WO2024001084A1 - 气液分离器及空调系统 - Google Patents

气液分离器及空调系统 Download PDF

Info

Publication number
WO2024001084A1
WO2024001084A1 PCT/CN2022/140416 CN2022140416W WO2024001084A1 WO 2024001084 A1 WO2024001084 A1 WO 2024001084A1 CN 2022140416 W CN2022140416 W CN 2022140416W WO 2024001084 A1 WO2024001084 A1 WO 2024001084A1
Authority
WO
WIPO (PCT)
Prior art keywords
return
gas
plate
flow
liquid
Prior art date
Application number
PCT/CN2022/140416
Other languages
English (en)
French (fr)
Inventor
覃小军
许霖杰
谢观晟
谢建
徐金秋
丁天毅
耿纪鹏
Original Assignee
浙江银轮机械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江银轮机械股份有限公司 filed Critical 浙江银轮机械股份有限公司
Publication of WO2024001084A1 publication Critical patent/WO2024001084A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present application relates to the technical field of air conditioning equipment, and in particular to a gas-liquid separator and an air conditioning system.
  • the gas-liquid separator is generally installed between the evaporator and the compressor. That is, the refrigerant enters the gas-liquid separator from the evaporator and then enters the compressor. It should be noted that an important function of the gas-liquid separator is to separate the gas-liquid two-phase refrigerant flowing out from the evaporator, thereby minimizing the possibility of liquid refrigerant being sucked into the compressor and preventing the liquid refrigerant from being sucked into the compressor. Causes liquid shock to the compressor. Therefore, the gas-liquid separator needs to separate the liquid refrigerant from the gas-liquid two-phase refrigerant as much as possible. In order to achieve the above purpose, the relevant gas-liquid separator usually designs a longer U-shaped tube to achieve the gas-liquid separation of the refrigerant. , however, the U-shaped tube is too large and has poor gas-liquid separation effect.
  • a gas-liquid separator and an air conditioning system are provided.
  • the gas-liquid separator provided by the present application is provided with a gas-liquid separation channel extending along a first direction.
  • One or more backflow structures are distributed along the first direction in the gas-liquid separation channel.
  • the backflow structure includes a gas-liquid separation channel extending along the first direction.
  • the first return flow plate and the second return flow plate are arranged in sequence.
  • the first return flow plate is provided with a first overflow hole and a first return flow surface.
  • the second return flow plate is provided with a second overflow hole and a second backflow surface.
  • the first overflow holes and the second return flow surface are distributed correspondingly along the first direction
  • the second throughflow holes and the first return flow surface are distributed correspondingly along the first direction.
  • the second return surface can return the refrigerant entering through the first overflow hole to the first return surface, and the first return surface can return the returned refrigerant to the second overflow hole.
  • the edge of the first flow hole is provided with a first guide plate extending along the second direction, and the angle a between the second direction and the normal direction of the second return surface satisfies The following relationship is: 0° ⁇ a ⁇ 90°.
  • the first overflow hole is arranged along the vertical direction, and the bottom of the first overflow hole is provided with a first liquid baffle plate arranged vertically; and/or the second overflow hole is arranged along the vertical direction. It is arranged in the vertical direction, and the bottom of the second overflow hole is provided with a second liquid baffle plate arranged vertically.
  • the return flow structure further includes a third return flow plate, the first return flow plate, the second return flow plate and the third return flow plate are sequentially distributed along the first direction, and the third return flow plate is provided with The third overflow hole and the third backflow surface are provided with a backflow surface at one end of the second backflow plate away from the second backflow surface.
  • the third overflow hole and the backflow surface correspond along the first direction.
  • Distributed, the third return flow surface and the second overflow hole are distributed correspondingly along the first direction.
  • the third return flow surface can return the refrigerant entering through the second overflow hole to the back return flow surface, and the back return flow surface can return the refrigerant flowing back from the third return flow surface to the third overflow hole.
  • the edge of the second overflow hole is provided with a second guide plate extending along the third direction, and the angle b between the third direction and the normal direction of the third return surface satisfies The following relational expression: 0° ⁇ b ⁇ 90°.
  • the third flow hole is arranged along a vertical direction, and a third liquid baffle plate is arranged vertically at the bottom of the third flow hole.
  • the gas-liquid separator includes a casing, a partition, an inlet pipe and an air outlet pipe.
  • the casing is provided with an accommodation cavity.
  • One end of the air outlet pipe is inserted into the accommodation cavity, and the other end extends out of the accommodation cavity.
  • One end of the partition plate Directly or indirectly connected to the outer wall of the air outlet pipe, the other end extends in a direction close to the side wall of the accommodation cavity to separate the accommodation cavity into a first cavity and a second cavity, the inner wall of the first cavity, the outer wall of the air outlet pipe and the partition
  • the side walls together form a gas-liquid separation channel
  • the first chamber is provided with an inlet that communicates with the inlet pipe
  • the partition plate is provided with a communication port that communicates with the first chamber and the second chamber.
  • a liquid outlet gap connecting the first chamber and the second chamber is provided between the partition plate and the inner wall of the accommodation chamber.
  • the end surface of the partition plate close to the first chamber is inclined in a direction away from the first chamber from an end far away from the liquid outlet gap to an end close to the liquid outlet gap.
  • the inlet and the communication port are provided at opposite ends of the first chamber, and the two gas-liquid separation channels located between the inlet and the communication port are defined as the first channel and the second channel respectively.
  • one or more backflow structures are respectively provided in the first channel and the second channel, and the refrigerant can enter the first channel and the second channel respectively from the inlet and enter the second cavity from the connecting port.
  • a side of the air outlet pipe facing the inlet is provided with a diverting protrusion.
  • the cross-section of the diverting protrusion is tapered, and the tip of the diverting protrusion faces the inlet.
  • This application also provides an air conditioning system, which includes the gas-liquid separator described in any of the above embodiments.
  • Figure 1 is a schematic diagram of the overall structure of a gas-liquid separator according to an embodiment of the present application.
  • Figure 2 is an exploded view of a gas-liquid separator according to an embodiment of the present application.
  • Figure 3 is a partial structural schematic diagram of a gas-liquid separator according to an embodiment of the present application.
  • Figure 4 is a top view of the gas-liquid separator shown in Figure 3.
  • Figure 5 is a schematic diagram of an air conditioning system according to an embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is “above” the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • the gas-liquid separator 10 is provided with a gas-liquid separation channel 100 extending along a first direction.
