WO2024001540A1 - 链式吸杂用磷源及其制备方法和应用 - Google Patents

链式吸杂用磷源及其制备方法和应用 Download PDF

Info

Publication number
WO2024001540A1
WO2024001540A1 PCT/CN2023/093501 CN2023093501W WO2024001540A1 WO 2024001540 A1 WO2024001540 A1 WO 2024001540A1 CN 2023093501 W CN2023093501 W CN 2023093501W WO 2024001540 A1 WO2024001540 A1 WO 2024001540A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus source
gettering
phosphorus
diffusion
chain
Prior art date
Application number
PCT/CN2023/093501
Other languages
English (en)
French (fr)
Inventor
任常瑞
张佳舟
符黎明
Original Assignee
常州时创能源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州时创能源股份有限公司 filed Critical 常州时创能源股份有限公司
Publication of WO2024001540A1 publication Critical patent/WO2024001540A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/2225Diffusion sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of photovoltaics, and in particular to a phosphorus source for chain gettering and its preparation method and application.
  • P gettering of impurities in crystalline silicon is a well-known conventional method, which uses P to capture impurities to extend the overall minority carrier lifetime and thereby improve battery performance.
  • the heavily doped P impurity layer can provide a large number of gettering mechanisms: segregation mechanism, stress gettering mechanism, etc.
  • the pn junction prepared by phosphorus diffusion has a good gettering effect.
  • phosphorus diffusion mainly uses POCl 3 as the precursor and tubular high-temperature diffusion. Diffusion equipment and automation are expensive, and the precursor POCl 3 is highly toxic and corrosive.
  • the gettering process in order to achieve better double-sided gettering effect, the production capacity loss is relatively large, and with the continuous development of thinning requirements, the problem of high debris risk of tubular gettering has gradually become prominent, so the chain gettering Zaza came into being.
  • Chain gettering is similar to chain diffusion.
  • the phosphorus sources currently studied are mainly simple phosphoric acid mixed solutions and imported phosphorus sources developed by Filmtronics, Honeywell and other companies.
  • a simple mixed solution of phosphoric acid will inevitably generate metaphosphoric acid, pyrophosphoric acid and other substances that are difficult to remove during the high temperature process.
  • the diffusion will be uneven, the surface dead layer will be thick, the quality of the prepared PN junction will be poor, and the junction depth will be shallow, making the PN junction difficult to remove.
  • the gettering performance cannot be improved, and the phosphorus source developed by Filmtronics, Honeywell and other companies is very expensive, which restricts its industrial research and application.
  • the present invention provides a phosphorus source for chain gettering, the mass percentage of each component of which is: phosphorus source precursor 2% to 10%, polyethylene glycol 1% to 20% %, citric acid 1% to 5%, organic solvent 1% to 10%, and the balance is water.
  • the phosphorus source precursor is selected from one or more of phosphoric acid, P 2 O 5 , ammonium dihydrogen phosphate, diammonium hydrogen phosphate, polyphosphoric acid, and phosphate ester.
  • the phosphate ester is selected from one of pyrophosphate, polyphosphate, phosphate polyester, phosphite, hypophosphate, triethyl phosphate, 2-ethylhexyl phosphate, and hypophosphite. Or several.
  • the organic solvent is selected from one or more of ester organic solvents, alcohol organic solvents, and amide organic solvents.
  • the ester organic solvent is selected from the group consisting of formic ester organic solvents, acetate organic solvents, glyceryl ester organic solvents, phosphate ester organic solvents, phosphorus ester organic solvents, and silicate ester organic solvents. species or several species.
  • the alcoholic organic solvent is selected from one or more of methanol, ethanol, and isopropyl alcohol.
  • the invention also provides a method for preparing the above-mentioned phosphorus source for chain gettering, which includes the following steps: adding a phosphorus source precursor with a mass percentage content of 2% to 10%, 1% to 20% polyethylene glycol, 1% ⁇ 5% citric acid, 1% ⁇ 10% organic solvent and the remaining water are put into the reactor, react at 25 ⁇ 150°C for 2 ⁇ 48 hours, and filter to obtain the phosphorus source.
  • the present invention also provides a chain-type gettering method, in which phosphorus gettering (phosphorus source diffusion and phosphorus gettering) is performed on the silicon wafer with the above-mentioned phosphorus source deposited on the surface in a chain-type diffusion device.
  • phosphorus gettering phosphorus source diffusion and phosphorus gettering
  • the phosphorus source is deposited by spin coating, spray coating or roller coating.
