WO2024001860A1 - 一种同轴自瞄准光谱测量系统及测量方法 - Google Patents

一种同轴自瞄准光谱测量系统及测量方法 Download PDF

Info

Publication number
WO2024001860A1
WO2024001860A1 PCT/CN2023/101212 CN2023101212W WO2024001860A1 WO 2024001860 A1 WO2024001860 A1 WO 2024001860A1 CN 2023101212 W CN2023101212 W CN 2023101212W WO 2024001860 A1 WO2024001860 A1 WO 2024001860A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
aiming
imaging
coaxial
spectrum measurement
Prior art date
Application number
PCT/CN2023/101212
Other languages
English (en)
French (fr)
Inventor
罗时文
冯晓帆
郑增强
耿继新
钟凡
曾强龙
Original Assignee
武汉精测电子集团股份有限公司
武汉精立电子技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉精测电子集团股份有限公司, 武汉精立电子技术有限公司 filed Critical 武汉精测电子集团股份有限公司
Publication of WO2024001860A1 publication Critical patent/WO2024001860A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2823Imaging spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0289Field-of-view determination; Aiming or pointing of a spectrometer; Adjusting alignment; Encoding angular position; Size of measurement area; Position tracking

Definitions

  • the present invention relates to the technical field of spectrum measurement, and in particular to a coaxial self-aiming spectrum measurement system and measurement method.
  • Display screens such as LCD, OLED, MiniLED and MicroLED are increasingly used.
  • Display technology with characteristics such as high brightness, wide color gamut, high efficiency, and long life has developed rapidly.
  • the spectrometer is a basic optical measuring instrument. Its principle is to collect the radiation, reflection or transmission of light signals from the target object, and obtain the spectral power distribution curve of the incident light after optical and electrical signal processing. From this analysis, the incident light is obtained.
  • Various detailed information such as radiometric, photometric and colorimetric physical quantities, enable the identification of the structure and composition of matter and the measurement of the optical properties of materials.
  • the spectrometer can only obtain the spectral information of one position of the target at a time.
  • aiming for spectral measurement usually requires the use of an aiming camera or an external light source, which has a complex structure and is difficult to achieve coaxial aiming.
  • Embodiments of the present invention provide a coaxial self-aiming spectrum measurement system and measurement method to solve the problem in related technologies that aiming for spectrum measurement usually requires the use of an aiming camera or an external light source, which has a complex structure and is difficult to achieve coaxial aiming.
  • a coaxial self-aiming spectrum measurement system which includes: a rotating wheel with an imaging system provided on one side of the rotating wheel; and an optical filter and a light source, the optical filter and the light source At least one of them is installed on the rotating wheel; an optical fiber is arranged on the other side of the rotating wheel; the end of the optical fiber away from the rotating wheel is connected to the imaging lens; the optical fiber, the optical filter and the The imaging system is arranged coaxially, or the optical fiber, the light source and the imaging system are arranged coaxially.
  • the coaxial self-aiming spectrum measurement system includes multiple optical fibers, each optical fiber is connected to an imaging lens, and a plurality of the imaging lenses are arranged along the circumference.
  • the coaxial self-aiming spectrum measurement system includes multiple optical fibers, each optical fiber is connected to an imaging lens, and the spatial positions of the multiple imaging lenses are different.
  • the optical fiber includes a first section and a second section connected to each other, the first section is connected to the imaging lens, and the second sections of the multiple optical fibers are fixed by fixing devices, so that the multiple optical fibers are The second section is arranged along a straight line on the side of the wheel away from the imaging system.
  • the rotating wheel is equipped with a plurality of the optical filters and the light sources, and the multiple optical filters and the light sources are arranged along the circumference of the rotating wheel.
  • a collimation system is also provided between the runner and the imaging system, and a dispersion system is also provided between the collimation system and the imaging system.
  • the dispersion system, the collimation system The system is arranged coaxially with the imaging system; an image acquisition system is also arranged on a side of the imaging system away from the dispersion system.
  • a coaxial self-aiming spectrum measurement method is provided.
  • a filter and a light source are provided on the wheel, and an imaging system is provided on one side of the wheel.
  • the coaxial self-aiming spectrum measurement method includes the following steps: Rotate the light source that is turned on to be coaxial with the imaging system, so that the light emitted by the light source is incident on the display screen through the optical fiber and the imaging lens; turn off the light source, and rotate the filter to be coaxial with the imaging system, so that the light emitted from the optical fiber is incident on the display screen. The incident light passes through the filter and is imaged to the imaging system.
  • the coaxial self-aiming spectrum measurement system includes multiple optical fibers, each optical fiber is connected to an imaging lens; when the light source is turned on, it is rotated to be coaxial with the imaging system, so that the light emitted by the light source is Before being incident on the display screen through the optical fiber and the imaging lens, the method further includes: arranging a plurality of the imaging lenses along the circumference so that the plurality of imaging lenses are aligned with the display screen according to different viewing angles.
  • the coaxial self-aiming spectrum measurement system includes multiple optical fibers, each optical fiber is connected to an imaging lens; when the light source is turned on, it is rotated to be coaxial with the imaging system, so that the light emitted by the light source is Before being incident on the display screen through the optical fiber and the imaging lens, it also includes: aligning a plurality of the imaging lenses at the display screen according to different spatial positions.
  • the method before rotating the turned-on light source to be coaxial with the imaging system so that the light emitted by the light source passes through the optical fiber and the imaging lens and is incident on the display screen, the method further includes: moving the plurality of optical fibers away from the imaging system.
  • One end of the imaging lens is arranged along a straight line on the side of the rotating wheel away from the imaging system.
  • Embodiments of the present invention provide a coaxial self-aiming spectrum measurement system and measurement method. Since a light source is provided on the wheel, the light emitted by the light source passes through the optical fiber and the imaging lens and can hit the spectrum measurement area on the display screen, so that the imaging lens Align it with the spectrum measurement area and aim the optical path. When the light source is turned off, the emitted light from the optical fiber can be imaged to the imaging system through the filter to achieve spectrum measurement.
  • the aiming optical path and the measurement optical path are coaxial, achieving high precision in spectral measurement. aim.
  • Figure 1 is a schematic structural diagram of a coaxial self-aiming spectrum measurement system for multi-view spectrum measurement provided by an embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a coaxial self-aiming spectrum measurement system for multi-point spectrum measurement provided by an embodiment of the present invention
  • Figure 3 is a partial structural schematic diagram of a coaxial self-aiming spectrum measurement system provided by an embodiment of the present invention.
  • Imaging system 3. Optical fiber; 31. First section; 32. Second section; 4. Imaging lens;
  • Fixing device 6. Collimation system; 7. Dispersion system; 8. Image acquisition system; 9. Display screen.
  • Embodiments of the present invention provide a coaxial self-aiming spectrum measurement system and measurement method, which can solve the problem in related technologies that the aiming of spectrum measurement usually requires the use of an aiming camera or an external light source, which has a complex structure and is difficult to achieve coaxial aiming. .
  • a coaxial self-aiming spectrum measurement system may include: a wheel 1, wherein the wheel 1 can rotate around its axis, and the wheel 1