  • One or more backflow structures 200 are distributed along the first direction in the gas-liquid separation channel 100.
  • the backflow structure 200 includes The first return flow plate 210 and the second return flow plate 220 are sequentially distributed along the first direction.
  • the first return flow plate 210 is provided with a first overflow hole 211 and a first return flow surface 212.
  • the second return flow plate 220 A second overflow hole 221 and a second return surface 222 are provided.
  • the first overflow hole 211 and the second return surface 222 are correspondingly distributed along the first direction, and the second overflow hole 221 and the first return surface are 212 are correspondingly distributed along the first direction.
  • the second return surface 222 can return the refrigerant entering through the first through-flow hole 211 to the first return surface 212.
  • the first return surface 212 can return the returned refrigerant. flows to the second overflow hole 221.
  • the first direction may be a direction along a certain straight line, a direction along a certain curve, or a specific direction extending along any shape, which is not limited here.
  • the gas-liquid separator 10 is provided with a gas-liquid separation channel 100 extending along the first direction, and one or more backflow structures 200 are distributed along the first direction in the gas-liquid separation channel 100 . Therefore, when the refrigerant flows in the gas-liquid separation channel 100, it will pass through one or more return flow structures 200 along the first direction.
  • the reflow structure 200 includes a first reflow plate 210 and a second reflow plate 220 sequentially distributed along the first direction.
  • the first reflow plate 210 is provided with a first overflow hole 211 and a first reflow surface. 212.
  • the second return flow plate 220 is provided with a second overflow hole 221 and a second return flow surface 222.
  • the first through-flow holes 211 and the second return flow surface 222 are distributed correspondingly along the first direction
  • the second through-flow holes 221 and the first return flow surface 212 are distributed correspondingly along the first direction.
  • the return surface 222 can return the refrigerant entering through the first overflow hole 211 to the first return surface 212
  • the first return surface 212 can return the return refrigerant to the second overflow hole 221 .
  • the second return surface 222 of the second return plate 220 returns the refrigerant to The first return surface 212 of the first return plate 210 then returns the refrigerant to the second overflow hole 221 of the second return plate 220. Finally, the refrigerant passes through the second overflow hole. 221 exits the reflow structure 200.
  • the residence time of the refrigerant in the gas-liquid separation channel 100 is significantly increased, and the contact area between the refrigerant and the gas-liquid separator 10 is significantly increased, thereby facilitating the adsorption of the liquid refrigerant to the first return plate 210 and the second return plate 210 .
  • the gas-liquid separation effect of the gas-liquid separator 10 is significantly improved.
  • one or more backflow structures 200 are arranged in the gas-liquid separation channel 100 to achieve better results. It is not necessary to lengthen the gas-liquid separation channel 100 to achieve better gas-liquid separation effect. Therefore, the volume of the gas-liquid separator 10 provided by the present application is smaller, and the installation of the gas-liquid separator 10 is easier.
  • the reflow structure 200 also includes a third reflow plate 230, a first reflow plate 210, a second reflow plate 220 and a third reflow plate.
  • 230 are distributed sequentially along the first direction
  • the third return plate 230 is provided with a third overflow hole 231 and a third return surface 232
  • the end of the second return plate 220 away from the second return surface 222 is provided with a back
  • the return surface 223, the third through-flow hole 231 and the back-return surface 223 are distributed correspondingly along the first direction
  • the third return surface 232 and the second through-flow hole 221 are distributed correspondingly along the first direction.
  • the return surface 232 can return the refrigerant that enters through the second through-flow hole 221 to the back return surface 223, and the back return surface 223 can return the refrigerant that flows back from the third return surface 232 to the third return surface.
  • the third return surface 232 of the third return plate 230 returns the refrigerant to The back-flow surface 223 of the second return plate 220 then returns the refrigerant to the third overflow hole 231 of the third return plate 230. Finally, the refrigerant flows through the third overflow hole. 231 exits the reflow structure 200.
  • the gas-liquid two-phase refrigerant is significantly improved
  • the contact area and contact time between 220 and the third return plate 230 that is, the residence time of the refrigerant in the gas-liquid separation channel 100 is significantly increased, and the contact area between the refrigerant and the gas-liquid separator 10 is significantly increased, thereby having It is beneficial for the liquid refrigerant to be adsorbed on the first return plate 210 , the second return plate 220 , the third return plate 230 and the inner walls of the gas-liquid separation channel 100 , thereby significantly improving the gas-liquid separation effect of the gas-liquid separator 10 .
  • the edge of the first flow hole 211 is provided with a first guide plate 240 extending along the second direction, and the second direction is connected to the second return surface.
  • the angle a between the normal directions of 222 satisfies the following relationship: 0° ⁇ a ⁇ 90°. Optionally, 0° ⁇ a ⁇ 30°.
  • the normal direction of the second return flow surface 222 refers to the direction of a vector perpendicular to the tangential direction of the second return flow surface 222 .
  • the angle a between the second direction and the normal direction of the second reflow surface 222 satisfies the following relationship: 0° ⁇ a ⁇ 90°, that is, the angle a between the second direction and the normal direction of the second reflow surface 222 is
  • the included angle a is an acute angle. Therefore, after the refrigerant impacts the second return surface 222 , the flow direction of the return refrigerant and the second direction are mirror symmetrical with respect to the normal direction of the second return surface 222 . In this way, it is more conducive for the refrigerant to flow back to the first return surface 212 through the second return surface 222 along the first guide plate 240 .
  • the refrigerant returning from the second return surface 222 will not collide with the refrigerant entering from the first overflow hole 211, thereby avoiding turbulence during the return flow of the refrigerant from the second return surface 222. flow, thus avoiding excessive pressure drop of the refrigerant.
  • one end of the first baffle 240 is connected to the first return plate 210 , and the other end is directed toward the second return plate 220 along the second direction. extend.
  • the edge of the second flow hole 221 is provided with a second guide plate 250 extending along the third direction, and the third direction is connected to the third direction.
  • the angle b between the normal directions of the return flow surface 232 satisfies the following relationship: 0° ⁇ b ⁇ 90°. Optionally, 0° ⁇ b ⁇ 30°.
  • the normal direction of the third return flow surface 232 refers to the direction of a vector perpendicular to the tangential direction of the third return flow surface 232 .
