WO2024002969A1 - Verfahren zur optimierung eines traktionssteuersystem, sowie traktionssteuersystem - Google Patents

Verfahren zur optimierung eines traktionssteuersystem, sowie traktionssteuersystem Download PDF

Info

Publication number
WO2024002969A1
WO2024002969A1 PCT/EP2023/067319 EP2023067319W WO2024002969A1 WO 2024002969 A1 WO2024002969 A1 WO 2024002969A1 EP 2023067319 W EP2023067319 W EP 2023067319W WO 2024002969 A1 WO2024002969 A1 WO 2024002969A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
vehicle
decision
time
control system
Prior art date
Application number
PCT/EP2023/067319
Other languages
English (en)
French (fr)
Inventor
Thomas LUGMAYR
Carl-Heinrich GRABEZ-PRACHT
Tingting LUO
Aleksandar Nikolic
Original Assignee
Magna powertrain gmbh & co kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magna powertrain gmbh & co kg filed Critical Magna powertrain gmbh & co kg
Publication of WO2024002969A1 publication Critical patent/WO2024002969A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18172Preventing, or responsive to skidding of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/12Conjoint control of vehicle sub-units of different type or different function including control of differentials
    • B60W10/14Central differentials for dividing torque between front and rear axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0013Optimal controllers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0095Automatic control mode change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/04Monitoring the functioning of the control system
    • B60W50/045Monitoring control system parameters
    • B60W2050/046Monitoring control system parameters involving external transmission of data to or from the vehicle, e.g. via telemetry, satellite, Global Positioning System [GPS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/35Road bumpiness, e.g. pavement or potholes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/15Data age
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/35Data fusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/65Data transmitted between vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle

Definitions

  • the present application relates to a traction control system effective to selectively connect and/or disconnect powertrain components of a four-wheel drive vehicle based on multiple environmental or road conditions.
  • the invention further relates to a method for optimizing a traction control system.
  • torque transfer systems that are designed to normally direct drive torque from a drive train to a set of primary wheels and that can selectively or automatically direct a portion of the drive torque from the drive train to a set of secondary wheels.
  • Such torque transfer systems may be based on either a front-wheel drive (FWD) vehicle architecture or a rear-wheel drive (RWD) vehicle architecture.
  • FWD front-wheel drive
  • RWD rear-wheel drive
  • the torque transfer system operates primarily in a two-wheel drive (2WD) mode, normally driving the primary wheels, while the secondary wheels are selectively connected to the drivetrain to provide a four wheel drive (4WD) mode or an all-wheel drive (all-wheel drive) mode -wheel drive -AWD) only if improved traction is justified.
  • 4WD four wheel drive
  • all-wheel drive all-wheel drive
  • -wheel drive -AWD all-wheel drive
  • rotation sensors are the input information for a control unit that instructs switching between the two driving modes.
  • DE 10 2008 044 791 A1 deals with a control of a switchable 2/4-wheel drive, which contains both an automatic component and a manual switch operated by the driver.
  • the settings created by the driver are first queried before further conditions for an automatic switchover are queried.
  • the system controller issues a signal to the vehicle operator that four-wheel drive should be switched off to save fuel.
  • DE 101 38 168 A1 shows a control system for a 2W/4W vehicle that records the road and its condition via cameras and processes the data in several control units. At the same time, various sensor data are evaluated.
  • DE 102014 213 663 A1 shows a method for controlling a traction control system in a motor vehicle using information from a variety of vehicle operating conditions, road conditions and weather conditions.
  • the method for controlling a vehicle traction control system uses optical information from a camera system, which may have an on-board camera and image processing unit, with which the control of torque transmission between a drive train and first and second drive trains is supported.
  • This visual information can be used to identify road surface materials, road structures and road markings, as well as to identify position, speed, number and/or distance from other vehicles.
  • the visual information generated by the camera system is combined with other data provided over the vehicle's communications network to optimize the performance of the 2WD-4WD/AWD shift control logic.
  • the drivetrain is preemptively switched from its 2WD mode to its 4WD/AWD mode before wheel slip occurs based on the analysis of the visual information.
  • DE 102015 216 483 A1 describes a method for operating one
  • Friction value database from data from vehicles and their
  • the object is achieved with a method for optimizing a traction control system of a vehicle that directs power from an engine and a transmission to all four wheels or only to front wheels or only to rear wheels, the method comprising a controller for the traction control system receiving different data and evaluates, whereby the data consists of inventory data that is distant in time and transmitted via an air interface, of current data that is closer in time and transmitted via an air interface, and of real-time data from the vehicle itself, with the adjustment of the controller depending on the data situation based on the real-time data alone or based on the data transmitted via an air interface.
  • a positive comparison of the data is used to optimally guide the vehicle assistance systems up to the physical limits of the vehicle for their decision-making steps that lie in the near future in order to ensure the safety range of the vehicle To keep vehicle assistance systems as small as possible and to have as little influence on the driver as possible.
  • the information flow from the vehicle to a data source in the network consists of feedback on incorrect or missing data, as well as real-time data from the vehicle.
  • the task is also solved with a traction control system for a vehicle that directs power from an engine and a transmission to all four wheels or only to front wheels or only to rear wheels, the method running as software on one or more controllers in the vehicle.
  • Figure 1 shows a flowchart of a method for adapting the control of an all-wheel drive vehicle
  • Figure 2 shows a timeline for data.
  • the present invention relates to a method and a disconnection system within the powertrain of a four-wheel drive (4WD) motor vehicle or an all-wheel drive (AWD) motor vehicle, wherein an automatic disconnection control strategy is used as a method for selectively connecting and disconnecting a secondary powertrain to/from a drive train comes.
  • 4WD four-wheel drive
  • AWD all-wheel drive
  • the method of optimizing the traction control system uses various data to assist in controlling selective engagement and disengagement of at least one disconnect device or torque transfer clutch for transmitting drive torque from the powertrain to the secondary powertrain.
  • the method according to the invention according to FIG. 1 runs on a suitable controller as a pure software implementation.
  • the controller is either designed as a single or distributed control module or integrated into other functions and controller hardware as a pure software module in the vehicle.