  • An imaging system 2 may be provided on one side of the There is an installation position.
  • the light source 12 When the light source 12 needs to be used, the light source 12 can be installed in the installation position.
  • the filter 11 When the filter 11 needs to be used, the light source 12 can be removed and the filter 11 can be installed in the installation position.
  • the runner 1 can also be provided with multiple installation positions, so that both the light source 12 and the filter 11 can be installed on the runner 1.
  • the light source 12 is used, the light source 12 is turned on, and the light source 12 is turned off after use; optical fiber 3.
  • the optical fiber 3 and the imaging system 2 are respectively arranged on opposite sides of the rotating wheel 1.
  • the end of the optical fiber 3 away from the rotating wheel 1 is connected to the imaging lens. 4.
  • One end of the optical fiber 3 is connected to the image plane position of the imaging lens 4, the optical fiber 3, the filter 11 and the imaging system 2 are coaxially arranged, or the optical fiber 3, the light source 12 and The imaging system 2 is coaxially arranged; that is to say, when using the optical filter 11, the optical fiber 3, the optical filter 11 and the imaging system 2 are coaxial; when using the light source 12, the optical fiber 3, The light source 12 and the imaging system 2 are coaxial.
  • both the light source 12 and the filter 11 can be installed on the runner 1, when the light source 12 is installed on the runner 1, the optical fiber 3, the light source 12 and the imaging system 2 are coaxial, and the light source 12 emits The light can pass through the optical fiber 3 and the imaging lens 4 and then hit the spectrum measurement area on the display screen 9, so that the imaging lens 4 is aligned with the spectrum measurement area, and the light path is aimed.
  • the light source 12 is turned off and the filter on the wheel 1 is After the light sheet 11 is rotated coaxially with the optical fiber 3 and the imaging system 2, the emitted light of the optical fiber 3 can be imaged to the imaging system 2 through the filter light sheet 11, and the spectrum measurement of the measurement area of the display screen 9 can be realized. Due to the aiming light path and the measurement light path Coaxial, enabling high-precision aiming of spectral measurements.
  • the coaxial self-aiming spectrum measurement system may include multiple optical fibers 3, each optical fiber 3 is connected to an imaging lens 4, and the multiple imaging lenses 4 are arranged along the circumference, This allows multiple imaging lenses 4 to be aimed at the display screen 9 for imaging according to different viewing angles, enabling multi-viewing spectrum measurement of the same measurement area of the display screen 9, and simultaneously acquiring multi-viewing spectrum information to improve measurement efficiency.
  • multiple imaging lenses 4 are arranged along the circumference.
  • the light source 12 on the wheel 1 is turned on and the light source 12 is rotated coaxially with the imaging system 2.
  • the light emitted by the light source 12 can pass through multiple optical fibers.
  • multiple imaging lenses 4 are incident on the display screen 9.
  • multiple imaging The lenses 4 are all aimed at the same area of the display screen 9, and the light spot areas of the multiple imaging lenses 4 are the spectrum measurement areas.
  • the emitted light from the multiple optical fibers 3 will be imaged to the imaging system 2 through the filters 11, and multiple images can be obtained. Spectral information of viewing angle.
  • the coaxial self-aiming spectrum measurement system includes multiple optical fibers 3, each optical fiber 3 is connected to an imaging lens 4, and the space of the multiple imaging lenses 4 The positions are different, that is, multiple imaging lenses 4 are aligned with the display screen 9 according to different spatial positions. Each imaging lens 4 can be aligned with the measurement area at different positions on the display screen 9, so that the display screen 9 can be imaged. Multi-point spectrum measurement can obtain multi-point spectrum information at the same time to improve measurement efficiency.
  • the light source 12 on the wheel 1 is turned on, and the light source 12 is rotated to be coaxial with the imaging system 2.
  • the light emitted by the light source 12 can be incident on the multiple optical fibers 3 and the multiple imaging lenses 4.
  • the light spot area hit by the light source 12 on the wheel 1 on the display screen 9 is the spectrum measurement area, and each imaging lens 4 is aligned with the spectrum measurement area. Alignment status of imaging lens 4.
  • the emitted light from the multiple optical fibers 3 will be imaged to the imaging system 2 through the filters 11, thereby obtaining multiple points. Spectral information.
  • the optical fiber 3 may include a first section 31 and a second section 32 connected to each other.
  • the first section 31 is connected to the imaging lens 4, wherein the first section 31 can It can be bent into any state to facilitate moving the imaging lens 4 to different positions.
  • the first section 31 can also be located in the same straight line as the second section 32.
  • the second section 32 of the plurality of optical fibers 3 can be fixed by the fixing device 5, so that A plurality of second sections 32 are arranged in a straight line on the side of the wheel 1 away from the imaging system 2 , that is, the end of the second sections 32 close to the wheel 1 is arranged in a row, so that multiple optical paths In the subsequent imaging process, they can be arranged in order without any intersection of optical paths.
  • the rotating wheel 1 can be installed with multiple optical filters 11 and light sources 12 , that is, the rotating wheel 1 has multiple mounting positions, so that Both the filter 11 and the light source 12 can be installed on the wheel 1 at the same time.
  • the filter 11 and the light source 12 there is no need to disassemble the light source 12 or the filter 11, realizing convenient measurement and multiple
  • the filter 11 and the light source 12 are arranged along the circumference of the wheel 1.
  • the light source 12 and the filter 11 can be switched, so that the light source 12 or the filter 11 can be switched to the same state.
  • the coaxial state of imaging system 2; high-efficiency selection and switching of filters is very important to improve measurement efficiency. Under the condition that multiple different filters 11 are installed, different filters can be switched through the control of wheel 1.
  • Light sheet 11 enables high dynamic range measurements.
  • a collimation system 6 can also be provided between the runner 1 and the imaging system 2, so that the emitted light of the optical fiber 3 becomes parallel light after passing through the collimation system 6.
  • a dispersion system 7 is also provided between the straight system 6 and the imaging system 2.
  • the dispersion system 7, the collimation system 6 and the imaging system 2 are coaxially arranged so that the emitted light of the optical fiber 3 passes through the collimation system. 6 and the dispersion system 7 can be imaged to the imaging system 2; the side of the imaging system 2 away from the dispersion system 7 can also be provided with an image acquisition system 8, and the image acquisition system 8 is located on the image plane of the imaging system 2.
  • the imaging system 2 can image the emitted light passing through the dispersion system 7 to the image acquisition system 8, and obtain spectral information through data processing and analysis.
  • the light source 12 provided in this embodiment can be an LED light source 12 or a laser light source 12, etc.
  • the filter 11 can be an ND (neutral density) filter 11 (neutral density filter), etc., ND filter
  • the piece 11 can reduce the brightness of the light source and make the measured brightness range wider.
  • Multiple ND filters 11 can be distributed along the circumference of the wheel 1, and the attenuation magnification of the multiple ND filters 11 increases in sequence; Among them, the attenuation magnification of the ND filter 11 can be 1 times, 10 times, 100 times and 1000 times in sequence.
  • some display screens may be very bright, such as MicroLED screens. The brightness is very high, and direct measurement will exceed the range of CCD or CMOS.
  • an ND filter with an attenuation factor of 10 times, 100 times or 1000 times it can be The brightness of the light source is correspondingly reduced by 10 times, 100 times or 1000 times, so a matching ND filter can be set for the brightness of the light source. And the number of optical filters 11 can be set according to requirements. And this embodiment combines multi-channel spectrum measurement, aiming, and switching of the filter 11 to achieve multi-point or multi-angle high dynamic range spectrum measurement on the display screen 9 .