  • the angle b between the third direction and the normal direction of the third reflow surface 232 satisfies the following relationship: 0° ⁇ b ⁇ 90°, that is, the angle b between the third direction and the normal direction of the third reflow surface 232 is The angle b between is an acute angle. Therefore, after the refrigerant impacts the third return surface 232 , the flow direction of the return refrigerant and the third direction are mirror symmetrical with respect to the normal direction of the third return surface 232 . In this way, it is more conducive for the refrigerant to flow back along the second guide plate 250 through the third return surface 232 to the back return surface 223 .
  • the refrigerant returning from the third return surface 232 will not collide with the refrigerant entering from the second overflow hole 221, thereby avoiding turbulence during the return flow of the refrigerant from the third return surface 232. flow, thus avoiding excessive pressure drop of the refrigerant.
  • one end of the second baffle 250 is connected to the second return plate 220 , and the other end is oriented along the third direction toward the direction close to the third return plate 230 extend.
  • an end of the second deflector plate 250 away from the third return plate 230 extends toward a direction closer to the first return plate 210 . In this way, the flow guiding effect of the second flow guide plate 250 is further enhanced.
  • a third guide plate 290 is provided on the edge of the third flow hole 231 .
  • the first overflow hole 211 is arranged along the vertical direction, and the bottom of the first overflow hole 211 is provided with a vertically arranged first liquid baffle 260.
  • the liquid refrigerant is usually concentrated below the refrigerant due to its high density. Therefore, by arranging the first liquid baffle plate 260 arranged vertically at the bottom of the first flow hole 211, it is beneficial to increase the flow rate of the refrigerant. The contact time between the refrigerant and the gas-liquid separator 10 is increased, which is beneficial to improving the separation effect of the liquid refrigerant.
  • the second overflow hole 221 is arranged along the vertical direction, and the bottom of the second overflow hole 221 is provided with a vertically arranged second liquid baffle 270 .
  • the liquid refrigerant is usually concentrated below the refrigerant due to its high density. Therefore, by arranging the vertical second liquid baffle 270 at the bottom of the second flow hole 221, it is beneficial to increase the flow rate of the refrigerant. The contact time between the refrigerant and the gas-liquid separator 10 is increased, which is beneficial to improving the separation effect of the liquid refrigerant.
  • the third flow hole 231 is arranged along the vertical direction, and the bottom of the third flow hole 231 is provided with a vertically arranged third liquid barrier. Plate 280.
  • the liquid refrigerant is usually concentrated below the refrigerant due to its high density. Therefore, by arranging the third liquid baffle plate 280 arranged vertically at the bottom of the third flow hole 231, it is beneficial to increase the flow rate of the refrigerant. The contact time between the refrigerant and the gas-liquid separator 10 is increased, which is beneficial to improving the separation effect of the liquid refrigerant.
  • the gas-liquid separator 10 includes a shell 300, a partition 400, an inlet pipe 500 and an air outlet pipe 600.
  • the shell 300 is provided with an accommodation cavity 310, and one end of the air outlet pipe 600 is inserted into the accommodation cavity. In the cavity 310, the other end extends out of the accommodation cavity 310.
  • One end of the partition 400 is directly or indirectly connected to the outer wall of the air outlet pipe 600, and the other end extends in a direction close to the side wall of the accommodation cavity 310 to divide the accommodation cavity 310 into a first cavity. 311 and the second chamber 312, the inner wall of the first chamber 311, the outer wall of the air outlet pipe 600 and the side wall of the partition 400 together form the gas-liquid separation channel 100.
  • the first cavity 311 is provided with an inlet 313 connected to the inlet pipe 500
  • the partition 400 is provided with a communication opening 410 connected to the first cavity 311 and the second cavity 312 .
  • the gas-liquid two-phase refrigerant enters the gas-liquid separation channel 100 from the inlet pipe 500 through the inlet 313. After that, the refrigerant is separated into gas and liquid under the action of the return flow structure 200, and then, the refrigerant enters the third channel through the communication port 410.
  • There are two chambers 312 and the liquid refrigerant is deposited at the bottom of the second chamber 312 , and the gaseous refrigerant leaves the second chamber 312 through the air outlet pipe 600 , thereby realizing gas-liquid separation of the gas-liquid two-phase refrigerant.
  • the shell 300 includes a cylinder 320 and a sealing cover 330.
  • the return flow structure 200 and the partition 400 are both provided in the cylinder 320.
  • the sealing cover 330 is sealingly provided at the opening of the cylinder 320.
  • the inner wall of the sealing cover 330 and the cylinder are sealed.
  • the inner wall of the body 320 , the outer wall of the air outlet pipe 600 and the side wall of the partition 400 together form the gas-liquid separation channel 100 .
  • a liquid outlet gap 314 is provided between the partition 400 and the inner wall of the accommodation cavity 310 to communicate with the first cavity 311 and the second cavity 312 . In this way, the liquid refrigerant can enter the second chamber 312 from the first chamber 311 through the liquid outlet gap 314 .
  • the end surface of the partition 400 close to the first cavity 311 is inclined in a direction away from the first cavity 311 from an end far away from the liquid outlet gap 314 to an end close to the liquid outlet gap 314 .
  • the liquid refrigerant accumulated on the end surface of the partition 400 close to the first cavity 311 is facilitated to merge into the liquid outlet gap 314 and enter the second cavity 312 from the first cavity 311 through the liquid outlet gap 314 .
  • the partition 400 is spaced apart from the inner wall of the accommodation cavity 310 . In this way, the difficulty of assembling the partition 400 and the housing 300 is reduced, and the partition 400 is prevented from interfering with the inner wall of the housing 300 during assembly.
  • the inlet 313 and the communication port 410 are provided at opposite ends of the first chamber 311 , and define two strips between the inlet 313 and the communication port 410 .
  • the gas-liquid separation channels 100 are respectively a first channel 110 and a second channel 120, and one or more return structures 200 are respectively provided in the first channel 110 and the second channel 120, and the refrigerant can enter the third channel from the inlet 313 respectively.
  • a channel 110 and a second channel 120 enter the second cavity 312 from the communication port 410 .
  • a diverting protrusion 610 is provided on the side of the air outlet pipe 600 facing the inlet 313.
  • the diverting protrusion 610 has a tapered cross-section, and the diverting protrusion 610 has a tapered cross-section.
  • the tip of the lift 610 faces the inlet 313. In this way, the refrigerant entering from the inlet 313 is evenly divided into the first channel 110 and the second channel 120 through the diverting effect of the diverting protrusion 610 .
  • the outlet pipe 600 is provided with a connector 700, and the first return plate 210, the second return plate 220 and the third return plate 230 are arranged around A diverting protrusion 610 is formed on the peripheral side of the connector 700 and protrudes toward the inlet 313 from the side wall of the connector 700 facing the inlet 313 . In this way, the processing difficulty of the diverting protrusion 610 is greatly reduced.
  • this application also provides an air conditioning system 20 , which includes the gas-liquid separator 10 described in any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Separating Particles In Gases By Inertia (AREA)