  • the software checks in a first step whether the position of the vehicle, measured by GPS data, is available.
  • the decision E1 about the existence of position data results in a return to the start if the position of the vehicle is not available. If the detection is positive, the controller retrieves data from a data source in the network, whereby this data is preselected with the detected position.
  • Information 11 is called up, which includes the road inventory, the road quality, for example whether the current location is an asphalt road or a gravel path. Data from the immediate surroundings of the current location can also be transferred here. For this purpose, a radius around the current position is defined.
  • This inventory data 11 is data that was collected and stored a long time ago, years or months ago. They contain information from map materials that are already of a certain age.
  • the inventory data 11 is still valuable because its contents do not normally change quickly. Nevertheless, the transmission of factually incorrect data can occur if, for example, asphalt has been removed due to road construction work, etc.
  • Information I2 is retrieved as further data by the controller of the traction control system in step S3.
  • This data provides information about daily or hourly events, such as: B. display weather data.
  • Information about the friction values of the roads is also retrieved. These are stored, for example, in a friction database that was filled by other vehicles that have passed the current position of the vehicle in the past hours and minutes. The time at which this data from the other vehicles was recorded is also queried in order to be able to classify the data.
  • This daily data I2 is not as old as the inventory data 11, but is not real-time data either.
  • Decision E2 checks whether data could be downloaded from the network. If the decision is negative, the process jumps back to start S1.
  • the process jumps to the next decision E3. At this point it is checked whether the available data is sufficient for the next step. In this context, sufficient means that all parameters necessary for further processing of the data are present. If this is not the case, the decision E3 triggers a measurement step S4, which provides feedback to the data source in the network via step S5 and triggers the request to fill the data gap. The procedure jumps back to start S1.
  • Real-time data is data that, after it has been recorded, is evaluated and further processed with as little delay as possible. This includes data collected in the vehicle, for example the use of data provided by a camera system for measurements in the visible light range, or measurements of infrared data or lidar data. These are used for comparison, analysis or calculation to determine certain road conditions.
  • the real-time data also includes measurements and the collection of current vehicle slip data. Different measurements of wheel slip are used, as are known from the prior art. Other sensor data from the vehicle is also collected in real time, processed and made available to the process for optimizing the traction control system.
  • the real-time data of the vehicle is also sent to the data source in the network for storage in the database in step S6, so that subsequent vehicles can benefit from the data.
  • the plausibility check is a method in which a value or a result in general is roughly checked to see whether it can be plausible, i.e. acceptable, plausible and comprehensible or not. It may not always be the correctness of the value or The result should not be verified, but any obvious inaccuracy that may exist should be recognized.
  • An advantage of the plausibility check is that it can be carried out with little effort; a disadvantage is that less obvious inaccuracies in its framework are not detected.
  • the controller is adjusted in step S7 exclusively based on the real-time data 13 of the vehicle.
  • step S9 the data source in the network is informed of the deviation and the result.
  • the data namely the inventory data 11 and the current daily data I2 of the data source from the network, are used to optimize the controller in step S8.
  • the daily data I2 at t1 is significantly closer to the current time tO.
  • a positive comparison of the data in the plausibility check stage is used to optimally guide vehicle assistance systems up to the physical limits of the vehicle for their decision-making steps that lie in the near future, in order to keep the safety area of the vehicle assistance systems as small as possible and in order to to have as little influence on the driver as possible.
  • the near future refers to the period until data is collected again and compared.
  • a vehicle assistance system can therefore provide a preview of the future in order to drive the vehicle optimally.
  • Also for 5 Autonomous driving offers advantages through the data evaluation of different data packages from the past and present.

Abstract

Verfahren zum Optimieren eines Traktionssteuersystems eines Fahrzeugs, das Kraft von einem Motor und einer Transmission zu allen vier Rädern oder nur zu Vorderrädern oder nur zu Hinterrädern leitet, wobei das Verfahren umfasst, dass ein Kontroller für das Traktionssteuersystem unterschiedliche Daten empfängt und auswertet, wobei die Daten aus zeitlich weit zurückliegenden, über eine Luftschnittstelle übertragenen Bestandsdaten (I1), aus zeitlich näher liegenden, über eine Luftschnittstelle übertragenen tagesaktuellen Daten (I2) und aus Echtzeitdaten (I3) des Fahrzeugs selbst bestehen, wobei die Anpassung des Kontrollers je nach Datensituation auf der Basis der Echtzeitdaten (I3) allein oder auf der Basis der über eine Luftschnittstelle übertragenen Daten (I2, I3) erfolgt.