  • the deposition thickness of the phosphorus source is 1 to 2 ⁇ m; the process conditions for phosphorus expansion and gettering: temperature is 200-900°C, time is 10-200 s, and the atmosphere is nitrogen or oxygen.
  • the phosphorus source of the present invention can well match the existing chain diffusion gettering equipment.
  • the phosphorus source of the present invention can avoid or improve the chain-type high-temperature diffusion gettering of the existing phosphorus source (phosphoric acid mixture) to produce metaphosphoric acid and pyrophosphoric acid. Residual issues.
  • the main component of existing phosphorus sources is phosphoric acid.
  • Phosphoric acid dehydrates to form pyrophosphoric acid at about 200°C
  • metaphosphoric acid forms at 300°C.
  • metaphosphoric acid dehydrates to form phosphorus pentoxide, which has a diffusion effect.
  • the existing phosphorus source with phosphoric acid as the main component (mainly used in the field of chain diffusion) requires a higher concentration of phosphoric acid, more than 10%, to obtain better diffusion or gettering effects.
  • the phosphoric acid is dehydrated to form A large amount of metaphosphoric acid solids accumulate at the furnace mouth and are difficult to remove through simple cleaning methods, affecting the appearance and use of the equipment.
  • the present invention abandons the traditional phosphorus source with phosphoric acid as the main component, and mixes P 2 O 5 , ammonium dihydrogen phosphate, diammonium hydrogen phosphate, polyphosphoric acid, phosphate ester, etc. to form a composite phosphorus source, which greatly reduces the amount of phosphoric acid in the solution. content, reduce the residues of metaphosphoric acid, pyrophosphoric acid and other substances, and significantly improve the problem of solid precipitation of metaphosphoric acid at the furnace mouth.
  • the present invention improves the diffusion uniformity, junction depth and other properties of the phosphorus expansion compared with conventional phosphoric acid mixtures, and can achieve the same results as the tube A consistent level of diffusion.
  • Adding a citric acid component to the phosphorus source can reduce the interaction between the active component and the carrier, thereby improving the dispersion of active phosphorus atoms on the surface of the silicon wafer, making the phosphorus more evenly dispersed on the surface of the silicon wafer, and achieving better diffusion. Uniformity.
  • a composite phosphorus source is used. Ammonium dihydrogen phosphate, diammonium hydrogen phosphate and other components are added to the phosphorus source. A large number of ammonium ions generated in the solution form a large number of holes in the silicon wafer during the diffusion process. The holes assist the diffusion of the phosphorus source. , allowing the active phosphorus atoms to obtain a deeper diffusion depth.
  • the phosphorus source of the invention has low toxicity, the raw materials are easy to obtain, and the price is low.
  • the same diffusion level as traditional tubular diffusion can be achieved in a short period of time, enabling the industrial application of chain diffusion to be realized and solving the current problems of tubular diffusion. Diffusion equipment and automation are expensive.
  • the invention provides a chain gettering method, which includes the following steps:
  • the phosphorus source precursor is selected from one or more of phosphoric acid, P 2 O 5 , ammonium dihydrogen phosphate, diammonium hydrogen phosphate, polyphosphoric acid, and phosphate ester;
  • the phosphate ester is selected from one of pyrophosphate, polyphosphate, phosphate polyester, phosphite, hypophosphate, triethyl phosphate, 2-ethylhexyl phosphate, and hypophosphite. or several;
  • the organic solvent is selected from one or more of ester organic solvents, alcohol organic solvents, and amide organic solvents;
  • the ester organic solvent is selected from one of formate organic solvents, acetate organic solvents, glyceride organic solvents, phosphate organic solvents, phosphorus ester organic solvents, and silicate organic solvents. species or species;
  • the alcoholic organic solvent is selected from one or more types of methanol, ethanol, and isopropyl alcohol;
  • the deposition thickness of the phosphorus source is 1 to 2 ⁇ m;
  • the process conditions for phosphorus expansion and gettering in chain diffusion equipment temperature is 200 ⁇ 900°C, time is 10 ⁇ 200s, and the atmosphere is nitrogen or oxygen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Luminescent Compositions (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种链式吸杂用磷源,其各组分的质量百分含量为:磷源前驱体2%~10%,聚乙二醇1%~20%,柠檬酸1%~5%,有机溶剂1%~10%,余量为水。本发明还提供上述链式吸杂用磷源的制备方法和应用。本发明的磷源能很好的匹配现有链式扩散吸杂设备,可避免或改善现有磷源链式高温扩散吸杂产生偏磷酸、焦磷酸残留的问题。本发明通过调整磷源配方,优化链式扩磷吸杂的温度、时间、氛围等参数,使扩磷的扩散均匀性、结深等性质较常规磷酸混合液有所提升。采用本发明制备的磷源,结合链式设备进行快速磷扩散,可在较短的时间内达到与传统管式扩散一样的扩散水平,使链式扩散的工业化应用得以实现,解决了目前管式扩散设备及自动化昂贵的问题。

