WO2024029241A1 - 非水電解質二次電池用正極活物質、及び非水電解質二次電池 - Google Patents

非水電解質二次電池用正極活物質、及び非水電解質二次電池 Download PDF

Info

Publication number
WO2024029241A1
WO2024029241A1 PCT/JP2023/023995 JP2023023995W WO2024029241A1 WO 2024029241 A1 WO2024029241 A1 WO 2024029241A1 JP 2023023995 W JP2023023995 W JP 2023023995W WO 2024029241 A1 WO2024029241 A1 WO 2024029241A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
transition metal
composite oxide
Prior art date
Application number
PCT/JP2023/023995
Other languages
English (en)
French (fr)
Inventor
大造 地藤
勝哉 井之上
毅 小笠原
良憲 青木
尚也 藤谷
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2024029241A1 publication Critical patent/WO2024029241A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy

Definitions

  • the present disclosure relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery.
  • Patent Document 1 discloses a lithium transition metal composite oxide containing Ca and W in a predetermined ratio in order to achieve both low-temperature output characteristics and high-temperature cycle characteristics.
  • a lithium-transition metal composite oxide with a Ni content of 75% or more has a large initial charge capacity, but tends to cause side reactions with the non-aqueous electrolyte, so the charge-discharge cycle characteristics may deteriorate.
  • the technique described in Patent Document 1 does not consider improving battery characteristics using a lithium transition metal composite oxide with a high Ni content, and there is still room for improvement.
  • An object of the present disclosure is to provide a positive electrode active material that contributes to improving the charge/discharge cycle characteristics of a nonaqueous electrolyte secondary battery.
  • M1 contains a lithium transition metal composite oxide represented by at least one element selected from the group consisting of W, Mg, Mo, Nb, Ti, Si, Al, and Zr;
  • the object includes secondary particles formed by agglomeration of primary particles, and the surface of the primary particles contains at least one element of Ca and Sr and a group consisting of W, Mo, Ti, Si, Nb, and Zr.
  • first surface modification layer containing at least one element selected from the group consisting of Al, Zr, B, W, Ti, Mg, Co, and Si on the surface of the secondary particles. It is characterized by the presence of a second surface modification layer containing at least one selected element.
  • a non-aqueous electrolyte secondary battery that is one aspect of the present disclosure is characterized by comprising a positive electrode containing the above-described positive electrode active material, a negative electrode, and a non-aqueous electrolyte.
  • the positive electrode active material for a non-aqueous electrolyte secondary battery that is one aspect of the present disclosure, it is possible to provide a non-aqueous electrolyte secondary battery with improved charge-discharge cycle characteristics.
  • FIG. 1 is a longitudinal cross-sectional view of a non-aqueous electrolyte secondary battery that is an example of an embodiment.
  • a transition metal layer and a Li layer are present in the layered structure of the lithium-transition metal composite oxide, and Li ions present in the Li layer reversibly move in and out, thereby progressing the charging/discharging reaction of the battery.
  • lithium nickelate-based lithium transition metal composite oxides containing Ni as a main component are known as high-capacity positive electrode active materials, and the Ni content in lithium transition metal composite oxides is It is preferable that the amount is 75 mol% or more based on the total number of moles of the elements.
  • the lithium transition metal composite oxide also contains 0 mol% to 15 mol% of Co, 0 mol% to 25 mol% of Mn, and 0 mol% of the total number of moles of metal elements other than Li. It can contain up to 10 mol% of M1 (M1 is at least one element selected from W, Mg, Mo, Nb, Ti, Si, Al, and Zr).
  • M1 is at least one element selected from W, Mg, Mo, Nb, Ti, Si, Al, and Zr.
  • secondary batteries using such lithium-transition metal composite oxides may have degraded charge-discharge cycle characteristics due to side reactions with non-aqueous electrolytes.
  • the present inventors found that the surface of the primary particles of lithium transition metal composite oxide contains at least one element selected from Ca and Sr, W, A first surface modification layer containing at least one element selected from the group consisting of Mo, Ti, Si, Nb, and Zr is formed, and on the surface of the secondary particles of the lithium transition metal composite oxide, By forming a second surface modification layer containing at least one element selected from the group consisting of Al, Zr, B, W, Ti, Mg, Co, and Si, charge-discharge cycle characteristics are improved. I found it. It is presumed that the second surface modification layer protects the secondary particle surface and the first surface modification layer, suppresses side reactions with the nonaqueous electrolyte, and specifically improves charge/discharge cycle characteristics.
  • a cylindrical battery in which a wound type electrode body is housed in a cylindrical exterior body is illustrated, but the electrode body is not limited to the wound type, and a plurality of positive electrodes and a plurality of negative electrodes are housed in a separator. It may also be of a laminated type in which the sheets are alternately laminated one by one. Further, the exterior body is not limited to a cylindrical shape, and may be, for example, square, coin-shaped, etc., or may be a battery case made of a laminate sheet including a metal layer and a resin layer.
  • FIG. 1 is an axial cross-sectional view of a cylindrical secondary battery 10 that is an example of an embodiment.
  • the secondary battery 10 includes a wound electrode body 14, an electrolyte, and an exterior body 16 that houses the electrode body 14 and the electrolyte.
  • the electrode body 14 includes a positive electrode 11, a negative electrode 12, and a separator 13, and has a wound structure in which the positive electrode 11 and the negative electrode 12 are spirally wound with the separator 13 in between.
  • the exterior body 16 is a bottomed cylindrical metal container with an opening on one side in the axial direction, and the opening of the exterior body 16 is closed by a sealing body 17 .
  • the sealing body 17 side of the battery will be referred to as the top
  • the bottom side of the exterior body 16 will be referred to as the bottom.
  • the positive electrode 11, the negative electrode 12, and the separator 13 that constitute the electrode body 14 are all rectangular elongated bodies, and are wound in a spiral shape in the longitudinal direction so that they are arranged alternately in the radial direction of the electrode body 14. Laminated. Separator 13 isolates positive electrode 11 and negative electrode 12 from each other.
  • the negative electrode 12 is formed to be one size larger than the positive electrode 11 in order to prevent precipitation of lithium. That is, the negative electrode 12 is formed longer than the positive electrode 11 in the longitudinal and lateral directions.
  • the two separators 13 are formed to be at least one size larger than the positive electrode 11, and are arranged to sandwich the positive electrode 11, for example.
  • the electrode body 14 includes a positive electrode lead 20 connected to the positive electrode 11 by welding or the like, and a negative electrode lead 21 connected to the negative electrode 12 by welding or the like.
  • the longitudinal direction of the positive electrode 11 and the negative electrode 12 is the winding direction
  • the lateral direction of the positive electrode 11 and the negative electrode 12 is the axial direction. That is, the end surfaces of the positive electrode 11 and the negative electrode 12 in the lateral direction form the end surfaces of the electrode body 14 in the axial direction.
  • Insulating plates 18 and 19 are arranged above and below the electrode body 14, respectively.
  • the positive electrode lead 20 passes through the through hole of the insulating plate 18 and extends toward the sealing body 17, and the negative electrode lead 21 passes through the outside of the insulating plate 19 and extends toward the bottom side of the exterior body 16.
  • the positive electrode lead 20 is connected by welding or the like to the lower surface of the internal terminal plate 23 of the sealing body 17, and the cap 27, which is the top plate of the sealing body 17 and electrically connected to the internal terminal plate 23, serves as a positive electrode terminal.
  • the negative electrode lead 21 is connected to the bottom inner surface of the exterior body 16 by welding or the like, and the exterior body 16 serves as a negative electrode terminal.
  • a gasket 28 is provided between the exterior body 16 and the sealing body 17 to ensure airtightness inside the battery.
  • the exterior body 16 is formed with a grooved portion 22 that supports the sealing body 17 and has a part of the side surface protruding inward.
  • the grooved portion 22 is preferably formed in an annular shape along the circumferential direction of the exterior body 16, and supports the sealing body 17 on its upper surface.
  • the sealing body 17 is fixed to the upper part of the exterior body 16 by the grooved portion 22 and the open end of the exterior body 16 caulked to the sealing body 17 .
  • the sealing body 17 has a structure in which an internal terminal plate 23, a lower valve body 24, an insulating member 25, an upper valve body 26, and a cap 27 are laminated in order from the electrode body 14 side.
  • Each member constituting the sealing body 17 has, for example, a disk shape or a ring shape, and each member except the insulating member 25 is electrically connected to each other.
  • the lower valve body 24 and the upper valve body 26 are connected at their respective central portions, and an insulating member 25 is interposed between their respective peripheral portions.
  • the positive electrode 11, negative electrode 12, separator 13, and non-aqueous electrolyte that constitute the secondary battery 10 will be explained in detail, especially the positive electrode 11.
  • the positive electrode 11 includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer is preferably formed on both sides of the positive electrode current collector.
  • a metal foil such as aluminum or an aluminum alloy that is stable in the potential range of the positive electrode 11, a film having the metal disposed on the surface, or the like can be used.
  • the thickness of the positive electrode current collector is, for example, 10 ⁇ m to 30 ⁇ m.
  • the positive electrode mixture layer includes, for example, a positive electrode active material, a conductive agent, and a binder.
  • the thickness of the positive electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the positive electrode current collector.
  • the positive electrode 11 can be made, for example, by coating a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, etc. on the surface of a positive electrode current collector, drying the coating film, and then rolling the positive electrode mixture layer to form a positive electrode current collector. It can be produced by forming it on both sides of.
  • Examples of the conductive agent contained in the positive electrode mixture layer include carbon-based particles such as carbon black (CB), acetylene black (AB), Ketjen black, carbon nanotubes (CNT), graphene, and graphite. These may be used alone or in combination of two or more.
  • binder contained in the positive electrode mixture layer examples include fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyimide resins, acrylic resins, polyolefin resins, and polyacrylonitrile ( PAN), etc. These may be used alone or in combination of two or more.
  • fluororesins such as polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF), polyimide resins, acrylic resins, polyolefin resins, and polyacrylonitrile ( PAN), etc. These may be used alone or in combination of two or more.
  • the positive electrode active material contained in the positive electrode mixture layer contains a lithium transition metal composite oxide.
  • the lithium transition metal composite oxide includes secondary particles formed by agglomeration of primary particles.
  • the particle size of the primary particles constituting the secondary particles of the lithium transition metal composite oxide is, for example, 0.02 ⁇ m to 2 ⁇ m.
  • the particle size of a primary particle is measured as the diameter of a circumscribed circle in a particle image observed by a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the average particle diameter of the secondary particles of the lithium transition metal composite oxide is, for example, 2 ⁇ m to 30 ⁇ m.
  • the average particle diameter means the volume-based median diameter (D50).
  • D50 means a particle size at which the cumulative frequency is 50% from the smallest particle size in the volume-based particle size distribution, and is also called the median diameter.
  • the particle size distribution of the secondary particles of the lithium-transition metal composite oxide can be measured using a laser diffraction type particle size distribution measuring device (for example, MT3000II manufactured by Microtrac Bell Co., Ltd.) using water as a dispersion medium.
  • the lithium transition metal composite oxide has a layered structure.
  • the layered structure of the lithium transition metal composite oxide include a layered structure belonging to space group R-3m, a layered structure belonging to space group C2/m, and the like.
  • the lithium transition metal composite oxide preferably has a layered structure belonging to space group R-3m from the viewpoint of high capacity and stability of crystal structure.
  • the layered structure of the lithium-transition metal composite oxide may include a transition metal layer and a Li layer.
  • the content of metal elements contained in the lithium-transition metal composite oxide is measured, for example, by inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Ni content in the lithium transition metal composite oxide By setting the Ni content in the lithium transition metal composite oxide to 75 mol% to 95 mol%, a high capacity battery can be obtained.
  • the content of Co in the lithium transition metal composite oxide is 0 mol% to 15 mol%, and Co is an optional component. In other words, the lithium transition metal composite oxide does not need to contain Co. By containing Co, the lithium transition metal composite oxide can improve the heat resistance of the battery.
  • the content of Mn in the lithium transition metal composite oxide is 0 mol% to 25 mol%, and Mn is an optional component. In other words, the lithium transition metal composite oxide does not need to contain Mn.
  • the crystal structure of the lithium transition metal composite oxide can be stabilized by containing Mn.
  • the content of M1 (M1 is at least one element selected from the group consisting of W, Mg, Mo, Nb, Ti, Si, Al, and Zr) in the lithium transition metal composite oxide is 0 mol % to 10 mol %. %, and M1 is an optional component. In other words, the lithium transition metal composite oxide does not need to contain M1.
  • the surface of the primary particles of the lithium transition metal composite oxide contains at least one element of Ca and Sr (hereinafter referred to as "M2") and an element selected from the group consisting of W, Mo, Ti, Si, Nb, and Zr.
  • M2 Ca and Sr
  • M3 a first surface modification layer containing at least one element
  • the surface of a primary particle includes the surface of a secondary particle, and specifically means the surface of a secondary particle and the interface between primary particles.
  • the first surface modification layer may be present in a dotted manner so as to cover at least a portion of the surface of the primary particle, or may be present so as to cover the entire surface of the primary particle.
