WO2015010434A1 - 一种材料反射特性测量装置及方法 - Google Patents

一种材料反射特性测量装置及方法 Download PDF

Info

Publication number
WO2015010434A1
WO2015010434A1 PCT/CN2013/090295 CN2013090295W WO2015010434A1 WO 2015010434 A1 WO2015010434 A1 WO 2015010434A1 CN 2013090295 W CN2013090295 W CN 2013090295W WO 2015010434 A1 WO2015010434 A1 WO 2015010434A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow
sample
excitation source
tested
light
Prior art date
Application number
PCT/CN2013/090295
Other languages
English (en)
French (fr)
Inventor
潘建根
Original Assignee
杭州远方光电信息股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州远方光电信息股份有限公司 filed Critical 杭州远方光电信息股份有限公司
Publication of WO2015010434A1 publication Critical patent/WO2015010434A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials

Definitions

  • the invention belongs to the field of optical radiation measurement, and in particular relates to an optical reflection characteristic measuring device and method.
  • the traditional retroreflective measurement optical path is shown in Figure 1.
  • the standard A light source illuminates the sample to be measured at a certain illumination angle.
  • the photodetector receives the reflected light from the sample to be measured at a certain observation angle to realize the retroreflective material or
  • the measurement of the photometric characteristics of the retroreflector The optical path of the illumination light path and the reflected light path of the method is long, the optical signal of the reflected light reaching the detector is weak, and it is difficult to measure the spectral characteristics of the material; and the above-mentioned retroreflection measurement needs to be performed in a very large darkroom space. It is only suitable for laboratory photometric requirements and cannot meet industrial production line and on-site rapid test requirements. Summary of the invention
  • the present invention aims to provide a compact rapid material reflection measuring device capable of realizing not only the spectral characteristics of a reflective material or a retroreflector under the condition that the incident light and the reflected light are in opposite directions.
  • the measurement has the characteristics of small volume, simple optical path, high measurement accuracy, fast measurement speed, convenient operation and low cost.
  • a material reflection characteristic measuring device comprising: a hollow excitation source, a monitoring device and a measuring device, wherein the measuring device and the sample to be tested are respectively located on two sides of the hollow excitation source, and the measuring device is a spectroradiometer;
  • the monitoring device receives the light from the hollow excitation source, and the light emitted by the hollow excitation source is irradiated onto the sample to be tested, and the reflected light reflected by the sample to be tested passes through the hollow portion of the hollow excitation source and is received by the measuring device, that is, the measuring device receives the received The retroreflected light of the sample and passing through the hollow portion of the hollow excitation source is measured.
  • the sample to be tested is placed on the pedestal or placed at a distance from the hollow excitation source.
  • the hollow excitation source is located between the measuring device and the sample to be tested.
  • the distance from the sample to the hollow excitation source is much greater than the hollow excitation.
  • the size or diameter of the light exit surface of the source to achieve optical conditions in which the incident light and the reflected light are close to opposite directions.
  • the position of the monitoring device can be flexibly set, for example, it can be disposed on the side of the hollow excitation source or on the side optical path of the incident light path of the sample to be tested.
  • the monitoring device is generally a spectroradiometer. If the spatial excitation power distribution of the hollow excitation source is stable, the monitoring device may also be a light ray. Shoot the detector.
  • the light emitted by the hollow excitation source is incident on the sample to be tested at a certain illumination angle, and the reflected light or the retroreflected light emitted by the sample to be tested is received by the measuring device at a certain observation angle.
  • the illumination angle close to 0 degree the light emitted by the hollow excitation source is incident on the sample to be measured at an angle close to the normal incidence, and the reflected light or the retroreflected light emitted by the sample to be tested is almost along the normal direction of the sample to be tested.
  • the spectral, luminosity and chromaticity characteristics of the sample to be tested can be calculated based on the spectrum of the reflected light of the sample to be measured measured by the measuring device and the spectrum of the hollow excitation source measured by the monitoring device.
  • the sample to be tested here may be a return reflector, a retroreflective material or a general reflective material.
  • the present invention can also be applied to the measurement of its spectral reflectance and color characteristics.
  • the above technical solution can obtain the spectral, luminosity and chromaticity characteristics of the sample to be tested by the following material reflection measurement method, which is characterized by comprising the following measurement steps:
  • step (c) Calculate the spectral reflectance and spectral radiance intensity coefficients of the sample to be tested based on the measurement results of step (a) and step (b).
  • the above measurement methods include an absolute measurement using a standard spectral irradiance source and a relative measurement using a standard sample.
  • the specific measurement steps are as follows:
  • the spectral irradiance on the illuminated surface of the measured sample can be obtained according to the reading of the monitoring device.
  • a standard spectral irradiance meter can be placed at the sample to be tested, and the monitoring device and the standard spectral irradiance meter receive the light of the hollow excitation source, and the ratio of the measured values can be used to calibrate the measurement reading of the monitoring device.
  • a known spectral radiant intensity ⁇ proportional to the reading of the measuring device can be utilized.
  • Standard source of ( ⁇ ) calibrate the reading of the measuring device P s '(; ⁇ ).
  • the reading to obtain the spectral radiance value of the reflected light is obtained.
  • the absolute luminosity, chromaticity and spectral value of the sample to be tested can be directly obtained, and the absolute spectral radiance intensity coefficient, luminous intensity coefficient and spectral reflectance of the sample to be tested can be calculated.
  • Parameters such as: Replace the standard spectral irradiance meter with the sample to be tested. Under the illumination of the hollow excitation source, the readings of the monitoring device and the measuring device are R' T ( ) and ⁇ ⁇ ⁇ :), respectively.
  • the spectral irradiance ⁇ ⁇ ( ⁇ ) of the face and its spectral radiance ⁇ . ⁇ ( ⁇ ) can be obtained according to the formulas (1) and (2):
  • is the wavelength, unit: nm.
  • the spectral radiance intensity coefficient (spectral radiance/spectral irradiance) ⁇ ( ⁇ ) of the sample to be tested is calculated based on the above measurement results:
  • the luminous intensity coefficient (luminous intensity/illuminance) of the sample to be measured CIL can be calculated according to the following formula: ⁇ ⁇ ⁇ , 4
  • ⁇ ( ⁇ ) is the CIE standard spectral light effect function. According to the spectral radiance intensity coefficient ⁇ ( ⁇ ) of the sample to be tested, the relative spectral power distribution ⁇ ( ⁇ ) of the reflected/reverted reflected light of the sample to be measured under any light source with a relative spectral power distribution S rel ( ⁇ ) for:
  • known spectral reflection characteristics such as known spectral radiation intensity coefficients or spectral inverses
  • the standard sample of the luminosity is measured by the comparison (relative) measurement of the sample to be measured with the standard sample (such as the spectral radiance intensity coefficient or the spectral reflectance).
  • the readings of the monitoring device and the measuring device are 1 ⁇ ( ⁇ ) and ( ) respectively ; replace the standard sample with the sample to be tested.
  • the readings of the monitoring device and the measuring device are 1 ⁇ ) And ( ⁇ ) ; when the spectral radiance intensity coefficient & ( ⁇ ) of the standard sample is known, the spectral radiance intensity coefficient ⁇ ( ⁇ ) of the sample to be tested is:
  • the illuminance intensity coefficient CIL of the sample to be tested can be according to any light source with a relative spectral power distribution s rel ). ) is very convenient to calculate: ⁇ o J
  • the color parameters of the sample to be tested under any light source with known spectral power distribution can be obtained according to formula (5); and CIE can be utilized.
  • Formula, the luminosity and chromaticity characteristics of the sample to be tested can be calculated.