Description

链式吸杂用磷源及其制备方法和应用 技术领域
本发明涉及光伏领域,具体涉及一种链式吸杂用磷源及其制备方法和应用。
背景技术
晶体硅中杂质的P吸除是一种众所周知的常规方法,通过P捕获杂质来延长整体少数载流子的寿命从而改善电池性能。重掺P杂质层可提供大量吸杂机制:分凝机制、应力吸杂机制等。目前常规PERC和TOPCon电池制备过程中,就是利用磷扩散制备的pn结良好的吸杂效果。
在太阳能电池领域,磷扩散主要以POCl 3为前驱体管式高温扩散为主,扩散设备及自动化昂贵,前驱体POCl 3剧毒且有强腐蚀性。在应用于吸杂过程中,为实现更好的双面吸杂效果,产能损失较大,且随着薄片化需求的不断发展,管式吸杂高碎片风险的问题逐渐突出,因而链式吸杂应运而生。
链式吸杂与链式扩散类似,目前研究的磷源主要以简单的磷酸混合溶液以及Filmtronics、Honeywell等公司研发的进口磷源为主。单纯的磷酸混合溶液,在高温过程中不可避免的会生成难以去除的偏磷酸、焦磷酸等物质,扩散不均匀,表面死层较厚,制备的PN结质量较差,结深较浅,使吸杂性能无法提高,且为获得Filmtronics、Honeywell等公司研发的磷源价格十分昂贵,制约了其工业化的研究与应用。
有鉴于此,制备一种价格低廉的适用于链式吸杂的磷源,使其在链式设备上应用能达到优于管式吸杂的水平至关重要。
发明内容
为了解决现有技术的缺陷,本发明提供一种链式吸杂用磷源,其各组分的质量百分含量为:磷源前驱体2%~10%,聚乙二醇1%~20%,柠檬酸1%~5%,有机溶剂1%~10%,余量为水。
优选的,所述磷源前驱体选自磷酸、P 2O 5、磷酸二氢铵、磷酸氢二铵、多聚磷酸、磷酸酯中的一种或几种。
优选的,所述磷酸酯选自焦磷酸酯、聚磷酸酯、磷酸多酯、亚磷酸酯、连二磷酸酯、磷酸三乙酯、2-乙基己基磷酸酯、次磷酸酯中的一种或几种。
优选的,所述有机溶剂选自酯类有机溶剂、醇类有机溶剂、酰胺类有机溶剂中的一种或几种。
优选的,所述酯类有机溶剂选自甲酸酯类有机溶剂、乙酸酯类有机溶剂、甘油酯类有机溶剂、磷酸酯类有机溶剂、磷酯类有机溶剂、硅酸酯类有机溶剂中的一种或几种。
优选的,所述醇类有机溶剂选自甲醇、乙醇、异丙醇中的一种或几种。
本发明还提供上述链式吸杂用磷源的制备方法,包括如下步骤:将质量百分含量为2%~10%的磷源前驱体、1%~20%的聚乙二醇、1%~5%的柠檬酸、1%~10%有机溶剂以及余量的水投入反应器中,于25~150℃反应2~48h,过滤得到磷源。
本发明还提供一种链式吸杂方法,在链式扩散设备中对表面沉积上述磷源的硅片进行扩磷吸杂(磷源扩散和磷吸杂)。  
优选的,采用旋涂、喷涂或滚涂方式沉积磷源。
优选的,磷源的沉积厚度为1~2μm;扩磷吸杂的工艺条件:温度为200~900℃,时间为10~200s,氛围为氮气或者氧气。
有益效果
本发明的优点和有益效果在于:
本发明的磷源能很好的匹配现有的链式扩散吸杂设备,本发明的磷源可避免或改善现有磷源(磷酸混合液)链式高温扩散吸杂产生偏磷酸、焦磷酸残留的问题。
现有磷源主要成分为磷酸,磷酸在200℃左右脱水形成焦磷酸,在300℃形成偏磷酸,继续升温,偏磷酸脱水形成五氧化二磷起到扩散的效果。现有以磷酸为主要成分的磷源(主要应用与链式扩散领域),为获得较好的扩散或吸杂效果,需要较高浓度的磷酸,10%以上,在高温过程中磷酸脱水,形成大量的偏磷酸固体,在炉口聚集,较难通过简单的清洗手段去除,影响设备外观及使用。
本发明摈弃传统的磷酸为主要成分的磷源,以P 2O 5、磷酸二氢铵、磷酸氢二铵、多聚磷酸、磷酸酯等混合形成复合磷源,极大的减少溶液中磷酸的含量,减轻偏磷酸、焦磷酸等物质的残留,对改善炉口偏磷酸固体沉淀问题改善明显。
本发明通过调整磷源配方,优化链式扩磷吸杂的温度、时间、氛围等参数,使扩磷的扩散均匀性、结深等性质较常规磷酸混合液有所提升,且能达到与管式扩散一致的水平。
磷源中添加柠檬酸组分,可以减轻活性组分与载体之间的相互作用,进而改善活性磷原子在硅片表面的分散状态,使磷在硅片表面分散更加均匀,获得更好的扩散均匀性。
采用复合磷源,磷源中增加磷酸二氢铵、磷酸氢二铵等组分,溶液中的产生的大量铵根离子,扩散过程中在硅片体内形成大量空穴,空穴辅助磷源扩散,使活性磷原子获得更深的扩散深度。