  • the total amount of M2 contained in the first surface modification layer is preferably 3 mol% or less, more preferably 1 mol%, based on the total molar amount of metal elements other than Li in the lithium transition metal composite oxide. It is not more than 0.5 mol%, more preferably not more than 0.5 mol%.
  • the lower limit of the total amount of M2 is, for example, 0.01 mol%.
  • the total amount of M3 contained in the first surface modification layer is 2 mol% or less, more preferably 1 mol% or less, based on the total molar amount of metal elements other than Li in the lithium transition metal composite oxide.
  • the content is more preferably 0.5 mol% or less.
  • the lower limit of the total amount of M3 is, for example, 0.01 mol%.
  • the presence of the first surface modification layer on the surface of the primary particle of the lithium transition metal composite oxide, the presence of M2 contained in the first surface modification layer, and the presence of M3 contained in the first surface modification layer are determined by TEM. - It can be confirmed by measuring the cross section of the secondary particles of the lithium transition metal composite oxide using EDX (transmission microscope - energy dispersive X-ray spectroscopy). Further, the total amount of M2 and the total amount of M3 can each be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • M2 compound On the surface of the primary particles of the lithium transition metal composite oxide, a compound containing M2 (hereinafter referred to as "M2 compound”) and a compound containing M3 (hereinafter referred to as “M3 compound”) are present, respectively. , may be fixed.
  • M2 compound include M2-containing oxides, hydroxides, carbonates, and the like.
  • M3 compound examples include M3-containing oxides, hydroxides, carbonates, sulfates, and the like.
  • the surface of the primary particles of the lithium transition metal composite oxide has the general formula M2 ⁇ M3 ⁇ O ⁇ (wherein 1 ⁇ 2, 1 ⁇ 5, 4 ⁇ 9, M2 is from Ca and Sr).
  • a compound represented by at least one selected element (M3 is at least one element selected from W, Mo, Ti, Si, Nb, and Zr) (hereinafter referred to as "M2 ⁇ M3 ⁇ O ⁇ compound”) ) may be fixed.
  • M2 ⁇ M3 ⁇ O ⁇ compound an M2 compound, an M3 compound, and an M2 ⁇ M3 ⁇ O ⁇ compound may coexist on the surface of the primary particles of the lithium-transition metal composite oxide.
  • the M2 ⁇ M3 ⁇ O ⁇ compound may be scattered on the surfaces of the primary particles and secondary particles of the lithium transition metal composite oxide, or may be formed in a layered manner so as to broadly cover the surfaces of the primary particles and secondary particles. May exist. That is, the M2 ⁇ M3 ⁇ O ⁇ compound is widely present on the surface of the primary particle, both inside and on the surface of the secondary particle.
  • the secondary particles of the lithium transition metal composite oxide are formed by, for example, agglomeration of five or more primary particles, and the surface area of the primary particles is larger inside the secondary particles than on the surface thereof.
  • the M2 ⁇ M3 ⁇ O ⁇ compound is contained more in the interior of the secondary particle than on the surface.
  • M2 ⁇ M3 ⁇ O ⁇ compounds include CaWO 4 , CaMoO 3 , CaMoO 4 , CaTiO 3 , Ca 2 TiO 4 , CaSiO 3 , Ca 2 SiO 4 , CaNbO 3 , CaNb 2 O 6 , CaZrO 3 , CaZ r 4 O9 , SRMOO 3 , SRMOO 4 , SRMOO 4 , SRTIO 3 , SR 2 TIO 4 , SRSIO 3 , SR 2 SIO 4 , SRNBO 3 , SRNB 2 O6 , SRZRO 3 , SRZR 4 O9 .
  • At least one element selected from the group consisting of Al, Zr, B, W, Ti, Mg, Co, and Si (hereinafter referred to as "M4") is present on the surface of the secondary particles of the lithium transition metal composite oxide.
  • M4 At least one element selected from the group consisting of Al, Zr, B, W, Ti, Mg, Co, and Si (hereinafter referred to as "M4") is present on the surface of the secondary particles of the lithium transition metal composite oxide.
  • M4 At least one element selected from the group consisting of Al, Zr, B, W, Ti, Mg, Co, and Si
  • M4 a second surface modification layer containing.
  • Al, Zr, B, W, Ti, and Si are more preferable.
  • the second surface modification layer is formed after the first surface modification layer, so even if the second surface modification layer is formed on the first surface modification layer on the surface of the secondary particle. good.
  • the second surface modification layer may be present in a dotted manner so as to cover at least a portion
  • the total amount of M4 contained in the second surface modification layer is preferably 2 mol % or less with respect to the total molar amount of metal elements other than Li in the lithium transition metal composite oxide.
  • the lower limit of the total amount of M4 is, for example, 0.01 mol%.
  • the presence of the second surface modification layer on the surface of the secondary particles of the lithium transition metal composite oxide and the presence of M4 contained in the second surface modification layer were determined using TEM-EDX. This can be confirmed by measuring the cross section of the secondary particles. Note that it may be difficult to confirm the presence of the second surface modification layer when the amount of the M4 raw material added is small or depending on the state of the coating. At that time, the presence of the second surface modification layer can be inferred by confirming the presence of the second surface modification layer in a sample with a large amount of M4 raw material added. Further, the total amount of M4 can be measured, for example, by inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • the positive electrode mixture layer may contain other positive electrode active materials in addition to the positive electrode active material of this embodiment described above.
  • Other positive electrode active materials include, for example, lithium transition metal composite oxides having a Ni content of 0 mol% or more and less than 75 mol%.
  • the manufacturing process of the positive electrode active material includes a first step of mixing a composite oxide and a Li compound etc. to obtain a mixture, a second step of firing the mixture, and a third step of washing the fired product with water and drying it by heating.
  • a first surface modification layer containing M2 and M3 can be formed on the surface of the primary particles of the lithium transition metal composite oxide.
  • lithium transition metal A second surface modification layer containing M4 can be formed on the surface of the secondary particles of the composite oxide.
  • M1 is A metal oxide containing at least one element selected from W, Mg, Mo, Nb, Ti, Si, Al, and Zr), a Li compound, an M2 raw material, and an M3 raw material are mixed to form a mixture. obtain.
  • metal oxides can be prepared by dropping an alkaline solution such as sodium hydroxide while stirring a solution of a metal salt containing Ni and any metal element (Co, Mn, etc.) to adjust the pH to the alkaline side (e.g. 8.5). ⁇ 12.5), a composite hydroxide containing Ni and any metal element is precipitated (co-precipitated), and the composite hydroxide can be obtained by heat treatment.
  • the heat treatment temperature is not particularly limited, but is, for example, in the range of 300°C to 600°C.
  • Li compound examples include Li 2 CO 3 , LiOH, Li 2 O 2 , Li 2 O, LiNO 3 , LiNO 2 , Li 2 SO 4 , LiOH ⁇ H 2 O, LiH, LiF, and the like.
  • the mixing ratio of the metal oxide and the Li compound is such that it is easy to adjust each of the above parameters to the range specified above.
  • the total amount of metal elements in the metal oxide and the molar ratio of Li to The ratio is preferably in the range of 1:0.98 to 1:1.1.
  • M2 raw materials include Ca(OH) 2 , CaO, CaCO 3 , CaSO 4 , Ca(NO 3 ) 2 , Sr(OH) 2 , Sr (OH) 2.8H 2 O, Sr(OH) 2 .
  • examples include H 2 O, SrO, SrCO 3 , SrSO 4 , Sr(NO 3 ) 2, etc., but in order to reduce the amount of moisture generated during firing, they may be used after drying and dehydration. Further, these compounds may be pulverized to a particle size of 0.1 to 20 ⁇ m.
  • M3 at least one element selected from the group consisting of W, Mo, Ti, Si, Nb, and Zr
  • these compounds may be pulverized to a particle size of 0.1 to 20 ⁇ m.
  • the metal oxide and the M2 raw material are preferably mixed at a ratio such that, for example, the molar ratio between the total amount of metal elements in the metal oxide and the M2 element is 1:0.0001 to 1:0.03.
  • M2 raw materials When using multiple types of M2 raw materials, they are mixed so that the total amount of M2 contained in the compound satisfies the ratio.
  • the metal oxide and the M3 raw material are preferably mixed at a ratio such that, for example, the molar ratio of the total amount of metal elements in the metal oxide to the M3 element is 1:0.0001 to 1:0.02.
  • they are mixed so that the total amount of M3 contained in the compound satisfies the ratio.
  • the above mixture is fired in an oxygen atmosphere to obtain a fired product.
  • the firing conditions are such that the temperature increase rate is in the range of more than 1.0°C/min and less than 5.5°C/min at 450°C or more and 680°C or less, and the maximum temperature reached is in the range of 700°C or more and 980°C or less. There may be.
  • the temperature increase rate from over 680°C to the maximum temperature reached may be, for example, 0.1°C/min to 3.5°C/min. Further, the maximum temperature reached may be maintained for 1 hour or more and 10 hours or less.
  • this firing step may be a multi-stage firing, and a plurality of first temperature increase rates and second temperature increase rates may be set for each temperature range as long as they are within the ranges defined above.
  • the M4 raw material is added to the cake-like composition obtained by washing the baked product with water, and heat treatment is performed.
  • a second surface modification layer containing M4 can be formed on the surface of the secondary particles of the lithium transition metal composite oxide.
  • Water washing and heat treatment can be performed using known methods and conditions.
  • the heat treatment is performed, for example, in a vacuum, in an oxygen stream, or in the atmosphere at a temperature of 150° C. to 600° C. for 1 hour to 5 hours.
  • the M4 raw material can be added to the cake composition before or during heat treatment.
  • M4 raw materials include tungsten oxide (WO 3 ), lithium tungstate (Li 2 WO 4 , Li 4 WO 5 , Li 6 W 2 O 9 ), boric acid (H 3 BO 3 ), and lithium borate (Li 2 B 4 O 7 , Li 3 BO 3 , LiB 3 O 5 , LiBO 2 ), aluminum oxide (Al 2 O 3 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), zirconium oxide (ZrO 2 ), zirconium sulfate (Zr(SO 4 ) 2 ), titanium oxide (TiO 2 ), titanium hydroxide Ti(OH) 4 , magnesium oxide (MgO), magnesium hydroxide (Mg(OH) 2 ), cobalt oxide (CoO , Co 3 O 4 ), cobalt sulfate (CoSO 4 ), silicon dioxide (SiO 2 ), silicon monoxide (SiO), and the like
  • the M4 raw material is preferably an alkaline water-soluble oxide or metal salt containing Li salt contained in the cake-like composition.
  • the M4 raw material may be added not only as a solid but also as an aqueous solution, for example, by dissolving it in an acid or the like.
  • the addition method may be by dropping or spraying onto the cake-like composition, and spraying is preferable in order to efficiently cover the surfaces of the secondary particles.
  • the M4 raw material is added to the lithium transition metal composite oxide after water washing and heat treatment, rather than to a cake-like composition obtained by washing with water, and then again in a vacuum or in an oxygen stream.
  • the calcination may be performed in the air at a temperature of 150° C. to 600° C. for 1 hour to 5 hours.
  • the amount of the M4 raw material added is adjusted so that the ratio of M4 to the total molar amount of metal elements other than Li contained in the metal oxide is, for example, 0.01 mol% to 2 mol%.
  • they are added so that the total amount of M4 to be added satisfies the ratio.
  • the negative electrode 12 includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer is preferably formed on both sides of the negative electrode current collector.
  • a metal foil such as copper or copper alloy that is stable in the potential range of the negative electrode 12, a film having the metal disposed on the surface layer, or the like can be used.
  • the thickness of the negative electrode current collector is, for example, 5 ⁇ m to 30 ⁇ m.
  • the negative electrode mixture layer includes, for example, a negative electrode active material and a binder. The thickness of the negative electrode mixture layer is, for example, 10 ⁇ m to 150 ⁇ m on one side of the negative electrode current collector.
  • the negative electrode 12 is made by applying a negative electrode mixture slurry containing a negative electrode active material, a binder, etc. to the surface of a negative electrode current collector, drying the coating film, and then rolling the negative electrode mixture layer to form a negative electrode current collector. It can be made by forming it on both sides of the body.
  • the negative electrode active material contained in the negative electrode mixture layer is not particularly limited as long as it can reversibly absorb and release lithium ions, and carbon materials such as graphite are generally used.
  • the graphite may be natural graphite such as flaky graphite, lumpy graphite, or earthy graphite, or artificial graphite such as lumpy artificial graphite or graphitized mesophase carbon microbeads.
  • metals that alloy with Li such as Si and Sn, metal compounds containing Si, Sn, etc., lithium titanium composite oxide, etc. may be used.
  • those provided with a carbon coating may also be used.
  • fine particles of Si may be present in a Si-containing compound represented by SiO x (0.5 ⁇ x ⁇ 1.6) or in a lithium silicate phase represented by Li 2y SiO (2+y) (0 ⁇ y ⁇ 2).
  • a dispersed Si-containing compound or the like may be used in combination with graphite.
  • binder contained in the negative electrode mixture layer examples include styrene-butadiene rubber (SBR), nitrile-butadiene rubber (NBR), carboxymethyl cellulose (CMC) or its salt, polyacrylic acid (PAA) or its salt (PAA), etc. -Na, PAA-K, etc. (may also be partially neutralized salts), polyvinyl alcohol (PVA), and the like. These may be used alone or in combination of two or more.
  • a porous sheet having ion permeability and insulation properties is used.
  • porous sheets include microporous thin films, woven fabrics, and nonwoven fabrics.
  • Suitable materials for the separator include polyolefins such as polyethylene and polypropylene, cellulose, and the like.
  • the separator 13 may have a single layer structure or a laminated structure. Further, the surface of the separator 13 may be provided with a resin layer having high heat resistance such as an aramid resin, and a filler layer containing an inorganic compound filler.
  • the non-aqueous electrolyte includes, for example, a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include esters, ethers, nitriles such as acetonitrile, amides such as dimethylformamide, and mixed solvents of two or more of these.
  • the non-aqueous solvent may contain a halogen-substituted product in which at least a portion of hydrogen in these solvents is replaced with a halogen atom such as fluorine.
  • halogen-substituted product examples include fluorinated cyclic carbonate esters such as fluoroethylene carbonate (FEC), fluorinated chain carbonate esters, fluorinated chain carboxylic acid esters such as methyl fluoropropionate (FMP), and the like.
  • FEC fluoroethylene carbonate
  • FMP fluorinated chain carboxylic acid esters
  • esters examples include cyclic carbonate esters such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate, dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), and methylpropyl carbonate.