Abstract

一种气液分离器及空调系统,气液分离器(10)设有沿着第一方向延伸的气液分离通道(100),气液分离通道(100)内沿着第一方向分布有一个或多个返流结构(200),返流结构(200)包括沿着第一方向依次分布的第一返流板(210)和第二返流板(220),第一返流板(210)设有第一过流孔(211)和第一返流面(212),第二返流板(220)设有第二过流孔(221)和第二返流面(222),第一过流孔(211)和第二返流面(222)沿着第一方向对应分布,且第二过流孔(221)和第一返流面(212)沿着第一方向对应分布,显著提高了气液分离效果。

Description

气液分离器及空调系统
相关申请
本申请要求2022年6月29日申请的,申请号为202210751361.4,发明名称为“气液分离器及空调系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调设备技术领域,特别是涉及一种气液分离器及空调系统。
背景技术
在新能源汽车的空调系统中,气液分离器一般设置于蒸发器和压缩机之间,也即,冷媒从蒸发器进入气液分离器之后再进入压缩机。需要说明的是,气液分离器的一个重要功能便是对从蒸发器流出的气液两相的冷媒进行气液分离,从而最大限度地降低液态冷媒被吸入压缩机的可能,防止液态的冷媒对压缩机造成液击。因此,气液分离器需要尽可能地将液态冷媒从气液两相的冷媒中分离,为了实现上述目的,相关的气液分离器通常会设计长度较长的U型管实现冷媒的气液分离,但是,U型管体积过大且气液分离的效果较差。
发明内容
根据本申请的各种实施例,提供一种气液分离器及空调系统。
本申请提供的气液分离器设有沿着第一方向延伸的气液分离通道,气液分离通道内沿着第一方向分布有一个或多个返流结构,返流结构包括沿着第一方向依次分布的第一返流板和第二返流板,第一返流板设有第一过流孔和第一返流面,第二返流板设有第二过流孔和第二返流面,第一过流孔和第二返流面沿着第一方向对应分布,且第二过流孔和第一返流面沿着第一方向对应分布。第二返流面能够将通过第一过流孔进入的冷媒返流至第一返流面,第一返流面能够将返流的冷媒返流至第二过流孔。
在其中一个实施例中,第一过流孔的边缘设有沿着第二方向延伸的第一导流板,并且,第二方向与第二返流面的法向之间的夹角a满足以下关系式:0°<a<90°。
在其中一个实施例中,第一过流孔沿着竖直方向设置,且第一过流孔的底部设有竖直设置的第一挡液板;及/或,第二过流孔沿着竖直方向设置,且第二过流孔的底部设有竖直设置的第二挡液板。
在其中一个实施例中,返流结构还包括第三返流板,第一返流板、第二返流板和第三返流板沿着第一方向依次分布,第三返流板设有第三过流孔和第三返流面,第二返流板背离第二返流面的一端设有背向返流面,第三过流孔和背向返流面沿着第一方向对应分布,第三返流面和第二过流孔沿着第一方向对应分布。第三返流面能够将通过第二过流孔进入的冷媒返流至背向返流面,且背向返流面能够将第三返流面返流的冷媒返流至第三过流孔。
在其中一个实施例中,第二过流孔的边缘设有沿着第三方向延伸的第二导流板,并且,第三方向与第三返流面的法向之间的夹角b满足以下关系式:0°<b<90°。
在其中一个实施例中,第三过流孔沿着竖直方向设置,且第三过流孔的底部设有竖直设置的第三挡液板。
在其中一个实施例中,气液分离器包括外壳、隔板、进流管以及出气管,外壳设有容纳腔,出气管一端插置于容纳腔内,另一端伸出容纳腔,隔板一端直接或者间接连接出气管的外壁,另一端朝向靠近容纳腔的侧壁的方向延伸,以将容纳腔分隔成第一腔和第二腔,第一腔的内壁、出气管的外壁以及隔板的侧壁共同围设形成气液分离通道,并且,第一腔设有连通进流管的进流口,隔板设有连通第一腔和第二腔的连通口。
在其中一个实施例中,隔板与容纳腔内壁之间设有连通第一腔和第二腔的出液间隙。隔板靠近第一腔的一侧端面从远离出液间隙的一端至靠近出液间隙的一端朝向远离第一腔的方向倾斜设置。
在其中一个实施例中,进流口和连通口设于第一腔相对的两端,且定义位于进流口和连通口之间的两条气液分离通道分别为第一通道和第二通道,且第一通道和第二通道内分别设有一个或多个返流结构,冷媒能够从进流口分别进入第一通道和第二通道并从连通口进入第二腔。出气管正对进流口的一侧设有分流凸起,分流凸起的截面呈锥形,且分流凸起的尖端朝向进流口。
本申请还提供一种空调系统,该空调系统包括以上任意一个实施例所述的气液分离器。
本申请的一个或多个实施例的细节在以下附图和描述中提出,以使本申请的其他特征、目的和优点更加简明易懂。
附图说明
为了更好地描述和说明这里公开的本申请的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。
图1为本申请一实施例的气液分离器的整体结构示意图。
图2为本申请一实施例的气液分离器的分解图。
图3为本申请一实施例的气液分离器的局部结构示意图。
图4为图3所示气液分离器的俯视图。
图5为本申请一实施例的空调系统的示意图。
