WO2016082416A1 - 一种回复反射测量装置 - Google Patents

一种回复反射测量装置 Download PDF

Info

Publication number
WO2016082416A1
WO2016082416A1 PCT/CN2015/076082 CN2015076082W WO2016082416A1 WO 2016082416 A1 WO2016082416 A1 WO 2016082416A1 CN 2015076082 W CN2015076082 W CN 2015076082W WO 2016082416 A1 WO2016082416 A1 WO 2016082416A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
measuring
retroreflective
measurement
light
Prior art date
Application number
PCT/CN2015/076082
Other languages
English (en)
French (fr)
Inventor
潘建根
Original Assignee
杭州远方光电信息股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410679212.7A external-priority patent/CN104359866B/zh
Priority claimed from CN201420711898.9U external-priority patent/CN204214774U/zh
Application filed by 杭州远方光电信息股份有限公司 filed Critical 杭州远方光电信息股份有限公司
Priority to US15/529,464 priority Critical patent/US10393655B2/en
Publication of WO2016082416A1 publication Critical patent/WO2016082416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N2021/551Retroreflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/062LED's
    • G01N2201/0627Use of several LED's for spectral resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/063Illuminating optical parts
    • G01N2201/0636Reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/065Integrating spheres

Definitions

  • the invention belongs to the field of optical radiation measurement, and in particular relates to a retroreflective characteristic measuring device.
  • the retroreflective materials are mainly used in the field of traffic safety warning signs such as road traffic signs, marking lines, various line-of-sight guidance facilities, etc., which play an important role in ensuring safe operation of traffic.
  • the reflection and reflection characteristics are the most effective and direct means for evaluating such materials.
  • the measurement of the retroreflective characteristic requires that the illumination angle and the observation angle satisfy certain conditions. Since the angle is very small, it is often necessary to measure the angle accurately in the actual measurement, and it needs to be carried out in a large darkroom, which is extremely large. It limits its application in engineering actual measurement, which also places high demands on the accuracy and reliability of instrument test results.
  • the ring-shaped optical signal that satisfies the illumination observation condition is generally used to realize the measurement condition of the retroreflection characteristic.
  • a multi-angle retroreflective measuring device is disclosed in the publication No. US Pat.
  • a plurality of supporting devices are needed to support the belt light transmitting device, and the introduction of the plurality of supporting devices may cause the incomplete optical signal of the ring belt to affect the measurement accuracy; in addition, the fixing of the supporting device also has the risk of instability. , thereby reducing the reliability and accuracy of the device test; and the ring-band transmission device limits the need for a beam splitter or a small-sized mirror in the optical path, the beam splitter will generate a large loss of light energy, and the refraction The process also introduces measurement errors, and mirrors of small size are difficult to process and fix, and introduce large errors.
  • the present invention aims to provide a portable retroreflective measurement device that is fast, accurate, and wide in scope, and can realize fast and accurate retroreflection characteristics of multiple sets of different observation angles simultaneously with only one measurement.
  • the measurement has the characteristics of small volume, simple optical path, high measurement accuracy, high speed, convenient operation and low cost.
  • a retroreflective measuring device comprising: a light source, a set of or more sampling devices for realizing different viewing angle range measuring loops, and one or more corresponding to the number of sampling devices Measuring device.
  • the sampling device consists of a perforated mirror and a diaphragm group
  • the light emitted by the light source is incident on the sample to be tested at a certain angle of illumination, and the reflected light of the sample to be tested is formed by a sampling device consisting of a hole mirror and an aperture to form an optical signal that satisfies the observation angle condition, and is correspondingly
  • the measuring device receives.
  • the measurement of the retroreflective characteristic includes two paths of the illumination light path and the observation light path, and the light path that the light source emits the illumination light and is incident on the sample to be tested according to a certain illumination angle is the illumination light path, and the retroreflected light emitted by the sample to be tested is received by the measuring device.
  • the light path is the observation light path.
  • the light emitted by the light source is irradiated onto the sample to be tested, and the sampling device composed of the aperture and the apertured mirror is disposed on the optical path before the sample to be tested and the measuring device, and the reflected light of the sample to be tested is passed through the sampling device.
  • each group of sampling devices is composed of a certain size of apertures and apertured mirrors, each set of apertures and apertured mirrors corresponding to a measurement loop corresponding to the determined observation angle, and thus the measuring device receives It is the ring-band optical signal of the sample to be reflected and reflected light, and then the retroreflection measurement under the observation angle is completed.
  • the sampling device of the invention can realize multiple sets of measuring loops of different sizes, and the reflected and reflected light of the sample to be tested passes through the measuring loops under different observation angles, and the recovery of a plurality of different viewing angles can be completed in one sampling. Reflection measurement.
  • the present invention proposes a novel retroreflective measurement scheme, which introduces a sampling device consisting of a diaphragm and a perforated mirror.
  • the optical path is simple and ingenious, and no support device is needed.
  • the complete retroreflective ring with optical signal has high measurement accuracy and good stability; the optical path has strong scalability, and can set multiple sampling devices satisfying different observation angles according to the test requirements, and can complete multiple different observation angles in one sampling.
  • the retroreflective characteristic measurement of the ringband optical signal in addition, by cleverly setting the optical path, the illumination optical path from the light source to the sample to be tested does not interfere with each other from the sample to be measured to the measuring device and the measuring device, and only the light source needs to be activated.
  • the measurement purpose can be realized; in addition, the sampling device has a simple manufacturing process and is easy to install, and has the characteristics of low cost, low stray light, and convenient operation.
  • the aperture mirror in the sampling device is used for reflecting light larger than the inner diameter of the measuring ring, the aperture is used to cut the light larger than the outer diameter of the measuring ring, and the combination of the aperture mirror and the aperture constitutes the measuring ring.
  • a measuring loop with an observation angle range can be determined. For example, if a measurement loop of ( ⁇ ) is to be obtained at the ⁇ observation angle, the aperture angle of the aperture mirror in the sampling device is ( ⁇ - ⁇ ) to the center of the sample to be measured, and the reflected beam The angle is larger than ( ⁇ - ⁇ ); and the aperture of the aperture in the sampling device corresponds to an angle of ( ⁇ + ⁇ ), and only the beam with an angle less than ( ⁇ + ⁇ ) can pass through the aperture.
  • the measuring device receives the beam angle range ( ⁇ - ⁇ ) The ring band optical signal in ⁇ ( ⁇ + ⁇ ).
  • the center of the apertured mirror and the aperture is disposed on the optical axis to accurately realize the measurement loops corresponding to different observation angles.
  • the aperture size of the apertured mirror is ⁇ for the center of the sample to be measured, and the angles at both sides of the optical axis are ( ⁇ + ⁇ ) and ( ⁇ - ⁇ ), located in the upper part of the optical axis;
  • the opening angle of the center of the pupil aperture to the center of the sample to be measured is ⁇ ( ⁇ )
  • the opening angles on both sides of the optical axis are ( ⁇ + ⁇ ) and ( ⁇ -, respectively.
  • ⁇ ) is located at the lower part of the optical axis; then the apertured mirror and the aperture combine to form an irregular light-emitting area, which cannot form a measurement loop, and thus cannot meet the measurement requirements.
  • a sampling device is included, and the aperture mirror and the aperture of the sampling device are disposed on the optical path before the measuring device.
  • two or more sampling devices are included, and the aperture mirror of the latter sampling device is disposed along the observation optical path on a previous optical path of the pupil of the previous sampling device.
  • the sampling device of two observation angles the light reflected and reflected by the measured sample is incident on the aperture mirror in the ⁇ observation angle measuring ring sampling device, and the aperture mirror has a beam angle greater than ( ⁇ - ⁇ ).
  • the ⁇ observation angle measuring strip has a stop beam angle greater than ( ⁇ + ⁇ ) in the sampling device, that is, the ⁇ observation angle measures the light beam passing through the ring band and is subsequently passed by the corresponding measuring device.
  • the pupil cut-off beam angle in the sampling device of the observation angle measuring loop is greater than Beam of light
  • the beam within the observation angle measuring loop passes and is received and measured by subsequent corresponding measuring devices. At this point, measurements of multiple angles of retroreflection are achieved at the same time.