  • chain carbonate esters such as ethylpropyl carbonate and methyl isopropyl carbonate
  • cyclic carboxylic acid esters such as ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL), methyl acetate, ethyl acetate, propyl acetate, and methyl propionate (MP).
  • chain carboxylic acid esters such as ethyl propionate (EP), and the like.
  • ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4 - Cyclic ethers such as dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether, 1,2-dimethoxyethane, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether , dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, butylphenyl ether, pentylphenyl ether, methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl
  • the electrolyte salt is a lithium salt.
  • lithium salts include LiBF4 , LiClO4 , LiPF6 , LiAsF6 , LiSbF6 , LiAlCl4 , LiSCN, LiCF3SO3 , LiCF3CO2 , Li(P( C2O4 ) F4 ) , LiPF 6-x (C n F 2n+1 ) x (1 ⁇ x ⁇ 6, n is 1 or 2), LiB 10 Cl 10 , LiCl, LiBr, LiI, chloroborane lithium, lower aliphatic carboxylic acid lithium, Li 2 B 4 O 7 , borates such as Li(B(C 2 O 4 )F 2 ), LiN(SO 2 CF 3 ) 2 , LiN(C 1 F 2l+1 SO 2 )(C m F 2m+1 SO 2 ) ⁇ l , m is an integer of 0 or more ⁇ .
  • the lithium salts may be used alone or in combination.
  • LiPF 6 is preferably used from the viewpoint of ionic conductivity, electrochemical stability, etc.
  • the concentration of the lithium salt is, for example, 0.5 mol to 2 mol per liter of nonaqueous solvent.
  • vinylene carbonate or propane sultone additives may be added.
  • Example 1-1 [Preparation of positive electrode active material]
  • the composite hydroxide represented by [Ni 0.90 Co 0.05 Mn 0.05 ](OH) 2 obtained by the coprecipitation method was calcined at 500°C for 8 hours to form a metal oxide (Ni 0.90 Co 0.05 Mn 0.05 O 2 ) was obtained.
  • lithium oxide, the metal oxide, calcium hydroxide, and tungsten oxide were mixed in a molar ratio of Li, total amount of Ni, Co, and Mn, Ca, and W to 1.03:1:0. 0025:0.005 to obtain a mixture (first step).
  • This mixture was heated from room temperature to 650°C at a heating rate of 2.0°C/min under an oxygen stream with an oxygen concentration of 95% (2 mL/min per 10 cm 3 and a flow rate of 5 L/min per 1 kg of mixture).
  • the product was fired from 650°C to 780°C at a temperature increase rate of 0.5°C/min to obtain a fired product (second step).
  • Water was added to this baked product so that the slurry concentration was 1500 g/L, stirred for 15 minutes, and filtered to obtain a cake-like composition. Powdered H 3 BO 3 was added to this cake-like composition.
  • the amount of H 3 BO 3 added was adjusted so that the molar ratio of B was 0.1 mol % with respect to the total amount of Ni, Co, and Mn contained in the lithium transition metal composite oxide.
  • a drying step was performed at 180° C. for 2 hours in a vacuum atmosphere to obtain the positive electrode active material of Example 1 (third step).
  • the elements shown in Table 1 below were confirmed as elements other than Li, O, and impurity elements. Furthermore, it was confirmed by TEM-EDX that a first surface modification layer containing Ca and W was present on the surface of the secondary particles and at the interface between the primary particles inside the secondary particles. As a result of identifying the compound present in the first surface modification layer by synchrotron radiation X-ray diffraction measurement, the presence of CaWO 4 was confirmed. Furthermore, it was confirmed by TEM-EDX that a second surface modification layer containing B was present on the surface of the secondary particles.
  • Preparation of positive electrode Mix 95 parts by mass of the above positive electrode active material, 3 parts by mass of acetylene black (AB), and 2 parts by mass of polyvinylidene fluoride (PVDF), and further add an appropriate amount of N-methyl-2-pyrrolidone (NMP).
  • a positive electrode mixture slurry was prepared.
  • the positive electrode mixture slurry is applied to both sides of a positive electrode current collector made of aluminum foil, and after the coating film is dried, the coating film is rolled using a rolling roller and cut into a predetermined electrode size to produce a positive electrode. did. Note that an exposed portion where the surface of the positive electrode current collector was exposed was provided in a part of the positive electrode.
  • Natural graphite was used as the negative electrode active material.
  • a negative electrode active material, sodium carboxymethyl cellulose (CMC-Na), and styrene-butadiene rubber (SBR) were mixed in an aqueous solution at a solid content mass ratio of 100:1:1 to prepare a negative electrode mixture slurry.
  • the negative electrode mixture slurry is applied to both sides of a negative electrode current collector made of copper foil, and after the coating film is dried, the coating film is rolled using a rolling roller and cut into a predetermined electrode size to produce a negative electrode. did. Note that an exposed portion where the surface of the negative electrode current collector was exposed was provided in a part of the negative electrode.
  • Ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 3:3:4.
  • a nonaqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) in the mixed solvent to a concentration of 1.2 mol/liter.
  • a positive electrode lead is attached to the exposed part of the positive electrode, and a negative electrode lead is attached to the exposed part of the negative electrode, and the positive and negative electrodes are spirally wound through a polyolefin separator, and then press-formed in the radial direction to form a flat winding.
  • a circular electrode body was produced. This electrode body was housed in an exterior body made of an aluminum laminate sheet, and after the nonaqueous electrolyte was injected, the opening of the exterior body was sealed to obtain a test cell.
  • Examples 1-2 to 1-4> In the third step of producing the positive electrode active material, the amount of H 3 BO 3 added was adjusted so that the molar ratio of B was 0.5 mol %, 1.0 mol %, and 2.0 mol %, respectively. Except for this, a test cell was prepared and evaluated in the same manner as in Example 1-1.
  • Example 1-5> In the third step of preparing the positive electrode active material, Al 2 (SO 4 ) 3.16H 2 O (hereinafter referred to as Al 2 (SO 4 ) 3 without water of hydration) was added instead of H 3 BO 3 . However, except that the amount of Al 2 (SO 4 ) 3 added was adjusted so that the molar ratio of Al to the total amount of Ni, Co, and Mn contained in the lithium transition metal composite oxide was 0.1 mol%. A test cell was prepared and evaluated in the same manner as in Example 1. It was confirmed by TEM-EDX that a second surface modification layer containing Al was present on the surface of the secondary particles.
  • Examples 1-6 to 1-8> In the third step of preparing the positive electrode active material, the amount of Al 2 (SO 4 ) 3 added was adjusted so that the molar ratio of Al was 0.5 mol%, 1.0 mol%, and 2.0 mol%, respectively. A test cell was prepared and evaluated in the same manner as in Example 1-5, except for the adjustment.
  • Example 1-9 In the third step of preparing the positive electrode active material, Zr(SO 4 ) 2.4H 2 O (hereinafter referred to as Zr(SO 4 ) 2 without water of hydration) is added instead of H 3 BO 3 , Example except that the amount of Zr(SO 4 ) 2 added was adjusted so that the molar ratio of Zr to the total amount of Ni, Co, and Mn contained in the lithium transition metal composite oxide was 0.1 mol%.
  • a test cell was prepared and evaluated in the same manner as in 1-1. It was confirmed by TEM-EDX that a second surface modification layer containing Zr was present on the surface of the secondary particles.
  • Examples 1-10 to 1-12> In the third step of producing the positive electrode active material, the amount of Zr(SO 4 ) 2 added was adjusted so that the molar ratio of Zr was 0.5 mol%, 1.0 mol%, and 2.0 mol%, respectively. A test cell was prepared and evaluated in the same manner as in Example 1-9 except for the above.
  • Example 1-13> In the third step of preparing the positive electrode active material, WO 3 is added instead of H 3 BO 3 so that the molar ratio of W to the total amount of Ni, Co, and Mn contained in the lithium transition metal composite oxide is 0.
  • a test cell was prepared and evaluated in the same manner as in Example 1-1, except that the amount of WO 3 added was adjusted to 1 mol %. It was confirmed by TEM-EDX that a second surface modification layer containing W was present on the surface of the secondary particles. Note that a first surface modification layer is formed on the surface of the secondary particle by TEM-EDX, and a second surface modification layer is formed on the first surface modification layer on the surface of the secondary particle. It was confirmed.
  • Examples 1-14 to 1-16> Except that in the third step of preparing the positive electrode active material, the amount of WO3 added was adjusted so that the molar ratio of W was 0.5 mol%, 1.0 mol%, and 2.0 mol%, respectively. A test cell was prepared and evaluated in the same manner as in Example 1-13.
  • Example 1-17> In the third step of preparing the positive electrode active material, a 30% by mass titanium sulfate (Ti(SO 4 ) 2 ) aqueous solution is added instead of H 3 BO 3 to remove Ni and Co contained in the lithium transition metal composite oxide.
  • Ti(SO 4 ) 2 titanium sulfate
  • a test cell was prepared and evaluated in the same manner as in Example 1-1, except that the amount of titanium sulfate aqueous solution added was adjusted so that the molar ratio of Ti to the total amount of Mn was 0.1 mol%. Ta. It was confirmed by TEM-EDX that a second surface modification layer containing Ti was present on the surface of the secondary particles.
  • Examples 1-18 to 1-20> Except that in the third step of preparing the positive electrode active material, the amount of the titanium sulfate aqueous solution was adjusted so that the molar ratio of Ti was 0.5 mol%, 1.0 mol%, and 2.0 mol%, respectively. A test cell was prepared and evaluated in the same manner as in Example 1-17.
  • Example 1-1 A test cell was prepared and evaluated in the same manner as in Example 1-1 except that H 3 BO 3 was not added in the third step of preparing the positive electrode active material.
  • Example 2-1 to 2-5 Comparative Example 2-1> Examples 1-2 and 1-, respectively, except that in the first step of preparing the positive electrode active material, the amount of Ca(OH) 2 added was adjusted so that the molar ratio of Ca was 0.5 mol%.
  • Test cells were prepared and evaluated in the same manner as in Examples 6, 1-10, 1-14, 1-18, and Comparative Example 1-1. As a result of identifying the compound present in the first surface modification layer by synchrotron radiation X-ray diffraction measurement, the presence of CaWO 4 was confirmed.
  • Example 4-1 ⁇ Examples 4-1 to 4-5, Comparative Example 4-1>
  • Sr(OH) 2 is added instead of Ca(OH) 2 to increase the mole of Sr based on the total amount of Ni, Co, and Mn contained in the lithium transition metal composite oxide.
  • a test cell was prepared and evaluated in the same manner as in Comparative Example 1-1. It was confirmed by TEM-EDX that a first surface modification layer containing Sr and W was present on the surface of the secondary particles and at the interface between the primary particles inside the secondary particles. As a result of identifying the compound present in the first surface modification layer by synchrotron radiation X-ray diffraction measurement, the presence of SrWO 4 was confirmed.
  • Test cells were prepared and evaluated in the same manner as in Examples 1-10, 1-14, 1-18, and Comparative Examples 1-1 to 1-7.
  • Table 1 shows the capacity retention rates of the test cells of Examples and Comparative Examples. Table 1 also shows the composition of the lithium-transition metal composite oxide, the amounts of Ca or Sr and W added in the first step, and the elements and amounts added in the third step.
  • the capacity retention rates of the test cells of Examples 1-1 to 1-20 and Comparative Examples 1-1 to 1-6 shown in Table 1 are relative, with the capacity retention rate of the test cell of Comparative Example 1-7 being 100. It is expressed in terms of The capacity retention rates of the test cells of Examples 2-1 to 2-5 and Comparative Example 2-1 shown in Table 2 are expressed relative to the capacity retention rate of the test cell of Comparative Example 1-7 as 100. It is something.
  • the capacity retention rates of the test cells of Examples 3-1 to 3-5 and Comparative Examples 3-1 to 3-6 shown in Table 3 are relative, with the capacity retention rate of the test cell of Comparative Example 3-7 being 100. It is expressed in terms of The capacity retention rates of the test cells of Examples 4-1 to 4-5 and Comparative Example 4-1 shown in Table 4 are expressed relative to the capacity retention rate of the test cell of Comparative Example 1-7 as 100. It is something.
  • the capacity retention rates of the test cells of Examples 5-1 to 5-5 and Comparative Examples 5-1 to 5-6 shown in Table 5 are relative, with the capacity retention rate of the test cell of Comparative Example 5-7 being 100. It is expressed in terms of
  • the test cells of Examples had higher capacity retention rates than the test cells of Comparative Examples. Therefore, in a lithium-transition metal composite oxide having a predetermined composition, the surface of the primary particles contains at least one element selected from Ca and Sr, and W, Mo, Ti, Si, Nb, and Zr.
  • a first surface modification layer containing at least one element selected from the group consisting of Al, Zr, B, W, Ti, Mg, Co, and Si is formed on the surface of the secondary particles. It can be seen that the charge/discharge cycle characteristics are improved by forming the second surface modification layer containing at least one element selected from the above.
  • the lithium transition metal composite oxide includes secondary particles formed by agglomeration of primary particles, A first surface modification containing at least one element of Ca and Sr and at least one element selected from the group consisting of W, Mo, Ti, Si, Nb, and Zr on the surface of the primary particles.
  • a second surface modification layer containing at least one element selected from the group consisting of Al, Zr, B, W, Ti, Mg, Co, and Si is present on the surface of the secondary particles.
  • Positive electrode active material for water electrolyte secondary batteries Configuration 2: According to configuration 1, the total amount of Ca and Sr contained in the first surface modification layer is 3 mol% or less with respect to the total molar amount of metal elements other than Li in the lithium transition metal composite oxide. positive electrode active material for non-aqueous electrolyte secondary batteries.
  • Configuration 3 The total amount of W, Mo, Ti, Si, Nb, and Zr contained in the first surface modification layer is 2 mol% with respect to the total molar amount of metal elements other than Li in the lithium transition metal composite oxide.
  • Configuration 4 The total amount of Al, Zr, B, W, Ti, Mg, Co, and Si contained in the second surface modification layer is based on the total molar amount of metal elements other than Li in the lithium transition metal composite oxide.
  • Configuration 5 The surface of the primary particles has a compound having the general formula M2 ⁇ M3 ⁇ O ⁇ (wherein 1 ⁇ 2, 1 ⁇ 5, 4 ⁇ 9, M2 is at least one element of Ca and Sr, M3 is a compound represented by at least one element selected from the group consisting of W, Mo, Ti, Si, Nb and Zr) is fixed thereto, Positive electrode active material for electrolyte secondary batteries.
  • Configuration 6 A non-aqueous electrolyte secondary battery comprising a positive electrode containing the positive electrode active material for a non-aqueous electrolyte secondary battery according to any one of configurations 1 to 5, a negative electrode, and a non-aqueous electrolyte.