附图标记:10、气液分离器;20、空调系统;100、气液分离通道;110、第一通道;120、第二通道;200、返流结构;210、第一返流板;211、第一过流孔;212、第一返流面;220、第二返流板;221、第二过流孔;222、第二返流面;223、背向返流面;230、第三返流板;231、第三过流孔;232、第三返流面;240、第一导流板;250、第二导流板;260、第一挡液板;270、第二挡液板;280、第三挡液板;290、第三导流板;300、外壳;310、容纳腔;311、第一腔;312、第二腔;313、进流口;314、出液间隙;320、筒体;330、密封盖;400、隔板;410、连通口;500、进流管;600、出气管;610、分流凸起;700、连接头。
具体实施方式
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征 在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1-图4,为了解决气液分离器体积过大且气液分离的效果较差的问题,本申请提供一种气液分离器及空调系统。具体地,气液分离器10设有沿着第一方向延伸的气液分离通道100,气液分离通道100内沿着第一方向分布有一个或多个返流结构200,返流结构200包括沿着第一方向依次分布的第一返流板210和第二返流板220,第一返流板210设有第一过流孔211和第一返流面212,第二返流板220设有第二过流孔221和第二返流面222,第一过流孔211和第二返流面222沿着第一方向对应分布,且第二过流孔221和第一返流面212沿着第一方向对应分布,第二返流面222能够将通过第一过流孔211进入的冷媒返流至第一返流面212,第一返流面212能够将返流的冷媒返流至第二过流孔221。
需要说明的是,第一方向可以是沿着某一直线的方向,还可以是沿着某一曲线的方向,还可以是沿着任意形状延伸的特定方向,在此不作一一限定。
由于气液分离器10设有沿着第一方向延伸的气液分离通道100,并且,气液分离通道100内沿着第一方向分布有一个或多个返流结构200。因此,冷媒在气液分离通道100内流动时,会沿着第一方向依次通过一个或多个返流结构200。
进一步地,返流结构200包括沿着第一方向依次分布的第一返流板210和第二返流板220,第一返流板210设有第一过流孔211和第一返流面212,对应地,第二返流板220设有第二过流孔221和第二返流面222。需要注意的是,第一过流孔211和第二返流面222沿着第一方向对应分布,且第二过流孔221和第一返流面212沿着第一方向对应分布,第二返流面222能够将通过第一过流孔211进入的冷媒返流至第一返流面212,且第一返流 面212能够将返流的冷媒返流至第二过流孔221。
如此,当冷媒从第一返流板210的第一过流孔211沿着第一方向经过第二返流板220的第二返流面222时,第二返流面222将冷媒返流至第一返流板210的第一返流面212,之后,第一返流面212将冷媒返流至第二返流板220的第二过流孔221,最后,冷媒从第二过流孔221离开返流结构200。通过第一返流板210和第二返流板220的多次返流作用,显著提高了气液两相的冷媒同第一返流板210和第二返流板220的接触面积和接触时间,也即,显著提高了冷媒在气液分离通道100内的停留时间,以及,显著提高了冷媒和气液分离器10的接触面积,从而有利于液态冷媒吸附于第一返流板210、第二返流板220以及气液分离通道100的内壁上,进而显著提高了气液分离器10的气液分离效果。
并且,相对于相关U型管设计,为了实现较好的气液分离效果需要设计长度较长的U型管,本申请通过在气液分离通道100内布置一个或多个返流结构200实现更好的气液分离效果,而不需要通过加长气液分离通道100实现更好的气液分离效果。因此,本申请提供的气液分离器10的体积较小,更容易实现气液分离器10的安装。
进一步地,在一实施例中,如图2-图4所示,返流结构200还包括第三返流板230,第一返流板210、第二返流板220和第三返流板230沿着第一方向依次分布,第三返流板230设有第三过流孔231和第三返流面232,第二返流板220背离第二返流面222的一端设有背向返流面223,第三过流孔231和背向返流面223沿着第一方向对应分布,且第三返流面232和第二过流孔221沿着第一方向对应分布,第三返流面232能够将通过第二过流孔221进入的冷媒返流至背向返流面223,且背向返流面223能够将第三返流面232返流的冷媒返流至第三过流孔231。
如此,当冷媒从第二返流板220的第二过流孔221沿着第一方向经过第三返流板230的第三返流面232时,第三返流面232将冷媒返流至第二返流板220的背向返流面223,之后,背向返流面223将冷媒返流至第三返流板230的第三过流孔231,最后,冷媒从第三过流孔231离开返流结构200。通过第一返流板210、第二返流板220和第三返流板230的多次返流作用,显著提高了气液两相的冷媒同第一返流板210、第二返流板220和第三返流板230的接触面积和接触时间,也即,显著提高了冷媒在气液分离通道100内的停留时间,以及,显著提高了冷媒和气液分离器10的接触面积,从而有利于液态冷媒吸附于第一返流板210、第二返流板220、第三返流板230以及气液分离通道100的内壁上,进而显著提高了气液分离器10的气液分离效果。
在一实施例中,如图2-图4所示,第一过流孔211的边缘设有沿着第二方向延伸的第一导流板240,并且,第二方向与第二返流面222的法向之间的夹角a满足以下关系式: 0°<a<90°。可选地,0°<a<30°。
