WO2024032154A1 - 一种可视瞄准光谱测量装置和光学检测设备 - Google Patents

一种可视瞄准光谱测量装置和光学检测设备 Download PDF

Info

Publication number
WO2024032154A1
WO2024032154A1 PCT/CN2023/101226 CN2023101226W WO2024032154A1 WO 2024032154 A1 WO2024032154 A1 WO 2024032154A1 CN 2023101226 W CN2023101226 W CN 2023101226W WO 2024032154 A1 WO2024032154 A1 WO 2024032154A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum measurement
reflector
unit
measurement device
visual aiming
Prior art date
Application number
PCT/CN2023/101226
Other languages
English (en)
French (fr)
Inventor
耿继新
罗时文
谢沙丽
郑增强
Original Assignee
武汉精测电子集团股份有限公司
武汉加特林光学仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉精测电子集团股份有限公司, 武汉加特林光学仪器有限公司 filed Critical 武汉精测电子集团股份有限公司
Publication of WO2024032154A1 publication Critical patent/WO2024032154A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum

Definitions

  • the utility model belongs to the technical field of spectrum measurement devices, and specifically discloses a visual aiming spectrum measurement device and optical detection equipment.
  • Display screens such as LCD, OLED, MiniLED and MicroLED are increasingly widely used, and display technologies with high brightness, wide color gamut, high efficiency, long life and other characteristics are developing rapidly.
  • the spectrometer is a basic optical measuring instrument. Its principle is to collect the radiation, reflection or transmission of light signals from the target object, and obtain the spectral power distribution curve of the incident light after optical and electrical signal processing. From this analysis, the incident light is obtained.
  • Various detailed information such as radiometric, photometric and colorimetric physical quantities, enable the identification of the structure and composition of matter and the measurement of the optical properties of materials.
  • aiming for spectral measurement usually requires the use of an aiming camera or an external light source, which has the disadvantages of complex structure and large volume.
  • the present utility model provides a visual aiming spectrum measurement device and optical detection equipment, which combines a spectrum measurement system and a viewfinder system to realize visual aiming spectrum measurement.
  • the utility model discloses a visual aiming spectrum measurement device, which includes a spectrum measurement unit and a viewfinder unit. There is an included angle between the optical axis of the spectrum measurement unit and the optical axis of the viewfinder unit.
  • the spectrum measurement unit and the viewfinder unit have an included angle.
  • a first reflector is disposed between the light-emitting parts to be tested, and a light splitting unit is provided between the light-emitting parts to be tested and the first reflector.
  • the light beam emitted by the light-emitting parts to be tested is split by the light splitting unit into A first outgoing beam and a second outgoing beam, the first outgoing beam is collected to the spectrum measurement unit through the reflecting mirror, and the second outgoing beam is collected to the viewfinder unit.
  • the light splitting unit includes a second reflector and a third reflector arranged coaxially, and the second reflector is located between the first reflector and the third reflector. Between the mirrors, the second reflecting mirror is provided with a filter hole, and the third reflecting mirror is provided with an escape hole.
  • the diameter of the filter hole ⁇ the diameter of the escape hole.
  • the reflective surface of the second reflector and the reflective surface of the third reflector are arranged oppositely.
  • a lens is provided next to the first reflector, the lens is located between the first reflector and the viewfinder unit, and the second outgoing beam passes through the The lenses are collected into the viewfinder unit.
  • the second reflecting mirror is one of a plurality of reflecting mirrors
  • the filter hole is provided at the center of each of the plurality of reflecting mirrors.
  • the filter holes on the two circular reflectors have different diameters.
  • the optical axis of the spectrum measurement unit and the optical axis of the viewfinder unit are perpendicular, and the optical axis of the spectroscopic unit and the optical axis of the viewfinder unit are collinear.
  • the spectrum measurement unit includes a lens and a spectrum measurement sensor.
  • the viewfinder unit includes an imaging sensor or a human eye.
  • the utility model also discloses an optical detection equipment, which includes a visual aiming spectrum measurement device.
  • the utility model has the advantages of simple structure, low cost and easy operation.
  • the utility model realizes passing the light beam emitted by the light-emitting device under test through the spectroscopic unit.
  • the beam is split into a first outgoing beam and a second outgoing beam.
  • the first outgoing beam is gathered to the spectrum measurement unit through the reflector, and the second outgoing beam is gathered to the viewfinder unit, thereby combining the spectrum measurement system and the viewfinder system to achieve visual Aiming spectrum measurement;
  • the light splitting unit of the present invention includes a second reflector with a filter hole and a third reflector with an escape hole. It not only has a simple structure, but also reflects the non-to-be-measured light beam to the lens to facilitate the imaging sensor or The human eye recognizes and observes the measurement area of the part to be tested, and effectively combines the spectrum measurement system and the viewfinder system to achieve visual aiming spectrum measurement;
  • a lens is provided next to the first reflector of the present invention.
