WO2024003290A1 - Verfahren zur umwandlung von ortho-wasserstoff zu para-wasserstoff - Google Patents

Verfahren zur umwandlung von ortho-wasserstoff zu para-wasserstoff Download PDF

Info

Publication number
WO2024003290A1
WO2024003290A1 PCT/EP2023/067887 EP2023067887W WO2024003290A1 WO 2024003290 A1 WO2024003290 A1 WO 2024003290A1 EP 2023067887 W EP2023067887 W EP 2023067887W WO 2024003290 A1 WO2024003290 A1 WO 2024003290A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
iron
catalyst
para
ortho
Prior art date
Application number
PCT/EP2023/067887
Other languages
English (en)
French (fr)
Inventor
Hans-Jürgen EBERLE
Arno Tissler
Original Assignee
Eberle Hans Juergen
Arno Tissler
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102022002380.6A external-priority patent/DE102022002380A1/de
Priority claimed from DE102022002381.4A external-priority patent/DE102022002381A1/de
Application filed by Eberle Hans Juergen, Arno Tissler filed Critical Eberle Hans Juergen
Publication of WO2024003290A1 publication Critical patent/WO2024003290A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0089Ortho-para conversion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/064Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
    • B01J29/072Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening

Definitions

  • the present invention primarily relates to a process for converting ortho- to para-hydrogen, characterized in that an iron-containing zeolite is used as the catalyst.
  • the present invention also relates to a use of an iron-containing zeolite for converting hydrogen allotropes, preferably as described in more detail herein.
  • the hydrogen molecule can exist in two variants (allotropy), which differ in the arrangement of their 1 H nuclear spin and therefore have different rotational energy, which in turn leads to different physical properties.
  • allotropy In the para form the two nuclear spins are arranged antiparallel, in the ortho form they are parallel.
  • the allotropy of hydrogen was discovered in the 1920s as part of the development of quantum theory. Names associated with this are, for example, Bonhoeffer, Heisenberg, Eucken, Mecke and Hund (LJ. Schindewolf, Bunsen-Magazin, 4th year, 6/2002, pp. 139 - 146).
  • the hydrogen allotrope mixture consists of 75% of the ortho form and 25% of the para form.
  • a further increase in the ambient temperature no longer changes this ratio. In this case we speak of normal hydrogen.
  • the equilibrium shifts more and more towards the para form.
  • temperatures below 20 K almost only the para form is present (DE 4403352 B4).
  • the equilibrium transformation from the ortho to the para form occurs only slowly during cooling because the interactions between the nuclei are very weak.
  • the conversion of ortho hydrogen to the para form is exothermic with a conversion energy of 527 KJ/kg. Conversely, the conversion from the para form to the ortho form is an exergenic reaction.
  • catalysts are used in all industrial hydrogen liquefaction plants, which accelerate the equilibrium setting during the cooling process. If the adjustment of the respective equilibrium is as fast as the cooling rate, no further energy is released at the triple point.
  • a catalyst based on paramagnetic iron oxide Fe2C>3, IONEX® Type O-P Catalyst, Molecular Products
  • Fe2C>3, IONEX® Type O-P Catalyst, Molecular Products is almost exclusively used for this purpose. This means that significant energy savings (approx. 20%) can already be achieved today.
  • the iron oxide catalyst commonly used today still has a number of disadvantages.
  • the catalyst grains used are in the range of 0.3 to 0.6 mm and are very brittle. This causes them to develop small particles (dust), which can lead to process difficulties.
  • the available surface is essentially the geometric surface of the particles, ie the centers located in the catalyst grain are not accessible to the hydrogen.
  • the material is highly hygroscopic, which prevents and/or conversion even at small water concentrations requires complex activation and regeneration, ie the service life of the catalytic converter is negatively affected.
  • the crystalline shape as well as the grain sizes severely restrict a shape that is optimized for the application process (e.g. cooling process).
  • the known iron oxide catalysts can only be used in the ortho-para conversion process from 80 K and below, i.e. they cannot yet be used in the previous cooling process at higher temperatures. This is primarily due to the fact that the known catalysts are hygroscopic and the starting mixture must first be freed of water residues via the cooling process.
  • An effective catalyst is characterized by the fact that the overall process takes place at the desired speed.
  • the slowest step in this process chain determines the overall speed of the desired reaction.
  • the conversion rate can be examined by various methods.
  • the Linde AG process described under DE 4403352 B4 can be mentioned here.
  • physical data such as temperature and pressure are measured before the conversion (before the catalyst) and after the conversion (after the catalyst) and the para to ortho ratio is calculated using the known physical data.
  • This process is described in detail in DE 4403352 B4.
  • the primary object of the present invention is to provide a process for converting ortho- to para-hydrogen which overcomes the disadvantages presented above.
  • a method should preferably be provided which, on the one hand, avoids or reduces hydrogen losses during the production of liquid hydrogen by evaporation, and on the other hand minimizes or reduces the content of ortho-hydrogen, preferably in such a way that the setting of the thermodynamic ortho-para-hydrogen equilibrium to which the cooling rate is adjusted.
  • This should advantageously result in energy savings in the cooling process or generally also in cost savings.
  • the present invention should preferably be used to obtain a higher quality commercially liquefied hydrogen that meets the requirements of having a para-hydrogen content of at least 95%.
  • a method should be provided in which a catalyst that is so advantageous is used that complex activation and regeneration treatments of the catalyst are not necessary, while at the same time there is little or no loss in efficiency.
  • a process should also be provided in which the catalyst can be used in a significantly broader temperature range than the previously known iron oxide catalysts. Further tasks on which the present invention is based arise from the following statements and the attached patent claims.
  • hydrophobic zeolites doped with iron which advantageously have Broenstedt centers, are ideally suited for the conversion of ortho- to para-hydrogen.
  • the present invention relates, in a primary aspect, to a process for converting ortho- to para-hydrogen, comprising or consisting of the following steps:
  • a preferred embodiment is a method according to the invention as described herein, characterized in that the cooling of the starting mixture and converting ortho-hydrogen to para-hydrogen is carried out according to one of the following steps: a) cooling the starting mixture and then converting ortho-hydrogen to para-hydrogen using the catalyst, or b) simultaneous or partially simultaneous cooling of the starting mixture and converting ortho-hydrogen to para-hydrogen using the catalyst, or c) cooling the starting mixture and then converting ortho-hydrogen to para-hydrogen using the catalyst, the starting mixture continuing to be cooled during the reaction.
  • a method according to the invention is characterized in that a liquid or cryogenic hydrogen is produced with a para-hydrogen content of at least 95% by weight, based on the total hydrogen content.
  • a further preferred embodiment is a method according to the invention as described above, characterized in that the iron-containing zeolite has Broenstedt centers.
  • a catalyst that is particularly suitable for the process described here should have a high concentration of paramagnetic centers or a high concentration of potential H + exchange centers, a high tendency to adsorb hydrogen and have high accessibility (porosity) to minimize diffusion barriers.
  • the majority of the materials described and examined in the literature are hydrophilic and do not have any acidic proton Broenstedt centers.
  • the iron species in the zeolite pores and/or the pore intersections have a maximum diameter of 12 Angstroms or less.
  • a further preferred embodiment is a method according to the invention, wherein the iron-containing zeolite has one of the following structures: MFI, BEA, MOR, CHA, AEI, AFX, FAU.