  • the different measuring loops are sequentially arranged along the observation optical path from small to large.
  • the measuring angle corresponding to the measuring loop is 0.2° or 0.33° or 0.5°, so as to meet the actual measurement needs at present in the world. It should be pointed out that by flexibly selecting the size of the apertured mirror and the aperture, the invention can simultaneously realize the measurement loops under multiple observation angles, meet different test requirements, and have good scalability and universality.
  • one or more color filters are disposed, and the color filter is disposed in an observation light path and/or an illumination light path, and the retroreflected light of the sample to be tested is received by the measuring device after being filtered by the color filter, that is, The measuring device receives the ring-band optical signal after the corresponding color filter, and according to the type of the selected color filter, and the corresponding measuring device, the measurement of different reflection characteristics of the sample to be tested can be realized.
  • the transmittance of the color filter simulates the CIE viewing function V( ⁇ ), and the measurement of the various light metrics can be realized by cooperating with the measuring device.
  • a color filter disc may be further disposed, and one or more color filters are disposed on the color filter disc, and different color filters are switched into the optical path through the color filter disc.
  • the measuring device receives the ring-band optical signal passing through the corresponding color filter to realize measurement of different optical characteristics at the same observation angle.
  • the color filter here may be disposed on the observation optical path or in the illumination optical path.
  • One or more sampling devices may be included in the retroreflective device of the present invention.
  • the color filter can be disposed at any position of the measuring device in front of the measuring device, and can act on the ring-band optical signal realized by the sampling device.
  • the observation optical path is an independent observation optical path or a common observation optical path of one or more measurement loops, and the observation optical path includes a common observation optical path of two or more measurement loops, and corresponding to each measurement loop.
  • the common observation optical path is a transmission optical path of the aperture measuring mirror of the latter sampling device and containing different measuring ring optical signals, such as optical paths A, B and C in FIG.
  • a and B The optical path includes three measuring loops with optical signals, and the optical path C includes optical signals of the last two measuring loops; the independent observation optical path of the previous sampling device is after the apertured mirror of the latter sampling device, and is located through The light path of the light with the aperture of the aperture mirror.
  • the color filters are disposed in a common observation optical path or an independent observation optical path.
  • the color filters corresponding to the optical paths D, E, and F of FIG. 4 may also be disposed in the common observation optical path.
  • the color filters are disposed in a common observation optical path to measure the same optical characteristics of the reflected reflected light at different observation angles. For example, in the A or B optical path, a color filter simulating the CIE viewing function V( ⁇ ) is set.
  • the measurement of the optical metrics of the three measuring loops can be realized; if the color filters are arranged in the optical path C, the measurement of the optical metrics of the optical signals can be measured for the latter two measuring loops.
  • the color filters can also be set separately in the independent observation light path, and the filtering of each color filter
  • the light characteristics may be the same or different, but the color filter corresponding to the previous measuring device shall be disposed in the optical path of the light passing through the aperture of the apertured mirror corresponding to the latter measuring device, and the reflected light emitted by the sample to be tested may be
  • the apertured mirror of the latter measuring device is divided into two parts, one part being light passing through the small hole and the other part being light reflected by the apertured mirror.
  • the color filter is disposed in the optical path of the light passing through the small hole, and the optical path, the color filter and the measuring device of the previous measuring device are disposed in the optical path, wherein the order of setting the aperture and the color filter can be arbitrarily set.
  • Both of them need only be arranged before the measuring device, and the measuring ring belt of the filter color film and the diaphragm is received by the measuring device, and the measuring device receives the ring-band optical signal after the color filter is applied; the other portion is reflected by the hole.
  • the light reflected by the mirror passes through the latter aperture and the color filter to form a corresponding ring-band optical signal which is received and detected by the latter measuring device.
  • a color filter plate for arranging a plurality of color filters may be disposed, so that measurement of different retroreflective characteristics at the same observation angle can be realized, for example, the measuring device is black and white.
  • CCD three color filters can be arranged on the color filter disc.
  • the combined spectral response of the three color filters and the black and white CCD is CIE tristimulus values x( ⁇ ), y( ⁇ ) and z( ⁇ ), filtering
  • the color wheel can realize the measurement of the tristimulus value of the reflex light under the driving of the driving device; if the color filter is a function of the spectral light efficiency of the CIE different vision (bright vision, dark vision, intermediate vision), Obtain a light metric that reflects the reflected light in different visions.
  • the light source comprises one or more programmable monochromatic LEDs, and the one or more monochromatic LEDs emit light independently or in combination, directly or indirectly on the sample to be tested.
  • the light source of the present invention has various implementations, which may be an LED array including a plurality of different monochromatic LEDs. Under the control of the program control system, the light of each of the different monochromatic LEDs on the LED array is directly or in combination, and is directly irradiated.
  • the sample to be tested may also include an integrating sphere, one or more monochromatic LEDs independently or in combination, and the light emitted by the integrating sphere is illuminated
  • a plurality of different monochromatic LEDs can also be matched with the integrating sphere. Since the beam angle of the LED illumination is narrow, the uniformity of the light intensity emitted by the light source cannot be guaranteed, especially for a plurality of monochromatic LEDs, directly The effect of mixing light is poor.
  • the different monochromatic LEDs are placed on the integrating sphere. The light emitted independently or in combination is mixed by the integrating sphere and then irradiated onto the sample to be tested.
  • the single-color LED driving method here can also be flexibly selected, preferably by pulse driving method, through the phase-locking amplification technology, effectively removing stray light, improving measurement accuracy, and subsequent signals The processing is simpler and the test efficiency is improved.
  • devices such as a collimating device, a diaphragm, and a characteristic color filter may be disposed in the illumination light path.
  • a collimating device disposed on an optical path behind the light source; or comprising an aperture disposed on the optical path after the collimating device, the collimating device for generating a satisfactory condition
  • the illumination beam further comprising a characteristic color filter disposed on the optical path after the pupil for correcting the spectrum of the light source.
  • the measuring device is a photometric detector or a spectroradiometer device, and different measuring devices can meet different testing requirements, and realize rapid measurement of the luminosity, chromaticity and spectrum of the sample to be tested.
  • one or more mirrors are disposed, and the mirrors are disposed on the illumination light path and/or the observation light path to reduce the working distance and reduce the instrument volume while ensuring the measurement distance.
  • multiple mirrors can be used in the optical path to reduce the working distance, which is advantageous for miniaturization of the instrument.
  • the number of mirrors may preferably be two mirrors arranged in the light path.
  • a monitoring device for monitoring fluctuations of a light source is received, the monitoring device receiving light emitted from a light source.
  • the position of the monitoring device can be flexibly set, such as can be disposed on the side of the light source or on the side optical path of the illumination light path.
  • the monitoring device can be flexibly selected to meet different testing requirements.
  • the monitoring device can be a spectroradiometer or a photodetector or a brightness measuring device, and the monitoring device is preferably a spectroradiometer, and the measuring device and the monitoring device have the same measurement information.
  • the measurement results of the two can be fully utilized to obtain comprehensive luminosity, chromaticity and spectral magnitudes such as reflectance, spectral reflectance and luminous intensity coefficient of the sample to be tested.
  • the utility model comprises a chassis, the light source, the sampling device, the color filter, the color filter disc, the measuring device and the monitoring device are all arranged in the chassis, and the integration degree is high, the design is integrated, and the operation is convenient.