  • the lens is located between the first reflector and the viewfinder unit.
  • the second outgoing beam is collected into the viewfinder unit through the lens.
  • the presence of the lens is more conducive to the passage of the second outgoing beam through the lens. Gathered into the viewfinder unit, the compatibility of the utility model is improved;
  • the second reflector of the present invention is one of the circular reflectors, and a filter hole is provided at the center of each reflector.
  • the filter holes on any two reflectors have different diameters.
  • Figure 1 is a schematic diagram of a visual aiming spectrum measurement device of the present invention
  • Figure 2 is a schematic diagram of the second reflector of a visual aiming spectrum measurement device of the present invention
  • Figure 3 is a schematic diagram of the second reflector of a visual aiming spectrum measurement device of the present invention.
  • Figure 4 is a schematic diagram of the second reflector of a visual aiming spectrum measurement device of the present invention.
  • Figure 5 is a schematic diagram of the second reflector of a visual aiming spectrum measurement device of the present invention.
  • the utility model discloses a visual aiming spectrum measurement device, which includes a spectrum measurement unit and a viewfinder unit. There is an included angle between the optical axis of the spectrum measurement unit and the optical axis of the viewfinder unit.
  • the spectrum measurement unit and the viewfinder unit have an included angle.
  • a first reflector 4 is disposed between the luminous part to be tested and a light splitting unit is disposed between the luminous part to be tested and the first reflector 4.
  • the light beam emitted by the luminous part to be tested is split into a first outgoing beam and a third beam through the light splitting unit. There are two outgoing beams, the first outgoing beam is collected into the spectrum measurement unit through the reflector 4, and the second outgoing beam is collected into the viewfinder unit.
  • the light splitting unit includes a second reflective mirror 3 and a third reflective mirror 7 arranged coaxially.
  • the second reflective mirror 3 is located between the first reflective mirror 4 and the third reflective mirror 7 .
  • the second reflective mirror 3 is provided with The filter hole 3.1 allows the light beam at the first angle of the measurement area 1-2 of the light-emitting device to be tested 1-1 to pass through, and the third reflector 7 is provided with an escape hole 7.1.
  • the diameter of the filter hole 3.1 is less than the diameter of the avoidance hole 7.1.
  • the reflective surface of the second reflective mirror 3 and the reflective surface of the third reflective mirror 7 are arranged opposite to each other.
  • a lens 8 is provided next to the first reflector 4, the lens 8 is located between the first reflector 4 and the viewfinder unit, and the second outgoing light beam is collected through the lens 8 to the viewfinder unit.
  • the second reflecting mirror 3 is one of a plurality of reflecting mirrors, and a filter hole 3.1 is provided at the center of each of the plurality of reflecting mirrors. Any two reflection mirrors The filter holes 3.1 on the mirror have different diameters.
  • the optical axis of the spectrum measurement unit and the optical axis of the viewing unit are perpendicular, and the optical axis of the spectroscopic unit and the optical axis of the viewing unit are collinear.
  • the spectrum measurement unit includes a lens 5 and a spectrum measurement sensor 6.
  • the viewfinder unit includes an imaging sensor or a human eye.
  • the light-emitting device under test 1-1 includes but is not limited to LCD, OLED, MiniLED and MicroLED.
  • the working principle of the utility model is as follows: the light beam at the first angle of the measurement area 1-2 of the light-emitting device 1-1 is converged through the object lens 2 to the filter hole 3.1 of the second reflector 3 and reflected by the first reflector 4.
  • the spectrum measurement sensor 6 receives the spectrum for spectrum detection (spectrum measurement system); the second angle beam of the measurement area 1-2 and the light beam of the luminous test piece 1-1 except the measurement area 1-2 are all transmitted from the object side.
  • the lens 2 is reflected by the second reflector 3 to the third reflector 7 , and then reflected and transmitted through the third reflector 7 8 to form an image on the imaging sensor or human eye 9 (viewfinder system).
  • the utility model selects the second reflector 3 with filter holes 3.1 of different diameters, so that the first angle beams of different angles emitted from the measurement area 1-2 are reflected by the first reflector 4, and are measured by the spectrum through the lens 5.
  • the sensor 6 receives and performs spectrum detection; at the same time, the imaging sensor or the human eye 9 observes the measurement area through imaging or the human eye.
  • the first angle beam and the second angle beam can be understood as: the beam emitted by each single-point light-emitting unit takes the optical axis of the beam as the central axis and actively calibrates a light cone at a certain angle with the central axis (such as The angle between the main line of the light cone and the moving line, such as 0.5°), the beam located within the light cone is the first angle beam, and the beam located outside the light cone is the second angle beam.
  • the utility model also discloses an optical detection equipment, which includes a visual aiming spectrum measurement device.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

