WO2024000418A1 - 电池单体及其制备方法、电池和用电设备 - Google Patents

电池单体及其制备方法、电池和用电设备 Download PDF

Info

Publication number
WO2024000418A1
WO2024000418A1 PCT/CN2022/102863 CN2022102863W WO2024000418A1 WO 2024000418 A1 WO2024000418 A1 WO 2024000418A1 CN 2022102863 W CN2022102863 W CN 2022102863W WO 2024000418 A1 WO2024000418 A1 WO 2024000418A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode assembly
battery cell
housing
battery
packaging structure
Prior art date
Application number
PCT/CN2022/102863
Other languages
English (en)
French (fr)
Inventor
李志凌
张小细
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/102863 priority Critical patent/WO2024000418A1/zh
Priority to CN202280062034.6A priority patent/CN117941122A/zh
Publication of WO2024000418A1 publication Critical patent/WO2024000418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell and its preparation method, batteries and electrical equipment.
  • This application provides a battery cell and its preparation method, battery and electrical equipment, which can improve the performance of the battery.
  • a battery cell including: an electrode assembly; a packaging structure for packaging the electrode assembly; and a shell for accommodating a battery packaged with the packaging structure.
  • the housing is a flexible housing.
  • the battery cell includes an electrode assembly, a packaging structure and a casing.
  • the packaging structure is used to package the electrode assembly
  • the casing is used to accommodate the electrode assembly with the packaging structure.
  • leakage caused by external mechanical damage or corrosion of the casing by the internal electrolyte and a series of safety hazards caused by leakage can be avoided. problem, which is conducive to improving the safety performance of battery cells.
  • the shell is a flexible shell. In this way, compared with the aluminum shell, the weight of the shell is reduced, which is beneficial to improving the weight energy density of the battery cell. At the same time, the flexible shell material is soft and elastic.
  • the technical solutions of the embodiments of the present application can improve battery performance.
  • the housing includes a housing and an end cover, the housing is provided with an opening and is used to accommodate the electrode assembly, and the end cover is used to cover the opening.
  • the case is used to accommodate the electrode assembly encapsulated with the packaging structure, and the end cover is sealingly connected to the case to form a battery cell. This arrangement facilitates the assembly of the battery cells and is beneficial to the preparation of the battery cells.
  • the thickness of the end cap is 1.5 to 4.5 mm. In this way, the thickness of the end cover can be ensured to be within a suitable range, which can not only meet the strength requirements of the end cover, but also meet the volume energy density requirements of the battery cells.
  • the thickness of the end cap is 2 to 4 mm. In this way, strength and volumetric energy density can be further balanced.
  • the thickness of the housing is 0.6 to 2 mm. In this way, the thickness of the casing can be ensured to be within a suitable range, which can meet both the strength requirements of the casing and the volumetric energy density requirements of the battery cells.
  • the thickness of the housing is 0.8 to 2 mm. In this way, strength and volumetric energy density can be further balanced.
  • the packaging structure is a packaging film covering the outer surface of the electrode assembly.
  • the packaging structure is a packaging film covering the outer surface of the electrode assembly, which is convenient for saving the space occupied by the packaging structure and is conducive to increasing the volumetric energy density of the battery cell.
  • the packaging film includes: polyethylene terephthalate composite film or aluminum plastic film. Using polyethylene terephthalate composite film or aluminum-plastic film to prepare the packaging film facilitates the preparation and monitoring of battery cells, and is beneficial to improving the performance of battery cells.
  • the material of the shell includes: polyethylene terephthalate, polypropylene, polycarbonate, polyarylate, polytetrafluoroethylene, polyimide, resin At least one. In this way, it can be ensured that the shell is a flexible shell and has the properties of a flexible material. In addition, even if the packaging structure leaks, the outer casing made of this material will not be corroded, which is beneficial to improving the safety performance of the battery cells.
  • the material of the housing includes: at least one of polyethylene terephthalate, polycarbonate, polyarylate, polytetrafluoroethylene, and polyimide.
  • the housing and the end cover are connected by hot melting. In this way, particles generated due to the welding process can be avoided during the connection between the end cover and the casing, thereby avoiding short circuits, self-discharge abnormalities and other phenomena caused by particles piercing the insulating film on the surface of the battery cell, which is beneficial to improving the battery cell quality. body performance.