  • a further preferred embodiment is a method according to the invention, wherein the iron-containing zeolite used has a molar SiC ⁇ /AFOs ratio between 2 and 1000, preferably between 5 and 200, particularly preferably between 10 and 100.
  • the molar SiOVAbCh ratio of the iron-containing zeolite is adjusted so that it is hydrophobic.
  • a further preferred embodiment is a method according to the invention, wherein the iron-containing zeolite has an atomic Fe/Al ratio between 0.1 and 2, preferably between 0.2 and 1.
  • a further preferred embodiment is a process according to the invention, wherein the catalyst is present as a shaped body.
  • the shaped body has a regular or irregular geometric shape, preferably one or more shapes selected from the group consisting of sphere, pellet, solid cylinder, such as extruded parts or tablets, hollow cylinder such as ring, cylindrical shaped body with several continuous internal bores , trilope, crown ring, wheel, chair, granules, fragment of compacted masses, monolith and cross-canal structure.
  • a further preferred embodiment is a method according to the invention, wherein the shaped body (preferably as described above) is or is produced by extrusion, granulation, tabletting or compaction.
  • a further preferred embodiment is a method according to the invention, wherein the catalyst is or is produced by coating a honeycomb or another geometric shaped body.
  • a further aspect of the present invention also relates to a use of an iron-containing zeolite (as described herein in the context of the process according to the invention) for converting hydrogen allotropes, preferably from ortho- to para-hydrogen, preferably in a process as described herein, in particular preferably in a preferred embodiment thereof (as described herein).
  • Also described herein is the product of a conversion of ortho- to para-hydrogen, produced or producible according to a process described herein, preferably as described herein as preferred, the product preferably having a para-hydrogen content of at least 95%, based on the Total amount of hydrogen.
  • a further preferred embodiment of a process according to the invention is a process as described above, the temperature during implementation being in a range from 150 to 20 K, preferably in a range from 120 to 20 K, particularly preferably in a range from 80 to 20 K.
  • a further preferred embodiment is a process according to the invention as described herein, the pressure during implementation being in a range from 50 to 5 bar, preferably in a range from 30 to 13 bar.
  • a preferred embodiment is a method according to the invention as described herein, wherein the iron-containing zeolite has pore openings with an average diameter in the range of 4 to 8 angstroms.
  • an iron-containing zeolite catalyst for converting ortho-hydrogen to para-hydrogen which is characterized in that the iron-containing zeolite has pore openings with an average diameter in the range of 4 to 8 angstroms.
  • such an iron-containing zeolite catalyst is characterized in that the zeolite has Broenstedt centers.
  • an iron-containing zeolite catalyst is characterized in that the zeolite has one of the following structures: MFI, BEA, MOR, CHA, AEI, AFX, FAU.
  • an iron-containing zeolite catalyst is characterized in that the molar SiO2/Al2O3 ratio is between 2 and 1000, preferably between 5 and 200, particularly preferably between 10 and 100.
  • an iron-containing zeolite catalyst is characterized in that there is an Fe/Al ratio between 0.1 and 2, preferably between 0.2 and 1.
  • an iron-containing zeolite catalyst is characterized in that the catalyst is in the form of a shaped body.
  • an iron-containing zeolite catalyst is characterized in that the shaped body is or is produced by extrusion, granulation, tabletting or compaction.
  • an iron-containing zeolite catalyst is characterized in that the catalyst is or is produced by coating a honeycomb or another geometric shaped body.
  • the catalyst is or is obtained by iron exchange using solid-state ion exchange.
  • the preferred size of the iron species is in the range from 2 to 100 iron atoms and particularly preferably in the range from 2 to 20 iron atoms.
  • the iron clusters can be detected using known methods and thus a catalyst modification can be controlled for the intended applications (see e.g. Sando Brandenberger, Oliver Kröcher, Arno Tissler and Roderik Althoff “State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal -Exchanged Zeolite Catalysts" in Catalysis Reviews, Vol. 50 (2008) pp. 492 - 531).
  • the UV-VIS process as described in the literature cited here, is particularly suitable.
  • Fig. 1 shows a simplified model of a measuring cell for determining the temperature change during an adiabatic conversion.
  • Fig. 2 shows the functionality of the measurement of the ortho and para hydrogen components via the temperature difference during the adiabatic conversion.
  • a commercially available faujasite-type zeolite (zeolite Y) in the ammonium form with a SiO2/Al2C>3 ratio of 12 was treated with an aqueous iron(II)SO4 solution according to liquid-phase ion exchange.
  • 140 g of Fe(II)SC>4 x 7 H2O (Roth company) were dissolved in 5 liters of distilled water at 80 °C in a 10 liter container equipped with a stirrer and a heating rod. Then 1 kg of the ammonium zeolite was added and kept stirring for one hour. The pH was 3.6.
  • Fe(l l)Cl2 x 4 H2O treated 100 g of the ammonium zeolite were mixed with 10 g of iron(II) chloride x 4 H2O (Merck company) in a laboratory mortar and then mortared for 15 minutes. The resulting powder was then annealed in a laboratory oven at 500 °C for 12 hours. The resulting amount of powder was 105 g.
  • a commercially available zeolite of the BEA type (zeolite beta) in the ammonium form with a SiO2/Al2C>3 ratio of 10 was treated with an aqueous iron(II)SO4 solution according to liquid phase ion exchange.
  • the procedure was analogous to the conditions described in Example 1, with the difference that 1 kg of ammonium zeolite (BEA type) and 158 g of Fe(II)SO4 x 7 H2O (Roth company) were used.
  • the average degree of exchange calculated based on the amounts used, defined as Fe/Al, was 0.5, which corresponds to a weight fraction of Fe2Os in the exchanged zeolite of approx. 9% by weight.
  • the resulting amount of powder was 1020 g.
  • a commercially available zeolite of the BEA type (zeolite beta) in the ammonium form with a SiO2/Al2C>3 ratio of 10 was treated with Fe(II)Cl2 x 4 H2O according to a solid-state ion exchange process.
  • the procedure was analogous to the conditions described in Example 2, with the difference that 100 g of ammonium zeolite (BEA type) and 11 g of iron(II) chloride x 4 H2O were used.
  • 105 g of Fe zeolite were obtained with a calculated average degree of exchange, defined as an Fe/Al ratio of 0.5, which corresponds to a weight proportion of Fe2Ü3 in the exchanged zeolite of approx. 9% by weight.
  • a 15 g portion of powders with an average particle size of less than 20 pm and a residual moisture content of less than 10% by weight was filled into a mold with a diameter of approximately 7.5 cm and subjected to a stamp pressure of 90 bar for 1 minute .
  • the resulting compact was placed on the upper sieve of a 2-stage sieve combination, with the first sieve having a mesh size of 700 pm and the second sieve arranged below it having a mesh size of 500 pm, and crushed using a mortar.
  • the proportion of the resulting sieve fraction of 500 - 700 pm was 55 - 60% by weight of the original compact. All shaped catalyst samples produced in this way showed no dust formation during filling tests and can be used technically in terms of dimensional stability.
  • the example shows that shaping, such as tabletting or compacting, can be carried out, with the shaping of the catalyst compositions according to the invention also being possible without processing aids and thus any interference with the catalytic activity can be avoided.
  • the amount of iron zeolite powder applied was 130 g/l honeycomb.
  • the example shows that geometrically structured objects or carrier materials can be converted into ortho-para-hydrogen rearrangement catalysts using coating techniques, while maintaining the geometry of the carrier.
  • the iron zeolites prepared in Examples 1 - 4 can be arranged in the following order:
  • BEA-10 solid state exchange; corresponds to example 4
  • FAU-12 solid state exchange; corresponds to example 2
  • BEA-10 liquid phase exchange; corresponds to example 3
  • FAU 12 liquid phase exchange; corresponds to example 1).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Gegenstand der Erfindung ist ein neues Verfahren zur Umwandlung von ortho- zu para-Wasserstoff. Die vorliegende Erfindung betrifft zudem eine Verwendung eines eisenhaltigen Zeoliths, vorzugsweise nach einem Verfahren wie hierin beschrieben, zur Umwandlung von Wasserstoff Allotropen.