Abstract

非水電解質二次電池の充放電サイクル特性の向上に寄与する正極活物質を提供する。この非水電解質二次電池に含まれる正極活物質は、層状構造を有し、所定の組成を有するリチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子を含み、一次粒子の表面には、Ca及びSrの少なくとも一方の元素と、W、Mo、Ti、Si、Nb、及びZrからなる群より選ばれた少なくとも1種の元素とを含有する第1表面修飾層が存在し、二次粒子の表面には、Al、Zr、B、W、Ti、Mg、Co、及びSiからなる群より選ばれた少なくとも1種の元素を含有する第2表面修飾層が存在する。

Description

非水電解質二次電池用正極活物質、及び非水電解質二次電池
 本開示は、非水電解質二次電池用正極活物質、及び非水電解質二次電池に関する。
 近年、非水電解質二次電池は、電気自動車用の電源や、自然エネルギーを活用するための蓄電装置などへ用途が拡大している。非水電解質二次電池に使用される正極活物質に求められる特性も用途に応じて変化する。例えば、特許文献1には、低温出力特性と高温サイクル特性を両立させるために、Ca及びWを所定の割合で含有したリチウム遷移金属複合酸化物が開示されている。
国際公開第2012/035664号
 Niの含有率が75%以上のリチウム遷移金属複合酸化物は、初期充電容量は大きいが、非水電解質と副反応を起こしやすいので、充放電サイクル特性が低下する場合がある。特許文献1に記載の技術は、Niの含有率が高いリチウム遷移金属複合酸化物を用いた電池特性の向上については検討しておらず、未だ改善の余地がある。
 本開示の目的は、非水電解質二次電池の充放電サイクル特性の向上に寄与する正極活物質を提供することである。
 本開示の一態様である非水電解質二次電池用正極活物質は、層状構造を有し、一般式LiNiCoMnM12-y(式中、0.95≦x≦1.05、0.75≦a≦0.95、0≦b≦0.15、0≦c≦0.25、0≦d≦0.10、0≦y<0.05、a+b+c+d=1、M1はW、Mg、Mo、Nb、Ti、Si、Al、及びZrからなる群より選ばれた少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物を含み、リチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子を含み、一次粒子の表面には、Ca及びSrの少なくとも一方の元素と、W、Mo、Ti、Si、Nb、及びZrからなる群より選ばれた少なくとも1種の元素とを含有する第1表面修飾層が存在し、二次粒子の表面には、Al、Zr、B、W、Ti、Mg、Co、及びSiからなる群より選ばれた少なくとも1種の元素を含有する第2表面修飾層が存在することを特徴とする。
 本開示の一態様である非水電解質二次電池は、上記正極活物質を含む正極と、負極と、非水電解質とを備えることを特徴とする。
 本開示の一態様である非水電解質二次電池用正極活物質によれば、充放電サイクル特性が向上した非水電解質二次電池を提供することができる。
実施形態の一例である非水電解質二次電池の縦方向断面図である。
 リチウム遷移金属複合酸化物の層状構造には、遷移金属層、Li層が存在し、Li層に存在するLiイオンが可逆的に出入りすることで、電池の充放電反応が進行する。一般に、Niを主成分として含むニッケル酸リチウム系のリチウム遷移金属複合酸化物は、高容量の正極活物質として知られており、リチウム遷移金属複合酸化物におけるNiの含有率は、Liを除く金属元素の総モル数に対して、75モル%以上であることが好ましい。また、リチウム遷移金属複合酸化物は、Ni以外に、Liを除く金属元素の総モル数に対して、0モル%~15モル%のCo、0モル%~25モル%のMn、0モル%~10モル%のM1(M1はW、Mg、Mo、Nb、Ti、Si、Al及びZrから選ばれる少なくとも1種の元素)を含有することができる。しかし、このようなリチウム遷移金属複合酸化物を用いた二次電池は、非水電解質との副反応により、充放電サイクル特性が低下する場合がある。
 そこで、本発明者らは、上記課題を解決するために鋭意検討した結果、リチウム遷移金属複合酸化物の一次粒子の表面には、Ca及びSrから選ばれた少なくとも1種の元素と、W、Mo、Ti、Si、Nb、及びZrからなる群より選ばれた少なくとも1種の元素とを含有する第1表面修飾層を形成し、リチウム遷移金属複合酸化物の二次粒子の表面には、Al、Zr、B、W、Ti、Mg、Co、及びSiからなる群より選ばれた少なくとも1種の元素含有する第2表面修飾層を形成することで、充放電サイクル特性が向上することを見出した。第2表面修飾層が、二次粒子表面及び第1表面修飾層を保護することで、非水電解質との副反応を抑制し、特異的に充放電サイクル特性が向上すると推察される。
 以下、本開示に係る非水電解質二次電池の実施形態の一例について詳細に説明する。以下では、巻回型の電極体が円筒形の外装体に収容された円筒形電池を例示するが、電極体は、巻回型に限定されず、複数の正極と複数の負極がセパレータを介して交互に1枚ずつ積層されてなる積層型であってもよい。また、外装体は円筒形に限定されず、例えば角形、コイン形等であってもよく、金属層及び樹脂層を含むラミネートシートで構成された電池ケースであってもよい。
 図1は、実施形態の一例である円筒形の二次電池10の軸方向断面図である。図1に示すように、二次電池10は、巻回型の電極体14と、電解液と、電極体14及び電解質を収容する外装体16とを備える。電極体14は、正極11、負極12、及びセパレータ13を含み、正極11と負極12がセパレータ13を介して渦巻き状に巻回された巻回構造を有する。外装体16は、軸方向一方側が開口した有底円筒形状の金属製容器であって、外装体16の開口は封口体17によって塞がれている。以下では、説明の便宜上、電池の封口体17側を上、外装体16の底部側を下とする。
 電極体14を構成する正極11、負極12、及びセパレータ13は、いずれも矩形形状の長尺体であって、長手方向に渦巻状に巻回されることで電極体14の径方向に交互に積層される。セパレータ13は、正極11及び負極12を相互に隔離している。負極12は、リチウムの析出を防止するために、正極11よりも一回り大きな寸法で形成される。即ち、負極12は、正極11よりも長手方向及び短手方向に長く形成される。2枚のセパレータ13は、少なくとも正極11よりも一回り大きな寸法で形成され、例えば正極11を挟むように配置される。電極体14は、溶接等により正極11に接続された正極リード20と、溶接等により負極12に接続された負極リード21とを備える。電極体14において、正極11及び負極12の長手方向が巻回方向となり、正極11及び負極12の短手方向が軸方向となる。即ち、正極11及び負極12の短手方向の端面は、電極体14の軸方向の端面を形成する。
 電極体14の上下には、絶縁板18,19がそれぞれ配置される。図1に示す例では、正極リード20が絶縁板18の貫通孔を通って封口体17側に延び、負極リード21が絶縁板19の外側を通って外装体16の底部側に延びている。正極リード20は封口体17の内部端子板23の下面に溶接等で接続され、内部端子板23と電気的に接続された封口体17の天板であるキャップ27が正極端子となる。負極リード21は外装体16の底部内面に溶接等で接続され、外装体16が負極端子となる。
 外装体16と封口体17の間にはガスケット28が設けられ、電池内部の密閉性が確保される。外装体16には、側面部の一部が内側に張り出した、封口体17を支持する溝入部22が形成されている。溝入部22は、外装体16の周方向に沿って環状に形成されることが好ましく、その上面で封口体17を支持する。封口体17は、溝入部22と、封口体17に対してかしめられた外装体16の開口端部とにより、外装体16の上部に固定される。
 封口体17は、電極体14側から順に、内部端子板23、下弁体24、絶縁部材25、上弁体26、及びキャップ27が積層された構造を有する。封口体17を構成する各部材は、例えば円板形状又はリング形状を有し、絶縁部材25を除く各部材は互いに電気的に接続されている。下弁体24と上弁体26は各々の中央部で接続され、各々の周縁部の間には絶縁部材25が介在している。異常発熱で電池の内圧が上昇すると、下弁体24が上弁体26をキャップ27側に押し上げるように変形して破断することにより、下弁体24と上弁体26の間の電流経路が遮断される。さらに内圧が上昇すると、上弁体26が破断し、キャップ27の開口部からガスが排出される。
 以下、二次電池10を構成する正極11、負極12、セパレータ13及び非水電解質について、特に正極11について詳説する。
 [正極]
 正極11は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを有する。正極合剤層は、正極集電体の両面に形成されることが好ましい。正極集電体には、アルミニウム、アルミニウム合金など、正極11の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。正極集電体の厚みは、例えば、10μm~30μmである。
 正極合剤層は、例えば、正極活物質と、導電剤と、結着剤とを含む。正極合剤層の厚みは、例えば、正極集電体の片側で10μm~150μmである。正極11は、例えば、正極集電体の表面に正極活物質、導電剤等を含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧延して正極合剤層を正極集電体の両面に形成することにより作製できる。
 正極合剤層に含まれる導電剤としては、例えば、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック、カーボンナノチューブ(CNT)、グラフェン、黒鉛等のカーボン系粒子などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 正極合剤層に含まれる結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、ポリイミド系樹脂、アクリル系樹脂、ポリオレフィン系樹脂、ポリアクリロニトリル(PAN)などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 正極合剤層に含まれる正極活物質は、リチウム遷移金属複合酸化物を含む。また、リチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子を含む。リチウム遷移金属複合酸化物の二次粒子を構成する一次粒子の粒径は、例えば0.02μm~2μmである。一次粒子の粒径は、走査電子顕微鏡(SEM)により観察される粒子画像において外接円の直径として測定される。リチウム遷移金属複合酸化物の二次粒子の平均粒子径は、例えば2μm~30μmである。ここで、平均粒子径とは、体積基準のメジアン径(D50)を意味する。D50は、体積基準の粒度分布において頻度の累積が粒径の小さい方から50%となる粒径を意味し、中位径とも呼ばれる。リチウム遷移金属複合酸化物の二次粒子の粒度分布は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製、MT3000II)を用い、水を分散媒として測定できる。
 リチウム遷移金属複合酸化物は、層状構造を有する。リチウム遷移金属複合酸化物の層状構造としては、例えば、空間群R-3mに属する層状構造、空間群C2/mに属する層状構造等が挙げられる。リチウム遷移金属複合酸化物は、高容量化、結晶構造の安定性の観点から、空間群R-3mに属する層状構造を有することが好ましい。リチウム遷移金属複合酸化物の層状構造は、遷移金属層、Li層を含んでもよい。