Description

Verfahren zur Optimierung eines Traktionssteuersystem, sowie T raktionssteuersystem
Die vorliegende Anmeldung betrifft ein Traktionssteuersystem, das dazu wirksam ist, Antriebsstrangkomponenten eines Allrad-A/ierradantriebs- Fahrzeugs auf der Basis mehrere Umgebungsbedingungen oder Straßenzustände selektiv zu verbinden und oder zu trennen.
Weiterhin betrifft die Erfindung ein Verfahren zur Optimierung eines T raktionssteuersystems.
Stand der Technik
Viele moderne Kraftfahrzeuge sind mit Drehmomentübertragungssystemen ausgestattet, die dazu ausgelegt sind, normalerweise ein Antriebsdrehmoment von einem Triebsatz zu einem Satz von primären Rädern zu leiten, und die selektiv oder automatisch einen Teil des Antriebsdrehmoments von dem Triebsatz zu einem Satz von sekundären Rädern leiten können. Solche Drehmomentübertragungssysteme, die normalerweise als Vierradantrieb oder Allradantrieb bezeichnet werden, können entweder auf einer Vorderradantrieb- (front-wheel drive -FWD-) Fahrzeugarchitektur oder einer Hinterrad- (rear-wheel drive -RWD-) Fahrzeugarchitektur basieren. Bei vielen Fahrzeugen arbeitet das Drehmomentübertragungssystem primär in einem Zweiradmodus (two-wheel drive 2WD) beim normalen Antreiben der primären Räder, während die sekundären Räder selektiv mit dem Triebsatz verbunden werden, um einen Vierradantriebsmodus (four wheel drive - 4WD) oder einen Allradantriebsmodus (all-wheel drive -AWD) nur dann zu bilden, wenn eine verbesserte Traktion gerechtfertigt ist. Bei Betrieb im 2WD-Modus sind die sekundären Räder typischerweise von dem Triebsatz getrennt, um die Kraftstoffersparnis zu maximieren. Verschiedene Trennsysteme zum selektiven und/oder automatischen Trennen der sekundären Räder und/oder Verbinden der sekundären Antriebsstrangkomponenten sowohl bei herkömmlichen FWD- als auch RWD-Fahrzeugarchitekturen sind bekannt.
Zusätzlich zu dem Erfordernis einer Umschaltung zwischen den 2WD- und 4WD/AWD-Modi zum Zweck einer verbesserten Traktion und einer verbesserten Kraftstoffersparnis besteht eine Schwierigkeit hinsichtlich der Zeit, die benötigt wird, um bei Detektion von Zuständen, bei denen eine verbesserte Traktionssteuerung gerechtfertigt ist, vom 2WD-Modus in den 4WD/AWD- Modus umzuschalten. Zum Beispiel kann eine unerwünschte Zeitverzögerung erforderlich sein, um die sekundären Antriebsstrangkomponenten mit dem Triebsatz zu synchronisieren und zusammengreifen zu lassen, während das Motorfahrzeug bei einer Radschlupfbedingung läuft. Dies basiert auf der Tatsache, dass viele moderne Drehmomentübertragungssysteme auf der Basis des Ansprechens auf eine Detektion einer Radschlupfbedingung arbeiten. Entsprechend besteht beim Stand der Technik ein Bedarf an 4WD/AWD- Drehmomentübertragungssystemen, die dazu ausgelegt und wirksam sind, präventiv vor dem Auftreten eines Radschupfs in den 4WD/AWD-Modus geschaltet zu werden.
US 2010/ 0 094 519 A1 , EP 2 562 025 A1 und EP 2 353 918 A1 zeigen jeweils ein Antriebssystem mit einer Möglichkeit zwischen einem Zweiradantrieb und einem Vierradantrieb nach Anforderung umzuschalten.
In der Lösung nach US 2010/ 0 094 519 A1 , EP 2 562 025 A1 und EP 2 353 918 A1 sind Rotationssensoren die Eingangsinformation für eine Steuereinheit, die die Umschaltung zwischen den beiden Fahrmodi anweist.
DE 10 2008 044 791 A1 befasst sich mit einer Steuerung eines umschaltbaren 2/4-Radantriebs, der sowohl einen automatischen Anteil als auch einen vom Fahrer betätigte manuelle Umschaltung enthält. Dabei wird zunächst die vom Fahrer verursachten Einstellungen abgefragt, bevor weitere Bedingungen für eine automatische Umschaltung abgefragt werden. Im automatischen Betrieb - wenn nach einer spezifizierten Zeitspanne und/oder einer spezifizierten Strecke die Anordnung einen Vierradantrieb für unnötig erachtet - gibt das Systemsteuergerät an den Fahrzeugbediener ein Signal aus, dass der Vierradantrieb abgeschaltet werden sollte, um Kraftstoff zu sparen.
DE 101 38 168 A1 zeigt ein Steuersystem für ein 2W/4W Fahrzeug, das über Kameras die Straße und deren Zustand erfasst und die Daten in mehreren Steuerungseinheiten verarbeitet. Gleichzeitig werden verschiedene Sensordaten ausgewertet.
DE 102014 213 663 A1 zeigt ein Verfahren zum Steuern eines Traktionssteuersystems in einem Motorfahrzeug unter Verwendung von Informationen aus einer Vielzahl von Fahrzeugbetriebsbedingungen, Straßenzuständen und Wetterbedingungen.
Dazu werden bei dem Verfahren zum Steuern eines Fahrzeug- Traktionssteuersystems optische Informationen von einem Kamerasystem verwendet, das eine Bordkamera und Bildverarbeitungseinheit aufweisen kann, mit denen das Steuern der Drehmomentübertragung zwischen einem Triebsatz und ersten und zweiten Antriebssträngen unterstützt wird. Diese optischen Informationen können verwendet werden, um Straßenoberflächenmaterialien, Straßenstrukturen und Straßenmarkierungen zu identifizieren sowie Position, Geschwindigkeit, Anzahl und/oder Abstand von anderen Fahrzeugen zu identifizieren.
Die optischen Informationen, die von dem Kamerasystem erzeugt werden, werden mit anderen Daten kombiniert, die über das Kommunikationsnetzwerk des Fahrzeugs zur Verfügung gestellt werden, um die Leistung der 2WD- 4WD/AWD- Schaltsteuerlogik zu optimieren. Der Antriebsstrang wird vor dem Auftreten eines Radschlupfs auf der Basis der Analyse der optischen Informationen präventiv aus seinem 2WD-Modus in seinen 4WD/AWD-Modus umgeschaltet. DE 102015 216 483 A1 beschreibt ein Verfahren zum Betrieb einer