  • the embodiment of the present invention also provides a coaxial self-aiming spectrum measurement method, in which a filter 11 and a light source 12 are provided on the wheel 1, and an imaging system 2 is provided on one side of the wheel 1, and this measurement
  • the method can be implemented using the spectrum measurement system provided in any of the above embodiments; the measurement method can include the following steps:
  • Step 1 Rotate the turned on light source 12 to be coaxial with the imaging system 2 so that the light emitted by the light source 12 is incident on the display screen 9 through the optical fiber 3 and the imaging lens 4 .
  • the light source 12 can be installed on the runner 1 first.
  • Step 2 Turn off the light source 12.
  • the light source 12 can be removed from the rotating wheel 1 , or it can always be installed on the rotating wheel 1 .
  • Step 3 Rotate the optical filter 11 to be coaxial with the imaging system 2, so that the emitted light from the optical fiber 3 is imaged to the imaging system 2 through the optical filter 11.
  • the filter 11 can be installed on the wheel 1.
  • aiming light path that is opposite to the measurement light path. Since the aiming light path and the measurement light path are coaxial, high-precision aiming and spectrum measurement can be achieved.
  • the coaxial self-aiming spectrum measurement system includes multiple optical fibers 3, and each optical fiber 3 is connected to an imaging lens 4; before step 1, it may also include: arranging multiple imaging lenses 4 along the circumference, so that A plurality of the imaging lenses 4 are aimed at the display screen 9 according to different viewing angles.
  • multiple imaging lenses 4 arranged along the circumference can achieve multi-view spectrum measurement of the same measurement area.
  • the alignment step of step 1 turn on the light source 12 on the wheel 1 and turn the light source 12 to a coaxial state with the imaging system 2.
  • the light emitted by the light source 12 passes through the optical fiber 3 and the imaging lens 4 and is incident on the display screen 9; for For multi-viewing spectrum measurement, since multiple lenses are installed on the same circle, when the centers of the multi-viewing light spots coincide, it is an alignment state, and the light spot area is the spectrum measurement area.
  • the appropriate filter 11 can be turned to a coaxial state with the imaging system 2 according to the brightness of the display screen 9; the emitted light from the optical fiber 3 passes through the filter 11 on the wheel 1 and the collimation system 6.
  • the dispersion system 7 and the imaging system 2 are then imaged through the image acquisition system 8. After image processing, spectral information from multiple viewing angles can be obtained.
  • the coaxial self-aiming spectrum measurement system includes multiple optical fibers 3, and each optical fiber 3 is connected to an imaging lens 4; before step 1, it may also include: connecting multiple imaging lenses 4 Align the display screen 9 according to different spatial positions.
  • multiple imaging lenses 4 at different spatial positions can implement multi-point spectral measurement of multiple measurement areas. In the alignment step of step 1, turn on the light source 12 on the wheel 1 and turn the light source 12 to a coaxial state with the imaging system 2.
  • the light emitted by the light source 12 passes through the optical fiber 3 and the imaging lens 4 and is incident on the display screen 9; for For multi-point spectrum measurement, the position where the light source 12 on the wheel 1 hits the display screen 9 is the spectrum measurement area; in the measurement step of step 3, the appropriate filter 11 can be turned to the position according to the brightness of the display screen 9
  • the imaging system 2 is coaxial; the emitted light from the optical fiber 3 passes through the filter 11 on the runner 1, the collimation system 6, the dispersion system 7, and the imaging system 2, and then is imaged by the image acquisition system 8. After image processing, multiple points can be obtained spectral information.
  • step 1 may also include: arranging the end of a plurality of optical fibers 3 away from the imaging lens 4 along a straight line to an end of the runner 1 away from the imaging system 2 side, so that multiple optical paths can be arranged in order during the subsequent imaging process, without the intersection of optical paths occurring.
  • the filter 11 is preferably an ND filter 11, and there are multiple ND filters 11 distributed along the circumference of the wheel 1, and the attenuation magnifications of the multiple ND filters 11 are sequentially Increase, for example, the attenuation magnification can be 1 times, 10 times, 100 times, 1000 times, etc.; in step 3, the filter 11 on the wheel 1 is rotated to be coaxial with the imaging system 2, so that the optical fiber 3 is imaged to the imaging system 2 through the filter 11, which may include: rotating the ND filter 11 with the first attenuation magnification to be coaxial with the imaging system 2, and performing automatic exposure; if not If it is overexposed and complies with the automatic exposure strategy, perform normal spectrum measurement; if it is always overexposed, switch to the ND filter 11 with the second attenuation magnification, automatically expose again, and determine whether normal measurement can be performed, otherwise continue to switch the magnification.
  • Film 11 automatically expose again, if there is no overexposure and it complies with the automatic exposure strategy, the measurement can be normal; if it is always overexposed, switch to 100x ND filter 11, automatically expose again, if there is no overexposure and it complies with the automatic exposure policy Strategy, then normal measurement can be performed; if it is always overexposed, switch to 1000x ND filter 11, and automatically expose again. If there is no overexposure and it complies with the automatic exposure strategy, normal measurement can be performed; if it is still overexposed, the test target is If the measurement range is exceeded, an error will be reported.
  • the rotation of the wheel 1 can be controlled by motor drive, so that the centers of the ND filters 11 with different attenuation magnifications can be switched to the optical axis position in sequence according to the needs.
  • the above-mentioned method of obtaining multi-point spectral information through image processing may include: the imaging system 2 images light to the image acquisition system 8.
  • the image acquisition system 8 includes a two-dimensional image sensor and an image post-processing system.
  • the two-dimensional image sensor may be
  • the two-dimensional area array CCD image sensor can be a two-dimensional area array CMOS image sensor or a two-dimensional PD array structure.
  • the two-dimensional spatial spectral information obtained by the two-dimensional image sensor is passed through the image processing algorithm by the image post-processing system, and the corresponding spectral information in multiple viewing angles or multiple spatial points can be restored.
  • a corresponding row of spectral diagrams is formed. That is, after the two-dimensional distributed light obtained by collimating, dispersing, and focusing the one-dimensional lattice light is imaged, a multi-dimensional spectrum is formed.
  • Array spectrum that is, a two-dimensional spatial spectrum; among them, the two-dimensional spatial spectral information corresponding to the two-dimensional spatial spectrum includes spatial dimension information and spectral dimension information.
  • the spatial dimension information is used to indicate that each light in the two-dimensional distributed light corresponds to multiple
  • the spectral dimension information is the spectral information corresponding to each ray in the two-dimensional distributed light.
  • This measurement method installs a light source 12 on the runner 1, and through the coaxial light source 12, high-precision position aiming and angle alignment can be achieved.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, It can also be an electrical connection; it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be an internal connection between two components.
  • a fixed connection a detachable connection, or an integral connection
  • it can be a mechanical connection
  • It can also be an electrical connection
  • it can be a direct connection, or it can be an indirect connection through an intermediate medium, or it can be an internal connection between two components.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

