。
 次に、本実施形態に係る正極活物質の製造方法の一例について説明する。正極活物質の製造方法は、例えば、少なくともNiを含む金属酸化物と、Li原料と、Ca原料とを混合して混合物を得るステップと、当該混合物を焼成して正極活物質を得るステップとを含む。
 少なくともNiを含有する金属酸化物は、Ni、Co、Al、Mn等を含有する金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~12.5)に調整することにより、複合水酸化物を析出(共沈)させ、当該金属水酸化物を熱処理することにより作製できる。焼成温度は、特に制限されるものではないが、例えば、300℃~600℃の範囲である。
 次に、少なくともNiを含有する金属酸化物と、Li原料と、Ca原料とを混合することで混合物が得られる。Li原料としては、例えば、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が挙げられる。Ca原料としては、Ca(OH)、CaHPO、Ca(HPO、Ca(PO、CaO、CaCO、CaSO、Ca(NO2、CaCl、CaAlO等が挙げられる。また、混合の際に、Me原料を混合してもよい。Me原料としては、Nb、TiO、ZrO、WO、SiO等が挙げられる。
 上記の混合物を焼成することで、正極活物質としてのリチウム遷移金属複合酸化物が得られる。混合物は、例えば、酸素雰囲気下で焼成される。焼成条件は、300℃以上680℃以下での第1昇温速度が1.0℃/分超4.5℃/分以下の範囲であり、且つ、到達最高温度が700℃以上850℃以下の範囲である。680℃超から到達最高温度までの第2昇温速度は、例えば、0.1℃/分~3.5℃/分としてもよい。また、到達最高温度の保持時間は1時間以上10時間以下であってもよい。また、この焼成工程は、多段階焼成であってもよく、第1昇温速度、第2昇温速度は、上記規定した範囲内であれば、温度領域毎に複数設定してもよい。例えば、昇温速度を低速で昇温することで、二次粒子表面及び二次粒子内部におけるCaのジニ係数の値を小さくできる。
 作製したリチウム遷移金属複合酸化物は、その後、水洗、乾燥されてもよい。水洗及び乾燥は、公知の方法及び条件で行うことができる。なお、水洗後のケーキ状組成物にCa原料、又はMe原料を添加してもよい。
 [負極]
 負極12は、例えば、負極集電体と、負極集電体の表面に形成された負極合剤層とを有する。負極合剤層は、負極集電体の両面に形成されることが好ましい。負極集電体には、銅、銅合金等の負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルムなどを用いることができる。負極集電体の厚みは、例えば、5μm~30μmである。負極合剤層は、例えば、負極活物質と結着剤とを含む。負極合剤層の厚みは、例えば、負極集電体の片側で10μm~150μmである。負極12は、例えば、負極集電体の表面に負極活物質、結着剤等を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合剤層を負極集電体の両面に形成することにより作製できる。
 負極合剤層に含まれる負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、一般的には黒鉛等の炭素材料が用いられる。黒鉛は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛のいずれであってもよい。また、負極活物質として、Si、Sn等のLiと合金化する金属、Si、Sn等を含む金属化合物、リチウムチタン複合酸化物などを用いてもよい。また、これらに炭素被膜を設けたものを用いてもよい。例えば、SiO(0.5≦x≦1.6)で表されるSi含有化合物、又はLi2ySiO(2+y)(0<y<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有化合物などが、黒鉛と併用されてもよい。
 負極合剤層に含まれる結着剤としては、例えば、スチレンブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、積層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層、無機化合物のフィラーを含むフィラー層が設けられていてもよい。
 [非水電解質]
 非水電解質は、例えば、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテルなどが挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.5モル~2モルである。また、さらにビニレンカーボネートやプロパンスルトン系添加剤を添加してもよい。
 以下、実施例及び比較例により本開示をさらに説明するが、本開示は以下の実施例に限定されるものではない。
 <実施例1-1>
 [正極活物質の作製]
 共沈法により得られた[Ni0.90Co0.05Al0.05](OH)で表される複合水酸化物を500℃で8時間焼成し、金属酸化物(Ni0.90Co0.05Al0.05)を得た。次に、Ni、Co、及びAlの総量に対するCaのモル比が0.25モル%となるように上記金属酸化物にCa(OH)を添加し、さらに、Ni、Co、Al、及びCaの総量に対するLiのモル比が103モル%となるように水酸化リチウム一水和物(LiOH・HO)を混合して、混合物を得た。この混合物を酸素濃度95%の酸素気流下(混合物1kgあたり5L/minの流量)で、当該混合物を、第1昇温速度2℃/minで、室温から650℃まで焼成した後、第2昇温速度1℃/minで、650℃から720℃まで焼成してリチウム遷移金属複合酸化物を得た。このリチウム遷移金属複合酸化物に対して、水洗、乾燥を行い、実施例1-1の正極活物質を得た。
 ICP発光分光分析装置(ICP-AES)により、正極活物質を測定した結果、Li、Oを除く元素として、後述の表1に示す元素が確認された。飛行時間型二次イオン質量分析法(TOF-SIMS)により、正極活物質断面の元素濃度分布を測定した結果、Caの規格化強度比(ICa_OUT/ICa_IN)は1.4であり、Caの二次粒子内部及び表面におけるジニ係数は、各々、0.39及び0.60であった。Li層に存在するLi以外の金属元素の割合は、リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対して、1.8モル%であった。
 [正極の作製]
 95質量部の上記正極活物質と、3質量部のアセチレンブラック(AB)と、2質量部のポリフッ化ビニリデン(PVDF)とを混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて、正極合剤スラリーを調製した。次いで、正極合剤スラリーを厚み15μmのアルミニウム箔からなる正極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラーにより、塗膜を圧延し、所定の電極サイズに切断して、正極を作製した。なお、正極の一部に正極集電体の表面が露出した露出部を設けた。
 [負極の作製]
 負極活物質として天然黒鉛を用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)を、100:1:1の固形分質量比で水溶液中において混合し、負極合剤スラリーを調製した。次いで、負極合剤スラリーを銅箔からなる負極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラーにより、塗膜を圧延し、所定の電極サイズに切断して、負極を作製した。なお、負極の一部に負極集電体の表面が露出した露出部を設けた。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、メチルエチルカーボネート(MEC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 正極の露出部に正極リードを、負極の露出部に負極リードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回した後、径方向にプレス成形して扁平状の巻回型電極体を作製した。この電極体をアルミラミネートシートで構成される外装体内に収容し、上記非水電解質を注入した後、外装体の開口部を封止して試験セルを得た。
 [初期放電容量及び容量維持率の評価]
 環境温度25℃の下、試験セルを、0.3Cで4.2Vまで定電流充電した後、4.2Vで0.02Cになるまで定電圧充電し、さらに0.5Cで2.5Vまで定電流放電し、この時の放電容量を初期放電容量とした。この充放電を1サイクルとして、300サイクル行った。以下の式により、試験セルの充放電サイクルにおける容量維持率を求めた。