本发明的磷源低毒,且原料易获得,价格低廉。
采用本发明制备的磷源,结合链式设备进行快速磷扩散,可在较短的时间内达到与传统管式扩散一样的扩散水平,使链式扩散的工业化应用得以实现,解决了目前管式扩散设备及自动化昂贵的问题。
本发明的实施方式 具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供一种链式吸杂方法,包括如下步骤:
1)制备链式吸杂用磷源:将质量百分含量为2%~10%的磷源前驱体、1%~20%的聚乙二醇、1%~5%的柠檬酸、1%~10%有机溶剂以及余量的水投入反应器中,于25~150℃反应2~48h,过滤得到磷源;其中:
所述磷源前驱体选自磷酸、P 2O 5、磷酸二氢铵、磷酸氢二铵、多聚磷酸、磷酸酯中的一种或几种;
具体的,所述磷酸酯选自焦磷酸酯、聚磷酸酯、磷酸多酯、亚磷酸酯、连二磷酸酯、磷酸三乙酯、2-乙基己基磷酸酯、次磷酸酯中的一种或几种;
所述有机溶剂选自酯类有机溶剂、醇类有机溶剂、酰胺类有机溶剂中的一种或几种;
具体的,所述酯类有机溶剂选自甲酸酯类有机溶剂、乙酸酯类有机溶剂、甘油酯类有机溶剂、磷酸酯类有机溶剂、磷酯类有机溶剂、硅酸酯类有机溶剂中的一种或几种;
具体的,所述醇类有机溶剂选自甲醇、乙醇、异丙醇中的一种或几种;
2)在链式扩散设备中对表面沉积上述磷源的硅片进行扩磷吸杂(即磷源扩散和磷吸杂);  具体的:
采用旋涂、喷涂或滚涂方式在硅片表面沉积磷源,磷源的沉积厚度为1~2μm;
链式扩散设备中扩磷吸杂的工艺条件:温度为200~900℃,时间为10~200s,氛围为氮气或者氧气。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 链式吸杂用磷源,其特征在于,其各组分的质量百分含量为:磷源前驱体2%~10%,聚乙二醇1%~20%,柠檬酸1%~5%,有机溶剂1%~10%,余量为水。
  2. 根据权利要求1所述的链式吸杂用磷源,其特征在于,所述磷源前驱体选自磷酸、P 2O 5、磷酸二氢铵、磷酸氢二铵、多聚磷酸、磷酸酯中的一种或几种。
  3. 根据权利要求2所述的链式吸杂用磷源,其特征在于,所述磷酸酯选自焦磷酸酯、聚磷酸酯、磷酸多酯、亚磷酸酯、连二磷酸酯、磷酸三乙酯、2-乙基己基磷酸酯、次磷酸酯中的一种或几种。
  4. 根据权利要求1所述的链式吸杂用磷源,其特征在于,所述有机溶剂选自酯类有机溶剂、醇类有机溶剂、酰胺类有机溶剂中的一种或几种。
  5. 根据权利要求4所述的链式吸杂用磷源,其特征在于,所述酯类有机溶剂选自甲酸酯类有机溶剂、乙酸酯类有机溶剂、甘油酯类有机溶剂、磷酸酯类有机溶剂、磷酯类有机溶剂、硅酸酯类有机溶剂中的一种或几种。
  6. 根据权利要求4所述的链式吸杂用磷源,其特征在于,所述醇类有机溶剂选自甲醇、乙醇、异丙醇中的一种或几种。
  7. 权利要求1至6中任一项所述的链式吸杂用磷源的制备方法,其特征在于,包括如下步骤:将质量百分含量为2%~10%的磷源前驱体、1%~20%的聚乙二醇、1%~5%的柠檬酸、1%~10%有机溶剂以及余量的水投入反应器中,于25~150℃反应2~48h,过滤得到磷源。
  8. 链式吸杂方法,其特征在于,在链式设备中对表面沉积磷源的硅片进行扩磷吸杂,且磷源采用权利要求1至7中任一项所述的磷源。
  9. 权利要求8所述的链式吸杂方法,其特征在于,采用旋涂、喷涂或滚涂方式沉积磷源。
  10. 权利要求8所述的链式吸杂方法,其特征在于,磷源的沉积厚度为1~2μm;扩磷吸杂的工艺条件:温度为200~900℃,时间为10~200s,氛围为氮气或者氧气。
PCT/CN2023/093501 2022-06-27 2023-05-11 链式吸杂用磷源及其制备方法和应用 WO2024001540A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210735102.2A CN115148848A (zh) 2022-06-27 2022-06-27 链式吸杂用磷源及其制备方法和应用
CN202210735102.2 2022-06-27