Reibwertdatenbank aus Daten von Fahrzeugen und deren
Zurverfügungstellung der plausibilisierten Daten an anfragende Fahrzeuge.
Es ist Aufgabe der Erfindung, ein Verfahren zur Optimierung eines Traktionssteuersystems vorzusehen, das durch weitere Daten und deren Verarbeitung verbessert ist.
Kurze Beschreibung
Die Aufgabe wird gelöst mit einem Verfahren zum Optimieren eines Traktionssteuersystems eines Fahrzeugs, das Kraft von einem Motor und einer Transmission zu allen vier Rädern oder nur zu Vorderrädern oder nur zu Hinterrädern leitet, wobei das Verfahren umfasst, dass ein Kontroller für das Traktionssteuersystem unterschiedliche Daten empfängt und auswertet, wobei die Daten aus zeitlich weit zurückliegenden, über eine Luftschnittstelle übertragenen Bestandsdaten, aus zeitlich näher liegenden, über eine Luftschnittstelle übertragenen tagesaktuellen Daten und aus Echtzeitdaten des Fahrzeugs selbst bestehen, wobei die Anpassung des Kontrollers je nach Datensituation auf der Basis der Echtzeitdaten allein oder auf der Basis der über eine Luftschnittstelle übertragenen Daten erfolgt.
Durch die Verwendung von Daten unterschiedlichen Alters ist es möglich einen optimierten Datensatz zu erhalten, der die Optimierung des Traktionssteuersystems erlaubt. Das Traktionssteuersystem kann so bessere Entscheidungen treffen, wann der Allradbetrieb zugeschaltet wird und ihn auch schneller ausschalten.
Ein positiver Abgleich der Daten wird dazu genutzt, die Fahrzeugassistenzsysteme für deren Entscheidungsschritte, die in der nächsten Zukunft liegen, optimal bis zu den physikalischen Grenzen des Fahrzeugs zu führen, um den Sicherheitsbereich der Fahrzeugassistenzsysteme so klein wie möglich zu halten und um den Fahrer so gering wie möglich zu beeinflussen.
Dabei ist es ein Vorteil, dass die Entscheidung, welche Daten zur Optimierung eingesetzt werden, nach einer Plausibilisierungsprüfung zwischen den Echtzeitdaten und den über die Luftschnittstelle übertragenen Daten erfolgt.
Vorteilhaft ist weiterhin, dass vor der Entscheidung welche Daten zur Optimierung eingesetzt werden, eine Entscheidung zur Positionsbestimmung des Fahrzeugs erfolgt, anschließend eine Entscheidung, ob Bestandsdaten und tagesaktuelle Daten zur Verfügung stehen, anschließend eine Entscheidung, ob die zur Verfügung stehenden Daten ausreichen.
Jede negative Entscheidung führt zu einem Neustart des Verfahrens.
Um das Verfahren durchzuführen, besteht der Informationsfluss vom Fahrzeug an eine Datenquelle im Netz aus Rückmeldungen zu fehlerhaften oder fehlenden Daten, sowie aus Echtzeitdaten des Fahrzeugs.
Die Aufgabe wird auch gelöst mit einem Traktionssteuersystem für ein Fahrzeug, das Kraft von einem Motor und einer Transmission zu allen vier Rädern oder nur zu Vorderrädern oder nur zu Hinterrädern leitet, wobei das Verfahren als Software auf einem oder mehreren Kontrollern im Fahrzeug abläuft.
Beschreibung der Ausführungsform
Figur 1 zeigt einen Ablaufplan eines Verfahrens zur Anpassung der Steuerung eines Allradfahrzeugs,
Figur 2 zeigt einen Zeitstrang für Daten. Generell betrifft die vorliegende Erfindung ein Verfahren sowie ein Trennsystem innerhalb des Antriebsstrangs eines Motorfahrzeugs mit Vierradantrieb (4WD) oder eines Motorfahrzeugs mit Allradantrieb (AWD), wobei eine automatische Trennsteuerstrategie als Verfahren zum selektiven Verbinden und Trennen eines sekundären Antriebsstrangs mit/von einem Triebsatz zur Anwendung kommt.
Für das Verfahren zur Optimierung des Traktionssteuersystems werden unterschiedliche Daten verwendet, um das Steuern eines selektiven Einrückens und Ausrückens von mindestens einer Trennvorrichtung oder Drehmomentübertragungskupplung für die Übertragung des Antriebsdrehmoments von dem Triebsatz zu dem sekundären Antriebsstrang zu unterstützen.
Das erfindungsgemäße Verfahren nach Figur 1 läuft auf einem geeigneten Kontroller als reinen Software-Implementierung ab. Der Kontroller ist entweder als einzelnes oder verteiltes Steuermodul aufgebaut oder integriert in anderen Funktionen und Kontroller-Hardware als reines Softwaremodul in das Fahrzeug verbaut.
Beginnend vom Start S1 des Verfahrens prüft die Software in einem ersten Schritt ab, ob die Position des Fahrzeugs, gemessen durch GPS-Daten, vorliegt.
Die Entscheidung E1 über das Vorliegen von Positionsdaten resultiert in einen Rücksprung zum Start, falls die Position des Fahrzeugs nicht vorliegt. Bei einer positiven Feststellung ruft die Steuerung Daten von einer Datenquelle im Netz ab, wobei diese Daten mit der festgestellten Position vorselektiert werden.
Dabei werden Informationen 11 aufgerufen, die den Straßenbestand beinhalten, die Straßenqualität, also z.B. ob der aktuelle Standort eine asphaltierte Straße oder ein Schotterweg ist. Auch Daten der nächsten Umgebung des aktuellen Standorts können hier bereits übertragen werden. Dazu wird ein Umkreis um die aktuelle Position definiert. Diese Bestandsdaten 11 sind Daten, die bereits vor langer Zeit, schon vor Jahren oder Monaten erhoben und gespeichert wurden. Sie enthalten Informationen aus Kartenmaterialien, die schon ein gewisses Alter haben.