一种同轴自瞄准光谱测量系统及测量方法,同轴自瞄准光谱测量系统包括:转轮(1),转轮(1)的一侧设置有成像系统(2);以及滤光片(11)和光源(12),滤光片(11)和光源(12)至少其中之一安装于转轮(1);光纤(3),其设置于转轮(1)的另一侧,光纤(3)远离转轮(1)的一端连接成像镜头(4),光纤(3)、滤光片(11)与成像系统(2)同轴设置,或者光纤(3)、光源(12)与成像系统(2)同轴设置。转轮(1)上设置了光源(12)的情况下,光源(12)发出的光经过光纤(3)和成像镜头(4)可以打在显示屏(9)上的光谱测量区域,进行光路的瞄准,关闭光源(12)后,光纤(3)的出射光经过滤光片(11)成像至成像系统(2),实现光谱测量,瞄准光路与测量光路同轴,可实现光谱测量的高精度瞄准。

Description

一种同轴自瞄准光谱测量系统及测量方法 技术领域
 本发明涉及光谱测量技术领域,特别涉及一种同轴自瞄准光谱测量系统及测量方法。
背景技术
 随着显示技术的快速发展,人们对显示设备的显示质量和性能要求也越来越高。LCD、OLED、MiniLED和MicroLED等显示屏得到越来越广泛的应用。具有高亮度、广色域、高效率、长寿命等特性的显示技术得到快速发展。
 光谱仪是一种基本的光学测量仪器,其原理是通过采集目标物体的辐射、反射或透射的光信号,经过光学和电学信号处理后得到入射光的光谱功率分布曲线,由此分析得到入射光的各种详细信息,如辐射度学、光度学和色度学物理量,实现物质结构和成分的鉴定以及材料光学属性的测量。
 然而,相关技术中,光谱仪一次只能获得目标一个位置的光谱信息,要获取显示屏多点或多视角光谱特性,则需要多次重新对准。另一方面,光谱测量的瞄准通常需要借助瞄准相机或外挂式光源瞄准,结构复杂且难以实现同轴瞄准。
 因此,有必要设计一种新的同轴自瞄准光谱测量系统及测量方法,以克服相关技术中的至少一个问题。
发明内容
 本发明实施例提供一种同轴自瞄准光谱测量系统及测量方法,以解决相关技术中光谱测量的瞄准通常需要借助瞄准相机或外挂式光源瞄准,结构复杂且难以实现同轴瞄准的问题。
 第一方面,提供了一种同轴自瞄准光谱测量系统,其包括:转轮,所述转轮的一侧设置有成像系统;以及滤光片和光源,所述滤光片和所述光源至少其中之一安装于所述转轮;光纤,其设置于所述转轮的另一侧,所述光纤远离所述转轮的一端连接成像镜头,所述光纤、所述滤光片与所述成像系统同轴设置,或者所述光纤、所述光源与所述成像系统同轴设置。
 一些实施例中,所述同轴自瞄准光谱测量系统包括多根光纤,每根光纤均连接有成像镜头,多个所述成像镜头沿圆周排列。
 一些实施例中,所述同轴自瞄准光谱测量系统包括多根光纤,每根光纤均连接有成像镜头,多个所述成像镜头的空间位置不同。
 一些实施例中,所述光纤包括互相连接的第一段和第二段,所述第一段连接所述成像镜头,多根所述光纤的第二段通过固定装置固定,使多根所述第二段沿直线排列于所述转轮远离所述成像系统的一侧。
 一些实施例中,所述转轮安装有多个所述滤光片和所述光源,多个所述滤光片和所述光源沿所述转轮的圆周排列。
 一些实施例中,沿所述转轮的圆周分布有多个ND滤光片,多个所述ND滤光片的衰减倍率依次增大。
 一些实施例中,所述转轮与所述成像系统之间还设置有准直系统,所述准直系统与所述成像系统之间还设置有色散系统,所述色散系统、所述准直系统与所述成像系统同轴设置;所述成像系统远离所述色散系统的一侧还设置有图像采集系统。
 第二方面,提供了一种同轴自瞄准光谱测量方法,转轮上设置有滤光片和光源,所述转轮的一侧设置有成像系统;同轴自瞄准光谱测量方法包括以下步骤:将开启的所述光源转动至与成像系统同轴,使光源发出的光经过光纤和成像镜头入射至显示屏;关闭所述光源,将滤光片转动至与成像系统同轴,使光纤的出射光经过所述滤光片成像至所述成像系统。
 一些实施例中,沿所述转轮的圆周分布有多个ND滤光片,多个所述ND滤光片的衰减倍率依次增大;所述将滤光片转动至与成像系统同轴,使光纤的出射光经过所述滤光片成像至所述成像系统,包括:将具有第一衰减倍率的ND滤光片转动至与成像系统同轴,并进行自动曝光;若无过曝且符合自动曝光策略,则进行正常光谱测量;若始终过曝则切换至具有第二衰减倍率的ND滤光片,再次自动曝光,其中,第二衰减倍率大于第一衰减倍率。
 一些实施例中,所述同轴自瞄准光谱测量系统包括多根光纤,每根光纤均连接有成像镜头;在所述将开启的所述光源转动至与成像系统同轴,使光源发出的光经过光纤和成像镜头入射至显示屏之前,还包括:将多个所述成像镜头沿圆周排列,使多个所述成像镜头按照不同的视角对准显示屏。
 一些实施例中,所述同轴自瞄准光谱测量系统包括多根光纤,每根光纤均连接有成像镜头;在所述将开启的所述光源转动至与成像系统同轴,使光源发出的光经过光纤和成像镜头入射至显示屏之前,还包括:将多个所述成像镜头按照不同的空间位置对准显示屏。
 一些实施例中,在所述将开启的所述光源转动至与成像系统同轴,使光源发出的光经过光纤和成像镜头入射至显示屏之前,还包括:将多根所述光纤远离所述成像镜头的一端沿直线排列于所述转轮远离所述成像系统的一侧。
 本发明提供的技术方案带来的有益效果包括: 
本发明实施例提供了一种同轴自瞄准光谱测量系统及测量方法,由于转轮上设置了光源,光源发出的光经过光纤和成像镜头可以打在显示屏上的光谱测量区域,使成像镜头与光谱测量区域对准,进行光路的瞄准,当关闭光源后,光纤的出射光可以经过滤光片成像至成像系统,实现光谱测量,瞄准光路与测量光路同轴,可实现光谱测量的高精度瞄准。
附图说明
 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