本实用新型公开了一种可视瞄准光谱测量装置和光学检测设备,其包括光谱测量单元和取景单元,所述光谱测量单元的光轴和所述取景单元的光轴存在一夹角,所述光谱测量单元与发光待测件之间设置有第一反射镜,所述发光待测件与所述第一反射镜之间设置有分光单元,所述发光待测件发出的光束通过所述分光单元分束为第一出射光束和第二出射光束,所述第一出射光束通过所述反射镜汇集至所述光谱测量单元,所述第二出射光束汇集至所述取景单元。本实用新型将光谱测量系统、取景系统结合起来,实现可视的瞄准光谱测量。

Description

一种可视瞄准光谱测量装置和光学检测设备 技术领域
 本实用新型属于光谱测量装置技术领域,具体公开了一种可视瞄准光谱测量装置和光学检测设备。
背景技术
 随着显示技术的快速发展,人们对显示设备的显示质量和性能要求也越来越高。LCD、OLED、MiniLED和MicroLED等显示屏得到越来越广泛的应用,具有高亮度、广色域、高效率、长寿命等特性的显示技术得到快速发展。
 光谱仪是一种基本的光学测量仪器,其原理是通过采集目标物体的辐射、反射或透射的光信号,经过光学和电学信号处理后得到入射光的光谱功率分布曲线,由此分析得到入射光的各种详细信息,如辐射度学、光度学和色度学物理量,实现物质结构和成分的鉴定以及材料光学属性的测量。
 然而,单个光谱仪在测量过程难以瞄准所需测量区域;另一方面,光谱测量的瞄准通常需要借助瞄准相机或外挂式光源瞄准,其具有结构复杂、体积大的缺陷。
实用新型
 针对现有技术中存在的技术问题,本实用新型提供了一种可视瞄准光谱测量装置和光学检测设备,其将光谱测量系统、取景系统结合起来,实现了可视的瞄准光谱测量。
 本实用新型公开了一种可视瞄准光谱测量装置,其包括光谱测量单元和取景单元,所述光谱测量单元的光轴和所述取景单元的光轴存在一夹角,所述光谱测量单元与发光待测件之间设置有第一反射镜,所述发光待测件与所述第一反射镜之间设置有分光单元,所述发光待测件发出的光束通过所述分光单元分束为第一出射光束和第二出射光束,所述第一出射光束通过所述反射镜汇集至所述光谱测量单元,所述第二出射光束汇集至所述取景单元。
 在本实用新型的一种优选实施方案中,所述分光单元包括同轴布置的第二反射镜和第三反射镜,所述第二反射镜位于所述第一反射镜和所述第三反射镜之间,所述第二反射镜上设置有滤光孔,所述第三反射镜上设置有避让孔。
 在本实用新型的一种优选实施方案中,所述滤光孔的直径<所述避让孔的直径。
 在本实用新型的一种优选实施方案中,所述第二反射镜的反光面与所述第三反射镜的反光面相对布置。
 在本实用新型的一种优选实施方案中,所述第一反射镜旁设置有透镜,所述透镜位于所述第一反射镜和所述取景单元之间,所述第二出射光束通过所述透镜汇集至所述取景单元。
 在本实用新型的一种优选实施方案中,所述第二反射镜为多个反射镜中的一个反射镜,多个反射镜中的每个反射镜的中心设置有所述滤光孔,任意两个圆形反射镜的上的滤光孔的直径不等。
 在本实用新型的一种优选实施方案中,所述光谱测量单元的光轴和所述取景单元的光轴垂直,所述分光单元的光轴和所述取景单元的光轴共线。
 在本实用新型的一种优选实施方案中,所述光谱测量单元包括镜头和光谱测量传感器。
 在本实用新型的一种优选实施方案中,所述取景单元包括成像传感器或人眼。
 本实用新型还公开了一种光学检测设备,其包括可视瞄准光谱测量装置。
 本实用新型的有益效果是:本实用新型具有结构简单、成本低、便于操作的优点,其通过在入射光路的光轴路径上引入分光单元从而实现了将发光待测件发出的光束通过分光单元分束为第一出射光束和第二出射光束,第一出射光束通过反射镜汇集至光谱测量单元,第二出射光束汇集至取景单元,从而将光谱测量系统、取景系统结合起来,实现了可视的瞄准光谱测量;
进一步的,本实用新型的分光单元包括带有滤光孔的第二反射镜和带有避让孔第三反射镜,其不仅结构简单,而且实现了将非待测光束反射至透镜便于成像传感器或人眼识别观察待测件的测量区域,有效地光谱测量系统、取景系统结合起来,实现可视的瞄准光谱测量;