Die Bestandsdaten 11 sind trotzdem wertvoll, da sich deren Inhalte im Normalfall nicht schnell verändern. Trotzdem kann es zu der Übertragung von sachlich inkorrekten Daten kommen, wenn beispielsweise durch Straßenbauarbeiten, Asphalt abgetragen wurde und ähnliches.
Als weitere Daten werden durch den Kontroller des Traktionssteuersystems im Schritt S3 Informationen I2 abgerufen. Diese Daten geben Aufschluss über das tagesaktuelle oder stundenaktuelle Geschehen, wie es z. B. Wetterdaten darstellen. Auch Information zu den Reibwerten der Straßen werden abgerufen. Diese sind beispielsweise in einer Reibwertdatenbank hinterlegt, die von anderen Fahrzeugen mit befüllt wurde, die in den zurückliegenden Stunden und Minuten die aktuelle Position des Fahrzeugs passiert haben. Die Zeit der Erfassung dieser Daten der anderen Fahrzeuge wird ebenfalls abgefragt, um die Daten einordnen zu können.
Diese tagesaktuellen Daten I2 sind nicht so alt wie die Bestandsdaten 11 , aber auch keinen Echtzeitdaten.
In der Entscheidung E2 wird überprüft, ob Daten aus dem Netz heruntergeladen werden konnten. Fällt die Entscheidung negativ aus, springt das Verfahren auf den Start S1 zurück.
Bei einer positiven Entscheidung, also dem Vorliegen von Daten der Datenquelle über das Netz springt der Ablauf auf die nächste Entscheidung E3. In diesem Punkt wird überprüft, ob die vorliegenden Daten für den weiteren Schritt ausreichend sind. Ausreichend bedeutet in diesem Zusammenhang, dass alle Parameter, die für die weitere Verarbeitung der Daten notwendig sind, vorliegen. Falls das nicht der Fall ist, stößt die Entscheidung E3 einen Messchritt S4 an, der über den Schritt S5 eine Rückmeldung an die Datenquelle im Netz gibt und die Aufforderung nach Auffüllen der Datenlücke auslöst. Das Verfahren springt wieder auf Start S1 zurück.
Sind alle Daten nach der Entscheidung E3 vorhanden, wird in der Entscheidung E4 die Plausibilität der Daten geprüft. Dazu werden Echtzeitinformationen I3 des Fahrzeugs verwendet.
Echtzeitdaten (auch Real Time Data) sind Daten, die, nachdem sie aufgenommen wurden, mit so wenig Verzug wie möglich ausgewertet und weiterverarbeitet werden. Dazu gehören im Fahrzeug erhobene Daten, beispielsweise die Verwendung der Daten, die von einem Kamerasystem für Messungen im sichtbaren Lichtbereich, oder auch Messungen von Infrarotdaten oder Lidardaten zur Verfügung gestellt werden. Diese dienen zum Vergleich, eine Analyse oder eine Berechnung, um bestimmte Zustände der Straße festzustellen.
Zu den Echtzeitdaten gehören auch die Messungen und die Erfassung aktueller Schlupfdaten des Fahrzeugs. Dabei kommen unterschiedliche Messungen des Radschlupfs zur Anwendung, wie sie aus dem Stand der Technik bekannt sind. Auch weitere Sensordaten des Fahrzeugs werden in Echtzeit erhoben, verarbeitet und dem Verfahren zur Optimierung des Traktionssteuersystem zur Verfügung gestellt.
Gleichzeitig werden die Echtzeitdaten des Fahrzeugs auch an die Datenquelle im Netz zur Speicherung in der Datenbank im Schritt S6 versandt, so dass nachfolgende Fahrzeuge Vorteile aus den Daten ziehen können.
Die Plausibilitätsüberprüfung ist eine Methode, in deren Rahmen ein Wert oder allgemein ein Ergebnis überschlagsmäßig daraufhin überprüft wird, ob es überhaupt plausibel, also annehmbar, einleuchtend und nachvollziehbar sein kann oder nicht. Es kann nicht immer die Richtigkeit des Wertes oder Ergebnisses verifiziert werden, sondern es soll eine gegebenenfalls vorhandene offensichtliche Unrichtigkeit erkannt werden. Ein Vorteil der Plausibilitätskontrolle ist, dass sie mit lediglich geringem Aufwand durchgeführt werden kann, ein Nachteil ist, dass weniger offensichtliche Unrichtigkeiten in ihrem Rahmen nicht erkannt werden.
Angenommen die tagesaktuellen Daten 12 enthalten Hinweise auf glatten Untergrund, die Temperatursensoren des Fahrzeugs zeigen aber eine durchaus positive Temperatur, ist das Ergebnis nicht plausibel. In diesem Fall wird der Kontroller im Schritt S7 ausschließlich auf Basis der Echtzeitdaten 13 des Fahrzeugs angepasst.
Im Schritt S9 wird die Datenquelle im Netz über die Abweichung und das Ergebnis informiert.
Ist die Plausibilitätsüberprüfung in E4 positiv abgeschlossen, werden die Daten, nämlich die Bestandsdaten 11 sowie die tagesaktuellen Daten I2 der Datenquelle aus dem Netz zur Optimierung des Kontrollers in Schritt S8 verwendet.
In Figur 2 ist auf einem Zeitstrang aufgezeigt, dass die Bestandsdaten 11 aus einem zur aktuellen Zeit tO zurückliegenden Zeitraum um t2 stammen.
Die tageaktuellen Daten I2 liegen zeitlich bei t1 deutlich näher an der aktuellen Zeit tO.
Ein positiver Abgleich der Daten in der Stufe der Plausibilitätsprüfung wird dazu genützt, Fahrzeugassistenzsysteme für deren Entscheidungsschritte, die in der nächsten Zukunft liegen, optimal bis zu den physikalischen Grenzen des Fahrzeugs zu führen, um den Sicherheitsbereich der Fahrzeugassistenzsysteme so klein wie möglich zu halten und um den Fahrer so gering wie möglich zu beeinflussen.
Als nächste Zukunft ist der Zeitraum bis zu einer neuerlichen Erfassung von Daten und deren Abgleich gemeint. Ein Fahrzeugassistenzsystem kann somit eine Vorschau auf die Zukunft, um das Fahrzeug optimal zu führen. Auch für 5 das autonome Fahren bieten sich Vorteile, durch die Datenauswertung unterschiedlicher Datenpakete aus Vergangenheit und Gegenwart.