需要说明的是,第二返流面222的法向指的是与第二返流面222的切向垂直的向量的方向。
由于第二方向与第二返流面222的法向之间的夹角a满足以下关系式:0°<a<90°,也即,第二方向与第二返流面222的法向之间的夹角a为锐角,因此,冷媒冲击第二返流面222之后,返流的冷媒的流动方向与第二方向关于第二返流面222的法向呈镜像对称。如此,更加有利于冷媒沿着第一导流板240通过第二返流面222返流至第一返流面212。并且,如此设置,从第二返流面222返流的冷媒不会与从第一过流孔211进入的冷媒发生对冲,从而避免了冷媒从第二返流面222返流的过程中发生紊流,进而避免了冷媒的压降过大。
进一步地,在一实施例中,如图2-图4所示,第一导流板240一端连接第一返流板210,另一端沿着第二方向朝向靠近第二返流板220的方向延伸。
同样地,在一实施例中,如图2-图4所示,第二过流孔221的边缘设有沿着第三方向延伸的第二导流板250,并且,第三方向与第三返流面232的法向之间的夹角b满足以下关系式:0°<b<90°。可选地,0°<b<30°。
需要说明的是,第三返流面232的法向指的是与第三返流面232的切向垂直的向量的方向。
由于第三方向与第三返流面232的法向之间的夹角b满足以下关系式:0°<b<90°,也即,第三方向与第三返流面232的法向之间的夹角b为锐角,因此,冷媒冲击第三返流面232之后,返流的冷媒的流动方向与第三方向关于第三返流面232的法向呈镜像对称。如此,更加有利于冷媒沿着第二导流板250通过第三返流面232返流至背向返流面223。并且,如此设置,从第三返流面232返流的冷媒不会与从第二过流孔221进入的冷媒发生对冲,从而避免了冷媒从第三返流面232返流的过程中发生紊流,进而避免了冷媒的压降过大。
进一步地,在一实施例中,如图2-图4所示,第二导流板250一端连接第二返流板220,另一端沿着第三方向朝向靠近第三返流板230的方向延伸。
更进一步地,在一实施例中,如图2-图4所示,第二导流板250远离第三返流板230的一端朝向靠近第一返流板210的方向延伸。如此,进一步增强了第二导流板250的导流效果。
同样地,在一实施例中,第三过流孔231的边缘设有第三导流板290。
在一实施例中,如图2-图4所示,第一过流孔211沿着竖直方向设置,且第一过流孔 211的底部设有竖直设置的第一挡液板260。
通常,气液两相的冷媒中,液态冷媒由于密度较大通常集中于冷媒的下方,因此,通过在第一过流孔211的底部设置竖直设置的第一挡液板260,有利于增大冷媒和气液分离器10的接触时间,进而有利于提高液态冷媒的分离效果。
在一实施例中,如图2-图4所示,第二过流孔221沿着竖直方向设置,且第二过流孔221的底部设有竖直设置的第二挡液板270。
通常,气液两相的冷媒中,液态冷媒由于密度较大通常集中于冷媒的下方,因此,通过在第二过流孔221的底部设置竖直设置的第二挡液板270,有利于增大冷媒和气液分离器10的接触时间,进而有利于提高液态冷媒的分离效果。
同样的,在一实施例中,如图2-图4所示,第三过流孔231沿着竖直方向设置,且第三过流孔231的底部设有竖直设置的第三挡液板280。
通常,气液两相的冷媒中,液态冷媒由于密度较大通常集中于冷媒的下方,因此,通过在第三过流孔231的底部设置竖直设置的第三挡液板280,有利于增大冷媒和气液分离器10的接触时间,进而有利于提高液态冷媒的分离效果。
在一实施例中,如图2所示,气液分离器10包括外壳300、隔板400、进流管500以及出气管600,外壳300设有容纳腔310,出气管600一端插置于容纳腔310内,另一端伸出容纳腔310,隔板400一端直接或间接连接出气管600的外壁,另一端朝向靠近容纳腔310的侧壁的方向延伸,以将容纳腔310分隔成第一腔311和第二腔312,第一腔311的内壁、出气管600的外壁以及隔板400的侧壁共同围设形成气液分离通道100。并且,第一腔311设有连通进流管500的进流口313,隔板400设有连通第一腔311和第二腔312的连通口410。
如此,气液两相的冷媒从进流管500通过进流口313进入气液分离通道100,之后,冷媒在返流结构200的作用下发生气液分离,然后,冷媒通过连通口410进入第二腔312,并且,液态的冷媒沉积在第二腔312的底部,气态的冷媒通过出气管600离开第二腔312,从而实现了气液两相的冷媒的气液分离。
进一步地,外壳300包括筒体320和密封盖330,返流结构200和隔板400均设于筒体320内,密封盖330密封设置于筒体320的开口处,密封盖330的内壁、筒体320的内壁、出气管600的外壁以及隔板400的侧壁共同围设形成气液分离通道100。
进一步地,在一实施例中,如图2-图4所示,隔板400与容纳腔310内壁之间设有连通第一腔311和第二腔312的出液间隙314。如此,液态的冷媒能够通过出液间隙314从第一腔311进入第二腔312。
更进一步地,在一实施例中,隔板400靠近第一腔311的一侧端面从远离出液间隙314的一端至靠近出液间隙314的一端朝向远离第一腔311的方向倾斜设置。如此,有利于聚集在隔板400靠近第一腔311的一侧端面上的液态冷媒汇入出液间隙314,并通过出液间隙314从第一腔311进入第二腔312。
在一实施例中,隔板400与容纳腔310的内壁之间间隔设置。如此,降低了隔板400和外壳300的装配难度,避免隔板400在装配时与外壳300的内壁发生干涉。