进一步的,本实用新型的第一反射镜旁设置有透镜,透镜位于第一反射镜和取景单元之间,第二出射光束通过透镜汇集至取景单元,透镜的存在更利于第二出射光束通过透镜汇集至取景单元,提高了本实用新型的兼容性;
进一步的,本实用新型的第二反射镜为圆形反射镜中的一个反射镜,每个反射镜的中心设置有滤光孔,任意两个反射镜的上的滤光孔的直径不等,通过选用合适的第二反射镜,可以测量不同视场角的范围光谱测量。
附图说明
 图1是本实用新型一种可视瞄准光谱测量装置的示意图;
图2是本实用新型一种可视瞄准光谱测量装置的第二反射镜示意图;
图3是本实用新型一种可视瞄准光谱测量装置的第二反射镜示意图;
图4是本实用新型一种可视瞄准光谱测量装置的第二反射镜示意图;
图5是本实用新型一种可视瞄准光谱测量装置的第二反射镜示意图;
图中:1-1-发光待测件;1-2-测量区域;2-物方镜头;3-第二反射镜;4-第一反射镜;5-镜头;6-光谱测量传感器;7-第三反射镜;8-透镜;9-成像传感器或人眼;3.1-滤光孔;7.1-避让孔。
实施方式
 下面通过附图以及列举本实用新型的一些可选实施例的方式,对本实用新型的技术方案(包括优选技术方案)做进一步的详细描述。显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
 如附图1所示,本实用新型公开了一种可视瞄准光谱测量装置,包括光谱测量单元和取景单元,光谱测量单元的光轴和取景单元的光轴存在一夹角,光谱测量单元与发光待测件之间设置有第一反射镜4,发光待测件与第一反射镜4之间设置有分光单元,发光待测件发出的光束通过分光单元分束为第一出射光束和第二出射光束,第一出射光束通过反射镜4汇集至光谱测量单元,第二出射光束汇集至取景单元。
 优选地,分光单元包括同轴布置的第二反射镜3和第三反射镜7,第二反射镜3位于第一反射镜4和第三反射镜7之间,第二反射镜3上设置有供发光待测件1-1的测量区域1-2的第一角度光束通过的滤光孔3.1,第三反射镜7上设置有避让孔7.1。
 优选地,滤光孔3.1的直径<避让孔7.1的直径。
 优选地,第二反射镜3的反光面与第三反射镜7的反光面相对布置。
 优选地,第一反射镜4旁设置有透镜8,透镜8位于第一反射镜4和取景单元之间,第二出射光束通过透镜8汇集至取景单元。
 优选地,如图2-5所示,第二反射镜3为多个反射镜中的一个反射镜,多个反射镜中的每个反射镜的中心设置有滤光孔3.1,任意两个反射镜的上的滤光孔3.1的直径不等。
 优选地,光谱测量单元的光轴和取景单元的光轴垂直,分光单元的光轴和取景单元的光轴共线。
 优选地,光谱测量单元包括镜头5和光谱测量传感器6。
 优选地,取景单元包括成像传感器或人眼。
 优选地,发光待测件1-1包括但不限于LCD、OLED、MiniLED和MicroLED。
 本实用新型的工作原理如下:发光待测件1-1的测量区域1-2的第一角度光束经由物方镜头2汇聚到第二反射镜3的滤光孔3.1经过第一反射镜4反射透过镜头5由光谱测量传感器6接收进行光谱检测(光谱测量系统);测量区域1-2的第二角度光束、发光待测件1-1除测量区域1-2外的光束全部由物方镜头2经第二反射镜3反射至第三反射镜7,再经由第三反射镜7反射透过8在成像传感器或人眼9成像(取景系统)。
 本实用新型通过选取带有不同直径滤光孔3.1的第二反射镜3,使得测量区域1-2发出的不同角度的第一角度光束经过第一反射镜4反射,透过镜头5由光谱测量传感器6接收进行光谱检测;同时成像传感器或人眼9处通过成像或者人眼观察测量区域。
 需要指出,第一角度光束、第二角度光束可以理解为:每个单点发光单元发出的光束,以该光束的光轴为中心轴,主动标定一个与中心轴呈一定角度的光锥(如光锥的母线与动线的夹角,如0.5°),位于该光锥内的光束为第一角度光束,位于该光锥外的光束为第二角度光束。
 本实用新型还公开了一种光学检测设备,其包括可视瞄准光谱测量装置。
 所属技术领域的技术人员容易理解,以上仅为本实用新型的较佳实施例而已,并不以限制本实用新型,凡在本实用新型的精神和原则下所做的任何修改、组合、替换、改进等均包含在本实用新型的保护范围之内。