Claims

PATENTANSPRÜCHE
1 . Verfahren zum Optimieren eines Traktionssteuersystems eines Fahrzeugs, das Kraft von einem Motor und einer Transmission zu allen vier Rädern oder nur zu Vorderrädern oder nur zu Hinterrädern leitet, wobei das Verfahren umfasst, dass ein Kontroller für das Traktionssteuersystem unterschiedliche Daten empfängt und auswertet, wobei die Daten aus zeitlich weit zurückliegenden, über eine Luftschnittstelle übertragenen Bestandsdaten (11 ), aus zeitlich näher liegenden, über eine Luftschnittstelle übertragenen tagesaktuellen Daten (I2) und aus Echtzeitdaten (I3) des Fahrzeugs selbst bestehen, wobei die Anpassung des Kontrollers je nach Datensituation auf der Basis der Echtzeitdaten (I3) allein oder auf der Basis der über eine Luftschnittstelle übertragenen Daten (I2, I3) erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Entscheidung (E4), welche Daten zur Optimierung eingesetzt werden, nach einem Plausibilisierungsprüfung zwischen den Echtzeitdaten (I3) und den über die Luftschnittstelle übertragenen Daten (I2, I3) erfolgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass ein positiver Abgleich der Daten dazu genutzt wird, Fahrzeugassistenzsysteme für deren Entscheidungsschritte, die in der nächsten Zukunft liegen, optimal bis zu den physikalischen Grenzen des Fahrzeugs zu führen, um den Sicherheitsbereich der Fahrzeugassistenzsysteme so klein wie möglich zu halten und um den Fahrer so gering wie möglich zu beeinflussen.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass vor der Entscheidung (E4) welche Daten zur Optimierung eingesetzt werden, eine Entscheidung (E1 ) zur Positionsbestimmung des Fahrzeugs erfolgt, anschließend eine Entscheidung (E2), ob Bestandsdaten (11 ) und tagesaktuelle Daten (I2) zur Verfügung stehen, anschließend eine Entscheidung (E3) ob die zur Verfügung stehenden Daten ausreichen.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede negative Entscheidung zu einem Neustart des Verfahrens führt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Informationsfluss vom Fahrzeug an eine Datenquelle im Netz aus Rückmeldungen zu fehlerhaften oder fehlenden Daten besteht, sowie aus Echtzeitdaten des Fahrzeugs.
7. Traktionssteuersystem für ein Fahrzeug, das Kraft von einem Motor und einer Transmission zu allen vier Rädern oder nur zu Vorderrädern oder nur zu Hinterrädern leitet, wobei das Verfahren als Software auf einem oder mehreren Kontrollern im Fahrzeug abläuft und das Verfahren aus den Schritten nach einem der Ansprüche 1 bis 6 besteht.
PCT/EP2023/067319 2022-06-30 2023-06-26 Verfahren zur optimierung eines traktionssteuersystem, sowie traktionssteuersystem WO2024002969A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022206726.6A DE102022206726A1 (de) 2022-06-30 2022-06-30 Verfahren zur Optimierung eines Traktionssteuersystem, sowie Traktionssteuersystem
DE102022206726.6 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024002969A1 true WO2024002969A1 (de) 2024-01-04

Family

ID=87003255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/067319 WO2024002969A1 (de) 2022-06-30 2023-06-26 Verfahren zur optimierung eines traktionssteuersystem, sowie traktionssteuersystem

Country Status (2)

Country Link
DE (1) DE102022206726A1 (de)
WO (1) WO2024002969A1 (de)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138168A1 (de) 2000-08-03 2002-04-04 Fuji Heavy Ind Ltd Fahrzeugdynamik-Steuersystem und Fahrzeug mit dem Fahrzeugdynamik-Steuersystem
DE102008044791A1 (de) 2007-09-13 2009-04-02 Ford Global Technologies, LLC, Dearborn Anordnung zum Betreiben eines Antriebsstranges in einem Fahrzeug
US20100094519A1 (en) 2008-10-13 2010-04-15 Magna Powertrain Ag & Co Kg Powertrain for a motor vehicle
EP2353918A1 (de) 2010-01-13 2011-08-10 Jtekt Corporation Antriebskraft-Übertragungsvorrichtung und Steuerungsverfahren dafür
EP2562735A1 (de) * 2011-08-26 2013-02-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Analysierung eines von einem Fahrzeug zu befahrenden Streckenabschnitts
EP2562025A1 (de) 2011-08-23 2013-02-27 Jtekt Corporation Antriebssystem für Allradfahrzeug, Allradfahrzeug und Steuerungsverfahren des Allradfahrzeugs
DE102014213663A1 (de) 2013-07-15 2015-01-15 Magna Powertrain Of America, Inc. Traktionssteuersystem für Vierrad-/Allradantrieb-Fahrzeuge mit Bordkamera
DE102015216483A1 (de) 2015-01-29 2016-08-04 Robert Bosch Gmbh Verfahren zum Betrieb einer Reibwertdatenbank und Reibwertdatenbank
WO2018059874A1 (de) * 2016-09-30 2018-04-05 Robert Bosch Gmbh Verfahren und vorrichtung zum erstellen einer dynamischen gefährdungskarte
FR3077053A1 (fr) * 2018-01-24 2019-07-26 Psa Automobiles Sa Systeme de commande du mode de conduite d’un groupe motopropulseur
WO2020160773A1 (en) * 2019-02-07 2020-08-13 Volvo Truck Corporation A method for predicting if at least one differential lock of a vehicle should be activated or deactivated during travelling
DE102019213185A1 (de) * 2019-09-02 2021-03-04 Volkswagen Aktiengesellschaft Querführung eines Fahrzeugs mittels von anderen Fahrzeugen erfassten Umgebungsdaten