 图1为本发明实施例提供的一种同轴自瞄准光谱测量系统多视角光谱测量的结构示意图;
图2为本发明实施例提供的一种同轴自瞄准光谱测量系统多点光谱测量的结构示意图;
图3为本发明实施例提供的一种同轴自瞄准光谱测量系统的部分结构示意图。
 图中:
1、转轮;11、滤光片;12、光源;
2、成像系统;3、光纤;31、第一段;32、第二段;4、成像镜头;
5、固定装置;6、准直系统;7、色散系统;8、图像采集系统;9、显示屏。
实施方式
 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
 本发明实施例提供了一种同轴自瞄准光谱测量系统及测量方法,其能解决相关技术中光谱测量的瞄准通常需要借助瞄准相机或外挂式光源瞄准,结构复杂且难以实现同轴瞄准的问题。
 参见图1和图3所示,为本发明实施例提供的一种同轴自瞄准光谱测量系统,其可以包括:转轮1,其中,转轮1可以绕其轴线转动,所述转轮1的一侧可以设置有成像系统2;以及滤光片11和光源12,所述滤光片11和所述光源12至少其中之一安装于所述转轮1,也即,转轮1上可以设有一个安装位,在需要使用光源12时,可以将光源12安装于该安装位,当需要使用滤光片11时,可以将光源12拆卸下来,将滤光片11安装于该安装位,转轮1上也可以设有多个安装位,从而可以将光源12和滤光片11均安装至转轮1上,当使用光源12时将光源12打开,使用完后再关闭光源12;光纤3,其可以设置于所述转轮1的另一侧,也即光纤3和成像系统2分别设置于转轮1的相对两侧,所述光纤3远离所述转轮1的一端连接成像镜头4,其中,光纤3的一端连接于成像镜头4的像面位置,所述光纤3、所述滤光片11与所述成像系统2同轴设置,或者所述光纤3、所述光源12与所述成像系统2同轴设置;也就是说,当使用滤光片11时,光纤3、所述滤光片11与所述成像系统2是同轴的,当使用光源12时,光纤3、所述光源12与所述成像系统2是同轴的。
 本实施例中,由于转轮1上即可以设置光源12又可以设置滤光片11,当转轮1上安装光源12后,光纤3、光源12与成像系统2是同轴的,光源12发出的光可以经过光纤3和成像镜头4进而打在显示屏9上的光谱测量区域,使成像镜头4与光谱测量区域对准,进行光路的瞄准,当关闭光源12并将转轮1上的滤光片11转至与光纤3、成像系统2同轴后,光纤3的出射光可以经过滤光片11成像至成像系统2,对显示屏9的测量区域实现光谱测量,由于瞄准光路与测量光路同轴,可实现光谱测量的高精度瞄准。
 在一些实施例中,参见图1所示,所述同轴自瞄准光谱测量系统可以包括多根光纤3,每根光纤3均连接有成像镜头4,多个所述成像镜头4沿圆周排列,使得多个成像镜头4可以按照不同的视角对准显示屏9成像,可以对显示屏9的同一测量区域实现多视角光谱测量,且能够同时获取多视角光谱信息,提高测量效率。
 在上述实施例中,多个成像镜头4沿圆周排列,在对准时,打开转轮1上的光源12,将光源12转至与成像系统2同轴,光源12发出的光可以经过多根光纤3和多个成像镜头4入射到显示屏9上,对于多视角光谱测量,由于多个成像镜头4安装在同一圆周,当多视角光斑中心重合时,即为对准状态,此时多个成像镜头4均对准显示屏9的同一区域,且多个成像镜头4的光斑区域即为光谱测量区域。
 当关闭光源12,并将转轮1上的滤光片11转至与成像系统2同轴时,多个光纤3的出射光会经过滤光片11成像至成像系统2,进而可以获得多个视角的光谱信息。
 在一些可选的实施例中,参见图2所示,所述同轴自瞄准光谱测量系统包括多根光纤3,每根光纤3均连接有成像镜头4,多个所述成像镜头4的空间位置不同,也即,多个成像镜头4是按照不同的空间位置对准显示屏9成像的,每个成像镜头4均可对准显示屏9上不同位置的测量区域,能够对显示屏9实现多点光谱测量,且可同时获取多点光谱信息,提高测量效率。
 在上述实施例中,在对准时,打开转轮1上的光源12,将光源12转至与成像系统2同轴,光源12发出的光可以经过多根光纤3和多个成像镜头4入射到显示屏9上的不同位置,对于多点光谱测量,转轮1上的光源12打在显示屏9上的光斑区域即为光谱测量区域,每个成像镜头4对准光谱测量区域即为每个成像镜头4的对准状态。
 当关闭光源12,并将转轮1上的滤光片11转至与成像系统2同轴时,多个光纤3的出射光会经过滤光片11成像至成像系统2,进而可以获得多点光谱信息。
 进一步,参见图1和图2所示,所述光纤3可以包括互相连接的第一段31和第二段32,所述第一段31连接所述成像镜头4,其中,第一段31可以弯曲为任意状态,便于将成像镜头4移动至不同的位置,第一段31也可以与第二段32位于同一直线,多根所述光纤3的第二段32可以通过固定装置5固定,使多根所述第二段32沿直线排列于所述转轮1远离所述成像系统2的一侧,也即,第二段32靠近转轮1的一端是排列成一排的,使得多个光路在后续成像的过程中能够按顺序依次排列,不发生光路的交叉。
 在一些可选的实施例中,参见图3所示,所述转轮1可以安装有多个所述滤光片11和所述光源12,也即转轮1上具有多个安装位,使得滤光片11和光源12均可以同时安装在转轮1上,在对滤光片11和光源12进行切换时,不需要将光源12或者滤光片11拆卸下来,实现便捷测量,并且多个所述滤光片11和所述光源12沿所述转轮1的圆周排列,通过旋转转轮1即可实现光源12和滤光片11的切换,使光源12或者滤光片11切换至与成像系统2同轴的状态;高效率的选择和切换滤光片对于提高测量效率十分重要,在安装有多个不同的滤光片11的条件下,经过转轮1控制,可以切换不同的滤光片11,可实现高动态范围测量。