Claims (10)

  1.  一种可视瞄准光谱测量装置,其特征在于:包括光谱测量单元和取景单元,所述光谱测量单元的光轴和所述取景单元的光轴存在一夹角,所述光谱测量单元与发光待测件之间设置有第一反射镜(4),所述发光待测件与所述第一反射镜(4)之间设置有分光单元,所述发光待测件发出的光束通过所述分光单元分束为第一出射光束和第二出射光束,所述第一出射光束通过所述反射镜(4)汇集至所述光谱测量单元,所述第二出射光束汇集至所述取景单元。
  2.  根据权利要求1所述的可视瞄准光谱测量装置,其特征在于:所述分光单元包括同轴布置的第二反射镜(3)和第三反射镜(7),所述第二反射镜(3)位于所述第一反射镜(4)和所述第三反射镜(7)之间,所述第二反射镜(3)上设置有滤光孔(3.1),所述第三反射镜(7)上设置有避让孔(7.1)。
  3.  根据权利要求2所述的可视瞄准光谱测量装置,其特征在于:所述滤光孔(3.1)的直径<所述避让孔(7.1)的直径。
  4.  根据权利要求2所述的可视瞄准光谱测量装置,其特征在于:所述第二反射镜(3)的反光面与所述第三反射镜(7)的反光面相对布置。
  5.  根据权利要求2所述的可视瞄准光谱测量装置,其特征在于:所述第一反射镜(4)旁设置有透镜(8),所述透镜(8)位于所述第一反射镜(4)和所述取景单元之间,所述第二出射光束通过所述透镜(8)汇集至所述取景单元。
  6.  根据权利要求2所述的可视瞄准光谱测量装置,其特征在于:所述第二反射镜(3)为多个反射镜中的一个反射镜,多个反射镜中的每个反射镜的中心设置有所述滤光孔(3.1),任意两个反射镜的上的滤光孔(3.1)的直径不等。
  7.  据权利要求1所述的可视瞄准光谱测量装置,其特征在于:所述光谱测量单元的光轴和所述取景单元的光轴垂直,所述分光单元的光轴和所述取景单元的光轴共线。
  8.  根据权利要求1所述的可视瞄准光谱测量装置,其特征在于:所述光谱测量单元包括镜头(5)和光谱测量传感器(6)。
  9.  根据权利要求1所述的可视瞄准光谱测量装置,其特征在于:所述取景单元包括成像传感器或人眼。
  10.  一种光学检测设备,其特征在于:包括如权利要求1-9任意一项所述的可视瞄准光谱测量装置。
PCT/CN2023/101226 2022-08-10 2023-06-20 一种可视瞄准光谱测量装置和光学检测设备 WO2024032154A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222097012.3 2022-08-10
CN202222097012.3U CN217483672U (zh) 2022-08-10 2022-08-10 一种可视瞄准光谱测量装置和光学检测设备