  • the chassis may further include a human-machine interaction device, and the human-machine interaction device includes a touch screen display, a touch screen control unit, and a microprocessor for intelligently processing and testing data, and displaying test status and test results in real time.
  • the present invention employs one or more sampling devices including apertures and apertured mirrors, and one or more measurement devices corresponding to the number of sampling devices, which can simultaneously achieve multiple different observation angles in one measurement. Responsive reflection measurement by flexible selection of the size of the aperture and apertured mirror, It can be applied to various observation angles, and the measuring ring belt can be accurately adjusted, and the applicable range is wide. No other intermediate device is needed, and the ring light signal is not missing, which further improves the measurement accuracy.
  • various filters can be flexibly configured. Color chips, monitoring devices, etc., to achieve a variety of measurement functions, with fast measurement speed, high accuracy, small size, wide range of applications, powerful functions and integrated design. Can be widely used in laboratories, industrial production lines and on-site rapid measurement and other occasions.
  • Figure 1 is a schematic view of Embodiment 1;
  • Figure 2 is a schematic view of Embodiment 2
  • Figure 3 is a schematic view of Embodiment 3
  • Figure 4 is a schematic view showing the color filter provided on the color filter disc of Embodiment 3.
  • Figure 5 is a schematic view of a light source of Embodiment 5.
  • 1-light source 2-sampling device; 21-hole mirror; 22-plate; 3-measuring device; 4-measured sample; 5-integrated sphere; 6-color filter; 7-color filter; - monitoring device; 9-mirror; 10-chassis; 11-monochrome LED; 12-drive.
  • this embodiment discloses a retroreflective measuring device for measuring a single observation angle, comprising a light source 1, a sampling device 2, a measuring device 3 and a sample to be tested 4, and the sampling device 2 is provided by a perforated mirror. 21 and an optical path 22, the center of the apertured mirror 21 and the aperture 22 are located on the optical axis, and the light source 1, the apertured mirror 2, the sample to be tested 4, the aperture 22 and the measuring device 3 are sequentially disposed in the optical path.
  • the 0.2° ⁇ 0.05° measurement angle of the 0.2° ⁇ 0.05° measurement loop is measured, and the light beam emitted by the light source 1 is directly incident on the surface of the sample 4 to be tested via the aperture mirror 21, and the sample 4 is tested.
  • the reflected reflected light is reflected to the apertured mirror 21, wherein the light having a beam angle greater than 0.15° reaches the aperture 22 along the observation optical path, and the light having a beam angle of 0.25° passes through the aperture 22, thereby forming a loop of 0.2° ⁇ 0.05°.
  • the light-receiving signal is received by the measuring device 3 placed behind the aperture 22 to complete the retroreflection measurement at an observation angle of 0.2°.
  • the light path of the embodiment is simple and ingenious, and no support device is needed, and the measurement of the 0.2° ⁇ 0.05° ring-band optical signal can be completely realized, the measurement accuracy is high, and the system structure is simple and compact, the operation is convenient, the test speed is fast, and the system is suitable for industrial use. Production line and on-site rapid measurement.
  • the embodiment includes a light source 1, a sampling device 2, a measuring device 3, a monitoring device 8, a mirror 9, and a chassis 10.
  • the mirror 9 is disposed on the optical path between the light source 1 and the sample 4 to be tested.
  • the light source 1, the sampling device 2, the testing device 3, the monitoring device 8, and the mirror 9 are all disposed in the chassis 10.
  • the illumination light path does not directly reach the surface of the sample 4 to be tested, but passes through two reflections of the two mirrors 91 and 92 to reach the surface of the sample 4 to be tested, thereby realizing miniaturization of the instrument.
  • Requirement in addition, by setting three sets of sampling devices 2 (211 and 221, 212 and 222, 213 and 223), the measurement of the ring-band optical signals at three viewing angles is simultaneously achieved.
  • the corresponding observation angles of the three sets of sampling devices in this embodiment are 0.2°, 0.33°, and 0.5°, respectively, and the corresponding ring-band optical signals are 0.2° ⁇ 0.05°, 0.33° ⁇ 0.05°, and 0.5° ⁇ 0.05°, respectively.
  • the observation optical path it is sequentially set from small to large, and the aperture mirror 21 of the latter sampling device 2 along the observation optical path is disposed on the optical path before the pupil 22 of the previous sampling device 2, that is, the second group of sampling devices.
  • the apertured mirrors 212 are disposed in front of the apertures 221 of the first set of sampling devices, and the apertured mirrors 213 of the third set of sampling devices are disposed in front of the apertures 222 of the second set of sampling devices.
  • the light emitted by the light source 1 passes through the apertured mirror 211, and is reflected twice along the illumination light path through the mirror 91 and the mirror 92, and then irradiated onto the surface of the sample 4 to be tested, and the reflected light of the sample 4 to be tested is illuminated along the illumination.
  • the optical path returns to the apertured mirror 211, and the apertured mirror 211 reflects a beam having a beam angle greater than 0.15°.
  • the partial beam is reflected along the observation beam path to the next apertured mirror 212, and a portion of the light passes through the aperture size of 0.28° in sequence.
  • the aperture mirror 212 and the aperture 221 having an aperture size of 0.25 the aperture 221 cuts the beam having a beam angle greater than 0.25°, and thus the measuring device 31 receives the ring-band optical signal of 0.15° to 0.25°; the other portion has a larger beam angle than
  • the 0.28° beam is reflected by the apertured mirror 222, reflected along the observation path to the apertured mirror 213, and a portion of the light passes through the apertured mirror 213 having an aperture size of 0.45 and a pupil having an aperture size of 0.38.
  • the aperture 222 cuts off the beam with a beam angle greater than 0.38°
  • the measuring device 32 receives the ring-band optical signal of 0.28°-0.38°
  • the other part of the beam with the beam angle greater than 0.45° is reflected by the apertured mirror 213 to the aperture 22
  • the aperture 223 is used to cut off the beam having a beam angle greater than 0.55
  • the measuring device 33 receives the ring-band optical signal of 0.45 to 0.55.
  • the embodiment further includes a monitoring device 8 disposed on the side of the light source 1 for receiving light from the light source 1.
  • the measuring device 3 and the monitoring device 8 in this embodiment are both spectroradiometers, and the measurement information of the two is the same, and the measurement results of the two can be fully utilized to obtain the comprehensive reflectance, spectral reflectance and luminous intensity coefficient of the sample to be tested. Luminosity, chromaticity, and spectral magnitude.
  • the present embodiment includes a color filter 6, which is disposed after the apertured mirror 212 of the second group of sampling devices, and the aperture of the third group of sampling devices.
  • the optical path before the mirror 213 is disposed in the common observation optical path C of the second group of sampling devices and the third group of sampling devices; the measuring device 32 and the measuring device 33 are both detectors, and the color filter 6 is a CIE human eye spectrum.
  • the luminous efficiency function V( ⁇ ) since the color filter 6 is disposed in the common observation optical path C, the measuring device 32 and the measuring device 33 receive the light that has been applied through the color filter 6, that is, the measuring device 32 and The measuring device 33 obtains luminosity values of different observation angles.
  • the embodiment further includes a color filter disc 7 which is disposed on the optical path before the diaphragm 221 of the first group of sampling devices 2 and the measuring device 31, that is, in the independent observation optical path D of the first group of sampling devices 2. .
  • a color filter disc 7 which is disposed on the optical path before the diaphragm 221 of the first group of sampling devices 2 and the measuring device 31, that is, in the independent observation optical path D of the first group of sampling devices 2.
  • four color filters 6 are disposed on the color filter 7, and the measuring device 31 is a black-and-white CCD.
  • the combined spectral response of the three color filters and the black-and-white CCD is CIE tristimulus curve x( ⁇ ), respectively.
  • the color filter disc 7 can realize the measurement of the tristimulus value of the retroreflected light under the driving of the driving device; the combined spectrum of the other color filter and the black and white CCD corresponds to the CIE human eye spectrum.
  • the light efficiency function V( ⁇ ) obtains the light metric of the retroreflected light in bright vision.
  • the embodiment includes an integrating sphere 5, and four monochromatic LEDs 11 are disposed on the wall of the integrating sphere 5, and each of the monochromatic LEDs 11 is connected to the program-controlled driving device 12, and the program-controlled driving device 12 controls each single.
  • the color LEDs 11 are driven by a pulse driving method and combined with the illuminating control.
  • One or more of the monochromatic LEDs are independently or combinedly emitted by the integrating sphere 5, and then irradiated onto the sample 4 to be tested to ensure that the sample 4 to be tested is received.
  • the illumination is uniform and avoids measurement errors introduced by uneven illumination.