 进一步,参见图3所示,所述转轮1与所述成像系统2之间还可以设置有准直系统6,使光纤3的出射光经过准直系统6后变成平行光,所述准直系统6与所述成像系统2之间还设置有色散系统7,所述色散系统7、所述准直系统6与所述成像系统2同轴设置,使得光纤3的出射光经过准直系统6和色散系统7后能够成像至成像系统2;所述成像系统2远离所述色散系统7的一侧还可以设置有图像采集系统8,图像采集系统8位于成像系统2的像面,所述成像系统2可以将经过所述色散系统7的出射光成像到所述图像采集系统8,经过数据处理与分析得到光谱信息。
 优选的,本实施例中提供的光源12可以选择LED光源12或者激光光源12等,滤光片11可以为ND(neutral density)滤光片11(中性密度滤光片)等,ND滤光片11可以降低光源亮度,使测量的亮度范围更广,沿所述转轮1的圆周可以分布有多个ND滤光片11,多个所述ND滤光片11的衰减倍率依次增大;其中,ND滤光片11的衰减倍率可以依次为1倍、10倍、100倍和1000倍。在实际应用中,有些显示屏可能很亮,比如MicroLED屏,亮度非常高,直接测量会超过CCD或CMOS的量程,通过衰减倍率为10倍、100倍或者1000倍的ND滤光片,可以把光源亮度对应地下降10倍、100倍或者1000倍,所以针对光源亮度可以设置匹配的ND滤光片。且滤光片11的数量可根据需求设置。且本实施例将多通道光谱测量、瞄准、滤光片11切换结合起来,实现显示屏9多点或多角度高动态范围光谱测量。
 本发明实施例还提供了一种同轴自瞄准光谱测量方法,其中,转轮1上设置有滤光片11和光源12,所述转轮1的一侧设置有成像系统2,且本测量方法可以采用上述任一实施例中提供的光谱测量系统来实现;测量方法可以包括以下步骤:
步骤1:将开启的所述光源12转动至与成像系统2同轴,使光源12发出的光经过光纤3和成像镜头4入射至显示屏9。
 其中,在步骤1之前,可以先把光源12安装至转轮1上。
 步骤2:关闭所述光源12。此时,可以将光源12从转轮1上取下,也可以一直安装于转轮1上。
 步骤3:将滤光片11转动至与成像系统2同轴,使光纤3的出射光经过所述滤光片11成像至所述成像系统2。
 其中,于步骤3之前,可以将滤光片11安装至转轮1上。
 本实施例中,通过光源12的设置,打开光源12可以形成与测量光路反向的瞄准光路,由于瞄准光路与测量光路同轴,可实现高精度瞄准和光谱测量。
 进一步,所述同轴自瞄准光谱测量系统包括多根光纤3,每根光纤3均连接有成像镜头4;在步骤1之前,还可以包括:将多个所述成像镜头4沿圆周排列,使多个所述成像镜头4按照不同的视角对准显示屏9。本实施例中,沿圆周排列的多个成像镜头4可以对同一测量区域实现多视角光谱测量。在步骤1的对准步骤中,打开转轮1上的光源12,将光源12转到与成像系统2同轴状态,光源12发出的光经过光纤3、成像镜头4入射到显示屏9;对于多视角光谱测量,由于多个镜头安装在同一圆周,当多视角光斑中心重合时,即为对准状态,且光斑区域即为光谱测量区域。在步骤3的测量步骤中,可以根据显示屏9亮度将合适的滤光片11转到与成像系统2同轴状态;光纤3的出射光经过转轮1上的滤光片11、准直系统6、色散系统7、成像系统2后经过图像采集系统8成像,经过图像处理可得到多个视角的光谱信息。
 进一步,在一些实施例中,所述同轴自瞄准光谱测量系统包括多根光纤3,每根光纤3均连接有成像镜头4;在步骤1之前,还可以包括:将多个所述成像镜头4按照不同的空间位置对准显示屏9。本实施例中,不同空间位置的多个成像镜头4可以对多个测量区域实现多点光谱测量。在步骤1的对准步骤中,打开转轮1上的光源12,将光源12转到与成像系统2同轴状态,光源12发出的光经过光纤3、成像镜头4入射到显示屏9;对于多点光谱测量,转轮1上的光源12打在显示屏9上的位置即为光谱测量区域;在步骤3的测量步骤中,可以根据显示屏9亮度将合适的滤光片11转到与成像系统2同轴状态;光纤3的出射光经过转轮1上的滤光片11、准直系统6、色散系统7、成像系统2后经过图像采集系统8成像,经过图像处理可得到多点的光谱信息。
 在一些可选的实施例中,在步骤1之前,还可以包括:将多根所述光纤3远离所述成像镜头4的一端沿直线排列于所述转轮1远离所述成像系统2的一侧,使得多个光路在后续成像的过程中能够按顺序依次排列,不发生光路的交叉。
 在一些实施例中,滤光片11优选为ND滤光片11,且沿所述转轮1的圆周分布有多个ND滤光片11,多个所述ND滤光片11的衰减倍率依次增大,比如衰减倍率可以依次为1倍、10倍、100倍和1000倍等;于步骤3中,所述将转轮1上的滤光片11转动至与成像系统2同轴,使光纤3的出射光经过所述滤光片11成像至所述成像系统2,可以包括:将具有第一衰减倍率的ND滤光片11转动至与成像系统2同轴,并进行自动曝光;若无过曝且符合自动曝光策略,则进行正常光谱测量;若始终过曝则切换至具有第二衰减倍率的ND滤光片11,再次自动曝光,并判断是否能进行正常测量,否则继续切换倍率更大的ND滤光片11;其中,第二衰减倍率大于第一衰减倍率。在进行实际测量时,可以先切换到1倍的ND滤光片11,自动曝光,若无过曝且符合自动曝光策略,则可正常测量;若始终过曝则切换到10倍的ND滤光片11,再次自动曝光,若无过曝且符合自动曝光策略,则可正常测量;若始终过曝则切换到100倍的ND滤光片11,再次自动曝光,若无过曝且符合自动曝光策略,则可正常测量;若始终过曝则切换到1000倍的ND滤光片11,再次自动曝光,若无过曝且符合自动曝光策略,则可正常测量;若依然过曝则说明测试目标超出量程,报错。
 其中,在进行ND滤光片11的切换时,可以通过电机驱动控制转轮1旋转,根据需求,使不同衰减倍率的ND滤光片11的中心依次切换到光轴位置。