Publications (1)

Publication Number Publication Date
WO2024032154A1 true WO2024032154A1 (zh) 2024-02-15

Family

ID=83318193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101226 WO2024032154A1 (zh) 2022-08-10 2023-06-20 一种可视瞄准光谱测量装置和光学检测设备

Country Status (2)

Country Link
CN (1) CN217483672U (zh)
WO (1) WO2024032154A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217483672U (zh) * 2022-08-10 2022-09-23 武汉加特林光学仪器有限公司 一种可视瞄准光谱测量装置和光学检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201475A1 (en) * 2010-10-29 2013-08-08 Mitaka Kohki Co., Ltd. Spectroscopic measuring apparatus with monitoring capability
CN209085766U (zh) * 2018-11-20 2019-07-09 远方谱色科技有限公司 一种光谱辐亮度测量装置
CN215374224U (zh) * 2021-08-13 2021-12-31 武汉精测电子集团股份有限公司 一种MicroLED或MiniLED显微光谱测量系统
CN217483672U (zh) * 2022-08-10 2022-09-23 武汉加特林光学仪器有限公司 一种可视瞄准光谱测量装置和光学检测设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130201475A1 (en) * 2010-10-29 2013-08-08 Mitaka Kohki Co., Ltd. Spectroscopic measuring apparatus with monitoring capability
CN209085766U (zh) * 2018-11-20 2019-07-09 远方谱色科技有限公司 一种光谱辐亮度测量装置
CN215374224U (zh) * 2021-08-13 2021-12-31 武汉精测电子集团股份有限公司 一种MicroLED或MiniLED显微光谱测量系统
CN217483672U (zh) * 2022-08-10 2022-09-23 武汉加特林光学仪器有限公司 一种可视瞄准光谱测量装置和光学检测设备

Also Published As

Publication number Publication date
CN217483672U (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2010003362A1 (zh) 亮度测量装置
WO2024032154A1 (zh) 一种可视瞄准光谱测量装置和光学检测设备
CN102175690B (zh) 一种红外玻璃内部宏观缺陷检测装置
CN111413070A (zh) 亮度检测装置及其检测方法
BRPI0708953A2 (pt) desenho àptico de um sistema de mediÇço dotado de méltiplos sensores ou méltiplas trajetàrias de fonte de luz
CN105241640A (zh) 一种蓝光加权辐射亮度的测量装置及其方法
CN115574740A (zh) 一种多功能光学自准直仪
CN103884659B (zh) 角分辨微纳光谱分析装置
CN106248351B (zh) 基于光学系统鬼像测量装置的光学系统鬼像测量方法
CN103698006A (zh) 用于在线式分光测色仪的45度环形照明装置
CN106908144B (zh) 一种超微弱星光照度测量装置及方法
KR20070092577A (ko) 광학 감지 시스템 및 이러한 광학 감지 시스템을 갖는 칼라분석기
CN103148807A (zh) 外场环境下紫外与可见光双光轴平行性校准装置
CN105954286A (zh) 一种基于旋转滤光片单色器的能见度测量仪
CN211085476U (zh) 一种适用于led显示屏的测试装置
CN105651733A (zh) 材料散射特性测量装置及方法
WO2018192068A1 (zh) 一种激光测距单眼望远镜
CN113899447B (zh) 光密度测试系统及光密度测试仪
CN109060123B (zh) 一种光谱辐亮度计
CN109668636B (zh) 一种成像式光谱辐射接收和分光一体化装置
CN217483673U (zh) 一种光谱测量装置和光学检测设备
CN208921614U (zh) 一种新型显微成像透过率检测仪
WO2016082416A1 (zh) 一种回复反射测量装置
CN113532637A (zh) 一种可监控光斑数值孔径和功率的适配器及其制作使用方法
CN111044145A (zh) 一种便携式成像光谱仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23851381

Country of ref document: EP

Kind code of ref document: A1