Publications (1)

Publication Number Publication Date
WO2024001540A1 true WO2024001540A1 (zh) 2024-01-04

Family

ID=83409080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093501 WO2024001540A1 (zh) 2022-06-27 2023-05-11 链式吸杂用磷源及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115148848A (zh)
WO (1) WO2024001540A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148848A (zh) * 2022-06-27 2022-10-04 常州时创能源股份有限公司 链式吸杂用磷源及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218049A (ja) * 2002-01-21 2003-07-31 Sanken Electric Co Ltd 液状不純物源材料及びこれを使用した拡散領域形成方法
US20080197454A1 (en) * 2007-02-16 2008-08-21 Calisolar, Inc. Method and system for removing impurities from low-grade crystalline silicon wafers
CN109411570A (zh) * 2018-12-10 2019-03-01 华东理工大学 一种聚乙烯醇磷酸酯磷扩散源及其制备方法
CN112289895A (zh) * 2020-12-28 2021-01-29 常州时创能源股份有限公司 一种n型高效太阳能电池及制备方法
CN113257953A (zh) * 2021-04-18 2021-08-13 安徽华晟新能源科技有限公司 N型硅片的吸杂方法和磷吸杂设备
CN114342101A (zh) * 2019-09-26 2022-04-12 东丽株式会社 杂质扩散组合物、使用了该杂质扩散组合物的半导体元件的制造方法及太阳能电池的制造方法
CN115148848A (zh) * 2022-06-27 2022-10-04 常州时创能源股份有限公司 链式吸杂用磷源及其制备方法和应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494390B (zh) * 2010-11-29 2015-08-01 Nippon Synthetic Chem Ind 不純物擴散用塗佈液
JP2014103232A (ja) * 2012-11-20 2014-06-05 Toray Ind Inc 非感光性組成物およびこれを用いた不純物拡散層の製造方法
CN110610854A (zh) * 2018-06-15 2019-12-24 天津环鑫科技发展有限公司 一种扩散磷源的制备方法
CN110416355B (zh) * 2019-07-09 2020-10-27 浙江师范大学 一种溶液法制备晶体硅太阳能电池的工艺
CN112289894A (zh) * 2020-12-28 2021-01-29 常州时创能源股份有限公司 一种高效异质结太阳能电池及制备方法
CN114497274A (zh) * 2021-12-27 2022-05-13 中建材浚鑫(桐城)科技有限公司 一种perc电池的低成本分布式印刷金属化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003218049A (ja) * 2002-01-21 2003-07-31 Sanken Electric Co Ltd 液状不純物源材料及びこれを使用した拡散領域形成方法
US20080197454A1 (en) * 2007-02-16 2008-08-21 Calisolar, Inc. Method and system for removing impurities from low-grade crystalline silicon wafers