 容量維持率=(300サイクル目の放電容量/1サイクル目の放電容量)×100
 <実施例1-2~1-4>
 正極活物質の作製において、Ni、Co、及びAlの総量に対するCaのモル比が表1に示す値になるように、添加するCa(OH)の量を変更したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <実施例1-5>
 正極活物質の作製において第1昇温速度を3℃/minに変更したことと第2昇温速度を2℃/minに変更したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例1-1>
 正極活物質の作製において、金属酸化物にCa(OH)を添加せず、Ni、Co、及びAlの総量に対するCaのモル比が表1に示す値になるように、水洗後のケーキ状組成物にCaClを添加したことと、第1昇温速度を5℃/minに変更したことと第2昇温速度を3℃/minに変更したこと 
以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例1-2>
 正極活物質の作製において、Ni、Co、及びAlの総量に対するCaのモル比が0.01になるように、添加するCa(OH)の量を変更したことと、第1昇温速度を5℃/minに変更したことと第2昇温速度を3℃/minに変更したこと 
以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <実施例2-1>
 正極活物質の作製において、金属酸化物の組成をNi0.93Al0.04Mn0.03に変更したことと、Ni、Al、及びMnの総量に対するCaのモル比が0.30モル%となるようにCa(OH)を添加したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <実施例2-2~2-4>
 正極活物質の作製において、さらに、Ni、Al、及びMnの総量に対するZr、Ti、又はNbのモル比が表2に示す値になるように、ZrO、TiO、又はNbを添加して混合物を作製したこと以外は、実施例2-1と同様にして試験セルを作製し、評価を行った。
 <実施例2-5>
 正極活物質の作製において第1昇温速度を3℃/minに変更したこと以外は、実施例2-1と同様にして試験セルを作製し、評価を行った。
 <比較例2-1>
 正極活物質の作製において、金属酸化物にCa(OH)を添加せず、Ni、Co、及びAlの総量に対するCaのモル比が表2に示す値になるように、水洗後のケーキ状組成物にCa(OH)を添加したことと、第1昇温速度を5℃/minに変更したことと第2昇温速度を3℃/minに変更したこと以外は、実施例2-1と同様にして試験セルを作製し、評価を行った。
 <実施例3-1>
 正極活物質の作製において、金属酸化物の組成をNi0.90Co0.04Mn0.06に変更したことと、Ni、Co、及びMnの総量に対するCaのモル比が0.27モル%となるようにCa(OH)を添加したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <実施例3-2>
 正極活物質の作製において第2昇温速度を0.5℃/minに変更したこと以外は、実施例3-1と同様にして試験セルを作製し、評価を行った。
 <実施例3-3~3-9>
 正極活物質の作製において、さらに、Ni、Co、及びMnの総量に対するNb、Zr、W、Ti、又はSiのモル比が表3に示す値になるように、Nb、ZrO、WO、TiO、又はSiOを添加して混合物を作製したこと以外は、実施例3-1と同様にして試験セルを作製し、評価を行った。
 <比較例3-1>
 正極活物質の作製において、金属酸化物にCa(OH)を添加せず、Ni、Co、及びAlの総量に対するCaのモル比が表3に示す値になるように、水洗後のケーキ状組成物にCa(OH)を添加したことと、第1昇温速度を5℃/minに変更したことと第2昇温速度を3℃/minに変更したこと以外は、実施例3-1と同様にして試験セルを作製し、評価を行った。
 <実施例4-1>
 正極活物質の作製において、金属酸化物の組成をNi0.90Mn0.10に変更したことと、Ni及びMnの総量に対して、Caのモル比が0.28モル%となるようにCa(OH)を添加したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例4-1>
 正極活物質の作製において、金属酸化物にCa(OH)を添加せず、Ni、Co、及びAlの総量に対するCaのモル比が表4に示す値になるように、水洗後のケーキ状組成物にCa(OH)を添加したことと、第1昇温速度を5℃/minに変更したことと第2昇温速度を3℃/minに変更したこと以外は、実施例4-1と同様にして試験セルを作製し、評価を行った。
 実施例及び比較例の試験セルの評価結果を表1~表4に分けて示す。また、表1~表4の各々には、正極活物質を作製する際に用いた金属酸化物の組成と添加物の割合、Caの規格化強度比とジニ係数、及び、Li層におけるLi以外の金属元素の割合を併せて示す。表1において、比較例1-1以外の試験セルの初期放電容量及び容量維持率は、比較例1-1の試験セルの初期放電容量及び容量維持率を各々100として、相対的に表したものである。表2において、比較例2-1以外の試験セルの初期放電容量及び容量維持率は、比較例2-1の試験セルの初期放電容量及び容量維持率を各々100として、相対的に表したものである。表3において、比較例3-1以外の試験セルの初期放電容量及び容量維持率は、比較例3-1の試験セルの初期放電容量及び容量維持率を各々100として、相対的に表したものである。表4において、比較例4-1以外の試験セルの初期放電容量及び容量維持率は、比較例4-1の試験セルの初期放電容量及び容量維持率を各々100として、相対的に表したものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表4において、実施例の試験セルの容量維持率は、比較例の試験セルの容量維持率よりも高い。また、実施例の試験セルの初期放電容量は、比較例の試験セルの初期放電容量と同等程度の大きさである。よって、Caの二次粒子表面におけるジニ係数が、0.85以下であり、Caの二次粒子内部におけるジニ係数が、0.6以下であり、二次粒子内部のCaの規格化強度ICa_INに対する二次粒子表面のCaの規格化強度ICa_OUTの比ICa_OUT/ICa_INが、1以上5以下であるリチウム遷移金属複合酸化物を正極活物質に含むことで、電池容量と充放電サイクル特性を両立できることがわかる。
 本開示は、以下の実施形態によりさらに説明される。
構成1:
 リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質であって、
 前記リチウム遷移金属複合酸化物は、Ni及びCaを含有し、且つ、一次粒子が凝集して形成された二次粒子を含み、
 飛行時間型二次イオン質量分析法を用いた前記リチウム遷移金属複合酸化物断面の元素濃度分布において、
 Caの前記二次粒子表面におけるジニ係数が、0.85以下であり、Caの前記二次粒子内部におけるジニ係数が、0.6以下であり、
 前記二次粒子内部のCaの規格化強度ICa_INに対する前記二次粒子表面のCaの規格化強度ICa_OUTの比ICa_OUT/ICa_INが、1以上5以下である、非水電解質二次電池用正極活物質。
構成2:
 前記リチウム遷移金属複合酸化物におけるNiの含有率は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対して、80モル%以上である、構成1に記載の非水電解質二次電池用正極活物質。
構成3:
 前記リチウム遷移金属複合酸化物は、層状構造を有し、
 前記層状構造のLi層に存在するLi以外の金属元素の割合は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対して、8モル%以下である、構成1又は2に記載の非水電解質二次電池用正極活物質。
構成4:
 前記リチウム遷移金属複合酸化物は、さらに、Co、Al、及びMnからなる群より選択された1つ以上の元素を含む、構成1~3のいずれか1つに記載の非水電解質二次電池用正極活物質。
構成5:
 前記リチウム遷移金属複合酸化物は、さらに、Nb、Ti、Zr、W、及びSiからなる群より選択された1つ以上の元素を含む、構成1~4のいずれか1つに記載の非水電解質二次電池用正極活物質。
構成6:
 構成1~5のいずれか1つに記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
 10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装体、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット

Claims (6)

  1.  リチウム遷移金属複合酸化物を含む非水電解質二次電池用正極活物質であって、
     前記リチウム遷移金属複合酸化物は、Ni及びCaを含有し、且つ、一次粒子が凝集して形成された二次粒子を含み、
     飛行時間型二次イオン質量分析法を用いた前記リチウム遷移金属複合酸化物断面の元素濃度分布において、
     Caの前記二次粒子表面におけるジニ係数が、0.85以下であり、Caの前記二次粒子内部におけるジニ係数が、0.6以下であり、
     前記二次粒子内部のCaの規格化強度ICa_INに対する前記二次粒子表面のCaの規格化強度ICa_OUTの比ICa_OUT/ICa_INが、1以上5以下である、非水電解質二次電池用正極活物質。
  2.  前記リチウム遷移金属複合酸化物におけるNiの含有率は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対して、80モル%以上である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記リチウム遷移金属複合酸化物は、層状構造を有し、
     前記層状構造のLi層に存在するLi以外の金属元素の割合は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル数に対して、8モル%以下である、請求項1に記載の非水電解質二次電池用正極活物質。
  4.  前記リチウム遷移金属複合酸化物は、さらに、Co、Al、及びMnからなる群より選択された1つ以上の元素を含む、請求項1に記載の非水電解質二次電池用正極活物質。
  5.  前記リチウム遷移金属複合酸化物は、さらに、Nb、Ti、Zr、W、及びSiからなる群より選択された1つ以上の元素を含む、請求項1に記載の非水電解質二次電池用正極活物質。
  6.  請求項1~5のいずれか1項に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2023/022396 2022-06-29 2023-06-16 非水電解質二次電池用正極活物質及び非水電解質二次電池 WO2024004710A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022104840 2022-06-29
JP2022-104840 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024004710A1 true WO2024004710A1 (ja) 2024-01-04