 进一步,上述经过图像处理得到多点的光谱信息的方法可以包括:成像系统2将光成像到图像采集系统8,图像采集系统8包括二维图像传感器及图像后处理系统,二维图像传感器可以为二维面阵CCD图像传感器,可以为二维面阵CMOS图像传感器,也可以为二维PD阵列结构。二维图像传感器得到的二维空间光谱信息由图像后处理系统经过图像处理算法,即可还原得到多个视角或多个空间点中对应的光谱信息。
 二维分布光中的各光线成像后,分别形成各自对应的一排光谱图,即对一维点阵光进行准直处理、色散处理以及聚焦处理后得到的二维分布光成像后,形成多排光谱图,即二维空间光谱图;其中,二维空间光谱图对应的二维空间光谱信息包括空间维信息和光谱维信息,空间维信息用于表明二维分布光中的各光线对应多点或多视角中的每一个空间点,光谱维信息则是二维分布光中的各光线对应的光谱信息。
 本测量方法在转轮1上安装光源12,经过同轴光源12,可实现高精度位置瞄准和角度对准。
 在本发明的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
 需要说明的是,在本发明中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
 以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1.  一种同轴自瞄准光谱测量系统,其特征在于,其包括:
    转轮(1),所述转轮(1)的一侧设置有成像系统(2);
    以及滤光片(11)和光源(12),所述滤光片(11)和所述光源(12)至少其中之一安装于所述转轮(1);
    光纤(3),其设置于所述转轮(1)的另一侧,所述光纤(3)远离所述转轮(1)的一端连接成像镜头(4),所述光纤(3)、所述滤光片(11)与所述成像系统(2)同轴设置,或者所述光纤(3)、所述光源(12)与所述成像系统(2)同轴设置。
  2.  如权利要求1所述的同轴自瞄准光谱测量系统,其特征在于:
    所述同轴自瞄准光谱测量系统包括多根光纤(3),每根光纤(3)均连接有成像镜头(4),多个所述成像镜头(4)沿圆周排列。
  3.  如权利要求1所述的同轴自瞄准光谱测量系统,其特征在于:
    所述同轴自瞄准光谱测量系统包括多根光纤(3),每根光纤(3)均连接有成像镜头(4),多个所述成像镜头(4)的空间位置不同。
  4.  如权利要求2或3所述的同轴自瞄准光谱测量系统,其特征在于:
    所述光纤(3)包括互相连接的第一段(31)和第二段(32),所述第一段(31)连接所述成像镜头(4),多根所述光纤(3)的第二段(32)通过固定装置(5)固定,使多根所述第二段(32)沿直线排列于所述转轮(1)远离所述成像系统(2)的一侧。
  5.  如权利要求1所述的同轴自瞄准光谱测量系统,其特征在于:
    所述转轮(1)安装有多个所述滤光片(11)和所述光源(12),多个所述滤光片(11)和所述光源(12)沿所述转轮(1)的圆周排列。
  6.  如权利要求5所述的同轴自瞄准光谱测量系统,其特征在于:
    沿所述转轮(1)的圆周分布有多个ND滤光片(11),多个所述ND滤光片(11)的衰减倍率依次增大。
  7.  如权利要求1所述的同轴自瞄准光谱测量系统,其特征在于:
    所述转轮(1)与所述成像系统(2)之间还设置有准直系统(6),所述准直系统(6)与所述成像系统(2)之间还设置有色散系统(7),所述色散系统(7)、所述准直系统(6)与所述成像系统(2)同轴设置;所述成像系统(2)远离所述色散系统(7)的一侧还设置有图像采集系统(8)。
  8.  一种同轴自瞄准光谱测量方法,其特征在于,
    转轮(1)上设置有滤光片(11)和光源(12),所述转轮(1)的一侧设置有成像系统(2);
    将开启的所述光源(12)转动至与成像系统(2)同轴,使光源(12)发出的光经过光纤(3)和成像镜头(4)入射至显示屏(9);
    关闭所述光源(12),将滤光片(11)转动至与成像系统(2)同轴,使光纤(3)的出射光经过所述滤光片(11)成像至所述成像系统(2)。
  9.  如权利要求8所述的测量方法,其特征在于,
    沿所述转轮(1)的圆周分布有多个ND滤光片(11),多个所述ND滤光片(11)的衰减倍率依次增大;
    所述将滤光片(11)转动至与成像系统(2)同轴,使光纤(3)的出射光经过所述滤光片(11)成像至所述成像系统(2),包括:
    将具有第一衰减倍率的ND滤光片(11)转动至与成像系统(2)同轴,并进行自动曝光;
    若无过曝且符合自动曝光策略,则进行正常光谱测量;若始终过曝则切换至具有第二衰减倍率的ND滤光片(11),再次自动曝光,其中,第二衰减倍率大于第一衰减倍率。
  10.  如权利要求9所述的测量方法,其特征在于,所述同轴自瞄准光谱测量系统包括多根光纤(3),每根光纤(3)均连接有成像镜头(4);
    在所述将开启的所述光源(12)转动至与成像系统(2)同轴,使光源(12)发出的光经过光纤(3)和成像镜头(4)入射至显示屏(9)之前,还包括:
    将多个所述成像镜头(4)沿圆周排列,使多个所述成像镜头(4)按照不同的视角对准显示屏(9)。
PCT/CN2023/101212 2022-06-29 2023-06-20 一种同轴自瞄准光谱测量系统及测量方法 WO2024001860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210748513.5A CN114858279B (zh) 2022-06-29 2022-06-29 一种同轴自瞄准光谱测量系统及测量方法
CN202210748513.5 2022-06-29