CN109411570A (zh) * 2018-12-10 2019-03-01 华东理工大学 一种聚乙烯醇磷酸酯磷扩散源及其制备方法
CN114342101A (zh) * 2019-09-26 2022-04-12 东丽株式会社 杂质扩散组合物、使用了该杂质扩散组合物的半导体元件的制造方法及太阳能电池的制造方法
CN112289895A (zh) * 2020-12-28 2021-01-29 常州时创能源股份有限公司 一种n型高效太阳能电池及制备方法
CN113257953A (zh) * 2021-04-18 2021-08-13 安徽华晟新能源科技有限公司 N型硅片的吸杂方法和磷吸杂设备
CN115148848A (zh) * 2022-06-27 2022-10-04 常州时创能源股份有限公司 链式吸杂用磷源及其制备方法和应用

Also Published As

Publication number Publication date
CN115148848A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
KR101777277B1 (ko) 실리콘 웨이퍼들 상에 n+pp+ 또는 p+nn+ 구조를 준비하는 방법
CN112289895B (zh) 一种n型高效太阳能电池及制备方法
WO2024001540A1 (zh) 链式吸杂用磷源及其制备方法和应用
CN101587919A (zh) 晶体硅太阳能电池选择性发射结的制备方法
CN110164759A (zh) 一种区域性分层沉积扩散工艺
CN109449246A (zh) 一种硅晶体片磷扩散方法
CN101944555A (zh) 铝硼共掺的硅太阳电池背场及其制作方法
Marrero et al. Optimization of sodium carbonate texturization on large-area crystalline silicon solar cells
CN102130211B (zh) 一种改善太阳能电池表面扩散的方法
CN102005508B (zh) 一种连续制备晶体硅太阳能电池pn结及减反膜的方法
Untila et al. Passivation of boron-doped р+-Si emitters in the (p+ nn+) Si solar cell structure with AlOx grown by ultrasonic spray pyrolysis
CN102903785A (zh) 一种采用增氢钝化提高太阳能电池片转换效率的方法
WO2022001294A1 (zh) 激光 se 电池的制备方法
CN108110090B (zh) 一种n型双面电池制备方法
CN103668467A (zh) 一种多晶硅片制绒添加剂及其应用
CN110518075A (zh) 一种黑硅钝化膜、其制备方法及应用
CN102290490A (zh) 一种双层膜钝化太阳能电池的制备工艺
CN105449103A (zh) 一种薄膜晶硅钙钛矿异质结太阳电池及其制备方法
US20150083209A1 (en) Coatable diffusing agent composition, method for producing coatable diffusing agent composition, solar cell, and method for manufacturing solar cell
CN102315309A (zh) 一种太阳能电池片的制备方法
CN106784131A (zh) 基于n型硅片的太阳能电池片及其制备方法
CN103746008A (zh) 一种太阳能电池用减反射层及其制备工艺
KR20140021805A (ko) 이성분계 나노입자를 포함하는 슬러리의 숙성 단계가 도입된 ci(g)s계 박막의 제조방법 및 그 방법에 의해 제조된 ci(g)s계 박막
CN102082204B (zh) 一种减少槽式去psg设备产生水渍的方法
CN102110740B (zh) 定向凝固多晶硅太阳电池的两次热处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23829726

Country of ref document: EP

Kind code of ref document: A1