  • the present invention can not only achieve rapid measurement of relative luminosity, chromaticity and spectrum of samples of the same batch or the like, but also achieve absolute luminosity, chromaticity and spectral measurement of reflected light or retroreflected light of the sample to be tested, and Through calculation, the spectral reflectance, spectral radiance intensity coefficient, luminous intensity coefficient and retroreflective reflection spectrum of the sample to be tested are comprehensive, reflecting measurement parameters, such as fast measurement speed, complete testing function, high accuracy and wide application range. .
  • the present invention utilizes a hollow excitation light source to skillfully set the position of the measuring device and the sample to be measured, so that the illumination path from the hollow excitation source to the sample to be tested, and the measurement from the sample to the measurement device are measured.
  • the light path and the light between the hollow excitation light source and the monitoring light path of the monitoring device do not interfere with each other, and only need to open the hollow excitation source to achieve the measurement purpose, and has the characteristics of low cost, low stray light and convenient operation.
  • the present invention selects a spectroradiometer as a measuring device, which can not only accurately measure the luminosity, chromaticity (such as color coordinates, etc.) and spectral characteristics of the reflected light of the sample to be tested, but also according to its retroreflective spectrum. Calculate spectral reflectance, spectral radiance intensity, and luminescence intensity Parameters such as coefficients, to achieve a comprehensive measurement of the optical reflection characteristics of the sample under test.
  • a light blocking device is disposed between the hollow excitation source and the measuring device to prevent light emitted from the hollow excitation source from directly entering the measuring device; the light blocking device and the hollow excitation source are integrated structures, or The optical device and the hollow excitation source are separate, separate structures.
  • the light blocking device cuts off the optical path between the hollow excitation source and other light from the measuring optical path and the measuring device, and allows the reflected light to pass through the hole to reach the measuring device, while the light emitted from the hollow excitation source is irradiated. On the sample to be tested, if there is no light blocking device, it will directly enter the measuring device, which will affect the measurement result and increase the measurement error.
  • the light blocking device prevents the part of the light from directly entering the measuring device, avoiding causing Measurement error.
  • the light blocking device is generally an annular mechanical device with a middle through hole, and the light blocking device can be integrated with a hollow excitation source, such as a directional LED lamp, and the light blocking device is an optical reflecting device in the luminaire, so that the light beam emitted by the LED light source is concentrated.
  • Irradiation on the sample to be tested; or the light blocking device and the hollow excitation source are two separate structures separated from each other, such as a light blocking device as a hollow mirror and a hollow excitation source as a spiral flash lamp, the two are combined with each other, and the hollow mirror will The light emitted by the hollow excitation source is opposite to the direction of the sample to be tested, so that it is not directly incident on the measuring device.
  • the monitoring device is a spectroradiometer or a photodetector or a brightness measuring device.
  • the monitoring device can be flexibly selected to meet different testing requirements.
  • the monitoring device is preferably a spectroradiometer, and the measurement information of the measuring device and the monitoring device are consistent, and the measurement results of the two can be fully utilized to obtain comprehensive luminosity, chromaticity and spectrum such as reflectance, spectral reflectance and luminous intensity coefficient of the sample to be tested. Measured value.
  • the hollow excitation source is a hollow light source, or the hollow excitation source is a hollow illumination cavity with a built-in light source.
  • the hollow excitation source is the illumination source of the sample to be tested, and may be an independent hollow light source or a hollow illumination cavity with a built-in light source. It should be noted that the illumination optical axis of the hollow excitation source is obliquely intersected with the reference axis of the sample to be tested, and the inclination angle satisfies the relevant requirements of practical applications, such as less than 5° or even less than 1°.
  • the hollow illumination cavity is provided with an illumination window facing the sample to be tested, and the light emitted from the illumination window is incident on the sample to be tested, and the retroreflected light emitted by the sample to be tested is worn from the hollow portion of the hollow illumination cavity. Passed and received by the measuring device.
  • the hollow excitation source is a hollow illumination cavity (such as a hollow cylinder or the like) including an illumination window and a built-in light source, and the illumination window is located on the hollow mouth surface of the hollow illumination cavity, and the front surface faces the sample to be tested.
  • the built-in light source of the hollow illumination cavity emits light, exits from the illumination window, and illuminates the sample to be tested.
  • the retroreflected light of the sample to be tested passes through the hollow portion of the hollow illumination cavity and is received by the measuring device for measurement purposes.
  • the light blocking device is a hollow mirror
  • the hollow mirror may also be disposed inside the hollow illumination cavity, opposite to the illumination window, and the hollow reflection
  • the mirror and illumination windows are located on either side of the built-in light source.
  • the part of the light emitted by the built-in light source is directed toward the sample to be tested, and the other part of the light is opposite to the direction of the sample to be tested.
  • the hollow mirror reflects the light from the built-in light source opposite to the direction of the sample to be tested. On the sample to be tested.
  • the hollow monitoring body is arranged, and the light emitted from the hollow excitation source is irradiated onto the hollow monitoring body and received by the monitoring device, and the light emitted from the hollow excitation source passes through the hollow monitoring body to illuminate the sample to be tested.
  • the position of the monitoring device can be flexibly set, and can be located at any position as long as the measurement of the light emitted from the hollow excitation light source can be achieved, such as being located near the hollow excitation source or at any position between the hollow excitation source and the sample to be tested. If it is located near the sample to be tested, it can receive light from the hollow excitation source.
  • the light emitted by the hollow excitation source is divided into two parts, a part of the light is used to illuminate the sample to be tested, and the reflected light emitted by the sample to be tested is received by the measuring device through the hollow portion of the hollow monitoring body and the hollow portion of the hollow excitation source.
  • the diffusing layer After the light is irradiated onto the diffusing layer, it is received by the monitoring device after being emitted through the diffusing layer.
  • the diffusing layer here can have both diffuse and diffuse reflection characteristics, and the light is irradiated thereto. After being applied, it is diffusely reflected and then transmitted outwards, and is received by the monitoring device.
  • the hollow illumination cavity is a hollow cavity including a diffusing layer
  • the monitoring device faces the hollow illumination cavity, and a part of the light emitted by the hollow illumination cavity is irradiated onto the diffusion layer. And received by the monitoring device, another part of the light is incident on the sample to be tested from the illumination window.
  • the monitoring device is located near the hollow illumination cavity, and the light emitted by the built-in light source of the hollow illumination cavity is also divided into two parts, one part is emitted from the illumination window, and is irradiated onto the sample to be tested, and the other part is also diffused layer. Exit, received by the monitoring device.
  • the above two technical solutions can achieve the monitoring purpose, and the monitoring effect is similar.
  • the technical effects of the above two technical solutions are different from the light source or the narrow beam light source, such as LED, which is not uniform for the spatial light color distribution.
  • the monitoring device is located near the hollow excitation source. On the side, it measures the light emitted from the side of the built-in light source, and the light that is irradiated onto the sample to be tested is the light from the front of the built-in light source.
  • the light information of the two is different, resulting in a certain measurement error;