Description

Verfahren zur Umwandlung von ortho- Wasserstoff zu para-Wasserstoff
Die vorliegende Erfindung betrifft primär ein Verfahren zur Umwandlung von ortho- zu para- Wasserstoff, dadurch gekennzeichnet, dass als Katalysator ein eisenhaltiger Zeolith eingesetzt wird. Die vorliegende Erfindung betrifft zudem eine Verwendung eines eisenhaltigen Zeoliths zur Umwandlung von Wasserstoff Allotropen, vorzugsweise wie hierin näher beschrieben.
Weitere Aspekte der vorliegenden Erfindung und bevorzugte Ausgestaltungen davon ergeben sich aus der folgenden Beschreibung und den beigefügten Patentansprüchen.
Die Erzeugung von Energie und chemischen Produkten aus natürlichen Ressourcen wie Erdöl oder Erdgas ist durch die limitierten Reserven in mittlerer Zukunft nicht mehr sinnvoll. Insbesondere bewirkt diese Nutzung einen hohen CO2 Ausstoß, der zu einer globalen Erwärmung führt. Deren möglichen Folgen sind heute zwar nur abschätzbar, dass dies aber zu einer Existenzfrage der Menschheit wird, ist abzusehen. Ferner ist Erdöl aufgrund seiner Zusammensetzung und der Vielzahl von Basismolekülen für die chemische Industrie viel zu schade zum Verbrennen. Für den langfristigen Erfolg einer Energiewende und für den globalen Klimaschutz sind Alternativen zu fossilen Energieträgern von außerordentlicher Wichtigkeit. Wasserstoff wird hierbei eine Schlüsselrolle einnehmen, sei es als Energiespeicher oder als stoffliche Komponente für weitere Stoffumwandlungen. Klimafreundlich hergestellter Wasserstoff (= grüner Wasserstoff) ermöglicht es, die CC>2-Emissionen in mobilen und stationären Anwendungen zu senken. Dies gilt insbesondere für Anwendungen, bei denen eine direkte Nutzung von Strom aus erneuerbaren Energien nicht ausreicht oder nicht mög- lieh ist. Die Wasserstofferzeugung aus regenerativen Ressourcen, der Transport und die Lagerung von Wasserstoff sind daher zentrale Aufgaben auf globaler Ebene. Für die Speicherung und den Transport von Wasserstoff stellt die Verflüssigung und anschließende Lagerung in flüssiger Form wegen der deutlich vergrößerten Dichte oft die wirtschaftlichste Lösung dar. Dies gilt insbesondere dann, wenn die geografische Distanz von Erzeugungsort und Verbrauchsort sehr groß ist. Ein effizienter Transport in Pipelines würde einen extrem hohen Druck benötigen und würde unter diesen Bedingungen zu einer Versprödung der Metallrohre führen. Außerdem würden zahlreiche Hochdruckverdichter benötigt, die durch ihren hohen Energiebedarf den Transport letztendlich unwirtschaftlich machen würden. Daher werden Wasserstoffleitungen nur im lokalen Rahmen, innerhalb von Chemiestandorten oder Verbundstandorten eingesetzt.
Das Wasserstoffmolekül kann in zwei Varianten vorliegen (Allotropie), die sich in der Anordnung ihres 1H-Kernspins unterscheiden, damit eine unterschiedliche Rotationsenergie aufweisen, die wiederum zu unterschiedlichen physikalischen Eigenschaften führen. Bei der para-Form sind die beiden Kernspins antiparallel angeordnet, bei der ortho-Form parallel. Die Allotropie des Wasserstoffs wurde schon in den 20er Jahren des letzten Jahrhunderts im Rahmen der Entwicklung der Quantentheorie entdeckt. Damit verbundene Namen sind z.B. Bonhoeffer, Heisenberg, Eucken, Mecke und Hund (LJ. Schindewolf, Bunsen-Magazin, 4.Jahrg., 6/2002, S.139 - 146).
Die beiden Allotrope liegen in einem temperaturabhängigen Gleichwicht nebeneinander vor: oberhalb 250 K besteht das Wasserstoff-Allotropengemisch aus 75 % der ortho-Form und 25 % aus der para-Form. Eine weitere Erhöhung der Umgebungstemperatur verändert dieses Verhältnis nicht mehr. In diesem Fall spricht man von Normal-Wasserstoff. Bei tiefen Temperaturen, wie sie für die Verflüssigung von Wasserstoff notwendig sind, verschiebt sich das Gleichgewicht immer mehr zur para-Form. Bei Temperaturen unterhalb von 20 K liegt nahezu nur noch die para-Form vor (DE 4403352 B4). Allerdings erfolgt die Gleichgewichtsumwandlung beim Abkühlen von der ortho- in die para-Form nur langsam, da die Wechselwirkungen zwischen den Kernen nur sehr schwach sind. Die Umwandlung von ortho-Wasserstoff in die para-Form ist exotherm mit einer Umwandlungsenergie von 527 KJ/kg. Umgekehrt ist die Umwandlung von der para-Form in die ortho-Form eine exergene Reaktion.
Bei der Verflüssigung von Wasserstoff spielt die Geschwindigkeit der ortho-para-Umwand- lung wie auch die dabei auftretende Exothermie eine wichtige Rolle. Zum einen wird dadurch der Energieaufwand zur Verflüssigung notwendigerweise erhöht, da die freiwerdende Energie (527 kJ/kg) höher als die Verdampfungsenthalpie des para- Wasserstoffs (446 kJ/kg) ist, d.h. mit zunehmender ortho- zu para-Umwandlung verdampft Wasserstoff bzw. man muss weiterhin unter hohem Energieaufwand kühlen, damit die gesamte Menge flüssig bleibt. Zum anderen wird aufgrund der langsamen Gleichgewichtseinstellung ein gewisser Anteil des ortho-Wasserstoffs nicht zu para-Wasserstoff umgewandelt. Bei einer darauffolgenden Lagerung würde es durch die bei der Selbstumwandlung freiwerdende Energie zu einem Abdampfen und damit zu einem unerwünschten Verlust von flüssigem Wasserstoff kommen. Für kommerziellen flüssigen Wasserstoff wird deshalb ein Parawasserstoffanteil von mindestens 95% gefordert, was letztendlich mögliche Verdampfungsverluste deutlich minimiert (Lagerzeit 14 Tage, Wasserstoffverlust <1 %).
Um die geforderten niedrigen ortho-Wasserstoffgehalte zu erreichen, werden in allen industriellen Wasserstoff-Verflüssigungsanlagen Katalysatoren eingesetzt, die schon während des Abkühlungsprozesses die Gleichgewichtseinstellung beschleunigen. Wenn die Einstellung des jeweiligen Gleichgewichts so schnell wie die Abkühlgeschwindigkeit ist, wird beim Tripelpunkt keine weitere Energie frei. In der Praxis wird hierzu nahezu ausschließlich ein Katalysator auf Basis von paramagnetischem Eisenoxid (Fe2C>3, IONEX® Type O-P Catalyst, Molecular Products) eingesetzt. Dadurch kann heute schon eine signifikante Energieeinsparung (ca. 20 %) erreicht werden.
Die katalytische Umwandlung durch Wechselwirkung des Wasserstoffmoleküls mittels einer paramagnetischer Oberfläche/Spezies wurde bereits Anfang der 30er Jahre von Farkas und Sachse entdeckt (Farkas, A.; Sachse, H., Über die homogene Katalyse der Para- Ortho-Wasserstoffumwandlung unter Einwirkung paramagnetischer Ionen II; Z. Physik. Chem. B23 (1933), S. 19-27 25). Es sind zwar noch andere paramagnetische Katalysatoren beschrieben wie Ru/silicate, Ru/aluminate (US 9,714,168 B1), CrzOs auf AI2O3, CeC>2, Ni/ALCh, MnÜ2 auf AI2O3 und ungeträgert (D.H. Weitzel, W.V. Loebenstein, J.W. Draper and O.E. Park, J. Of Research of National Bureau of Standards, Vol. 60, Nr. 3, 1958), Oxysorb®, ein CrOs auf SiÜ2 und Apachi Nickel-Silika von Air Products (Jürgen Essler, Dissertation: Physikalische und technische Aspekte der Ortho-Para-Umwandlung (2012), Kapitel 5.5.3, S. 67 ff, Technische Universität Dresden). Alle bisher untersuchten Kandidaten waren weniger wirksam als der Standard-Eisenoxid-Katalysator.