Abstract

一种回复反射测量装置,包括一个或者以上具有光阑(22)和带孔反射镜(21)的采样装置(2),以及与采样装置(2)数量相对应的一个或者以上测量装置(3)。该回复反射测量装置一次测量即可同时实现了多个不同观测角下回复反射特性的测量;通过灵活选择光阑和带孔反射镜的尺寸,可适用于各种观测角且测量环带大小的准确可调,无需其他中间装置;实现的环带光信号无缺失,测量准确度高;通过配置各种滤色片、监测装置等,实现多样化的测量功能。该回复反射测量装置可广泛应用于实验室、工业产线以及现场快速测量等各种场合。

Description

一种回复反射测量装置 技术领域
本发明属于光辐射测量领域,具体涉及一种回复反射特性测量装置。
背景技术
回复反射材料主要用于道路交通标识、标线、各种视线诱导设施等交通安全警示标志领域,对保障交通安全运行具有重要作用,回复反射特性是评价该类材料最有效和最直接的手段。回复反射特性的测量要求照明角和观测角满足特定的条件,由于角度非常小,在实际测量中要精确控制角度往往需要很大的测量距离,并且需要在很大的暗室中进行,极大的限制了其在工程实际测量中的应用,这也对仪器测试结果的准确度和可靠度提出了很高的要求。此外,在工业产线及现场快速测量中,除了要求在较小的空间之内尽量实现较大的测量距离之外,一般采用满足照明观测条件的环带光信号来实现回复反射特性的测量条件。
公告号为US 7961328 B2的专利公开了一种多角度回复反射测量装置,它通过环带透光装置与环带镜面相配合,可同时实现两个不同测量环带对应的观察角的测量。该技术方案中,需要多个支撑装置来支撑环带透光装置,多个支撑装置的引入会造成环带光信号的不完整,影响测量准确度;此外支撑装置的固定也存在不稳定的风险,从而降低了装置测试的可靠性和准确性;而且环带透光装置限制了光路中需要采用分束镜或尺寸很小的反射镜,分束镜会产生较大的光能损失,而且折射过程也会引入测量误差,尺寸很小的反射镜其加工和固定都比较困难,也会引入产生较大误差。
发明内容
针对现有技术的不足,本发明旨在提供一种快速、精确、适用范围广的便携式回复反射测量装置,仅需一次测量,即可同时实现多组不同观察角下回复反射特性的快速、准确测量,具有体积小、光路简单、测量准确度高、速度快、操作方便、成本低等特点。
本发明通过以下技术方案实现的:一种回复反射测量装置,其特征在于,包括光源、一组或者以上实现不同观察角范围测量环带的采样装置、以及与采样装置数量相对应的一个或者以上测量装置。所述的采样装置由带孔反射镜和光阑组 成;光源发出的光线以一定照射角入射到被测样品上,被测样品的回复反射光线经由带孔反射镜和光阑组成的采样装置后形成满足观测角条件的环带光信号、被相应的测量装置接收。
回复反射特性的测量包括照明光路和观测光路两个光路,光源发出照射光、并按照一定的照射角入射到被测样品上的光路为照明光路,被测样品发出的回复反射光线被测量装置接收的光路为观测光路。本发明中,光源发出的光线照射到被测样品上,光阑和带孔反射镜组成的采样装置设置在被测样品和测量装置之前的光路上,被测样品的回复反射光线经过采样装置被对应的测量装置接收;每组采样装置由一定尺寸的光阑和带孔反射镜组合而成,每组光阑和带孔反射镜对应一个确定观察角对应的测量环带,因而测量装置接收到的是被测样品回复反射光线的环带光信号,进而完成该观测角下的回复反射测量。以此类推,本发明的采样装置可实现多组不同尺寸的测量环带,被测样品的回复反射光线依次经过不同观察角下的测量环带,一次采样即可完成多个不同观察角的回复反射测量。相比于现有的回复反射装置,本发明提出了一种新颖的回复反射测量方案,它引入由光阑和带孔反射镜组成的采样装置,光路设计简单、巧妙,无需支撑装置,可获得完整的回复反射环带光信号,测量准确度高、稳定性好;光路扩展性强,可根据测试需求,设置满足不同观察角的多个采样装置,一次采样即可完成多个不同观察角下的环带光信号的回复反射特性测量;此外通过巧妙设置光路,使从光源到被测样品的照射光路,从被测样品到采样装置和测量装置的测量光路互不干扰,仅需启动光源即可实现测量目的;此外,采样装置制造工艺简单且易安装,具有成本低、杂散光低、操作方便等特点。
本发明还可通过以下技术方案进一步限定和完善:
本发明中,所述的采样装置中的带孔反射镜用于反射大于测量环带内径的光线,光阑用于截止大于测量环带外径的光线,带孔反射镜和光阑组合构成测量环带,通过一个采样装置即可确定一个观察角范围的测量环带。例如,若要在α观察角下获得(α±Δα)的测量环带,采样装置中的带孔反射镜的孔径尺寸对被测样品中心的张角为(α-Δα),其反射的光束角大于(α-Δα)的光线;而采样装置中光阑的孔径尺寸所对应张角为(α+Δα),仅张角小于(α+Δα)的光束可透过光阑,则经过带孔反射镜和光阑的组合后,测量装置接收的是光束角范围在(α-Δα) ~(α+Δα)内的环带光信号。
作为一种技术方案,所述的带孔反射镜和光阑的中心设置在光轴上,以精准实现不同观测角对应的测量环带。例如,若带孔反射镜和光阑的中心均偏离光轴,带孔反射镜的孔径尺寸对被测样品中心的张角为β,位于光轴两边张角的分别为(β+Δβ)和(β-Δβ),位于光轴上部;光阑孔径中心对被测样品中心的张角的尺寸为γ(γ<β),位于光轴两边张角的分别为(γ+Δγ)和(γ-Δγ),位于光轴下部;则带孔反射镜和光阑结合形成一个不规则的发光区域,无法形成测量环带,从而无法满足测量要求。
作为一种技术方案,包括一个采样装置,所述的采样装置的带孔反射镜和光阑设置在测量装置之前的光路上。经采样装置对光束的限制,得到了满足观察角范围的光束,被后续对应的测量装置接收和测量,完成对一个观察角回复反射的特性测量。
作为一种技术方案,包括两个及两个以上的采样装置,所述的后一采样装置的带孔反射镜沿观测光路设置在前一采样装置的光阑的之前的光路上。其中以实现θ和
Figure PCTCN2015076082-appb-000001
两个观测角的采样装置为例,经被测样品回复反射的光线入射到θ观察角测量环带采样装置中的带孔反射镜上,带孔反射镜将光束角大于(θ-Δθ)的光束反射至
Figure PCTCN2015076082-appb-000002
观察角测量环带采样装置的带孔反射镜处,其中光束角小于
Figure PCTCN2015076082-appb-000003
的光束透过光阑,θ观察角测量环带的采样装置中的光阑截止光束角大于(θ+Δθ)的光束,即θ观察角测量环带内的光束通过并被后续对应的测量装置接收和测量;光束角大于
Figure PCTCN2015076082-appb-000004
的光束被反射至
Figure PCTCN2015076082-appb-000005
观察角测量环带的采样装置中的光阑,
Figure PCTCN2015076082-appb-000006
观察角测量环带的采样装置中的光阑截止光束角大于