在一实施例中,如图2-图4所示,进流口313和连通口410设于第一腔311相对的两端,且定义位于进流口313和连通口410之间的两条气液分离通道100分别为第一通道110和第二通道120,且第一通道110和第二通道120内分别设有一个或多个返流结构200,冷媒能够从进流口313分别进入第一通道110和第二通道120并从连通口410进入第二腔312。
进一步地,在一实施例中,如图2-图4所示,出气管600正对进流口313的一侧设有分流凸起610,分流凸起610的截面呈锥形,且分流凸起610的尖端朝向进流口313。如此,从进流口313进入的冷媒通过分流凸起610的分流作用均匀分流至第一通道110和第二通道120。
具体地,在一实施例中,如图2-图4所示,出气管600外套设有连接头700,第一返流板210、第二返流板220和第三返流板230绕设于连接头700的周侧,且连接头700正对进流口313的侧壁朝向进流口313凸出形成分流凸起610。如此,大大降低了分流凸起610的加工难度。
如图5所示,本申请还提供一种空调系统20,该空调系统20包括以上任意一个实施例所述的气液分离器10。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种气液分离器,其特征在于,所述气液分离器设有沿着第一方向延伸的气液分离通道,所述气液分离通道沿着第一方向分布有一个或多个返流结构,所述返流结构包括沿着第一方向依次分布的第一返流板和第二返流板,所述第一返流板设有第一过流孔和第一返流面,所述第二返流板设有第二过流孔和第二返流面,所述第一过流孔和所述第二返流面沿着第一方向对应分布,且所述第二过流孔和所述第一返流面沿着第一方向对应分布;
    所述第二返流面能够将通过所述第一过流孔进入的冷媒返流至所述第一返流面,所述第一返流面能够将返流的冷媒返流至所述第二过流孔。
  2. 根据权利要求1所述的气液分离器,其中,所述第一过流孔的边缘设有沿着第二方向延伸的第一导流板,并且,第二方向与所述第二返流面的法向之间的夹角a满足以下关系式:0°<a<90°。
  3. 根据权利要求1所述的气液分离器,其中,所述第一过流孔沿着竖直方向设置,且所述第一过流孔的底部设有竖直设置的第一挡液板;
    及/或,所述第二过流孔沿着竖直方向设置,且所述第二过流孔的底部设有竖直设置的第二挡液板。
  4. 根据权利要求1所述的气液分离器,其中,所述返流结构还包括第三返流板,所述第一返流板、所述第二返流板和所述第三返流板沿着第一方向依次分布,所述第三返流板设有第三过流孔和第三返流面,所述第二返流板背离所述第二返流面的一端设有背向返流面,所述第三过流孔和所述背向返流面沿着第一方向对应分布,所述第三返流面和所述第二过流孔沿着第一方向对应分布;
    所述第三返流面能够将通过所述第二过流孔进入的冷媒返流至所述背向返流面,且所述背向返流面能够将所述第三返流面返流的冷媒返流至所述第三过流孔。
  5. 根据权利要求4所述的气液分离器,其中,所述第二过流孔的边缘设有沿着第三方向延伸的第二导流板,并且,第三方向与所述第三返流面的法向之间的夹角b满足以下关系式:0°<b<90°。
  6. 根据权利要求4所述的气液分离器,其中,所述第三过流孔沿着竖直方向设置,且所述第三过流孔的底部设有竖直设置的第三挡液板。
  7. 根据权利要求1所述的气液分离器,其中,还包括外壳、隔板、进流管以及出气管,所述外壳设有容纳腔,所述出气管一端插置于所述容纳腔内,另一端伸出所述容纳腔,所述隔板一端直接或者间接连接于所述出气管的外壁,另一端朝向靠近所述容纳腔的侧壁的 方向延伸,以将所述容纳腔分隔成第一腔和第二腔,所述第一腔的内壁、所述出气管的外壁以及所述隔板的侧壁共同围设形成所述气液分离通道,并且,所述第一腔设有连通所述进流管的进流口,所述隔板设有连通所述第一腔和所述第二腔的连通口。
  8. 根据权利要求7所述的气液分离器,其中,所述隔板与所述容纳腔内壁之间设有连通所述第一腔和所述第二腔的出液间隙;
    所述隔板靠近所述第一腔的一侧端面从远离所述出液间隙的一端至靠近所述出液间隙的一端朝向远离所述第一腔的方向倾斜设置。
  9. 根据权利要求7所述的气液分离器,其中,所述进流口和上述连通口设于上述第一腔相对的两端,且定义位于所述进流口和所述连通口之间的两条所述气液分离通道分别为第一通道和第二通道,且所述第一通道和所述第二通道内分别设有一个或多个所述返流结构,冷媒能够从所述进流口分别进入所述第一通道和所述第二通道并从所述连通口进入所述第二腔;
    所述出气管正对所述进流口的一侧设有分流凸起,所述分流凸起的截面呈锥形,且所述分流凸起的尖端朝向所述进流口。
  10. 一种空调系统,其特征在于,包括如权利要求1-9任意一项所述的气液分离器。
PCT/CN2022/140416 2022-06-29 2022-12-20 气液分离器及空调系统 WO2024001084A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210751361.4 2022-06-29
CN202210751361.4A CN115289725B (zh) 2022-06-29 2022-06-29 气液分离器及空调系统