Der heute üblicherweise verwendete Eisenoxid-Katalysator weist jedoch noch eine Reihe von Nachteilen auf. Die eingesetzten Katalysatorkörner liegen im Bereich von 0,3 bis 0,6 mm und sind sehr spröde. Damit entwickeln sie kleine Partikel (Staub), was zu Verfahrensschwierigkeiten führen kann. Die zur Verfügung stehende Oberfläche ist im Wesentlichen die geometrische Oberfläche der Partikel, d.h. die in dem Katalysatorkorn liegenden Zentren sind für den Wasserstoff nicht zugänglich. Außerdem ist das Material stark hygroskopisch, was selbst bei kleinen Wasserkonzentrationen die Umwandlung hindert und/oder eine aufwendige Aktivierung und Regenerierung notwendig macht, d.h. die Standzeit des Katalysators negativ beeinflusst. Ferner sei erwähnt, dass die kristalline Form wie auch die Korngrößen eine an den Anwendungsprozess (z.B. Kühlprozess) optimierte Formgebung stark einschränkt.
Es ist zudem zu erwähnen, dass die bekannten Eisenoxid-Katalysatoren erst ab 80 K und darunter im ortho-para-Umwandlungsprozess angewandt werden können, d.h. im vorherigen Abkühlungsprozess bei höheren Temperaturen noch nicht einsetzbar sind. Dies liegt vor allem daran, dass die bekannten Katalysatoren hygroskopisch sind und das Ausgangsgemisch zuvor über den Abkühlungsprozess von Wasserresten befreit werden muss.
Bei potentiell geeigneten Katalysatoren müssen eine Reihe von physikalischen Parametern betrachtet bzw. optimiert werden, um eine optimale Gesamtwirkung zu erzielen. Dies sind insbesondere die
1. Diffusion durch die Strömungsgrenzschicht an die Katalysatoroberfläche,
2. Diffusion in die Poren des Katalysators,
3. Adsorption an der Oberfläche des Katalysatorzentrums,
4. Oberflächenreaktion bzw. Wechselwirkung mit paramagnetischen Zentren oder ggf. mit Wasserstoffaustauschzentren
5. Desorption von der Oberfläche des Katalysatorzentrums,
6. Diffusion der Produkte aus den Poren und
7. Diffusion der Produkte durch die Strömungsgrenzschicht.
Ein effektiver Katalysator zeichnet sich dadurch aus, dass der Gesamtprozess in der gewünschten Geschwindigkeit abläuft. Der langsamste Schritt in dieser Prozesskette bestimmt damit die Gesamtgeschwindigkeit der gewünschten Reaktion.
Die Umwandlungsgeschwindigkeit kann durch verschiedene Methoden untersucht werden. Standardmäßig kann hier das unter der DE 4403352 B4 beschriebene Verfahren der Linde AG erwähnt werden. Hierbei werden physikalische Daten wie Temperatur und Druck vor der Umwandlung (vor dem Katalysator) und nach der Umwandlung (nach dem Katalysator) gemessen und mit den bekannten physikalische Daten das para- zu ortho-Verhältnis berechnet. Dieses Verfahren ist in der DE 4403352 B4 im Detail beschrieben. Primäre Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Umwandlung von ortho- zu para-Wasserstoff bereitzustellen, welches die oben dargestellten Nachteile überwindet. Es soll vorzugsweise ein Verfahren bereitgestellt werden, welches einerseits Wasserstoffverluste während der Herstellung des flüssigen Wasserstoffs durch Verdampfung vermeidet oder verringert, und andererseits den Gehalt an ortho-Wasserstoff minimiert bzw. vermindert, vorzugsweise in der Weise, dass während des gesamten Abkühlungsprozesses die Einstellung des thermodynamischen ortho-para-Wasserstoff-Gleichgewichtes dem der Abkühlgeschwindigkeit angeglichen wird. Dadurch soll es vorteilhafterweise zu Energieeinsparungen des Kühlprozesses bzw. generell auch zu einer Kostenersparnis kommen. Des Weiteren sollte mit der vorliegenden Erfindung vorzugsweise ein höherwertigerer kommerziell verflüssigter Wasserstoff erhalten werden, der den Anforderungen, einen para-Wasserstoffanteil von mindestens 95% aufzuweisen, erfüllt. Zudem sollte insbesondere ein Verfahren bereitgestellt werden, bei dem ein dergestalt vorteilhafter Katalysator zum Einsatz kommt, dass aufwändige Aktivierungs- und Regenerationsbehandlungen des Katalysators nicht notwendig sind, bei gleichzeitig geringer oder keiner Effizienzeinbuße. Vor allem soll zudem ein Verfahren bereitgestellt werden, bei dem der Katalysator in einem deutlichen breiteren Temperaturbereich als die bisher bekannten Eisenoxid-Ka- talysatoren angewandt werden kann. Weitere Aufgabenstellungen, die der vorliegenden Erfindung zu Grunde liegen, ergeben sich aus den nachfolgenden Ausführungen und den beigefügten Patentansprüchen.
Überraschenderweise wurde im Rahmen der vorliegenden Erfindung gefunden, dass sich mit Eisen dotierte hydrophobe Zeolithe, die vorteilhafterweise Broenstedt Zentren aufweisen, in idealer Weise für die Umwandlung von ortho- zu para-Wasserstoff eignen. Als besonders geeignet zeigten sich siliziumreiche Zeolithe, die hydrophobe Eigenschaften besitzen, eine hohe innere Oberfläche von mehreren hundert m2/g aufweisen und Protonen- Broenstedt Zentren besitzen. Da Eisen-Spezies bzw. Cluster durch eine vorzugsweise geringe Porengröße von 4 bis 8 Angstroem im Zeolithen geometrisch in ihrem Wachstum begrenzt sind, weisen solche Katalysatoren einen hohen intrinsischen Zentrennutzungs- grad auf. Die Zugänglichkeit ist durch das mehrdimensionale Porensystem, z.B. bei Zeolithen des MFI, MOR, FAU oder BEA-Typs (dreidimensionales Porensystem), in idealer Weise gegeben. Die zusätzlich vorteilhafterweise vorhandenen Protonen-Broenstedt-Zen- tren sind zum Protonenaustausch mit Wasserstoff fähig und beschleunigen (katalysieren) dadurch zusätzlich die Gesamtumwandlung zu para-Wasserstoff im höheren Bereich der Prozesstemperatur. Die vorliegende Erfindung betrifft gemäß einem primären Aspekt ein Verfahren zur Umwandlung von ortho- zu para-Wasserstoff, umfassend oder bestehend aus folgenden Schritten:
Bereitstellen eines Ausgangsgemisches aus oder umfassend ortho- und para- Wasserstoff,
Abkühlen des Ausgangsgemisches und Umsetzen von ortho-Wasserstoff zu para-Wasserstoff unter Verwendung eines Katalysators, dadurch gekennzeichnet, dass als Katalysator ein eisenhaltiger Zeolith eingesetzt wird.
Eine bevorzugte Ausgestaltung ist ein erfindungsgemäßes Verfahren wie hierin beschrieben, dadurch gekennzeichnet, dass das Abkühlen des Ausgangsgemisches und Umsetzen von ortho-Wasserstoff zu para-Wasserstoff gemäß einem der folgenden Schritte durchgeführt wird: a) Abkühlen des Ausgangsgemisches und daraufhin Umsetzen von ortho-Wasserstoff zu para-Wasserstoff unter Verwendung des Katalysators, oder b) gleichzeitiges oder teilweise gleichzeitiges Abkühlen des Ausgangsgemisches und Umsetzen von ortho-Wasserstoff zu para-Wasserstoff unter Verwendung des Katalysators, oder c) Abkühlen des Ausgangsgemisches und daraufhin Umsetzen von ortho-Wasserstoff zu para-Wasserstoff unter Verwendung des Katalysators, wobei während des Umsetzens das Ausgangsgemisch weiterhin abgekühlt wird.
In einer besonders bevorzugten Ausgestaltung ist ein erfindungsgemäßes Verfahren dadurch gekennzeichnet, dass ein flüssiger bzw. kryogener Wasserstoff mit einem para- Wasserstoffgehalt von mindestens 95 Gew.-%, bezogen auf den Gesamtgehalt an Wasserstoff hergestellt wird.
Eine weitere bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren wie oben beschrieben, dadurch gekennzeichnet, dass der eisenhaltige Zeolith Broenstedt Zentren aufweist.