 リチウム遷移金属複合酸化物は、一般式LiNiCoMnM12-y(式中、0.95≦x≦1.05、0.75≦a≦0.95、0≦b≦0.15、0≦c≦0.25、0≦d≦0.10、0≦y<0.05、a+b+c+d=1、M1はW、Mg、Mo、Nb、Ti、Si、Al及びZrからなる群より選ばれた少なくとも1種の元素)で表される。リチウム遷移金属複合酸化物に含有される金属元素の含有率は、例えば、誘導結合プラズマ(ICP)発光分光分析により測定される。
 リチウム遷移金属複合酸化物におけるNiの含有率を75モル%~95モル%とすることで、高容量の電池が得られる。Niの含有率が高いほど、より高容量の電池が得られる。
 リチウム遷移金属複合酸化物におけるCoの含有率は、0モル%~15モル%であり、Coは任意成分である。換言すれば、リチウム遷移金属複合酸化物は、Coを含有しなくてもよい。リチウム遷移金属複合酸化物は、Coを含有することで、電池の耐熱性を向上させることができる。
 リチウム遷移金属複合酸化物におけるMnの含有率は、0モル%~25モル%であり、Mnは任意成分である。換言すれば、リチウム遷移金属複合酸化物は、Mnを含有しなくてもよい。リチウム遷移金属複合酸化物は、Mnを含有することで、結晶構造を安定化させることができる。
 リチウム遷移金属複合酸化物におけるM1(M1はW、Mg、Mo、Nb、Ti、Si、Al及びZrからなる群より選ばれた少なくとも1種の元素)の含有率は、0モル%~10モル%であり、M1は任意成分である。換言すれば、リチウム遷移金属複合酸化物は、M1を含有しなくてもよい。
 リチウム遷移金属複合酸化物の一次粒子の表面には、Ca及びSrの少なくとも一方の元素(以下、「M2」という)と、W、Mo、Ti、Si、Nb、及びZrからなる群より選ばれた少なくとも1種の元素(以下、「M3」という)とを含有する第1表面修飾層が存在する。これにより、非水電解質との副反応によるリチウム遷移金属複合酸化物の浸食、劣化が効果的に抑制され、二次電池10の充放電サイクル特性が向上する。ここで、一次粒子の表面とは、二次粒子の表面を含み、具体的には、二次粒子の表面及び一次粒子同士の間の界面を意味する。第1表面修飾層は、一次粒子の表面の少なくとも一部を被覆するように点状に存在してもよいし、一次粒子の全面を被覆するように存在してもよい。
 第1表面修飾層に含有されるM2の総量は、リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、好ましくは3モル%以下であり、より好ましくは1モル%以下であり、さらに好ましくは0.5モル%以下である。M2の総量の下限値は、例えば、0.01モル%である。
 第1表面修飾層に含有されるM3の総量は、リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、2モル%以下であり、より好ましくは1モル%以下であり、さらに好ましくは0.5モル%以下である。M3の総量の下限値は、例えば、0.01モル%である。
 リチウム遷移金属複合酸化物の一次粒子の表面における第1表面修飾層の存在、第1表面修飾層に含有されるM2の存在、及び、第1表面修飾層に含有されるM3の存在は、TEM-EDX(透過型顕微鏡-エネルギー分散型X線分光法)を用いて、リチウム遷移金属複合酸化物の二次粒子の断面を測定することにより確認できる。また、M2の総量及びM3の総量は、各々、例えば誘導結合プラズマ(ICP)発光分光分析により測定できる。
 リチウム遷移金属複合酸化物の一次粒子の表面には、M2を含有する化合物(以下、「M2化合物」とする)と、M3を含有する化合物(以下、「M3化合物」とする)とが、各々、固着していてもよい。M2化合物としては、M2を含有する酸化物、水酸化物、炭酸塩等が例示できる。M3化合物としては、M3を含有する酸化物、水酸化物、炭酸塩、硫酸塩等が例示できる。
 リチウム遷移金属複合酸化物の一次粒子の表面には、一般式M2αM3βγ(式中、1≦α≦2、1≦β≦5、4≦γ≦9、M2はCa及びSrから選択される少なくとも1種の元素、M3はW、Mo、Ti、Si、Nb及びZrから選択される少なくとも1種の元素)で表される化合物(以下、「M2αM3βγ化合物」とする)が固着していてもよい。なお、リチウム遷移金属複合酸化物の一次粒子の表面には、M2化合物、M3化合物、及び、M2αM3βγ化合物が共存してもよい。
 M2αM3βγ化合物の存在は、放射光X線回折測定を用いて確認できる。M2αM3βγ化合物は、例えば、リチウム遷移金属複合酸化物の一次粒子及び二次粒子の表面に点在していてもよく、一次粒子及び二次粒子の表面を広く覆うように層状に存在していてもよい。すなわち、M2αM3βγ化合物は、二次粒子の内部及び表面において、一次粒子の表面に広く存在している。リチウム遷移金属複合酸化物の二次粒子は、例えば、5個以上の一次粒子が凝集して形成されており、一次粒子の表面積は二次粒子の表面よりも内部で大きくなっている。M2αM3βγ化合物は、例えば、二次粒子の表面よりも内部に多く含まれている。
 M2αM3βγ化合物の具体例としては、CaWO、CaMoO、CaMoO、CaTiO、CaTiO、CaSiO、CaSiO、CaNbO、CaNb、CaZrO、CaZr、SrWO、SrMoO、SrMoO、SrTiO、SrTiO、SrSiO、SrSiO、SrNbO、SrNb、SrZrO、SrZrが挙げられる。
 リチウム遷移金属複合酸化物の二次粒子の表面には、Al、Zr、B、W、Ti、Mg、Co、及びSiなる群より選ばれた少なくとも1種の元素(以下、「M4」という)を含有する第2表面修飾層が存在する。その中でもAl、Zr、B、W、Ti、及びSiであることがより好ましい。第2表面修飾層が二次粒子表面及び第1表面修飾層を保護することで、非水電解質との副反応が顕著に抑制され、二次電池10の充放電サイクル特性がより向上する。後述するように、第2表面修飾層は第1表面修飾層の後に形成されるので、二次粒子の表面において、第2表面修飾層は、第1表面修飾層の上に形成されていてもよい。また、第2表面修飾層は、二次粒子の表面の少なくとも一部を被覆するように点状に存在してもよいし、二次粒子の全面を被覆するように存在してもよい。
 第2表面修飾層に含有されるM4の総量は、リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、2モル%以下であることが好ましい。M4の総量の下限値は、例えば、0.01モル%である。
 リチウム遷移金属複合酸化物の二次粒子の表面における第2表面修飾層の存在、及び、第2表面修飾層に含有されるM4の存在は、TEM-EDXを用いて、リチウム遷移金属複合酸化物の二次粒子の断面を測定することにより確認できる。なお、添加するM4原料が少ない場合やその被覆状態によっては第2表面修飾層の存在が確認しづらい場合がある。その際には、M4原料の添加量が大きいサンプルで第2表面修飾層の存在を確認することで、第2表面修飾層の存在を推察することができる。また、M4の総量は、例えば、誘導結合プラズマ(ICP)発光分光分析により測定できる。また、M3とM4が同じ元素を用いる場合は、M4を添加しないダミーサンプルを同時に合成し、M3とM4に同じ元素を用いたサンプルとダミーサンプルとの測定値の差から、M3の総量とM4の総量の各々を求めることがきる。
 正極合剤層は、上記の本実施形態の正極活物質以外に、その他の正極活物質を含んでもよい。その他の正極活物質としては、例えば、Niの含有率が0モル%以上75モル%未満のリチウム遷移金属複合酸化物が挙げられる。
 次に、本実施形態に係る正極活物質の製造方法の一例について説明する。
 正極活物質の製造工程には、複合酸化物とLi化合物等とを混合して混合物を得る第1工程と、当該混合物を焼成する第2工程と、焼成物を水洗して加熱乾燥する第3工程とが含まれる。M2(Ca及びSrから選択される少なくとも1種の元素)を含むM2原料と、M3(W、Mo、Ti、Si、Nb及びZrから選択される少なくとも1種の元素)を含むM3原料とを第1工程で添加することにより、リチウム遷移金属複合酸化物の一次粒子の表面にM2及びM3を含有する第1表面修飾層を形成することができる。また、M4(Al、Zr、B、W、Ti、Mg、Co、及びSiからなる群より選ばれた少なくとも1種の元素)を含むM4原料を第3工程で添加することにより、リチウム遷移金属複合酸化物の二次粒子の表面にM4を含有する第2表面修飾層を形成することができる。
 第1工程では、例えば、75モル%~95モル%のNi、0モル%~15モル%のCo、0モル%~25モル%のMn、及び0モル%~10モル%のM1(M1はW、Mg、Mo、Nb、Ti、Si、Al及びZrから選ばれる少なくとも1種の元素)を含有する金属酸化物と、Li化合物と、M2原料と、M3原料とを混合して、混合物を得る。
 金属酸化物は、例えば、Ni及び任意の金属元素(Co、Mn等)を含む金属塩の溶液を撹拌しながら、水酸化ナトリウム等のアルカリ溶液を滴下し、pHをアルカリ側(例えば8.5~12.5)に調整することにより、Ni及び任意の金属元素を含む複合水酸化物を析出(共沈)させ、当該複合水酸化物を熱処理することにより得ることができる。熱処理温度は、特に制限されるものではないが、例えば、300℃~600℃の範囲である。
 Li化合物としては、例えば、LiCO、LiOH、Li、LiO、LiNO、LiNO、LiSO、LiOH・HO、LiH、LiF等が挙げられる。金属酸化物とLi化合物との混合割合は、上記各パラメータを上記規定した範囲に調整することを容易とする点で、例えば、金属酸化物における金属元素の総量と、Liとのモル比が、1:0.98~1:1.1の範囲となる割合とすることが好ましい。
 M2原料の一例としては、Ca(OH)、CaO、CaCO、CaSO、Ca(NO、Sr(OH)、Sr(OH)・8HO、Sr(OH)・HO、SrO、SrCO、SrSO、Sr(NO等が挙げられるが、焼成時に発生する水分量を少なくするために、乾燥及び脱水してから使用してもよい。また、これらの化合物は粉砕等をして粒子径を0.1~20μmにしてもよい。M3原料についても同様に、M3(W、Mo、Ti、Si、Nb、及びZrからなる群より選ばれた少なくとも1種の元素)の水酸化物、酸化物、炭酸塩、硫酸塩、硝酸塩等が挙げられるが、焼成時に発生する水分量を少なくするために、乾燥及び脱水してから使用してもよい。また、これらの化合物は粉砕等をして粒子径を0.1~20μmにしてもよい。
 金属酸化物とM2原料は、例えば、金属酸化物における金属元素の総量と、M2元素とのモル比が、1:0.0001~1:0.03となる比率で混合されることが好ましい。M2原料を複数種用いる場合、化合物中に含まれるM2の総量が当該比率を満たすように混合される。金属酸化物とM3原料は、例えば、金属酸化物における金属元素の総量と、M3元素とのモル比が、1:0.0001~1:0.02となる比率で混合されることが好ましい。M3原料を複数種用いる場合、化合物中に含まれるM3の総量が当該比率を満たすように混合される。
 第2工程では、例えば、上記混合物を酸素雰囲気下で焼成し、焼成物を得る。焼成条件は、450℃以上680℃以下での昇温速度が1.0℃/分超5.5℃/分以下の範囲であり、且つ、到達最高温度が700℃以上980℃以下の範囲であってもよい。680℃超から到達最高温度までの昇温速度は、例えば、0.1℃/分~3.5℃/分としてもよい。また、到達最高温度の保持時間は1時間以上10時間以下であってもよい。また、この焼成工程は、多段階焼成であってもよく、第1昇温速度、第2昇温速度は、上記規定した範囲内であれば、温度領域毎に複数設定してもよい。
 第3工程では、上記焼成物を水洗して得られるケーキ状組成物にM4原料を添加し、熱処理を行う。これにより、リチウム遷移金属複合酸化物の二次粒子の表面にM4を含有する第2表面修飾層を形成することができる。水洗及び熱処理は、公知の方法及び条件で行うことができる。熱処理は、例えば、真空中や酸素気流中、大気中において、150℃~600℃の温度で、1時間~5時間行われる。