  • the technical solution near the sample to be tested because the monitoring device and the light irradiated onto the sample to be tested are the light from the measurement window, that is, the light emitted from the front surface of the built-in light source, the light information is the same, and the measurement result has high accuracy. Therefore, in actual use, different technical solutions can be selected according to the type of hollow excitation source.
  • the diffusing layer may be a hollow cavity.
  • a diffuse reflection material such as polytetrafluoroethylene may be used, and the inside thereof may be coated with a diffuse reflection material (such as barium sulfate), and the light is emitted after the diffuse reflection layer is sufficiently diffused and reflected.
  • a monitoring window can be arranged on the diffusing layer to facilitate light emission; the light emitted from the monitoring window is directly received by the monitoring device, or after reflection, convergence, etc., such as frosted glass, lens, etc., and then monitored by the monitoring device. receive.
  • the relative distance between the hollow excitation source and the sample to be tested is adjustable.
  • the relative position between the hollow excitation source and the sample to be tested can be flexibly set, such as the distance between the two ;
  • the size of the illumination angle can be changed to meet the testing requirements of different samples, and the application range is wide.
  • the convergence device is arranged, and the convergence device is disposed on the reflected light path between the sample to be tested and the measuring device, and the reflected or retroreflected light of the sample to be tested is concentrated by the convergence device and incident into the measuring device.
  • the convergence device can reduce the optical path, condense light, and the like.
  • the hollow color filter is disposed on the optical path of the hollow excitation source to the sample to be tested, and the light emitted by the hollow excitation source is irradiated onto the sample to be tested through the hollow color filter, and is emitted from the sample to be tested.
  • the reflected light passes through the hollow portion of the hollow color filter and is received by the measuring device.
  • different short-pass, band-pass, and long-pass filters can be set as needed to filter out unnecessary light.
  • one or more apertures for limiting stray light are disposed between the hollow excitation source and the monitoring device, between the hollow excitation source and the measuring device, between the hollow excitation source and the sample to be tested, Prevent external light from interfering with the monitoring optical path, measuring optical path and illuminating optical path, reducing stray light and improving measurement accuracy.
  • the light bulb is disposed in the light-shielding cylinder, and the light-shielding cylinder encloses the device in a small space, so that the entire measurement process does not need to be equipped with an optical darkroom, thereby greatly reducing the labor cost of the laboratory. Small size and easy to operate.
  • the hollow excitation source is a closed hollow lamp or a non-closed hollow lamp.
  • the hollow excitation source here may be a ring flash or a spiral flash, and the built-in light source may also be a ring flash or a spiral flash.
  • the flash has a fast light-emitting speed, high intensity, and low environmental dependence. It can be accurately measured without the need to be placed in an optical darkroom to meet fast and accurate test requirements.
  • the hollow excitation source may be an illumination source of any annular structure, such as a fluorescent lamp of a ring-shaped lamp, or a ring-shaped LED strip or the like, or an annular illumination source whose illumination surfaces are spaced apart in a certain manner.
  • a ring light consisting of an arched mechanical fixing member and an arched tube.
  • the structure of the ring lamp can be designed according to the installation position of the sample to be tested, so that the sample to be tested is fully illuminated, the design of the light-emitting surface is reduced, and the illumination cost is reduced; in addition, the irradiation requirements of different samples to be tested can be met.
  • the hollow excitation source may also be a non-closed hollow lamp, such as a "hollow flash lamp, which only satisfies the illumination and the reflected/retroreflected light can pass through the hollow portion.
  • the annular light source may be a circular ring shape, or may be other polygonal rings, or may be partially annular.
  • the present invention intelligently designs the positional relationship of the hollow excitation source, the measuring device and the monitoring device, and uses the spectral radiometer as the measuring device.
  • the invention does not require an optical darkroom, and greatly shortens the measuring optical path, and can be used not only for comprehensive measurement of spectral, luminosity and chromaticity characteristics of the reflective material and the retroreflector, but also for achieving absolute and relative Comparing the two measurement methods, it has the characteristics of small volume, high measurement accuracy, complete test function, fast measurement speed, low cost, convenient operation and integrated design.
  • FIG. 1 is a schematic view of a conventional retroreflective measurement optical path
  • Figure 2 is a schematic view of Embodiment 1.
  • 1-hollow excitation source 2-monitoring device; 3-measuring device; 4-test sample; 5-base; 6-convergence device; 7-light blocking device;
  • the present embodiment discloses a material reflection characteristic measuring apparatus comprising a hollow excitation source 1, a monitoring device 2, a measuring device 3, a susceptor 5, a convergence device 6, a light blocking device 7, and an aperture 8.
  • the hollow excitation source 1 is a spiral flash lamp, and the spiral flash lamp is disposed between the base 5 and the measuring device 3, that is, the base 5 and the measuring device 3 are respectively located on both sides of the hollow excitation source 1, the monitoring device 2 and
  • the measuring device 3 is a spectrometer;
  • the light blocking device 7 here is a light blocking plate, the light blocking device 7 is disposed between the hollow excitation source 1 and the measuring device 3;
  • the converging device 6 is a lens.
  • the measuring device 3, the converging device 6, the hollow excitation source 1 and the susceptor 5 are sequentially disposed, and the ratio of the distance between the sample 4 to the hollow excitation source 1 and the illuminating diameter of the hollow excitation source 1 is greater than 50, and the monitoring device 2 faces the hollow excitation Source 1. Furthermore, the present embodiment includes a plurality of apertures 8, between the hollow excitation source 1 and the monitoring device 2, between the hollow excitation source 1 and the measuring device 3, and between the hollow excitation source 1 and the susceptor 5 ⁇ 8, used to eliminate stray light.
  • the sample 4 to be tested When measuring, the sample 4 to be tested is placed on the base 5, and the light emitted by the spiral flash opposite to the direction of the sample 4 to be tested is cut off by the light blocking device 7 to avoid direct incidence into the measuring device 3; 2 directly receiving the light of the spiral flash lamp, the light emitted by the spiral flash lamp is irradiated onto the sample 4 to be tested, and the reflected light of the sample 4 to be tested is concentrated by the lens, and then incident on the measuring device 3 for measurement and analysis.
  • the spectral reflectance of the standard sample is ⁇ 3 (», and the standard sample and the sample to be tested 4 are successively placed on the susceptor 5,
  • the spectral reflectance of the sample 4 to be measured can be measured as ⁇ ( ⁇ ):
  • the readings of the monitoring device 2 and the measuring device 3 are 1 ⁇ ( ⁇ ) and (:), respectively, and the standard sample is replaced with the Test sample 4, the readings on the monitoring device 2 and the measuring device 3 are 1 ⁇ ) and respectively, then the spectral reflectance ⁇ ( ⁇ ) of the sample 4 to be tested is: ⁇ ⁇ ⁇ ( ⁇ ) S ( ) ...
  • the relative spectral power distribution of the retroreflected light of the sample under any light source whose spectral power distribution is known can be obtained.
  • the relative spectral power distribution ⁇ ( ⁇ ) of the retroreflected light of the sample 4 to be tested is:
  • the chromaticity parameter of the sample 4 to be tested can be calculated according to the CIE formula.
  • the reading of the monitoring device 2 is calibrated by using a standard spectral irradiance meter, and the reading of the measuring device 3 is calibrated by the spectral radiance intensity standard lamp, so that the absolute spectral radiance intensity coefficient of the sample 4 to be measured and the illuminance intensity coefficient and the like can be measured.
  • the measurement steps are as follows:
  • the spectral radiance ⁇ ⁇ ( ⁇ ) of the standard lamp is known, placed at the sample 4 to be measured, and its spectral radiance is measured by the measuring device 3, and the measured value is ⁇ '(; ⁇ :).
  • the spectral radiance intensity standard lamp is replaced with the sample 4 to be tested, and the reading of the measuring device 3 is ⁇ ; ( ⁇ :), then the spectral radiance I ⁇ ( ⁇ ) of the sample 4 to be tested is: ⁇ ( ⁇ )
  • the luminous intensity coefficient CIL of the sample to be tested can be calculated as follows:

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种材料反射特性测量装置及方法,其中装置包括中空激发源(1)、监测装置(2)和测量装置(3),中空激发源(1)发出的光线照射到被测样品(4)上,测量装置(3)接收从被测样品(4)反射出的穿过中空激发源空心部分的反射光线,监测装置(2)监测中空激发源(1)发出的光线的光谱信息,通过相应的测量方法,可以测量并计算得到被测样品全面的光谱反射特性。该装置设计巧妙、光路简单,无需光学暗室,即可实现材料回复反射的光度、色度和光谱特性的快速、准确测量,具有功能强大、测量准确度高、体积小、成本低、设计一体化等特点。

Description

一种材料反射特性测量装置及方法
技术领域
本发明属于光辐射测量领域, 具体涉及一种光学反射特性测量装置及方法。
背景技术
具有良好反射特性, 特别是良好回复反射特性的材料被广泛应用于汽车、 机动车、 警 示牌等场合, 对于道路交通和人身安全起着十分关键的作用。反射特性或者回复反射特性是 该类材料的关键技术指标, 对其进行有效的测量具有十分重要的意义。 由于材料回复反射特 性的测量必须在入射和接收光路相重合或者十分接近的方向上进行, 技术难度极大, 到目前 为止, 还未见适用于回复反射器或材料的光谱特性测量的有效装置或者方法。
传统的回复反射测量光路如图 1所示, 标准 A光源在一定的照射角下照明被测样品, 光探测器以一定的观测角接收被测样品所发出的回复反射光线,实现回复反射材料或者回复 反射器的光度特性的测量。该方法的照明光路与反射光路的光程较长, 到达探测器的回复反 射光的光学信号很弱, 很难实现材料的光谱特性测量; 并且上述回复反射测量需要在非常大 的暗室空间内进行, 仅适用于实验室的光度测量要求, 不能满足工业产线及现场快速测试要 求。 发明内容
针对上述现有技术的不足, 本发明旨在提供一种紧凑型的快速材料反射测量装置, 在入 射光与反射光接近于相反方向的条件下,不仅能够实现反射材料或回复反射器的光谱特性测 量, 而且具有体积小、 光路简单、 测量准确度高、 测量速度快、 操作方便和成本低等特点。
本发明是通过以下技术方案实现的。一种材料反射特性测量装置, 其特征在于, 包括中 空激发源、 监测装置和测量装置, 所述的测量装置和被测样品分别位于中空激发源两侧, 所 述的测量装置为光谱辐射计; 监测装置接收来自中空激发源的光线, 中空激发源发出的光线 照射到被测样品上, 被测样品反射出的反射光穿过中空激发源空心部分被测量装置所接收, 即量装置接收来自被测样品的、 并从中空激发源空心部分穿过的回复反射光线。
测量时, 被测样品放置在基座上或者放置在距离中空激发源一定距离的位置上, 中空激 发源位于测量装置和被测样品之间,被测样品到中空激发源的距离远大于中空激发源的出光 面的尺寸或者直径, 以实现入射光与反射光接近于相反方向的光学条件。监测装置的位置可 灵活设置, 如可设置在中空激发源的侧面或者设置在被测样品入射光路的旁侧光路上。监测 装置一般是光谱辐射计, 若中空激发源相对光谱辐射功率分布稳定, 监测装置也可以是光辐 射探测器。
根据被测样品的回复反射特性,中空激发源发出的光线以一定的照射角入射到被测样品 上, 被测样品所发出的反射光或者回复反射光以一定的观察角被测量装置所接收。 以照射角 接近 0度为例, 中空激发源所发出的光线以接近正入射的角度入射到被测样品上, 被测样品 所发出的反射光线或者回复反射光线几乎沿被测样品的法线方向返回,并从中空激发源空心 部分穿过, 被测量装置所接收。
根据测量装置所测得的被测样品的反射光的光谱与监测装置所测得的中空激发源的光 谱, 可以计算得到被测样品的光谱、 光度和色度特性。 当然, 这里的被测样品可以为回复反 射器、 回复反射材料或者一般反射材料。 当被测样品为一般反射材料时, 本发明也可以用于 其光谱反射率和颜色特性的测量。
上述技术方案可通过以下材料反射测量方法获得被测样品的光谱、光度和色度特性, 其 特征在于, 包括以下测量步骤:
(a) 在中空激发源的照射下, 将标准光谱辐照度计放置在被测样品处, 分别记录标准光 谱辐照度计和监测装置的测量结果;或者将已知光谱反射特性数据的标准样品放置在被测样 品处, 分别记录监测装置和测量装置的测量结果;
(b) 将标准光谱辐照度计或者标准样品替换为被测样品, 在中空激发源的照射下, 分别 记录监测装置和测量装置的测量结果;
(c) 根据步骤 (a)和步骤 (b)的测量结果,计算获得被测样品的光谱反射率和光谱辐射强度 系数。
上述测量方法包括利用标准光谱辐照度源进行测量的绝对测量法, 以及利用标准样品的 相对测量法, 具体测量步骤如下:
( 1 ) 绝对测量法
在绝对测量法中, 只要确保监测装置的测量读数 R (^)与被测样品受照面上的辐照度成 正比, 即可根据监测装置的读数获得被测样品受照面上的光谱辐照度值 Ε:(λ:)。 具体可利用 标准光谱辐照度计放置在被测样品处, 监测装置和标准光谱辐照度计接收中空激发源的光 线, 利用两者测量值的比值, 即可用来校准监测装置的测量读数。
此外, 为得到测量装置的光谱辐射强度, 可利用与测量装置的读数成正比的已知光谱辐 射强度 Ι。(λ)的标准源, 校准测量装置的读数 Ps '(; λ )。 在测量被测样品的过程中, 根据测量装 置的读数即可获得反射光的光谱辐射强度值。
当监测装置和测量装置的读数校准完成后, 即可直接获得被测样品的绝对光度、 色度和 光谱量值, 并计算获得被测样品的绝对光谱辐射强度系数、发光强度系数以及光谱反射率等 参数: 将标准光谱辐照度计替换为被测样品, 在中空激发源的照射下, 监测装置和测量装置 的读数分别为 R'T( )和 Ρ^λ:), 则被测样品受照面的光谱辐照度 Εετ(λ)及其光谱辐射强度 Ι。τ(λ)可分别根据 (1) 式及 (2) 式获得:
Figure imgf000005_0001
λ为波长, 单位: nm。 被测样品的光谱辐射强度系数 (光谱辐射强度 /光谱辐射照度) ε(λ)根据上述测量结果 计算得到:
C τ(λ) = X) Ρ(λ) (λ) (3)
Ε τ(λ)— Ε:(λ) Ι 'τ(λ)·Ρ(λ) 被测样品的发光强度系数(发光强度 /照度) CIL (coefficient of luminous intensity)可根据 下式计算得到: ΤΤ ― ― 、 4
Figure imgf000005_0002
ν(λ)为 CIE标准光谱光效函数。 根据被测样品的光谱辐射强度系数 ε(λ), 在相对光谱功率分布 Srel(^)已知的任意光源 下, 被测样品的反射光 /回复反射光的相对光谱功率分布 Ρ(λ)为:
?(λ) = ε(λ)-^Λ ) (5) 根据上述获得的光谱 Ρ(λ), 利用 CIE公式, 可计算出被测样品的色度特性。
(2)相对测量法
上述测量方法中, 也可以利用已知光谱反射特性 (如已知光谱辐射强度系数或者光谱反 射率) 的标准样品, 通过被测样品与标准样品的比对 (相对)测量, 实现被测样品的光谱特 性的测量 (如光谱辐射强度系数或者光谱反射率)。 具体测量方法及计算公式:
将标准样品放到被测样品处, 监测装置和测量装置的读数分别为 1^(^)和 ( ) ; 将标 准样品替换为被测样品, 监测装置和测量装置的读数分别为 1^^)和 (^) ; 当标准样品的 光谱辐射强度系数 &(λ)已知, 则被测样品的光谱辐射强度系数 ε (λ)为:
H (6)
T( ) Ρ8(λ) s 当标准样品的光谱反射率 γ^λ)已知, 则被测样品的光谱反射率 γ (λ)为: (7)
T( ) Ρ8(λ) s 根据被测样品的光谱辐射强度系数 ε (λ) , 在相对光谱功率分布 srel )已知的任意光源 下, 被测样品的发光强度系数 CIL可按照 (8) 式很方便地计算: ΤΤ o J
Figure imgf000006_0001
同理, 在获得被测样品的光谱反射率 γ (λ)后, 即可根据 (5)式得到在光谱功率分布已知 的任意光源下的被测样品的颜色参数均得; 并可利用 CIE公式,可计算出被测样品的光度和 色度特性。
因此,本发明不仅可实现同批次样品或者同类样品的相对光度、色度和光谱的快速测量, 而且可实现被测样品的反射光或回复反射光的绝对光度、色度和光谱测量, 并通过计算获得 被测样品的光谱反射率、光谱辐射强度系数、发光强度系数以及回复反射光谱等全面的反射 /回复反射参数, 具有测量速度快、 测试功能齐全、 准确度高、 适用范围广等特点。
相比于现有的反射测量装置, 本发明利用中空激发光源, 巧妙设置测量装置和被测样品 的位置, 使从中空激发光源到被测样品的照射光路、从被测样品到测量装置的测量光路和从 中空激发光源到监测装置的监测光路之间的光线互不干扰,仅需开启中空激发源即可实现测 量目的, 具有成本低、 杂散光低、 操作方便等特点。 更为重要的是, 本发明选用光谱辐射计 作为测量装置, 不仅可实现被测样品回复反射光的光度、 色度(如色坐标等)和光谱特性的 准确测量, 而且根据其回复反射光谱可计算获得光谱反射率、光谱辐射强度系数和发光强度 系数等参数, 实现被测样品光学反射特性的全面测量。
本发明还可以通过以下技术方案进一步完善和优化:
作为优选,在中空激发源和测量装置之间设置用以阻止中空激发源发出的光线直接入射 到测量装置中的挡光装置; 所述的挡光装置和中空激发源是一体式结构, 或者挡光装置和中 空激发源是分离式的独立结构。 中空激发源发出的光线。挡光装置将来自中空激发源的以及 其他来自测量光路以外的光线与测量装置之间的光路隔断,它可让反射光线从孔中穿过到达 测量装置, 同时从中空激发源发出的光线除了照射到被测样品上, 还有一部分光线如果没有 挡光装置, 会直接入射到测量装置中, 从而影响测量结果, 增大测量误差, 挡光装置阻止该 部分光线直接入射到测量装置中, 避免引起测量误差。挡光装置一般为中间通孔的环形机械 装置, 挡光装置可以与中空激发源一体化设计, 如指向性 LED灯具, 挡光装置为灯具中的 光学反射器件, 使 LED光源所发射的光束集中照射到被测样品上; 或者挡光装置与中空激 发源为两个相互分离的独立结构, 如挡光装置为中空反射镜, 中空激发源为螺旋形闪光灯, 两者相互结合, 中空反射镜将中空激发源所发出的、 与被测样品所在方向反向的光线反射, 避免其直接入射到测量装置中。
本发明中,所述的监测装置为光谱辐射计或者光电探测器或者亮度测量装置。本发明中, 监测装置可灵活选择, 满足不同的测试需求。监测装置优选为光谱辐射计, 测量装置和监测 装置的测量信息一致, 可充分利用两者的测量结果得到被测样品的反射率、光谱反射率以及 发光强度系数等全面的光度、 色度和光谱量值。
作为优选, 所述的中空激发源为中空光源, 或所述的中空激发源为内置光源的中空照明 腔体。 中空激发源为被测样品的照射源, 可以是独立的中空光源, 也可以是内置光源的中空 照明腔体。 需要指出的是, 中空激发源的照射光轴与被测样品的基准轴线倾斜相交, 倾斜角 度满足实际应用的相关要求, 如小于 5°, 甚至小于 1°等。
作为优选, 所述的中空照明腔体上设置面向被测样品的照明窗口, 从照明窗口出射的光 线入射到被测样品上,被测样品发出的回复反射光线从中空照明腔体的空心部分穿过并被测 量装置接收。 该技术方案中, 中空激发源为包括照明窗口和内置光源的中空照明腔体(如空 心圆柱体等), 照明窗口位于中空照明腔体的空心口面上, 正面面向被测样品。 中空照明腔 体的内置光源发出光线, 从照明窗口出射, 照射到被测样品上, 被测样品的回复反射光线从 中空照明腔体的空心部分穿过并被测量装置所接收, 实现测量目的。 此外, 如挡光装置为中 空反射镜, 中空反射镜也可以设置在中空照明腔体内部、 与照明窗口相对的位置, 中空反射 镜和照明窗口分别位于内置光源的两侧。 内置光源所发出的光线一部分是朝向被测样品的, 另一部分光线是与被测样品所在的方向反向的, 中空反射镜将内置光源发出的、与被测样品 所在方向反向的光线反射至被测样品上。
作为一种技术方案, 包括中空监测体, 中空激发源发出的光线照射到中空监测体上并被 监测装置接收, 从中空激发源发出的光线穿过中空监测体照射被测样品上。 实际上, 监测装 置的位置可灵活设置, 可位于任意位置, 只要可实现中空激发光源出射光线的测量即可, 如 位于中空激发源附近, 或者位于中空激发源和被测样品之间的任意位置, 如位于被测样品附 近, 只要能够接收来自中空激发源的光线即可。 需要指出的是, 照射到被测样品上的光线信 息与监测装置接收到的光线信息的一致程度越大, 测量结果也就越准确。 中空激发源发出的 光线分为两部分, 一部分光线用以照射被测样品, 被测样品发出的回复反射光线经由中空监 测体的空心部分、 中空激发源的空心部分, 被测量装置所接收, 实现回复反射测量; 另一部 分光线经中空监测体被监测装置接收,该部分光线可根据中空监测体的具体设置而被监测装 置接收, 例如, 中空监测体位于被测样品上方, 中空监测体的中空外侧为漫射层, 光线照射 到漫射层上后, 经漫射层出射后被监测装置接收, 需要指出的是, 这里的漫射层可以同时具 有漫透射及漫反射的特性,光线照射到其上后,先经漫反射, 再向外透射,被监测装置接收。
作为另一种技术方案, 所述的中空照明腔体为包括漫射层的中空腔体, 所述的监测装置 面向中空照明腔体,中空照明腔体所发出的光线一部分照射到漫射层上、并被监测装置接收, 另一部分光线从照明窗口入射到被测样品上。该技术方案中, 监测装置位于中空照明腔体附 近, 中空照明腔体的内置光源发出的光线也分为两部分, 一部分从照明窗口出射, 照射到被 测样品上, 另一部分同样经漫射层出射、 被监测装置接收。 对于空间光色分布均勾的光源, 以上两种技术方案均能实现监测目的, 且监测效果类似。但与对于空间光色分布不均勾的光 源或者窄光束光源, 如 LED等, 以上两种技术方案的技术效果不同, 对于监测装置位于中 空激发源附近的技术方案, 由于监测装置位于中空激发源的侧面上, 其测量的是内置光源侧 面发出的光线, 而照射到被测样品上的光线是来自内置光源正面发出的光线, 两者的光线信 息不同, 导致一定的测量误差; 而监测装置位于被测样品附近的技术方案, 由于监测装置和 照射到被测样品上的光线都是来自测量窗口的光线, 即均是来自内置光源正面发出的光线, 光线信息相同, 测量结果准确度高。 因此, 在实际使用中, 可根据中空激发源的类型, 具体 选择不同的技术方案。