Ein für das hierin beschriebene Verfahren besonders geeigneter Katalysator sollte eine hohe Konzentration an paramagnetischen Zentren bzw. eine hohe Konzentration an potentiellen H+-Austauschzentren, eine hohe Neigung zur Adsorption von Wasserstoff und eine hohe Zugänglichkeit (Porosität) zur Minimierung von Diffusionshemmnissen aufweisen. Die in der Literatur beschriebenen und untersuchten Materialien sind mehrheitlich hydrophil und besitzen keine aziden Protonen-Broenstedt-Zentren.
In einer besonders bevorzugten Ausführungsform gilt, dass die Eisenspezies in den Zeolithporen und/oder den Porenkreuzungen einen maximalen Durchmesser von 12 Angstroem oder weniger aufweisen.
Eine weitere bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren, wobei der eisenhaltige Zeolith eine der folgenden Strukturen aufweist: MFI, BEA, MOR, CHA, AEI, AFX, FAU.
Eine weitere bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren, wobei der eingesetzte eisenhaltige Zeolith ein molares SiC^/AFOs- Verhältnis zwischen 2 und 1000 aufweist, vorzugsweise zwischen 5 und 200, besonders bevorzugt zwischen 10 und 100.
Gemäß einer bevorzugten Ausgestaltung ist das molare SiOVAbCh-Verhältnis des eisenhaltige Zeoliths so einzustellen bzw. so eingestellt, dass er hydrophob ist.
Eine weitere bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren, wobei der eisenhaltige Zeolith ein atomares Fe/Al-Verhältnis zwischen 0,1 und 2 aufweist, vorzugsweise zwischen 0,2 und 1 .
Eine weitere bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren, wobei der Katalysator als Formkörper vorliegt.
Dabei ist es bevorzugt, dass der Formkörper eine regelmäßige oder unregelmäßige geometrische Form aufweist, vorzugsweise eine oder mehrere Formen ausgewählt aus der Gruppe bestehend aus Kugel, Pellet, Vollzylinder, wie z.B. Strangpresslinge oder Tabletten, Hohlzylinder wie z.B. Ring, zylindrischer Formkörper mit mehreren durchgehenden Innenbohrungen, Trilope, Kronenring, Rad, Sessel, Granulat, Bruchstück kompaktierter Massen, Monolith und Kreuzkanalstruktur.
Eine weitere bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren, wobei der Formkörper (vorzugsweise wie oben beschrieben) durch Extrusion, Granulation, Tablettierung oder Kompaktierung hergestellt wird bzw. ist.
Eine weitere bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren, wobei der Katalysator durch Beschichtung einer Wabe oder eines anderen geometrischen Formkörpers hergestellt wird bzw. ist. Ein weiterer Aspekt der vorliegenden Erfindung betrifft zudem eine Verwendung eines eisenhaltigen Zeoliths (wie im Rahmen des erfindungsgemäßen Verfahren hierin beschrieben), zur Umwandlung von Wasserstoff Allotropen, vorzugsweise von ortho- zu para-Was- serstoff, vorzugsweise in einem Verfahren wie hierin beschrieben, besonders bevorzugt in einer bevorzugten Ausgestaltung davon (wie hierin beschrieben).
Ebenfalls hierin beschrieben ist das Produkt einer Umwandlung von ortho- zu para-Was- serstoff, hergestellt oder herstellbar gemäß einem Verfahren hierin beschrieben, vorzugsweise wie hierin als bevorzugt beschrieben, wobei das Produkt vorzugsweise einen para- Wasserstoffanteil von mindestens 95%, bezogen auf die Gesamtmenge an Wasserstoff, aufweist.
Eine weitere bevorzugte Ausführungsform eines erfindungsgemäßen Verfahren ist ein Verfahren wie oben beschrieben, wobei die Temperatur bei Umsetzung in einem Bereich von 150 bis 20 K, vorzugsweise in einem Bereich von 120 bis 20 K, besonders bevorzugt in einem Bereich von 80 bis 20 K liegt.
Eine weitere bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren wie hierin beschrieben, wobei der Druck bei Umsetzung in einem Bereich von 50 bis 5 bar, vorzugsweise in einem Bereich von 30 bis 13 bar liegt.
Eine bevorzugte Ausführungsform ist ein erfindungsgemäßes Verfahren wie hierin beschrieben, wobei der eisenhaltige Zeolith Porenöffnungen mit einem mittleren Durchmesser im Bereich von 4 bis 8 Angstroem aufweist.
Hierin offenbart ist auch ein eisenhaltiger Zeolithkatalysator zur Umwandlung von ortho- Wasserstoff zu para-Wasserstoff, der dadurch gekennzeichnet ist, dass der eisenhaltige Zeolith Porenöffnungen mit einem mittleren Durchmesser im Bereich von 4 bis 8 Angstroem aufweist. Im Allgemeinen bzw. Übrigen gilt für diesen Katalysator das oben für den erfindungsgemäß einzusetzenden Katalysator und dessen bevorzugte Ausgestaltungen Gesagte bzw. in den beigefügten Patentansprüchen Spezifizierte entsprechend.
Beispielsweise ist es daher bevorzugt, dass ein solcher eisenhaltiger Zeolithkatalysator dadurch gekennzeichnet ist, dass der Zeolith Broenstedt Zentren aufweist.
Beispielsweise ist es weiter bevorzugt, dass ein eisenhaltiger Zeolithkatalysator dadurch gekennzeichnet ist, dass der Zeolith eine der folgenden Strukturen aufweist: MFI, BEA, MOR, CHA, AEI, AFX, FAU. Außerdem ist es bevorzugt, dass ein eisenhaltiger Zeolithkatalysator dadurch gekennzeichnet ist, dass das molare SiO2/Al2O3-Verhältnis zwischen 2 und 1000 liegt, vorzugsweise zwischen 5 und 200, besonders bevorzugt zwischen 10 und 100.
Beispielsweise ist es außerdem bevorzugt, dass ein eisenhaltiger Zeolithkatalysator dadurch gekennzeichnet ist, dass ein Fe/Al-Verhältnis zwischen 0,1 und 2 vorliegt, vorzugsweise zwischen 0,2 und 1 .
Weiterhin ist es besonders bevorzugt, dass ein eisenhaltiger Zeolithkatalysator dadurch gekennzeichnet ist, dass der Katalysator als Formkörper vorliegt.
Außerdem ist es besonders bevorzugt, dass ein eisenhaltiger Zeolithkatalysator dadurch gekennzeichnet ist, dass der Formkörper durch Extrusion, Granulation, Tablettierung oder Kompaktierung hergestellt wird bzw. ist.
Es ist besonders bevorzugt, dass ein eisenhaltiger Zeolithkatalysator dadurch gekennzeichnet ist, dass der Katalysator durch Beschichtung einer Wabe oder eines anderen geometrischen Formkörpers hergestellt wird bzw. ist.
Außerdem ist es generell im Zusammenhang mit den hierhin beschriebenen Katalysatoren bevorzugt, dass der Katalysator durch Eiseneintausch mittels Festkörperionentausches erhalten wird bzw. ist.
Weiterhin gilt generell, dass die bevorzugte Größe der Eisenspezies im Bereich von 2 bis 100 Eisenatomen und besonders bevorzugt im Bereich 2 bis 20 Eisenatomen liegt. Die Eisen-Cluster können mit bekannten Verfahren detektiert werden und damit eine Katalysatormodifikation für die jeweils beabsichtigten Anwendungen gesteuert werden (siehe z.B. Sando Brandenberger, Oliver Kröcher, Arno Tissler and Roderik Althoff "State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite Catalysts" in Catalysis Reviews, Vol. 50 (2008) S. 492 - 531). Besonders geeignet ist das Verfahren mit UV-VIS, wie es in der hier zitierten Literatur beschrieben ist.
Nachfolgend wird die Erfindung anhand von ausgewählten Beispielen näher erläutert. Die Beispiele stellen keine Einschränkungen im Sinne der vorliegenden Erfindung dar. Die Erfindung kann jegliche, dem Fachmann geläufige Ausführungsform umfassen.
Beschreibung der Abbildungen:
Fig. 1 zeigt ein vereinfachtes Modell einer Messzelle zur Bestimmung der Temperaturänderung bei einer adiabaten Umwandlung. Fig. 2 zeigt die Darstellung der Funktionsweise der Messung der ortho- und para-Wasser- stoffanteile über die Temperaturdifferenz bei der adiabaten Umwandlung.
Beispiele