 M4原料は、熱処理前又は熱処理中のケーキ状組成物に添加することができる。M4原料としては、例えば、酸化タングステン(WO)、タングステン酸リチウム(LiWO、LiWO、Li)、ホウ酸(HBO)、ホウ酸リチウム(Li、LiBO、LiB、LiBO)、酸化アルミニウム(Al)、硫酸アルミニウム(Al(SO)、酸化ジルコニウム(ZrO)、硫酸ジルコニウム(Zr(SO)、酸化チタン(TiO)、水酸化チタンTi(OH)、酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH))、酸化コバルト(CoOCo4)、硫酸コバルト(CoSO)、二酸化ケイ素(SiO)、一酸化ケイ素(SiO)等が挙げられる。二次粒子の表面を効率的に修飾するため、M4原料としては、ケーキ状組成物に含まれるLi塩を含んだアルカリ性の水分に可溶な酸化物や金属塩がより好ましい。また、M4原料は、固体のみならず、例えば、酸などに溶解させて水溶液にして添加しても良い。添加方法は、ケーキ状組成物に滴下又は噴霧してもよく、効率的に二次粒子表面を覆うためには噴霧することが好ましい。さらに効率的に二次粒子表面を覆うため、水洗して得られるケーキ状組成物ではなく、水洗及び熱処理後のリチウム遷移金属複合酸化物にM4原料を添加し、再度、真空中や酸素気流中、大気中において150℃~600℃の温度で、1時間から5時間焼成を行ってもよい。
 M4原料の添加量は、金属酸化物含まれるLiを除く金属元素の総モル量に対するM4の割合が、例えば、0.01モル%~2モル%となるように調整される。M4原料を複数種用いる場合、添加するM4の総量が当該割合を満たすように添加される。
 [負極]
 負極12は、例えば、負極集電体と、負極集電体の表面に形成された負極合剤層とを有する。負極合剤層は、負極集電体の両面に形成されることが好ましい。負極集電体には、銅、銅合金等の負極12の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルムなどを用いることができる。負極集電体の厚みは、例えば、5μm~30μmである。負極合剤層は、例えば、負極活物質と結着剤とを含む。負極合剤層の厚みは、例えば、負極集電体の片側で10μm~150μmである。負極12は、例えば、負極集電体の表面に負極活物質、結着剤等を含む負極合剤スラリーを塗布し、塗膜を乾燥させた後、圧延して負極合剤層を負極集電体の両面に形成することにより作製できる。
 負極合剤層に含まれる負極活物質としては、リチウムイオンを可逆的に吸蔵、放出できるものであれば特に限定されず、一般的には黒鉛等の炭素材料が用いられる。黒鉛は、鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛のいずれであってもよい。また、負極活物質として、Si、Sn等のLiと合金化する金属、Si、Sn等を含む金属化合物、リチウムチタン複合酸化物などを用いてもよい。また、これらに炭素被膜を設けたものを用いてもよい。例えば、SiO(0.5≦x≦1.6)で表されるSi含有化合物、又はLi2ySiO(2+y)(0<y<2)で表されるリチウムシリケート相中にSiの微粒子が分散したSi含有化合物などが、黒鉛と併用されてもよい。
 負極合剤層に含まれる結着剤としては、例えば、スチレンブタジエンゴム(SBR)、ニトリル-ブタジエンゴム(NBR)、カルボキシメチルセルロース(CMC)又はその塩、ポリアクリル酸(PAA)又はその塩(PAA-Na、PAA-K等、また部分中和型の塩であってもよい)、ポリビニルアルコール(PVA)等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
 [セパレータ]
 セパレータ13には、例えば、イオン透過性及び絶縁性を有する多孔性シートが用いられる。多孔性シートの具体例としては、微多孔薄膜、織布、不織布等が挙げられる。セパレータの材質としては、ポリエチレン、ポリプロピレン等のポリオレフィン、セルロースなどが好適である。セパレータ13は、単層構造であってもよく、積層構造を有していてもよい。また、セパレータ13の表面には、アラミド樹脂等の耐熱性の高い樹脂層、無機化合物のフィラーを含むフィラー層が設けられていてもよい。
 [非水電解質]
 非水電解質は、例えば、非水溶媒と、非水溶媒に溶解した電解質塩とを含む。非水溶媒には、例えばエステル類、エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類、及びこれらの2種以上の混合溶媒等を用いることができる。非水溶媒は、これら溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。ハロゲン置換体としては、フルオロエチレンカーボネート(FEC)等のフッ素化環状炭酸エステル、フッ素化鎖状炭酸エステル、フルオロプロピオン酸メチル(FMP)等のフッ素化鎖状カルボン酸エステルなどが挙げられる。
 上記エステル類の例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート等の環状炭酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状炭酸エステル、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等の環状カルボン酸エステル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等の鎖状カルボン酸エステルなどが挙げられる。
 上記エーテル類の例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等の環状エーテル、1,2-ジメトキシエタン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等の鎖状エーテルなどが挙げられる。
 電解質塩は、リチウム塩であることが好ましい。リチウム塩の例としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiAlCl、LiSCN、LiCFSO、LiCFCO、Li(P(C)F)、LiPF6-x(C2n+1(1<x<6,nは1又は2)、LiB10Cl10、LiCl、LiBr、LiI、クロロボランリチウム、低級脂肪族カルボン酸リチウム、Li、Li(B(C)F)等のホウ酸塩類、LiN(SOCF、LiN(C2l+1SO)(C2m+1SO){l,mは0以上の整数}等のイミド塩類などが挙げられる。リチウム塩は、これらを1種単独で用いてもよいし、複数種を混合して用いてもよい。これらのうち、イオン伝導性、電気化学的安定性等の観点から、LiPFを用いることが好ましい。リチウム塩の濃度は、例えば非水溶媒1L当り0.5モル~2モルである。また、さらにビニレンカーボネートやプロパンスルトン系添加剤を添加してもよい。
 以下、実施例及び比較例により本開示をさらに説明するが、本開示は以下の実施例に限定されるものではない。
 <実施例1-1>
 [正極活物質の作製]
 共沈法により得られた[Ni0.90Co0.05Mn0.05](OH)で表される複合水酸化物を500℃で8時間焼成し、金属酸化物(Ni0.90Co0.05Mn0.05)を得た。次に、酸化リチウム、上記金属酸化物、水酸化カルシウム、及び酸化タングステンを、Liと、Ni、Co、及びMnの総量と、Caと、Wとのモル比が1.03:1:0.0025:0.005になるように混合して混合物を得た(第1工程)。この混合物を酸素濃度95%の酸素気流下(10cmあたり2mL/min及び混合物1kgあたり5L/minの流量)で、当該混合物を、昇温速度2.0℃/minで、室温から650℃まで焼成した後、昇温速度0.5℃/minで、650℃から780℃まで焼成して焼成物を得た(第2工程)。この焼成物に、スラリー濃度が1500g/Lとなるように水を加え、15分間攪拌し、濾過してケーキ状組成物を得た。このケーキ状組成物に、粉状のHBOを添加した。リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対して、Bのモル比が0.1モル%となるように、添加するHBOの量を調整した。添加工程後に、真空雰囲気下で180℃、2時間の条件で乾燥工程を行い、実施例1の正極活物質を得た(第3工程)。
 ICP発光分光分析装置(Thermo Fisher Scientific製、iCAP6300)により、得られた正極活物質を測定した結果、Li、O、及び不純物元素を除く元素として、後述の表1に示す元素が確認された。また、TEM―EDXにより、二次粒子の表面及び二次粒子の内部における一次粒子同士の界面に、CaとWを含有する第1表面修飾層が存在することを確認した。放射光X線回折測定により、第1表面修飾層中に存在する化合物を同定した結果、CaWOの存在が確認された。また、TEM―EDXにより、二次粒子の表面に、Bを含有する第2表面修飾層が存在することを確認した。
 [正極の作製]
 95質量部の上記正極活物質と、3質量部のアセチレンブラック(AB)と、2質量部のポリフッ化ビニリデン(PVDF)とを混合し、さらにN-メチル-2-ピロリドン(NMP)を適量加えて、正極合剤スラリーを調製した。次いで、正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラーにより、塗膜を圧延し、所定の電極サイズに切断して、正極を作製した。なお、正極の一部に正極集電体の表面が露出した露出部を設けた。
 [負極の作製]
 負極活物質として天然黒鉛を用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)を、100:1:1の固形分質量比で水溶液中において混合し、負極合剤スラリーを調製した。次いで、負極合剤スラリーを銅箔からなる負極集電体の両面に塗布し、塗膜を乾燥した後、圧延ローラーにより、塗膜を圧延し、所定の電極サイズに切断して、負極を作製した。なお、負極の一部に負極集電体の表面が露出した露出部を設けた。
 [非水電解質の調製]
 エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合した。当該混合溶媒に対して、六フッ化リン酸リチウム(LiPF)を1.2モル/リットルの濃度となるように溶解させて、非水電解質を調製した。
 [試験セルの作製]
 正極の露出部に正極リードを、負極の露出部に負極リードをそれぞれ取り付け、ポリオレフィン製のセパレータを介して正極と負極を渦巻き状に巻回した後、径方向にプレス成形して扁平状の巻回型電極体を作製した。この電極体をアルミラミネートシートで構成される外装体内に収容し、上記非水電解質を注入した後、外装体の開口部を封止して試験セルを得た。
 [容量維持率の評価]
 試験セルを、25℃の環境下で、0.2Itの定電流で電池電圧が4.3Vになるまで充電した後、4.3Vの定電圧で電流値が0.01Itになるまで充電した。その後、0.2Itの定電流で電池電圧が2.5Vになるまで放電した。この充放電を1サイクルとして、30サイクル行った。以下の式により、試験セルの充放電サイクルにおける容量維持率を求めた。
 容量維持率=(30サイクル目の放電容量/1サイクル目の放電容量)×100
 <実施例1-2~1-4>
 正極活物質の作製の第3工程において、各々、Bのモル比が0.5モル%、1.0モル%、2.0モル%となるようにHBOの添加量を調整したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <実施例1-5>
 正極活物質の作製の第3工程において、HBOの代わりにAl(SO・16HO(以下水和水を省略してAl(SOと記載)を添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するAlのモル比が0.1モル%となるようにAl(SOの添加量を調整したこと以外は実施例1と同様にして試験セルを作製し、評価を行った。TEM―EDXにより、二次粒子の表面に、Alを含有する第2表面修飾層が存在することを確認した。
 <実施例1-6~1-8>