Figure PCTCN2015076082-appb-000007
的光束,即
Figure PCTCN2015076082-appb-000008
观察角测量环带内的光束通过并被后续对应的测量装置接收和测量。至此同时实现对多个角度回复反射的测量。
作为一种技术方案,所述的不同测量环带沿观测光路从小到大依次设置。以θ和
Figure PCTCN2015076082-appb-000009
两个不同观察角对应的测量环带为例,获得θ观察角测量环带的采样装置沿观测光路设置在
Figure PCTCN2015076082-appb-000010
观察角测量环带的采样装置之前的光路上。θ即前一采样装置获得θ观察角范围的测量环带,
Figure PCTCN2015076082-appb-000011
即后一采样装置获得
Figure PCTCN2015076082-appb-000012
观察角范围的测量环带,不仅可实现对多个观察角的回复反射测量,还可显著提高光路的利用率和测试效率。
作为优选,上述测量环带对应的观测角为0.2°或0.33°或0.5°,以满足目前国际国内的实际测量需求。需要指出的是,通过灵活选取带孔反射镜和光阑的尺寸,本发明可同时实现多个观测角下的测量环带,满足不同的测试需求,可扩展性和普适性好。
作为一种技术方案,包括一个或者以上的滤色片,所述的滤色片设置观测光路和/或照明光路中,被测样品的回复反射光线经过滤色片后,被测量装置接收,即测量装置接收经相应的滤色片作用后的环带光信号,根据所选择的滤色片的种类不同,以及与相应的测量装置相配合,可实现被测样品不同反射特性的测量。例如,所述的滤色片的透过率模拟CIE视见函数V(λ),与测量装置相配合,即可实现各种光度量的测量。此外,在上述设置滤色片的位置处,还可包括滤色盘,所述的滤色盘上设置一个或者以上的滤色片,通过滤色盘将不同的滤色片切换到光路中,测量装置接收经过相应的滤色片的环带光信号,实现在同一观测角下,不同光学特性的测量,这里的滤色片可设置在观测光路上,也可设置在照明光路中。
本发明的回复反射装置中可包括一个或者多个采样装置。当包括一个采样装置时,滤色片可设置在测量装置前、观测光路的任意位置处,均可作用于该采样装置实现的环带光信号。当包括多个采样装置时,上述的观测光路为一个或者多个测量环带的独立观测光路或者共同观测光路,观测光路包括两个以上测量环带的共同观测光路、以及各个测量环带对应的独立观测光路,所述的共同观测光路为后一采样装置的带孔反射镜前、且包含不同测量环带光信号的传输光路,如图3中的光路A、B和C,其中A和B光路包含三个测量环带光信号,光路C包含后两个测量环带的光信号;所述的前一采样装置的独立观测光路为后一采样装置的带孔反射镜后、且位于通过该带孔反射镜小孔的光线所在的光路。
所述的滤色片设置在共同观测光路或者独立观测光路中。具体到图4的光路D、E和F对应的滤色片还可设置在共同观测光路中。滤色片设置在共同观测光路中,实现回复反射光线在各个不同观测角下相同光学特性的测量,例如,在A或者B光路中,设置模拟CIE视见函数V(λ)的滤色片,则可实现三个测量环带光信号光度量的测量;若上述滤色片设置在光路C中,则可对后两个测量环带光信号光度量的测量。滤色片也可分别设置在独立观测光路中,各个滤色片的滤 光特性可相同或者不同,但前一测量装置对应的滤色片须设置在通过后一测量装置对应的带孔反射镜小孔的光线所在的光路中,被测样品发出的回复反射光线,经后一测量装置的带孔反射镜分为两部分,一部分为通过小孔的光线,另一部分为被带孔反射镜反射的光线。滤色片就设置通过小孔的光线所在的光路中,该部分光路中设置了前一测量装置的光阑、滤色片和测量装置,其中光阑和滤色片的设置顺序可任意设置,两者均仅须设置在测量装置前即可,经过滤色片和光阑的测量环带被测量装置接收,测量装置即接收经滤色片作用后的环带光信号;另一部分被带孔反射镜反射的光线再经过后一光阑、滤色片,形成对应的环带光信号被后一测量装置接收、探测。另外,在上述设置滤色片的对应位置处,还可设置用放置多个滤色片的滤色盘,从而可实现在同一观测角下,不同回复反射特性的测量,例如,测量装置为黑白CCD,可在滤色盘上设置三个滤色片,该三个滤色片与黑白CCD的组合光谱响应为CIE三刺激值曲线x(λ)、y(λ)和z(λ),滤色盘在驱动装置的带动下,即可实现回复反射光线三刺激值的测量;若滤色片为模拟CIE不同视觉(明视觉、暗视觉、中间视觉)下的光谱光视效率函数,则可获得回复反射光线在不同视觉下的光度量值。
作为一种技术方案,所述的光源包括一个或者以上可程控驱动的不同单色LED,所述的一个或者以上单色LED独立或者组合发光,直接或者间接照射到被测样品上。本发明中的光源有多种实现方式,其可为包括多个不同单色LED的LED阵列,在程控系统的控制下,LED阵列上的各个不同单色LED独立或者组合发出的光线,直接照射到被测样品上,以实现不同照射光源下被测样品的回复反射特性的测量;还可包括积分球,一个或者以上单色LED独立或者组合发出的光线经积分球混光后,照射到被测样品上,多个不同单色LED还可与积分球相配合,由于LED发光的光束角较窄,光源出射的光强度的均匀性无法保证,特别是对于多个单色LED混光,直接混光的效果较差,将各个不同单色LED设置在积分球上,其独立或者组合发出的光线经积分球混光后,再照射到被测样品上,这种间接照射的方式可确保被测样品接收到的照射光线均匀,避免由于照射光线的不均匀引入的测量误差。此外,其它回复反射测量装置中采用的其它光源也可用于本发明中。这里的单色LED驱动方式也可灵活选择,优选采用脉冲驱动的方式,通过锁相放大技术,有效去除杂散光,提高测量精度,同时后续信号 处理更为简单,提高测试效率。
此外,在照明光路中还可以设置准直装置、光阑和特征滤色片等装置。例如,包括准直装置,所述的准直装置设置在光源之后的光路上;或者包括光阑,所述的光阑设置在准直装置之后的光路上,配合准直装置用于产生满足要求的照明光束;还包括特征滤色片,所述的特征滤色片设置在光阑之后的光路上,用于修正光源的光谱。
作为一种技术方案,所述的测量装置为光度探测器或光谱辐射计装置,不同的测量装置可满足不同的测试需求,实现对被测样品光度、色度和光谱的快速测量。
作为一种技术方案,包括一个及以上的反射镜,所述的反射镜设置在照明光路和/或观测光路上,在保证测量距离的情况下减小工作距离,减小仪器体积。需要指出的是,光路中可以采用多个反射镜减小工作距离,利于仪器小型化。然而盲目的追求工作距离的缩小而过多的采用反射镜会导致因多次反射使得原始光信号损失,进而影响后续回复反射过程中测量装置的信号测试接收,产生显著的误差,因而应适当选择反射镜的数量,例如可优选在光路中设置两个反射镜。