1) Herstellung eines eisenhaltigen Zeolithkatalysators
1 Ein kommerziell erhältlicher Zeolith des Faujasith-Typs (Zeolith Y) in der Ammonium-Form mit einem SiO2/Al2C>3- Verhältnis von 12 wurde gemäß einem Flüssigpha- senionenaustausch mit einer wässrigen Eisen(ll)SO4-Lösung behandelt. Hierzu wurden in einem 10 Liter Behälter, ausgerüstet mit einem Rührer und einem Heizstab, 140 g Fe(ll)SC>4 x 7 H2O (Firma Roth) in 5 Liter destilliertem Wasser bei 80 °C gelöst. Anschließend wurden 1 kg des Ammonium-Zeoliths dazu gegeben und eine Stunde unter Rühren gehalten. Der pH-Wert lag bei 3,6. Danach wurde abfiltriert und das erhaltene feuchte Pulver bei 120 °C im Flachbett vorgetrocknet und anschließend in einem Ofen bei 500 °C über 6 Stunden getempert. Es wurden 1020 g Fe-Zeolith in Pulverform erhalten. Der durch die eingesetzten Mengen errechnete mittlere Austauschgrad definiert als Fe/Al lag bei 0,5, was einem Gewichtsanteil von Fe2Ü3 im ausgetauschten Zeolith von ca. 8 Gew.-% entspricht.
Ein kommerziell erhältlicher Zeolith des Faujasith-Typs in der Ammonium-Form mit einem SiO2/Al2O3- Verhältnis von 12 gemäß einem Festkörperionentauschverfahren mit
Fe(l l)Cl2 x 4 H2O behandelt. Hierzu wurden in einem Labormörser 100 g des Ammonium- Zeoliths mit 10 g Eisen(ll)Chlorid x 4 H2O (Firma Merck) vermischt und anschließend über 15 Minuten gemörsert. Das dabei erhaltene Pulver wurde anschließend in einem Laborofen bei 500 °C über 12 Stunden getempert. Die resultierende Pulvermenge lag bei 105 g. Der durch die eingesetzten Mengen errechnete mittlere Austauschgrad definiert als Fe/Al lag bei 0,5, was einem Gewichtsanteil von Fe2Os im ausgetauschten Zeolith von ca. 8 Gew.- % entspricht.
Ein kommerziell erhältlicher Zeolith des BEA-Typs (Zeolith Beta) in der Ammonium-Form mit einem SiO2/Al2C>3- Verhältnis von 10 wurde gemäß einem Flüssigphasenio- nenaustausch mit einer wässrigen Eisen(ll)SO4-Lösung behandelt. Dabei wurde analog den unter Beispiel 1 beschriebenen Bedingungen vorgegangen, mit dem Unterschied, dass 1 kg des Ammonium-Zeoliths (BEA-Typ) und 158 g Fe(ll)SO4 x 7 H2O (Firma Roth) verwendet wurden. Der durch die eingesetzten Mengen errechnete mittlere Austauschgrad definiert als Fe/Al lag bei 0,5, was einem Gewichtsanteil von Fe2Os im ausgetauschten Zeolith von ca. 9 Gew.-% entspricht. Die resultierende Pulvermenge lag bei 1020 g. Ein kommerziell erhältlicher Zeolith des BEA-Typs (Zeolith Beta) in der Ammonium-Form mit einem SiO2/Al2C>3- Verhältnis von 10 wurde gemäß einem Festkörperionen- tauschverfahren mit Fe(l l)Cl2 x 4 H2O behandelt. Dabei wurde analog den unter Beispiel 2 beschriebenen Bedingungen vorgegangen, mit dem Unterschied, dass 100 g des Ammo- nium-Zeoliths (BEA-Typ) und 11 g Eisen(ll)Chlorid x 4 H2O verwendet wurden. Erhalten wurden 105 g Fe-Zeolith mit einem errechneten mittleren Austauschgrad, definiert als Fe/Al-Verhältnis von 0,5, was einem Gewichtsanteil von Fe2Ü3 im ausgetauschten Zeolith von ca. 9 Gew. % entspricht.
2) Formgebung der Katalysatormassen zu technisch einsetzbaren Katalysatoren
5 Von den unter Beispielen 1 bis 4 gewonnenen und getrockneten Eisen-Zeolith-
Pulvern mit einer mittleren Teilchengröße von unter 20 pm und einem Restfeuchtegehalt von unter 10 Gew.-% wurden jeweils eine 15 g-Portion in eine Pressform mit einem Durchmesser von ca. 7,5 cm gefüllt und einem Stempeldruck von 90 bar 1 min lang ausgesetzt. Nach der Entformung wurde der jeweils entstandene Pressling auf das obere Sieb einer 2- stufigen Siebkombination gegeben, wobei das erste Sieb eine Maschenweite von 700 pm und das zweite, darunter angeordnete Sieb eine Maschenweite von 500 pm aufwies, und mit Hilfe eines Mörsers zerkleinert. Der Anteil der erhaltenen Siebfraktion von 500 - 700 pm betrug jeweils 55 - 60 Gew.-% des ursprünglichen Presslings. Alle auf diese Weise hergestellten geformten Katalysatormuster zeigten bei Füllversuchen keine Staubentwicklung und sind bezüglich Formstabilität technisch einsetzbar. Das Beispiel zeigt, dass die Formgebung, wie beispielsweise eine Tablettierung oder Kompaktierung durchgeführt werden kann, wobei die Formgebung der erfindungsgemäßen Katalysatormassen sich auch ohne Verarbeitungshilfsmittel durchführen lässt und damit eine evtl. Störung der katalytischen Aktivität vermieden werden kann.
Aus 1 kg Eisenzeolith-Pulver (Eisen-Zeolith Typ BEA hergestellt über Festkör- perionenaustausch), hergestellt nach der unter Beispiel 4 beschriebenen Methode, 2,3 I deionisiertem Wasser und 120 g Ludox 40 (Si02-Sol der Fa. Grace), wurde mit Hilfe eines Intensivrührers eine Suspension hergestellt. Der Feststoffanteil der Suspension (Washcoat) betrug 29,0 Gew.-%. Mit diesem Washcoat wurde eine keramische Trägerwabe aus Cordierit mit einer Zelldichte von 200 cpsi (cells per square inch) und der Abmessung 10 cm x 10 cm x 10 cm über einen dem Fachmann bekannten üblichen Beschichtungsprozess (Tauchen und anschließendes Ausblasen des überschüssigen Washcoats mit Luft) beschichtet. Im Anschluss daran wurde die beschichtete Wabe im Umluft-Tro- ckenschrank (T = 130 °C, Dauer 5 h) getrocknet und danach bei 500 °C über 3 h calcin iert. Die Auftragsmenge an Eisenzeolith-Pulver betrug 130 g/l Wabe. Das Beispiel zeigt, dass geometrisch strukturierte Gegenstände bzw. Trägermaterialien durch Beschichtungstechniken zu ortho-para-Wasserstoff Umlagerungskatalysatoren umgewandelt werden können, unter Erhalt der Geometrie des Trägers.
3) Umwandlung von ortho- zu para-Wasserstoff: Messung der katalytischen Eigenschaft Zur Messung der katalytischen Wirkung von Katalysatoren bei der ortho-para-Wasserstoff- umwandlung wird standardmäßig auf ein in der DE 4403352 beschriebenes Verfahren zurückgegriffen. Das Grundprinzip des Verfahrens beruht auf der Messung der bei der exothermen ortho-para-Umwandlung auftretenden Enthalpiedifferenz in Form der Temperaturänderung eines definierten (Druck/Temperatur) ortho-para-FF-Gemisches in Gegenwart eines Katalysators unter adiabatischen Bedingungen und dem daraus rechnerisch resultierenden Umwandlungsgrad.
Zum Funktionsprinzip s. beispielhaft Fig. 1 und Fig. 2.
Vorteilhafte MessbedingungenZ-schritte sind:
- Katalysator: ca. 7 cm3, Korngröße 500 - 700 pm.
- AktivierungZTrocknung: ca. 160 °C, mit getrockneten N2, H2 oder He bei T ca. 160 °C.
- Reaktion: Ausgang Normalwasserstoff trocken, P ca. 3,5 bar, Tein: 77 K, entsprechend flüssigem N2.
- T-Messung nach Reaktor, Messdauer bis Taus = konstant, ca. 30 - 60 min.
- Massenstrom H2: nach Reaktor bzw. Messapparatur, bei Raumtemperatur mittels Volumenstrommessung.
Es können weitere Einstellungen vorgenommen werden, z.B. andere Volumenströme um damit durch eine Änderung des Verhältnisses Masseanteil Katalysator zu Gasvolumen ein genaueres Bild der Katalysatoreffzienz zu erhalten.
Hinsichtlich der katalytischen Aktivität bei der o-p-Umwandlung lassen sich die in den Beispielen 1 - 4 hergestellten Eisenzeolithe in der folgenden Reihenfolge anordnen:
BEA-10 (Festkörperaustausch; entspricht Beispiel 4) > FAU-12 (Festkörperaustausch; entspricht Beispiel 2) > BEA-10 (Flüssigphasenaustausch; entspricht Beispiel 3) > FAU 12 (Flüssigphasenaustausch; entspricht Beispiel 1).