Publications (1)

Publication Number Publication Date
WO2024001084A1 true WO2024001084A1 (zh) 2024-01-04

Family

ID=83820373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140416 WO2024001084A1 (zh) 2022-06-29 2022-12-20 气液分离器及空调系统

Country Status (2)

Country Link
CN (1) CN115289725B (zh)
WO (1) WO2024001084A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115289725B (zh) * 2022-06-29 2024-08-13 浙江银轮机械股份有限公司 气液分离器及空调系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132566A (ja) * 2002-10-08 2004-04-30 Sharp Corp 気液分離装置およびこれを備えた空気調和機
CN101086401A (zh) * 2006-06-07 2007-12-12 乐金电子(天津)电器有限公司 空气调节器的气液分离器
CN203724816U (zh) * 2014-02-14 2014-07-23 南京天梯系统工程控制有限公司 一种气液分离器
CN104344612A (zh) * 2014-10-20 2015-02-11 新昌县宏宇制冷有限公司 一种二次分离式气液分离器
CN212029940U (zh) * 2020-05-14 2020-11-27 和龙双昊高新技术有限公司 一种带余热回收功能的汽车空调用气液分离器
CN112432401A (zh) * 2020-02-29 2021-03-02 浙江三花智能控制股份有限公司 气液分离器
CN215373057U (zh) * 2021-04-12 2021-12-31 广东美的暖通设备有限公司 气液分离器和具有它的空调器
CN115289725A (zh) * 2022-06-29 2022-11-04 浙江银轮机械股份有限公司 气液分离器及空调系统
CN115318009A (zh) * 2022-09-13 2022-11-11 中国科学院青岛生物能源与过程研究所 一种气液分离器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3215614B2 (ja) * 1995-11-02 2001-10-09 松下精工株式会社 空気調和機の冷凍サイクルおよび冷凍サイクル部品
JPH10246538A (ja) * 1997-03-03 1998-09-14 Daikin Ind Ltd 吸収式冷凍装置用気液分離器
JP2006343064A (ja) * 2005-06-10 2006-12-21 Denso Corp 冷凍サイクル用気液分離器
KR100766249B1 (ko) * 2006-04-05 2007-10-12 주식회사 두원공조 냉방장치의 기액분리기
CN202376859U (zh) * 2011-12-23 2012-08-15 青岛京润石化设计研究院有限公司 一种气液分离器
JP6670196B2 (ja) * 2016-07-25 2020-03-18 荏原冷熱システム株式会社 圧縮式冷凍機の気液分離器
CN205957564U (zh) * 2016-08-22 2017-02-15 广东美的暖通设备有限公司 空调器的卧式气液分离器及空调器
CN113559561A (zh) * 2021-09-01 2021-10-29 程希媛 一种气液分离器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004132566A (ja) * 2002-10-08 2004-04-30 Sharp Corp 気液分離装置およびこれを備えた空気調和機
CN101086401A (zh) * 2006-06-07 2007-12-12 乐金电子(天津)电器有限公司 空气调节器的气液分离器
CN203724816U (zh) * 2014-02-14 2014-07-23 南京天梯系统工程控制有限公司 一种气液分离器
CN104344612A (zh) * 2014-10-20 2015-02-11 新昌县宏宇制冷有限公司 一种二次分离式气液分离器
CN112432401A (zh) * 2020-02-29 2021-03-02 浙江三花智能控制股份有限公司 气液分离器
CN212029940U (zh) * 2020-05-14 2020-11-27 和龙双昊高新技术有限公司 一种带余热回收功能的汽车空调用气液分离器
CN215373057U (zh) * 2021-04-12 2021-12-31 广东美的暖通设备有限公司 气液分离器和具有它的空调器
CN115289725A (zh) * 2022-06-29 2022-11-04 浙江银轮机械股份有限公司 气液分离器及空调系统
CN115318009A (zh) * 2022-09-13 2022-11-11 中国科学院青岛生物能源与过程研究所 一种气液分离器

Also Published As

Publication number Publication date
CN115289725B (zh) 2024-08-13
CN115289725A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2024066212A1 (zh) 气液分离装置及新能源汽车空调系统
WO2024001084A1 (zh) 气液分离器及空调系统
US4679410A (en) Integral evaporator and accumulator for air conditioning system
EP4130613A1 (en) Gas-liquid separation device and thermal management system
WO2017097133A1 (zh) 一种换热器
AU2020334589B2 (en) Refrigerant Distributor and Evaporator Comprising the Refrigerant Distributor
US20230383712A1 (en) Intake manifold for engine, engine, and vehicle
CN106855327B (zh) 一种换热器
CN113405286A (zh) 油分离器、冷凝器和制冷设备
CN213790418U (zh) 气液分离器
CN210292453U (zh) 一种储液器
CN215809515U (zh) 油分离器、换热器及空调
US20220307398A1 (en) Oil separator for internal combustion engine
CN214199304U (zh) 气液分离结构、换热器及空调
CN115654992A (zh) 排气结构及换热器
US11339981B2 (en) Dehumidifier
CN116379651B (zh) 气液分离器
CN107687726B (zh) 热交换装置
CN214577732U (zh) 一种高扬程卧式离心泵
CN217687360U (zh) 燃气表结构
CN211782926U (zh) 一种气液分离换热器
KR20100101801A (ko) 고압용 열교환기
CN111174465A (zh) 蒸发器以及包含该蒸发器的换热系统
CN218936737U (zh) 一种具有新型结构的气液分离器
CN220380026U (zh) 气液分离器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949160

Country of ref document: EP

Kind code of ref document: A1