 正極活物質の作製の第3工程において、各々、Alのモル比が0.5モル%、1.0モル%、2.0モル%となるようにAl(SOの添加量を調整したこと以外は、実施例1-5と同様にして試験セルを作製し、評価を行った。
 <実施例1-9>
 正極活物質の作製の第3工程において、HBOの代わりにZr(SO・4HO(以下水和水を省略してZr(SOと記載)を添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するZrのモル比が0.1モル%となるようにZr(SOの添加量を調整したこと以外は実施例1-1と同様にして試験セルを作製し、評価を行った。TEM―EDXにより、二次粒子の表面に、Zrを含有する第2表面修飾層が存在することを確認した。
 <実施例1-10~1-12>
 正極活物質の作製の第3工程において、各々、Zrのモル比が0.5モル%、1.0モル%、2.0モル%となるようにZr(SOの添加量を調整したこと以外は、実施例1-9と同様にして試験セルを作製し、評価を行った。
 <実施例1-13>
 正極活物質の作製の第3工程において、HBOの代わりにWOを添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するWのモル比が0.1モル%となるようにWOの添加量を調整したこと以外は実施例1-1と同様にして試験セルを作製し、評価を行った。TEM―EDXにより、二次粒子の表面に、Wを含有する第2表面修飾層が存在することを確認した。なお、TEM―EDXにより、二次粒子の表面には第1表面修飾層が形成されており、二次粒子表面において、第1表面修飾層の上に第2表面修飾層が形成されているのを確認した。
 <実施例1-14~1-16>
 正極活物質の作製の第3工程において、各々、Wのモル比が0.5モル%、1.0モル%、2.0モル%となるようにWOの添加量を調整したこと以外は、実施例1-13と同様にして試験セルを作製し、評価を行った。
 <実施例1-17>
 正極活物質の作製の第3工程において、HBOの代わりに30質量%の硫酸チタン(Ti(SO)水溶液を添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するTiのモル比が0.1モル%となるように硫酸チタン水溶液の添加量を調整したこと以外は実施例1-1と同様にして試験セルを作製し、評価を行った。TEM―EDXにより、二次粒子の表面に、Tiを含有する第2表面修飾層が存在することを確認した。
 <実施例1-18~1-20>
 正極活物質の作製の第3工程において、各々、Tiのモル比が0.5モル%、1.0モル%、2.0モル%となるように硫酸チタン水溶液の添加量を調整したこと以外は、実施例1-17と同様にして試験セルを作製し、評価を行った。
 <比較例1-1>
 正極活物質の作製の第3工程において、HBOを添加しなかったこと以外は実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例1-2>
 正極活物質の作製の第1工程において、Ca(OH)及びWOを添加せず、正極活物質の作製の第3工程において、Bのモル比が0.5モル%となるようにHBOの添加量を調整したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例1-3>
 正極活物質の作製の第1工程において、Ca(OH)及びWOを添加せず、正極活物質の作製の第3工程において、HBOの代わりにAl(SOを添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するAlのモル比が0.5モル%となるようにAl(SOの添加量を調整したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例1-4>
 正極活物質の作製の第1工程において、Ca(OH)及びWOを添加せず、正極活物質の作製の第3工程において、HBOの代わりにZr(SOを添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するZrのモル比が0.5モル%となるようにZr(SOの添加量を調整したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例1-5>
 正極活物質の作製の第1工程において、Ca(OH)及びWOを添加せず、正極活物質の作製の第3工程において、HBOの代わりにWOを添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するWのモル比が0.5モル%となるようにWOの添加量を調整したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例1―6>
 正極活物質の作製の第1工程において、Ca(OH)及びWOを添加せず、正極活物質の作製の第3工程において、HBOの代わりに硫酸チタン水溶液を添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するTiのモル比が0.5モル%となるように硫酸チタン水溶液の添加量を調整したこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <比較例1-7>
 正極活物質の作製の第1工程において、Ca(OH)及びWOを添加せず、第3工程においてHBOを添加しなかったこと以外は、実施例1-1と同様にして試験セルを作製し、評価を行った。
 <実施例2-1~2-5、比較例2-1>
 正極活物質の作製の第1工程において、Caのモル比が0.5モル%となるようにCa(OH)の添加量を調整したこと以外は、各々、実施例1-2、1-6、1-10、1-14、1-18、及び比較例1-1と同様にして試験セルを作製し、評価を行った。放射光X線回折測定により、第1表面修飾層中に存在する化合物を同定した結果、CaWOの存在が確認された。
 <実施例3-1~3-5、比較例3-1~3-7>
 正極活物質の作製の第1工程で用いる金属酸化物の組成をNi0.90Co0.03Mn0.07に変更したこと以外は、各々、実施例1-2、1-6、1-10、1-14、1-18、及び比較例1-1~1-7と同様にして試験セルを作製し、評価を行った。
 <実施例4-1~4-5、比較例4-1>
 正極活物質の作製の第1工程において、Ca(OH)の代わりにSr(OH)を添加し、リチウム遷移金属複合酸化物に含有されるNi、Co、及びMnの総量に対するSrのモル比が0.25モル%となるようにSr(OH)の添加量を調整したこと以外は、各々、実施例1-2、1-6、1-10、1-14、1-18、及び比較例1-1と同様にして試験セルを作製し、評価を行った。TEM―EDXにより、二次粒子の表面及び二次粒子の内部における一次粒子同士の界面に、SrとWを含有する第1表面修飾層が存在することを確認した。放射光X線回折測定により、第1表面修飾層中に存在する化合物を同定した結果、SrWOの存在が確認された。
 <実施例5-1~5-5、比較例5-1~5-7>
 正極活物質の作製の第1工程で用いる金属酸化物の組成をNi0.80Co0.10Mn0.10に変更したこと以外は、各々、実施例1-2、1-6、1-10、1-14、1-18、及び比較例1-1~1-7と同様にして試験セルを作製し、評価を行った。
 実施例及び比較例の試験セルの容量維持率を表1に示す。また、表1には、リチウム遷移金属複合酸化物の組成、第1工程でのCa又はSrとWの添加量、及び、第3工程で添加した元素と添加量を併せて示す。表1に示した実施例1-1~1-20及び比較例1-1~1-6の試験セルの容量維持率は、比較例1-7の試験セルの容量維持率を100として、相対的に表したものである。表2に示した実施例2-1~2-5及び比較例2-1の試験セルの容量維持率は、比較例1-7の試験セルの容量維持率を100として、相対的に表したものである。表3に示した実施例3-1~3-5及び比較例3-1~3-6の試験セルの容量維持率は、比較例3-7の試験セルの容量維持率を100として、相対的に表したものである。表4に示した実施例4-1~4-5及び比較例4-1の試験セルの容量維持率は、比較例1-7の試験セルの容量維持率を100として、相対的に表したものである。表5に示した実施例5-1~5-5及び比較例5-1~5-6の試験セルの容量維持率は、比較例5-7の試験セルの容量維持率を100として、相対的に表したものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表1~5の各々において、実施例の試験セルは、比較例の試験セルに比べて、容量維持率が高かった。よって、所定の組成を有するリチウム遷移金属複合酸化物において、一次粒子の表面には、Ca及びSrから選ばれた少なくとも1種の元素と、W、Mo、Ti、Si、Nb、及びZrからなる群より選ばれた少なくとも1種の元素とを含有する第1表面修飾層を形成し、二次粒子の表面には、Al、Zr、B、W、Ti、Mg、Co、及びSiからなる群より選ばれた少なくとも1種の元素含有する第2表面修飾層を形成することで、充放電サイクル特性が向上することがわかる。
 本開示は、以下の実施形態によりさらに説明される。
構成1:
 層状構造を有し、一般式LiNiCoMnM12-y(式中、0.95≦x≦1.05、0.75≦a≦0.95、0≦b≦0.15、0≦c≦0.25、0≦d≦0.10、0≦y<0.05、a+b+c+d=1、M1はW、Mg、Mo、Nb、Ti、Si、Al、及びZrからなる群より選ばれた少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物を含み、
 前記リチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子を含み、
 前記一次粒子の表面には、Ca及びSrの少なくとも一方の元素と、W、Mo、Ti、Si、Nb、及びZrからなる群より選ばれた少なくとも1種の元素とを含有する第1表面修飾層が存在し、
 前記二次粒子の表面には、Al、Zr、B、W、Ti、Mg、Co、及びSiからなる群より選ばれた少なくとも1種の元素を含有する第2表面修飾層が存在する、非水電解質二次電池用正極活物質。
構成2:
 前記第1表面修飾層に含有されるCa及びSrの総量は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、3モル%以下である、構成1に記載の非水電解質二次電池用正極活物質。
構成3:
 前記第1表面修飾層に含有されるW、Mo、Ti、Si、Nb及びZrの総量は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、2モル%以下である、構成1又は2に記載の非水電解質二次電池用正極活物質。
構成4:
 前記第2表面修飾層に含有されるAl、Zr、B、W、Ti、Mg、Co、及びSiの総量は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、2モル%以下である、構成1~3のいずれか1つに記載の非水電解質二次電池用正極活物質。
構成5:
 前記一次粒子の表面には、一般式M2αM3βγ(式中、1≦α≦2、1≦β≦5、4≦γ≦9、M2はCa及びSrの少なくとも一方の元素、M3はW、Mo、Ti、Si、Nb及びZrからなる群より選ばれた少なくとも1種の元素)で表される化合物が固着している、構成1~4のいずれか1つに記載の非水電解質二次電池用正極活物質。
構成6:
 構成1~5のいずれか1つに記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
 10 二次電池、11 正極、12 負極、13 セパレータ、14 電極体、16 外装体、17 封口体、18,19 絶縁板、20 正極リード、21 負極リード、22 溝入部、23 内部端子板、24 下弁体、25 絶縁部材、26 上弁体、27 キャップ、28 ガスケット