Family

ID=89382146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022396 WO2024004710A1 (ja) 2022-06-29 2023-06-16 非水電解質二次電池用正極活物質及び非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2024004710A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032467A (ja) * 2007-07-25 2009-02-12 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2015026559A (ja) * 2013-07-29 2015-02-05 トヨタ自動車株式会社 非水電解質二次電池の製造方法
WO2021059728A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021100305A1 (ja) * 2019-11-19 2021-05-27 パナソニックIpマネジメント株式会社 非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009032467A (ja) * 2007-07-25 2009-02-12 Nippon Chem Ind Co Ltd リチウム二次電池用正極活物質、その製造方法及びリチウム二次電池
JP2015026559A (ja) * 2013-07-29 2015-02-05 トヨタ自動車株式会社 非水電解質二次電池の製造方法
WO2021059728A1 (ja) * 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021100305A1 (ja) * 2019-11-19 2021-05-27 パナソニックIpマネジメント株式会社 非水電解質二次電池

Similar Documents

Publication Publication Date Title
WO2021106324A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2021241075A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022130982A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
US20230335711A1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2021100305A1 (ja) 非水電解質二次電池
WO2021039239A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021152996A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
US20230187653A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20230187629A1 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2024004710A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004687A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004720A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004686A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004676A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004626A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024029240A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024029241A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024004714A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024042852A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023145507A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023210584A1 (ja) 非水電解質二次電池
US20230216024A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2024004709A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2022138031A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2023100535A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831156

Country of ref document: EP

Kind code of ref document: A1