需要指出的是, 虽然中空照明腔体或者中空监测体包括漫射层, 但漫射层可以是空心腔 体或者实心体, 对于空心腔体, 除了漫反射层采用如聚四氟乙烯等漫反射材料, 其内部还可 以涂有漫反射材料 (如硫酸钡等), 光线在漫反射层充分漫反射后出射。 此外, 在漫射层上 还可以设置监测窗口, 以方便光线出射; 从监测窗口发出的光线被监测装置直接接收, 或者 经过反射、 会聚等装置后, 如毛玻璃、 透镜等, 再被监测装置所接收。
作为一种技术方案, 所述的中空激发源和被测样品之间的相对距离可调, 本发明中, 可 灵活设置中空激发源和被测样品之间的相对位置, 如两者相距 lm; 同时通过改变两者之间 的相对距离, 可改变照射角的大小, 从而满足不同样品的测试需求, 适用范围广。
作为优选, 包括会聚装置, 所述的会聚装置设置在被测样品和测量装置之间的反射光路 上, 被测样品的反射或回复反射光线经会聚装置会聚、 入射至测量装置中。 会聚装置可起到 缩短光程、 会聚光线等作用。
作为优选, 包括中空滤色片, 中空滤色片设置在中空激发源到被测样品的光路上, 中空 激发源所发出的光线经中空滤色片照射到被测样品上,从被测样品发出的反射光线穿过中空 滤色片空心部分被测量装置接收。 为避免杂散光、提高测量准确度, 可根据需要设置不同的 短通、 带通、 长通等滤色片, 滤去不必要的光线。
作为优选,包括光阑,所述的中空激发源和监测装置之间、中空激发源和测量装置之间、 中空激发源和被测样品之间均设置一个或者多个限制杂散光的光阑,防止外界光线对监测光 路、 测量光路以及照射光路的干扰, 减少杂散光, 提高测量准确度。 此外, 作为优选, 包括 一个或者多个遮光筒, 光阑设置在遮光筒内, 遮光筒将装置封闭在一个较小的空间内, 使整 个测量过程无需配置光学暗室, 大幅降低实验室建设成本、 体积小且操作方便。
作为优选, 所述的中空激发源为封闭中空灯或者非封闭中空灯。这里的中空激发源可以 为环形闪光灯或者螺旋形闪光灯, 内置光源也可为环形闪光灯或者为螺旋形闪光灯。相比于 标准 A光源, 闪光灯发光速度快, 且强度高, 对环境依赖性小, 无需设置在光学暗室中即 可实现高精度测量, 满足快速、 精确的测试要求。 中空激发源可以是任何环形结构的照明光 源, 例如环形灯管的荧光灯, 或者为环形 LED灯带等, 也可以是发光面以一定的方式间隔 分布的环形照明光源。 例如, 由拱形机械固定部件和拱形灯管所组成的环形灯。 环形灯的结 构可根据被测样品的安装位置来设计, 使被测样品充分受照的同时, 减少发光面的设计, 降 低照明成本; 另外, 还可以满足不同被测样品的照射需求。 此外, 中空激发源还可以是非封 闭中空灯, 如 " "中空闪光灯, 仅满足发光以及反射光 /回复反射光可从中空部分穿过 即可。 所述的环形光源可以是圆环形, 也可以是其他多边环形, 也可以是部分环形。 综上所述, 本发明通过巧妙设计中空激发源、测量装置和监测装置的位置关系, 并采用 光谱辐射计作为测量装置。 相比于现有的反射测量装置, 本发明无需光学暗室, 且大幅缩短 测量光路, 不仅可用于反射材料和回复反射器的光谱、光度和色度特性的全面测量, 而且可 实现包括绝对和相对比较两种测量方式, 具有体积小、 测量准确度高、 测试功能齐全、 测量 速度快、 成本低、 操作方便和设计一体化等特点。
附图说明
附图 1是现有回复反射测量光路的示意图;
附图 2是实施例 1的示意图。
1-中空激发源; 2-监测装置; 3-测量装置; 4-被测样品; 5-基座; 6-会聚装置; 7-挡光装 置; 8-光阑。
具体实施方式 实施例 1
如图 2所示, 本实施例公开了一种材料反射特性测量装置, 包括中空激发源 1、 监测装 置 2、 测量装置 3、 基座 5、 会聚装置 6、 挡光装置 7和光阑 8。 本实施例中, 中空激发源 1 为螺旋形闪光灯, 螺旋形闪光灯设置在基座 5和测量装置 3之间, 即基座 5和测量装置 3分 别位于中空激发源 1两侧, 监测装置 2和测量装置 3均为光谱仪; 这里的挡光装置 7为挡光 板, 挡光装置 7设置在中空激发源 1和测量装置 3之间; 会聚装置 6为透镜。
测量装置 3、 会聚装置 6、 中空激发源 1和基座 5依次设置, 被测样品 4到中空激发源 1的距离与中空激发源 1的发光直径的比值大于 50以上, 监测装置 2面向中空激发源 1。此 外, 本实施例包括多个光阑 8, 在中空激发源 1和监测装置 2之间、 中空激发源 1和测量装 置 3之间、 中空激发源 1和基座 5之间均设置多个光阑 8, 用于消除杂散光。
测量时, 被测样品 4放置在基座 5上, 螺旋形闪光灯所发出的与被测样品 4所在方向反 向的光线被挡光装置 7截止, 以避免直接入射到测量装置 3中; 监测装置 2直接接收螺旋形 闪光灯的光线, 螺旋形闪光灯发出的光线照射到被测样品 4上, 被测样品 4的回复反射光线 经透镜会聚后, 入射到测量装置 3中进行测量、 分析。
已知标准样品的光谱反射率为丫3(», 先后将标准样品和被测样品 4放置到基座 5上, 即可测量得到被测样品 4的光谱反射率为 γ(λ): 测量标准样品时, 监测装置 2和测量装置 3的读数分别为 1^(^)和 ( :), 将标准样品 替换为被测样品 4, 监测装置 2和测量装置 3上的读数分别为1^ )和 ),则被测样品 4 的光谱反射率 γ(λ)为: η Ρτ(λ) S( ) ...
γ(λ、) = - ·γ5(λ)
T( ) Ρ8(λ) s 根据被测样品 4的光谱反射率,即可得到该样品在光谱功率分布已知的任意光源下的回 复反射光的相对光谱功率分布。 例如在已知光谱功率分布为 SD(^)的标准 D65光源下, 该被 测样品 4的回复反射光的相对光谱功率分布 Ρ(λ)为:
Ρ(λ) = γ(λ).8。(λ) 且在该光源下, 被测样品 4的色度参数可根据 CIE公式计算获得。
实施例 2
本实施例利用标准光谱辐照度计校准监测装置 2的读数,利用光谱辐射强度标准灯校准 测量装置 3的读数,可实现被测样品 4的绝对光谱辐射强度系数以及发光强度系数等参数的 测量, 测量步骤如下:
(1) 在被测样品 4处放置标准光谱辐照度计, 标准光谱辐照度计在中空激发源 1的照 射下, 测量其受照面的光谱辐照度为 E (^); 监测装置 2的测量结果为 μ)。 将标准光谱 辐照度计替换为被测样品 4, ,监测装置 2的的读数为 ^(A), 则被测样品 4受照面上的光谱 辐照度为:
(2)光谱辐射强度标准灯的光谱辐射强度 Ιε(λ)已知, 将其放置在被测样品 4处, 利用 测量装置 3测量其光谱辐射强度, 测量值为^ '(; λ:)。 将光谱辐射强度标准灯替换为被测样品 4, 测量装置 3的读数为 Ρ;(λ:), 则被测样品 4的光谱辐射强度 I τ(λ)为: Ι(λ)
Ρ(λ)
(3)根据上述$ t结果, 计算被测样品 4的光谱辐射强度系数(光谱辐射强度 /光谱辐 射照度) ε(λ) =
Ι.τ(λ) ΐΧλ) Ρ (λ) (λ)
ε(λ)
Ε.τ(λ) Ε:(λ) Ι 'τ(λ)·Ρ(λ)
(4)根据上述$ t结果以及 CIE标准光谱光效函数 ν(λ), 计算被测样品的发光强度系 数 CIL:
Figure imgf000012_0001
在相对光谱功率分布 Srei )已知的任意光源下, 被测样品的发光强度系数 CIL可按照下 式计算获得为:
CIL =
Figure imgf000012_0002