Claims (6)

  1.  層状構造を有し、一般式LiNiCoMnM12-y(式中、0.95≦x≦1.05、0.75≦a≦0.95、0≦b≦0.15、0≦c≦0.25、0≦d≦0.10、0≦y<0.05、a+b+c+d=1、M1はW、Mg、Mo、Nb、Ti、Si、Al、及びZrからなる群より選ばれた少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物を含み、
     前記リチウム遷移金属複合酸化物は、一次粒子が凝集して形成された二次粒子を含み、
     前記一次粒子の表面には、Ca及びSrの少なくとも一方の元素と、W、Mo、Ti、Si、Nb、及びZrからなる群より選ばれた少なくとも1種の元素とを含有する第1表面修飾層が存在し、
     前記二次粒子の表面には、Al、Zr、B、W、Ti、Mg、Co、及びSiからなる群より選ばれた少なくとも1種の元素を含有する第2表面修飾層が存在する、非水電解質二次電池用正極活物質。
  2.  前記第1表面修飾層に含有されるCa及びSrの総量は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、3モル%以下である、請求項1に記載の非水電解質二次電池用正極活物質。
  3.  前記第1表面修飾層に含有されるW、Mo、Ti、Si、Nb及びZrの総量は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、2モル%以下である、請求項1に記載の非水電解質二次電池用正極活物質。
  4.  前記第2表面修飾層に含有されるAl、Zr、B、W、Ti、Mg、Co、及びSiの総量は、前記リチウム遷移金属複合酸化物中のLiを除く金属元素の総モル量に対して、2モル%以下である、請求項1に記載の非水電解質二次電池用正極活物質。
  5.  前記一次粒子の表面には、一般式M2αM3βγ(式中、1≦α≦2、1≦β≦5、4≦γ≦9、M2はCa及びSrの少なくとも一方の元素、M3はW、Mo、Ti、Si、Nb及びZrからなる群より選ばれた少なくとも1種の元素)で表される化合物が固着している、請求項1に記載の非水電解質二次電池用正極活物質。
  6.  請求項1~5のいずれか1項に記載の非水電解質二次電池用正極活物質を含む正極と、負極と、非水電解質とを備える、非水電解質二次電池。
PCT/JP2023/023995 2022-08-05 2023-06-28 非水電解質二次電池用正極活物質、及び非水電解質二次電池 WO2024029241A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022125741 2022-08-05
JP2022-125741 2022-08-05

Publications (1)

Publication Number Publication Date
WO2024029241A1 true WO2024029241A1 (ja) 2024-02-08

Family

ID=89848873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023995 WO2024029241A1 (ja) 2022-08-05 2023-06-28 非水電解質二次電池用正極活物質、及び非水電解質二次電池

Country Status (1)

Country Link
WO (1) WO2024029241A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807977A (zh) * 2018-08-13 2018-11-13 西安创昱新材料科技有限公司 一种锂离子电池正极材料及其制备方法
CN112382741A (zh) * 2020-10-12 2021-02-19 深圳市贝特瑞纳米科技有限公司 高镍正极材料及其制备方法、锂离子二次电池
WO2021241075A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022070649A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807977A (zh) * 2018-08-13 2018-11-13 西安创昱新材料科技有限公司 一种锂离子电池正极材料及其制备方法
WO2021241075A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022070649A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池
CN112382741A (zh) * 2020-10-12 2021-02-19 深圳市贝特瑞纳米科技有限公司 高镍正极材料及其制备方法、锂离子二次电池

Similar Documents

Publication Publication Date Title
US20230032577A1 (en) Positive-electrode active material for nonaqueous-electrolyte secondary battery, method for producing positive-electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2022130982A1 (ja) 非水電解質二次電池用正極、及び非水電解質二次電池
WO2021241075A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2022070649A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2021100305A1 (ja) 非水電解質二次電池
WO2021152996A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
US20230187653A1 (en) Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2024029241A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024029240A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024004626A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024004714A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法、及び非水電解質二次電池
WO2024004686A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004710A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004720A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2024004687A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2023145507A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023176503A1 (ja) 非水電解質二次電池
WO2024042852A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2024004676A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2023162698A1 (ja) 非水電解質二次電池用正極活物質、及び非水電解質二次電池
WO2023100535A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2023100531A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2023100532A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、非水電解質二次電池、及び非水電解質二次電池用正極活物質の製造方法
WO2023210584A1 (ja) 非水電解質二次電池
WO2024004709A1 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849800

Country of ref document: EP

Kind code of ref document: A1