Claims

Patentansprüche
1 . Verfahren zur Umwandlung von ortho- zu para-Wasserstoff, umfassend oder bestehend aus folgenden Schritten:
Bereitstellen eines Ausgangsgemisches aus oder umfassend ortho- und para- Wasserstoff,
Abkühlen des Ausgangsgemisches und Umsetzen von ortho-Wasserstoff zu para-Wasserstoff unter Verwendung eines Katalysators, dadurch gekennzeichnet, dass als Katalysator ein eisenhaltiger Zeolith eingesetzt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der eisenhaltige Zeolith Broenstedt Zentren aufweist.
3. Verfahren nach Anspruch 1 oder 2, wobei die Eisenspezies in den Zeolithporen und/oder den Porenkreuzungen einen maximalen Durchmesser von 12 Angstroem oder weniger aufweisen.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der eisenhaltige Zeolith eine der folgenden Strukturen aufweist: MFI, BEA, MOR, CHA, AEI, AFX, FAU.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der eingesetzte eisenhaltige Zeolith ein molares SiOVAhCh-Verhältnis zwischen 2 und 1000 aufweist, vorzugsweise zwischen 5 und 200, besonders bevorzugt zwischen 10 und 100.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass der eisenhaltige Zeolith ein atomares Fe/Al-Verhältnis zwischen 0,1 und 2 aufweist, vorzugsweise zwischen 0,2 und 1 .
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Katalysator als Formkörper vorliegt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Formkörper durch Extrusion, Granulation, Tablettierung oder Kompaktierung hergestellt wird bzw. ist. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Katalysator durch Beschichtung einer Wabe oder eines anderen geometrischen Formkörpers hergestellt wird bzw. ist. Verwendung eines eisenhaltigen Zeoliths wie in einem der Ansprüche 1 bis 9 defi- niert, zur Umwandlung von Wasserstoff Allotropen, vorzugsweise von ortho- zu para-Wasserstoff, vorzugsweise in einem Verfahren nach einem der Ansprüche 1 bis 9.
PCT/EP2023/067887 2022-06-30 2023-06-29 Verfahren zur umwandlung von ortho-wasserstoff zu para-wasserstoff WO2024003290A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102022002380.6 2022-06-30
DE102022002381.4 2022-06-30
DE102022002380.6A DE102022002380A1 (de) 2022-06-30 2022-06-30 Verfahren zur Umwandlung von ortho-Wasserstoff zupara-Wasserstoff
DE102022002381.4A DE102022002381A1 (de) 2022-06-30 2022-06-30 Katalysator zur Umwandlung von ortho-Wasserstoff zupara-Wasserstoff