Claims

权利要求书
1. 一种材料反射特性测量装置, 其特征在于, 包括中空激发源 (1)、监测装置 (2)和测量装置 (3), 所述测量装置 (3)和被测样品 (4)分别位于中空激发源 (1)两侧, 所述的测量装置 (3)为 光谱辐射计; 监测装置 (2)接收来自中空激发源 (1)的光线, 中空激发源 (1)发出的光线照 射到被测样品 (4)上, 被测样品 (4)反射出的反射光穿过中空激发源 (1)空心部分被测量装 置 (3)所接收。
2. 如权利要求 1所述的一种材料反射特性测量装置, 其特征在于, 在中空激发源 (1)和测量 装置 (3)之间设置用以阻止中空激发源 (1)发出的光线直接入射到测量装置 (3)中的挡光装 置 (7); 所述的挡光装置 (7)和中空激发源 (1)是一体式结构, 或者挡光装置 (7)和中空激发 源 (1)是分离式的独立结构。
3. 如权利要求 1所述的一种材料反射特性测量装置, 其特征在于, 所述的监测装置 (2)为光 谱辐射计。
4. 如权利要求 1 所述的一种材料反射特性测量装置, 其特征在于, 所述的中空激发源 (1) 为中空光源, 或所述的中空激发源 (1)为内置光源的中空照明腔体。
5. 如权利要求 4所述的一种材料反射特性测量装置, 其特征在于, 所述的中空照明腔体上 设置面向被测样品 (4)的照明窗口, 从照明窗口出射的光线入射到被测样品 (4)上,被测样 品 (4)发出的反射光线从中空照明腔体的空心部分穿过并被测量装置 (3)所接收。
6. 如权利要求 1所述的一种材料反射特性测量装置, 其特征在于, 包括中空监测体, 中空 激发源 (1)发出的光线照射到中空监测体上并被监测装置 (2)接收, 从中空激发源 (1)发出 的光线穿过中空监测体照射到被测样品 (4)上。
7. 如权利要求 1所述的一种材料反射特性测量装置, 其特征在于, 包括会聚装置 (6), 所述 的会聚装置 (6)设置在被测样品 (4)和测量装置 (3)之间的反射光路上, 被测样品 (4)的反射 光线经会聚装置 (6)会聚、 入射至测量装置 (3)中。
8. 如权利要求 1所述的一种材料反射特性测量装置, 其特征在于, 包括中空滤色片, 中空 滤色片设置在中空激发源 (1)到被测样品 (4)的光路上, 中空激发源 (1)发出的光线经中空 滤色片照射到被测样品 (4)上,从被测样品 (4)发出的反射光线穿过中空滤色片的空心部分 被测量装置 (3)接收。
9. 如权利要求 4 所述的一种材料反射特性测量装置, 其特征在于, 所述的中空激发源 (1) 为封闭中空灯或者非封闭中空灯。 一种材料反射特性测量方法, 其特征在于, 包括以下测量步骤:
(a) 在中空激发源 (1)的照射下, 将标准光谱辐照度计放置在被测样品 (4)处, 分别记录标 准光谱辐照度计和监测装置 (2)的测量结果;或者将已知光谱反射特性数据的标准样品放 置在被测样品 (4)处, 分别记录监测装置 (2)和测量装置 (3)的测量结果;
(b)将标准光谱辐照度计或者标准样品替换为被测样品 (4), 在中空激发源 (1)的照射下, 分别记录监测装置 (2)和测量装置 (3)的测量结果;
(c) 根据步骤 (a)和步骤 (b)的测量结果, 计算获得被测样品 (4)的光谱反射率、 光谱辐射强 度系数和发光强度系数。
PCT/CN2013/090295 2013-07-26 2013-12-24 一种材料反射特性测量装置及方法 WO2015010434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310321487.9A CN103344613B (zh) 2013-07-26 2013-07-26 一种材料反射特性测量装置及方法
CN201310321487.9 2013-07-26