作为一种技术方案,包括用以监测光源波动的监测装置,所述的监测装置接收来自光源发出的光线。监测装置的位置可灵活设置,如可设置在光源的侧面或者设置在照明光路的旁侧光路上。本发明中,监测装置可灵活选择,满足不同的测试需求,监测装置可为光谱辐射计或者光电探测器或者亮度测量装置,监测装置优选为光谱辐射计,测量装置和监测装置的测量信息一致,可充分利用两者的测量结果得到被测样品的反射率、光谱反射率以及发光强度系数等全面的光度、色度和光谱量值。
作为优选,包括机箱,上文的光源、采样装置、滤色片、滤色盘、测量装置、监测装置均设置在机箱内,集成化程度高、设计一体化、操作方便。此外,机箱还可包括人机交互装置,所述的人机交互装置包括触屏显示器、触屏控制单元以及微处理器,用以智能处理和测试数据,实时显示测试状态和测试结果。
综上所述,本发明采用一个或者以上包括光阑和带孔反射镜的采样装置,以及与采样装置数量相对应的一个或者以上测量装置,一次测量即可同时实现了多个不同观测角下回复反射特性的测量,通过灵活选择光阑和带孔反射镜的尺寸, 可适用于各种观测角,且测量环带大小的准确可调,适用范围广;无需其他中间装置,实现的环带光信号无缺失,进一步提高测量准确度;同时还可灵活配置各种滤色片、监测装置等,实现多样化的测量功能,具有测量速度快、准确度高、体积小、适用范围广、功能强大和设计一体化等特点。可广泛运用于实验室、工业产线以及现场快速测量等各种场合。
附图说明
附图1是实施例1的示意图;
附图2是实施例2的示意图;
附图3是实施例3的示意图;
附图4是实施例3滤色盘上设置滤色片的示意图;
附图5是实施例5的光源示意图。
1-光源;2-采样装置;21-带孔反射镜;22-光阑;3-测量装置;4-被测样品;5-积分球;6-滤色片;7-滤色盘;8-监测装置;9-反射镜;10-机箱;11-单色LED;12-驱动装置。
具体实施方式
实施例1
如图1所示,本实施例中公开了一种测量单个观察角的回复反射测量装置,包括光源1、采样装置2、测量装置3和被测样品4,采样装置2由一个带孔反射镜21和一个光路22组成,带孔反射镜21和光阑22的中心均位于光轴上,光源1、带孔反射镜2、被测样品4、光阑22和测量装置3依次设置在光路中。
本实施例实现0.2°观测角对应的0.2°±0.05°测量环带的回复反射特性测量,光源1发出的光束经带孔反射镜21直接入射到被测样品4的表面,经由被测样品4回复反射的光线反射到带孔反射镜21,其中光束角大于0.15°的光线沿观测光路到达光阑22,光束角在0.25°内的光线通过光阑22,从而形成0.2°±0.05°的环带光信号,被放置于光阑22后的测量装置3接收,完成0.2°观察角下的回复反射测量。
本实施例光路简单、巧妙,无需设置支撑装置,可完整实现0.2°±0.05°环带光信号的测量,测量准确度高,且系统结构简单、紧凑,操作方便,测试速度快,适用于工业产线及现场快速测量。
实施例2
如图2所示,本实施例包括光源1、采样装置2、测量装置3、监测装置8、反射镜9、机箱10,反射镜9设置在光源1与被测样品4之间的光路上,光源1、采样装置2、测试装置3、监测装置8、反射镜9均设置在机箱10内。与实施例1不同的是,本实施例中照明光路并非直接到达被测样品4表面,而是经过两个反射镜91、92的两次反射到达被测样品4表面,实现了仪器小型化的要求;此外通过设置三组采样装置2(211和221、212和222、213和223),同时实现对三个观察角下的环带光信号测量。
本实施例中的三组采样装置分别对应的观测角依次为0.2°、0.33°、0.5°,对应的环带光信号分别为0.2°±0.05°、0.33°±0.05°、0.5°±0.05°;其在观测光路中,依次从小到大设置,沿观测光路的后一采样装置2的带孔反射镜21设置在前一采样装置2的光阑22之前的光路上,即第二组采样装置的带孔反射镜212设置在第一组采样装置的光阑221之前,第三组采样装置的带孔反射镜213设置在第二组采样装置的光阑222之前。
测量时,光源1发出的光线穿过带孔反射镜211,沿照明光路经反射镜91、反射镜92两次反射后照射到被测样品4的表面,被测样品4的回复反射光线沿照明光路返回至带孔反射镜211,带孔反射镜211反射光束角大于0.15°的光束,该部分光束沿观测光路反射至下一带孔反射镜212处,一部分光线依次穿过孔径尺寸为0.28°的带孔反射镜212、以及孔径尺寸为0.25°的光阑221,光阑221截止光束角大于0.25°的光束,因而测量装置31接收0.15°~0.25°的环带光信号;另一部分光束角大于0.28°的光束被带孔反射镜222反射,沿观测光路反射至带孔反射镜213处,一部分光线依次穿过孔径尺寸为0.45°的带孔反射镜213、以及孔径尺寸为0.38°的光阑222,光阑222截止光束角大于0.38°的光束,测量装置32接收0.28°~0.38°的环带光信号;另一部分光束角大于0.45°的光束被带孔反射镜213反射至光阑223处,光阑223用于截止光束角大于0.55°的光束,测量装置33接收0.45°~0.55°的环带光信号。通过一次测量,即可得到同时满足三 个观察角的环带光信号测量,可大幅度降低测试耗时,提高测试效率,具有测量速度快、准确度高且操作方便等特点。
本实施例还包括设置在光源1侧面的监测装置8,用以接收来自光源1发出的光线。本实施例中的测量装置3和监测装置8均为光谱辐射计,两者测量信息一致,可充分利用两者的测量结果得到被测样品的反射率、光谱反射率以及发光强度系数等全面的光度、色度和光谱量值。
实施例3
如图3所示,与实施例2不同的是,本实施例包括滤色片6,滤色片6设置在第二组采样装置的带孔反射镜212之后、第三组采样装置的带孔反射镜213之前的光路上,即设置在第二组采样装置和第三组采样装置的共同观测光路C中;测量装置32和测量装置33均为探测器,滤色片6为CIE人眼光谱光视效率函数V(λ),由于该滤色片6设置在共同观测光路C中,测量装置32和测量装置33接收的均是经该滤色片6作用后的光线,即测量装置32和测量装置33获得不同观测角的光度值。
本实施例还包括滤色盘7,滤色盘7设置在第一组采样装置2的光阑221和测量装置31之前的光路上,即设置在第一组采样装置2的独立观测光路D中。如图4所示,滤色片7上设置4个滤色片6,测量装置31为黑白CCD,其中三个滤色片与黑白CCD的组合光谱响应分别为CIE三刺激曲线x(λ)、y(λ)和z(λ),滤色盘7在驱动装置的带动下,即可实现回复反射光线三刺激值的测量;另外一个滤色片与黑白CCD的组合光谱相应为CIE人眼光谱光视效率函数V(λ),可获得回复反射光线在明视觉下的光度量值。
实施例4
与上述实施例均不同,本实施例包括积分球5,在积分球5球壁上设置4个单色LED11,通过各个单色LED11均与连接程控驱动装置12,程控驱动装置12控制每个单色LED11均通过脉冲驱动的方式驱动、以及组合发光控制,一个或者以上单色LED独立或者组合发出的光线经积分球5混光后,照射到被测样品4上,确保被测样品4接收到的照射光线均匀,避免由于照射光线的不均匀引入的测量误差。