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10138168A1 (de) 2000-08-03 2002-04-04 Fuji Heavy Ind Ltd Fahrzeugdynamik-Steuersystem und Fahrzeug mit dem Fahrzeugdynamik-Steuersystem
DE102008044791A1 (de) 2007-09-13 2009-04-02 Ford Global Technologies, LLC, Dearborn Anordnung zum Betreiben eines Antriebsstranges in einem Fahrzeug
US20100094519A1 (en) 2008-10-13 2010-04-15 Magna Powertrain Ag & Co Kg Powertrain for a motor vehicle
EP2353918A1 (de) 2010-01-13 2011-08-10 Jtekt Corporation Antriebskraft-Übertragungsvorrichtung und Steuerungsverfahren dafür
EP2562025A1 (de) 2011-08-23 2013-02-27 Jtekt Corporation Antriebssystem für Allradfahrzeug, Allradfahrzeug und Steuerungsverfahren des Allradfahrzeugs
EP2562735A1 (de) * 2011-08-26 2013-02-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Analysierung eines von einem Fahrzeug zu befahrenden Streckenabschnitts
DE102014213663A1 (de) 2013-07-15 2015-01-15 Magna Powertrain Of America, Inc. Traktionssteuersystem für Vierrad-/Allradantrieb-Fahrzeuge mit Bordkamera
DE102015216483A1 (de) 2015-01-29 2016-08-04 Robert Bosch Gmbh Verfahren zum Betrieb einer Reibwertdatenbank und Reibwertdatenbank
WO2018059874A1 (de) * 2016-09-30 2018-04-05 Robert Bosch Gmbh Verfahren und vorrichtung zum erstellen einer dynamischen gefährdungskarte
FR3077053A1 (fr) * 2018-01-24 2019-07-26 Psa Automobiles Sa Systeme de commande du mode de conduite d’un groupe motopropulseur
WO2020160773A1 (en) * 2019-02-07 2020-08-13 Volvo Truck Corporation A method for predicting if at least one differential lock of a vehicle should be activated or deactivated during travelling
DE102019213185A1 (de) * 2019-09-02 2021-03-04 Volkswagen Aktiengesellschaft Querführung eines Fahrzeugs mittels von anderen Fahrzeugen erfassten Umgebungsdaten

Also Published As

Publication number Publication date
DE102022206726A1 (de) 2024-01-04

Similar Documents

Publication Publication Date Title
DE102013109070B4 (de) Steuerungsvorrichtung für ein Fahrzeug mit Vierradantrieb
DE102016116604B4 (de) Automatische Fahrzeugfahrtsteuerungsvorrichtung
DE102018111113A1 (de) Fahrzeugfahrsteuervorrichtung
DE102014205252B4 (de) Verfahren zum Steuern eines Hybridantriebs eines Fahrzeugs
DE102014213663A1 (de) Traktionssteuersystem für Vierrad-/Allradantrieb-Fahrzeuge mit Bordkamera
EP2540589B1 (de) Verfahren und Steuereinrichtung zur Steuerung oder Regelung von Fahrzeugsystemen
DE102018101478A1 (de) Fahrzeugantriebsstrangsteuerung und -verfahren
DE102008042306A1 (de) Verfahren zum Umsetzen einer Start-Stopp-Automatik
DE102017129890A1 (de) Fahrzeuginternes Netzwerksystem
DE102008006028A1 (de) Verfahren und Vorrichtung zum automatischen Zu- und Abschalten eines Verbrennungsmotors
DE102011121398A1 (de) Gangauswahlvorrichtung für einKraftfahrzeug
WO2017182384A1 (de) Verfahren und steuereinheit zum betrieb eines getriebes
DE102017104592B4 (de) System zur Unterstützung eines sicheren Überholungsvorgangs
WO2022184398A1 (de) VERFAHREN UND STEUERVORRICHTUNG ZUM BETRIEB EINES STRAßENGEKOPPELTEN ALLRADFAHRZEUGES
DE102017205893A1 (de) Verfahren und Vorrichtung zur Regelung der Geschwindigkeit eines Kraftfahrzeugs
DE112018005350T5 (de) Fahrtregelungsvorrichtung, fahrzeug und fahrtregelungsverfahren
DE102008041691A1 (de) Verfahren und Vorrichtung zum automatischen Ausschalten eines Antriebs eines Kraftfahrzeugs im Fahrbetrieb
DE102018119796A1 (de) Steuern eines Segelbetriebs eines Kraftfahrzeugs
DE102019002789B4 (de) Verfahren und Vorrichtung zur Steuerung eines automatisiert fahrenden Fahrzeuges
WO2024002969A1 (de) Verfahren zur optimierung eines traktionssteuersystem, sowie traktionssteuersystem
DE102017212650A1 (de) Steuersystem in einem vierradangetriebenen Kraftfahrzeug sowie Verfahren zur Steuerung
DE102009010878A1 (de) Betreiben eines hybriden Lenksystems eines Kraftfahrzeuges
WO2020030315A1 (de) Fahrassistenzsystem für ein fahrzeug, fahrzeug mit demselben und fahrassistenzverfahren für ein fahrzeug
DE102016208792A1 (de) Steuern einer Allradkupplung
DE102016000544B4 (de) Verfahren und System zum Steuern einer Kupplung eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23735045

Country of ref document: EP

Kind code of ref document: A1