Publications (1)

Publication Number Publication Date
WO2024001860A1 true WO2024001860A1 (zh) 2024-01-04

Family

ID=82627034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101212 WO2024001860A1 (zh) 2022-06-29 2023-06-20 一种同轴自瞄准光谱测量系统及测量方法

Country Status (2)

Country Link
CN (1) CN114858279B (zh)
WO (1) WO2024001860A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114858279B (zh) * 2022-06-29 2022-09-30 武汉精立电子技术有限公司 一种同轴自瞄准光谱测量系统及测量方法
CN115031841B (zh) * 2022-08-10 2022-12-09 武汉精立电子技术有限公司 一种光学测量设备、安装方法及应用方法
CN115014526B (zh) * 2022-08-10 2022-12-02 武汉精立电子技术有限公司 一种多通道光学测量设备、安装方法及应用方法
CN115014725A (zh) * 2022-08-10 2022-09-06 武汉精立电子技术有限公司 一种显示装置光学测量设备、安装方法及应用方法
CN115031840A (zh) * 2022-08-10 2022-09-09 武汉加特林光学仪器有限公司 一种测量设备、安装方法及应用方法
CN116222783B (zh) * 2023-05-08 2023-08-15 武汉精立电子技术有限公司 一种光谱测量装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202974850U (zh) * 2012-11-15 2013-06-05 西安中科麦特电子技术设备有限公司 一种多光谱成像光学系统
CN103654700A (zh) * 2013-12-31 2014-03-26 中国人民武装警察部队总医院 荧光内窥成像系统及成像方法
JP2019032270A (ja) * 2017-08-09 2019-02-28 シチズン時計株式会社 分光測定装置及び分光測定方法
CN112649091A (zh) * 2020-12-28 2021-04-13 武汉精测电子集团股份有限公司 一种用于led拼接显示屏校准的色度测量方法及装置
CN114858279A (zh) * 2022-06-29 2022-08-05 武汉精立电子技术有限公司 一种同轴自瞄准光谱测量系统及测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105209869B (zh) * 2012-10-23 2019-12-13 苹果公司 由光谱仪辅助的特殊设计的图案闭环校准的高精度成像色度计
CN107515045A (zh) * 2017-08-30 2017-12-26 中国科学院上海技术物理研究所 一种手机便携式多光谱成像方法及装置
CN109916823A (zh) * 2017-12-13 2019-06-21 香港纺织及成衣研发中心有限公司 多光谱颜色成像装置及校正方法
CN108332855A (zh) * 2018-05-16 2018-07-27 德州尧鼎光电科技有限公司 一种波长可调的高光谱成像仪装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202974850U (zh) * 2012-11-15 2013-06-05 西安中科麦特电子技术设备有限公司 一种多光谱成像光学系统
CN103654700A (zh) * 2013-12-31 2014-03-26 中国人民武装警察部队总医院 荧光内窥成像系统及成像方法
JP2019032270A (ja) * 2017-08-09 2019-02-28 シチズン時計株式会社 分光測定装置及び分光測定方法
CN112649091A (zh) * 2020-12-28 2021-04-13 武汉精测电子集团股份有限公司 一种用于led拼接显示屏校准的色度测量方法及装置
CN114858279A (zh) * 2022-06-29 2022-08-05 武汉精立电子技术有限公司 一种同轴自瞄准光谱测量系统及测量方法

Also Published As

Publication number Publication date
CN114858279A (zh) 2022-08-05
CN114858279B (zh) 2022-09-30

Similar Documents

Publication Publication Date Title
WO2024001860A1 (zh) 一种同轴自瞄准光谱测量系统及测量方法
TWI443327B (zh) Defect detection device and defect detection method
JP4135603B2 (ja) 2次元分光装置及び膜厚測定装置
TWI807016B (zh) 具有多光學探針之多點分析系統
US20040218179A1 (en) Polarimetric scatterometry methods for critical dimension measurements of periodic structures
JP3654220B2 (ja) レンズ検査装置
CN208369689U (zh) 一种分光摄像装置
WO2023019826A1 (zh) 一种光学成像镜头的像差检测系统及像差检测方法
CN101813520A (zh) 一种二维光谱测量装置
JP2012504242A (ja) 分光画像化顕微鏡法
JP5047435B2 (ja) 対象物からのスペクトル発光の空間分布を測定するための装置
CN112284686B (zh) 一种像差测量装置及方法
CN105353516A (zh) 单一探测器对光瞳光轴分区域成像的双光束合成传感器
JPH0355772B2 (zh)
GB2479012A (en) Aligning a collection fibre with a sampling region in an emission measurement system
WO2024032154A1 (zh) 一种可视瞄准光谱测量装置和光学检测设备
KR20070092577A (ko) 광학 감지 시스템 및 이러한 광학 감지 시스템을 갖는 칼라분석기
WO2022111592A1 (zh) 色度仪
CN214374364U (zh) 一种基于光学成像的缺陷检测装置
CN115031840A (zh) 一种测量设备、安装方法及应用方法
CN110381231A (zh) 一种分光摄像装置
JP3644311B2 (ja) 投写レンズ検査装置および投写レンズ検査方法
JP2004101213A (ja) 光学系のmtfを測定する装置及び方法
JP2006030070A (ja) 膜厚検査装置
CN114323584B (zh) 一种光纤多参数测试装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23830040

Country of ref document: EP

Kind code of ref document: A1