Claims (15)

  1. 一种回复反射测量装置,其特征在于,包括光源(1)、一组或者以上实现不同测量环带的采样装置(2)、以及与采样装置(2)数量相对应的一个或者以上测量装置(3),所述的采样装置(2)由带孔反射镜(21)和光阑(22)组成;光源(1)发出的光线以一定照射角入射到被测样品(4)上,被测样品(4)的回复反射光线经带孔反射镜(21)和光阑(22)后形成满足观测角条件的环带光信号、被相应的测量装置(3)接收。
  2. 如权利要求1所述的回复反射测量装置,其特征在于,所述的带孔反射镜(21)反射大于测量环带内径的光线,所述的光阑(22)截止大于测量环带外径的光线,所述的带孔反射镜(21)和光阑(22)组合构成测量环带。
  3. 如权利要求1所述的回复反射测量装置,其特征在于,所述的带孔反射镜(21)和光阑(22)的中心位于光轴上。
  4. 如权利要求1所述的回复反射测量装置,其特征在于,包括两个以上采样装置(2),沿观测光路的后一采样装置(2)的带孔反射镜(21)设置在前一采样装置(2)的光阑(22)之前的光路上。
  5. 如权利要求1所述的回复反射测量装置,其特征在于,在观测光路中,所述的不同测量环带从小到大依次设置。
  6. 如权利要求5所述的回复反射测量装置,其特征在于,所述的测量环带对应的观测角为0.2°或0.33°或0.5°。
  7. 如权利要求1所述的回复反射测量装置,其特征在于,所述的光源(1)包括一个或者以上可程控驱动的不同单色LED(11),所述的一个或者以上单色LED(11)独立或者组合发光,直接或者间接照射到被测样品(4)上。
  8. 如权利要求7所述的回复反射测量装置,其特征在于,所述的单色LED(11)采用脉冲方式驱动。
  9. 如权利要求7所述的回复反射测量装置,其特征在于,包括积分球(5),一个或者以上单色LED(11)独立或者组合发出的光线经积分球(5)混光后,照射到被测样品(4)上。
  10. 如权利要求1所述的回复反射测量装置,其特征在于,包括一个或者以上的滤色片(6),所述的滤色片(6)设置在观测光路和/或照明光路中,测量装置(3)接收经相应的滤色片(6)作用后的环带光信号。
  11. 如权利要求10所述的回复反射测量装置,其特征在于,包括滤色盘(7),所述的滤色盘(7)上设置一个或者以上的滤色片(6),通过滤色盘(7)将不同的滤色片(6)切换到光路中,测量装置(3)接收经过相应的滤色片(6)的环带光信号。
  12. 如权利要求10所述的回复反射测量装置,其特征在于,所述的观测光路包括两个以上测量环带的共同观测光路、以及各个测量环带对应的独立观测光路,所述的滤色片(6)设置在共同观测光路或者独立观测光路中。
  13. 如权利要求1所述的回复反射测量装置,其特征在于,包括用以监测光源(1)波动的监测装置(8),所述的监测装置(8)接收来自光源(1)发出的光线。
  14. 如权利要求1所述的回复反射测量装置,其特征在于,包括一个及以上的反射镜(9),所述的反射镜(9)设置在照明光路和/或观测光路上。
  15. 如权利要求1所述的回复反射测量装置,其特征在于,所述的测量装置(3)为光度探测器或光谱辐射计。
PCT/CN2015/076082 2014-11-24 2015-04-08 一种回复反射测量装置 WO2016082416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/529,464 US10393655B2 (en) 2014-11-24 2015-04-08 Apparatus for retro-reflection measurement using a holed mirror and circular aperture for annular band detection