Publications (1)

Publication Number Publication Date
WO2015010434A1 true WO2015010434A1 (zh) 2015-01-29

Family

ID=49279427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090295 WO2015010434A1 (zh) 2013-07-26 2013-12-24 一种材料反射特性测量装置及方法

Country Status (2)

Country Link
CN (1) CN103344613B (zh)
WO (1) WO2015010434A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646380A (zh) * 2019-10-17 2020-01-03 安徽岩芯光电技术有限公司 道路标线逆反射光检测系统和道路标线逆反光检测仪

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103344613B (zh) * 2013-07-26 2016-09-28 杭州远方光电信息股份有限公司 一种材料反射特性测量装置及方法
CN103674897A (zh) * 2013-11-22 2014-03-26 中国矿业大学 一种光反射实验台
CN104359866B (zh) * 2014-11-24 2017-11-21 杭州远方光电信息股份有限公司 一种回复反射测量装置
CN105388129A (zh) * 2015-10-16 2016-03-09 深圳大学 一种路面相对反射率测试装置
CN105954009B (zh) * 2016-04-26 2018-11-13 江苏检验检疫车辆灯具检测实验室 一种机动车回复反射器测试装置
CN105841929A (zh) * 2016-04-26 2016-08-10 北京中交工程仪器研究所 一种机动车回复反射器测量仪
CN109752319A (zh) * 2017-11-01 2019-05-14 青岛海尔智能技术研发有限公司 一种识别衣物材质的光学方法及装置
CN110019122A (zh) * 2017-11-01 2019-07-16 青岛海尔智能技术研发有限公司 一种光学-衣物材质标准数据库的建立方法及系统
CN109750450B (zh) * 2017-11-01 2022-03-04 青岛海尔智能技术研发有限公司 一种识别衣物材质的智能模块及智能洗衣机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054693A1 (en) * 1998-08-21 2001-12-27 Trw Inc. Method and apparatus for inspection of a substrate by use of a ring illuminator
WO2004015363A1 (ja) * 2002-08-08 2004-02-19 Matsushita Electric Industrial Co., Ltd. 照明装置、及びこれを備えた認識装置並びに部品実装装置
CN102313741A (zh) * 2010-07-06 2012-01-11 州巧科技股份有限公司 自动光学检测系统
CN102608042A (zh) * 2012-03-13 2012-07-25 北京航空航天大学 一种基于多光谱成像的体外过敏原定量检测装置及其方法
JP2013120095A (ja) * 2011-12-06 2013-06-17 Bridgestone Corp 接触部検出装置および接触部検出方法
CN103344613A (zh) * 2013-07-26 2013-10-09 杭州远方光电信息股份有限公司 一种材料反射特性测量装置及方法
CN203337545U (zh) * 2013-07-26 2013-12-11 杭州远方光电信息股份有限公司 一种材料反射特性测量装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212260A (ja) * 2006-02-09 2007-08-23 Mitsubishi Electric Corp 反射率測定装置、反射率測定方法及び表示パネルの製造方法
US7548317B2 (en) * 2006-05-05 2009-06-16 Agc Flat Glass North America, Inc. Apparatus and method for angular colorimetry
CN102095371A (zh) * 2010-11-25 2011-06-15 天津大学 工业用彩色视觉检测装置和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010054693A1 (en) * 1998-08-21 2001-12-27 Trw Inc. Method and apparatus for inspection of a substrate by use of a ring illuminator
WO2004015363A1 (ja) * 2002-08-08 2004-02-19 Matsushita Electric Industrial Co., Ltd. 照明装置、及びこれを備えた認識装置並びに部品実装装置
CN102313741A (zh) * 2010-07-06 2012-01-11 州巧科技股份有限公司 自动光学检测系统
JP2013120095A (ja) * 2011-12-06 2013-06-17 Bridgestone Corp 接触部検出装置および接触部検出方法
CN102608042A (zh) * 2012-03-13 2012-07-25 北京航空航天大学 一种基于多光谱成像的体外过敏原定量检测装置及其方法
CN103344613A (zh) * 2013-07-26 2013-10-09 杭州远方光电信息股份有限公司 一种材料反射特性测量装置及方法
CN203337545U (zh) * 2013-07-26 2013-12-11 杭州远方光电信息股份有限公司 一种材料反射特性测量装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110646380A (zh) * 2019-10-17 2020-01-03 安徽岩芯光电技术有限公司 道路标线逆反射光检测系统和道路标线逆反光检测仪

Also Published As

Publication number Publication date
CN103344613A (zh) 2013-10-09
CN103344613B (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2015010434A1 (zh) 一种材料反射特性测量装置及方法
US7532324B2 (en) Equipment and method for LED's total luminous flux measurement with a narrow beam standard light source
JP3682528B2 (ja) 固体試料の絶対蛍光量子効率測定方法及び装置
EP3324160B1 (en) Standard illuminant color matching box
CN101706434B (zh) 可方便实现三维荧光光谱矫正功能的荧光光度计及其光谱校正方法
RU2008147913A (ru) Устройство и способ для угловой колориметрии
FI124452B (fi) Menetelmä ja laite pinnan värin ja muiden ominaisuuksien mittaamiseksi
CN207717222U (zh) 光学辐射标定装置
JP4418731B2 (ja) フォトルミネッセンス量子収率測定方法およびこれに用いる装置
CN109632753A (zh) 一种便携式吸光度测量装置及其方法
CN202101836U (zh) 一种基于成像球的光强、视角和散射分布函数测量系统
Hanselaer et al. A new integrating sphere design for spectral radiant flux determination of light-emitting diodes
CN209117182U (zh) 一种测色装置
US10393655B2 (en) Apparatus for retro-reflection measurement using a holed mirror and circular aperture for annular band detection
CN203337545U (zh) 一种材料反射特性测量装置
CN207689005U (zh) 光学辐射标准单元
CN203274911U (zh) 一种窄光束led灯光通量测量装置
CN205091245U (zh) 一种测光积分球
RU91761U1 (ru) Эталонное устройство для передачи размера единиц координат цветности самосветящихся объектов
CN204882357U (zh) 一种光学特性测量装置
CN114136440A (zh) 便携式逆反射光度色度联合测量方法和装置
CN107907210A (zh) 光学辐射标定装置
CN207540669U (zh) 光学辐射测量单元
CN205748642U (zh) 一种颜色测量装置
Zwinkels Metrology of photoluminescent materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890028

Country of ref document: EP

Kind code of ref document: A1