Publications (1)

Publication Number Publication Date
WO2024003290A1 true WO2024003290A1 (de) 2024-01-04

Family

ID=87074854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/067887 WO2024003290A1 (de) 2022-06-30 2023-06-29 Verfahren zur umwandlung von ortho-wasserstoff zu para-wasserstoff

Country Status (1)

Country Link
WO (1) WO2024003290A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1074129A (en) * 1962-12-03 1967-06-28 Union Carbide Corp Chemical reaction catalyst and preparation theereof
US3380809A (en) * 1963-10-16 1968-04-30 Air Prod & Chem Process for liquefaction and conversion of hydrogen
DE4403352A1 (de) 1994-02-03 1995-08-10 Linde Ag Verfahren und Vorrichtung zur Bestimmung des para-Gehalts eines Wasserstoff-Gasstromes
US20170065966A1 (en) * 2015-09-07 2017-03-09 Korea Institute Of Science And Technology Modified catalyst for converting ortho-hydrogen to para-hydrogen and method for preparing the same
US9714168B1 (en) 1989-08-28 2017-07-25 Air Products And Chemicals, Inc. Catalyst for conversion and equilibration of para and ortho hydrogen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1074129A (en) * 1962-12-03 1967-06-28 Union Carbide Corp Chemical reaction catalyst and preparation theereof
US3380809A (en) * 1963-10-16 1968-04-30 Air Prod & Chem Process for liquefaction and conversion of hydrogen
US9714168B1 (en) 1989-08-28 2017-07-25 Air Products And Chemicals, Inc. Catalyst for conversion and equilibration of para and ortho hydrogen
DE4403352A1 (de) 1994-02-03 1995-08-10 Linde Ag Verfahren und Vorrichtung zur Bestimmung des para-Gehalts eines Wasserstoff-Gasstromes
US5580793A (en) * 1994-02-03 1996-12-03 Linde Aktiengesellschaft Process and device for determining the para content of a hydrogen gas stream
DE4403352B4 (de) 1994-02-03 2004-09-09 Linde Ag Verfahren und Vorrichtung zur Bestimmung des para-Gehalts eines Wasserstoff-Gasstromes
US20170065966A1 (en) * 2015-09-07 2017-03-09 Korea Institute Of Science And Technology Modified catalyst for converting ortho-hydrogen to para-hydrogen and method for preparing the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
D.H. WEITZELW.V. LOEBENSTEINJ.W. DRAPERO.E. PARK, J. OF RESEARCH OF NATIONAL BUREAU OF STANDARDS, vol. 60, no. 3, 1958
DAS TARAKNATH ET AL: "Spin conversion of hydrogen using supported iron catalysts at cryogenic temperature", CRYOGENICS, ELSEVIER, KIDLINGTON, GB, vol. 69, 18 March 2015 (2015-03-18), pages 36 - 43, XP029187789, ISSN: 0011-2275, DOI: 10.1016/J.CRYOGENICS.2015.03.003 *
SANDO BRANDENBERGEROLIVER KRÖCHERARNO TISSLERRODERIK ALTHOFF: "State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite Catalysts", CATALYSIS REVIEWS, vol. 50, 2008, pages 492 - 531, XP001526478, DOI: 10.1080/01614940802480122

Similar Documents

Publication Publication Date Title
DE69935209T2 (de) Zeolith-formkörper, verfahren zu seiner herstellung und seine verwendung
DE102008046155A1 (de) Adsorptionsmittelgranulat und Verfahren zu dessen Herstellung
EP2512667B1 (de) Eisenhaltiger zeolith, verfahren zur herstellung eisenhaltiger zeolithe und verfahren zur katalytischen reduktion von stickoxiden
DE19753738A1 (de) Verfahren zur Herstellung eines Katalysators
EP2654928B1 (de) Verfahren zur umsetzung stickstoffhaltiger verbindungen
DE3220671A1 (de) Hydrierungskatalysator fuer die entschwefelung und entfernung von schwermetallen
DE2016838A1 (de) Neuartige zeolithisch« Adsorptionsmittel
DE102016101215A1 (de) Verfahren zur Herstellung von Aktivkohle und auf diese Weise hergestellte Aktivkohle sowie deren Verwendung
DE102015206125A1 (de) Eisen- und kupferhaltiger Chabazit-Zeolith-Katalysator zur Verwendung bei der NOx-Reduktion
DE102014205783A1 (de) Katalysator sowie Verfahren zum Herstellen eines Katalysator
DE1767464B2 (de) Kristallines zeolithisches Molekularsieb vom Typ Zeolith X
EP3662995A1 (de) Poröse materialien auf basis von oxiden des titans und/oder des vanadiums sowie deren herstellung und verwendung
DE102007038711A1 (de) Katalysator, Verfahren zu dessen Herstellung und dessen Verwendung
EP0002251B1 (de) Verfahren zur Herstellung abriebfester Aktivkohleträger oder -katalysatoren
DE102009040352A1 (de) Verfahren zur Herstellung eines SCR aktiven Zeolith-Katalysators sowie SCR aktiver Zeolith-Katalysator
DE102010055679A1 (de) Titano-Silico-Alumo-Phosphat
EP3397383A1 (de) Zeolithische partikel mit nanometerdimensionen und verfahren zu deren herstellung
DE69826768T2 (de) Adsorbens für Kohlenwasserstoff und Katalysator zur Abgasreinigung
DE10245963A1 (de) Verfahren zur Herstellung von katalytisch wirkenden Schichtsilikaten
EP1858643A1 (de) Verfahren zum herstellen eines katalytisch wirkenden minerals auf basis eines gerüstsilikates
CN104891539A (zh) 一种球形氧化铝颗粒的扩孔方法
WO2024003290A1 (de) Verfahren zur umwandlung von ortho-wasserstoff zu para-wasserstoff
EP2906341B1 (de) Bindemittelfreie kompakte zeolithische formkörper und verfahren zu deren herstellung
DE202012003179U1 (de) Sebsttragende Strukturen mit adsorptiven Eigenschaften
DE19826209A1 (de) Formkörper aus Zeolith, Verfahren zu seiner Herstellung und dessen Verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23736683

Country of ref document: EP

Kind code of ref document: A1