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410679212.7A CN104359866B (zh) 2014-11-24 2014-11-24 一种回复反射测量装置
CN201420711898.9 2014-11-24
CN201410679212.7 2014-11-24
CN201420711898.9U CN204214774U (zh) 2014-11-24 2014-11-24 一种回复反射测量装置

Publications (1)

Publication Number Publication Date
WO2016082416A1 true WO2016082416A1 (zh) 2016-06-02

Family

ID=56073464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076082 WO2016082416A1 (zh) 2014-11-24 2015-04-08 一种回复反射测量装置

Country Status (2)

Country Link
US (1) US10393655B2 (zh)
WO (1) WO2016082416A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106842540B (zh) * 2017-03-24 2018-12-25 南京理工大学 基于光强传输方程的环形光照明高分辨率定量相位显微成像方法
CN110646380B (zh) * 2019-10-17 2022-02-11 安徽岩芯光电技术有限公司 道路标线逆反射光检测系统和道路标线逆反光检测仪

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2505833Y (zh) * 2001-11-05 2002-08-14 浙江大学 荧光粉绝对亮度测量仪
CN1493910A (zh) * 2003-08-22 2004-05-05 �й���ѧԺ�Ϻ���ѧ���ܻ�е�о��� 同步摄像照明系统
WO2006091968A2 (en) * 2005-02-25 2006-08-31 Belfort Instrument Company Multiple-angle retroreflectometer
US20120287432A1 (en) * 2011-05-12 2012-11-15 Eckhardt Stephen K Apparatus for measuring the retroreflectance of materials
CN203561375U (zh) * 2013-10-30 2014-04-23 苏州晋翌生物医学仪器有限公司 反射式光电传感装置
CN104359866A (zh) * 2014-11-24 2015-02-18 杭州远方光电信息股份有限公司 一种回复反射测量装置
CN204214774U (zh) * 2014-11-24 2015-03-18 杭州远方光电信息股份有限公司 一种回复反射测量装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771880A (en) * 1971-09-29 1973-11-13 Us Navy Roughness analyzer
JPS593791B2 (ja) * 1975-04-07 1984-01-26 キヤノン株式会社 物体の像認識方法
US4368982A (en) * 1980-06-09 1983-01-18 Avery International Corporation Retroreflectometer
JPH0627706B2 (ja) * 1985-04-25 1994-04-13 オリンパス光学工業株式会社 反射率測定装置
US6438396B1 (en) * 1998-11-05 2002-08-20 Cytometrics, Inc. Method and apparatus for providing high contrast imaging

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2505833Y (zh) * 2001-11-05 2002-08-14 浙江大学 荧光粉绝对亮度测量仪
CN1493910A (zh) * 2003-08-22 2004-05-05 �й���ѧԺ�Ϻ���ѧ���ܻ�е�о��� 同步摄像照明系统
WO2006091968A2 (en) * 2005-02-25 2006-08-31 Belfort Instrument Company Multiple-angle retroreflectometer
US20120287432A1 (en) * 2011-05-12 2012-11-15 Eckhardt Stephen K Apparatus for measuring the retroreflectance of materials
CN203561375U (zh) * 2013-10-30 2014-04-23 苏州晋翌生物医学仪器有限公司 反射式光电传感装置
CN104359866A (zh) * 2014-11-24 2015-02-18 杭州远方光电信息股份有限公司 一种回复反射测量装置
CN204214774U (zh) * 2014-11-24 2015-03-18 杭州远方光电信息股份有限公司 一种回复反射测量装置

Also Published As

Publication number Publication date
US10393655B2 (en) 2019-08-27
US20170261429A1 (en) 2017-09-14

Similar Documents

Publication Publication Date Title
CN108007677B (zh) 一种激光投影散斑测量系统
TWI439683B (zh) 光譜儀的可拆卸週邊裝置
WO2015010434A1 (zh) 一种材料反射特性测量装置及方法
CN104000600B (zh) 经皮生物光学检测装置及经皮黄疸检测仪
CN105938016A (zh) 一种颜色测量装置
WO2016082416A1 (zh) 一种回复反射测量装置
CN204855669U (zh) 一种机载显示器光电参数自动测量装置
CN203259248U (zh) 一种便携式彩色亮度计
CN105136685A (zh) 一种光学特性测量装置
CN104359866B (zh) 一种回复反射测量装置
CN202885968U (zh) 一种空间光辐射测量装置
CN205317347U (zh) 一种蓝光危害测量装置
CN209085766U (zh) 一种光谱辐亮度测量装置
CN107153000B (zh) 一种便携式滤镜光学性能检测装置及其检测方法
CN201352150Y (zh) 一种测光装置
CN204214774U (zh) 一种回复反射测量装置
US3432243A (en) Ratio spectroradiometer
TWI344541B (zh)
CN103792072B (zh) 一种自动变光焊接护目镜光漫射值测试系统及方法
CN115773817A (zh) 一种液体颜色空间rgb值检测装置及其检测方法与应用
TWM504953U (zh) 可攜式多波段光度計
CN205091245U (zh) 一种测光积分球
TWI783375B (zh) 成分分析儀及成分分析系統
CN205748642U (zh) 一种颜色测量装置
CN202676283U (zh) 一种分布光度计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15529464

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15863294

Country of ref document: EP

Kind code of ref document: A1