  • the temperature used in the hot melt method is 140-160°C. At this temperature, it is possible to avoid over-temperature affecting the performance of the battery cells and to realize the connection between the end cover and the casing.
  • the battery cell further includes an electrolyte, and the electrolyte is injected into the packaging structure after the electrode assembly is accommodated in the housing.
  • the electrolyte is injected into the packaging structure after the electrode assembly is accommodated in the housing.
  • a method for preparing a battery cell which is characterized in that it includes: providing an electrode assembly; providing a packaging structure through which the electrode assembly is packaged; and providing a shell, where the shell is a flexible shell.
  • the electrode assembly encapsulated with the encapsulation structure is accommodated in the housing.
  • accommodating the electrode assembly encapsulated with the encapsulation structure in the housing includes: accommodating the electrode assembly encapsulated with the encapsulation structure in the housing. . In this way, after the electrode assembly is accommodated in the housing, subsequent operations on the electrode assembly through the housing are facilitated.
  • the method further includes: clamping and baking the housing to remove Moisture in the electrode assembly. This facilitates more uniform removal of moisture from the electrode assembly.
  • the method further includes: injecting electrolyte into the packaging structure. In this way, after the electrolyte is injected, subsequent chemical formation and other steps are facilitated.
  • the method further includes: clamping the housing to form the electrode assembly.
  • the formation of the clamp is conducive to the timely elimination of gas generated during the formation process and avoids lithium precipitation caused by gas remaining between the pole pieces; on the other hand, the formation of the clamp is conducive to fixing the morphology of the pole pieces and achieving close contact between the pole pieces. , to avoid the rebound and wrinkles of the pole piece. Therefore, the use of fixtures for formation is beneficial to improving the performance of the formed battery cells.
  • the clamping direction of the housing is perpendicular to the thickness direction of the electrode assembly.
  • the force on the electrode assembly can be perpendicular to the thickness direction of the electrode assembly, which is conducive to squeezing out the moisture of the electrode assembly during the baking process of the clamp, and is also conducive to discharging air bubbles and avoiding wrinkles during the formation process of the clamp.
  • a battery including: the battery cell described in any one of the first aspect and possible implementations of the first aspect; and a box, the box being used to accommodate the battery cell. body.
  • an electrical device including: the battery described in the third aspect, where the battery is used to supply power to the electrical device.
  • the battery cell includes an electrode assembly, a packaging structure and a casing.
  • the packaging structure is used to package the electrode assembly
  • the casing is used to accommodate the electrode assembly with the packaging structure.
  • leakage caused by external mechanical damage or corrosion of the casing by the internal electrolyte and a series of safety hazards caused by leakage can be avoided. problem, which is conducive to improving the safety performance of battery cells.
  • the shell is a flexible shell. In this way, compared with the aluminum shell, the weight of the shell is reduced, which is beneficial to improving the weight energy density of the battery cell. At the same time, the flexible shell material is soft and elastic.
  • the technical solutions of the embodiments of the present application can improve battery performance.
  • Figure 1 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery according to an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of an aluminum-plastic film according to an embodiment of the present application.
  • Figure 7 is a schematic diagram of a method for preparing battery cells according to an embodiment of the present application.
  • Figure 8 is a flow chart of a method for preparing a battery cell according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of an electrode assembly encapsulated with an aluminum plastic film according to an embodiment of the present application.
  • “Plural” appearing in this application means two or more (including two).
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cells may be in the shape of a round body, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • multiple battery cells can be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel, or mixed to form a battery.
  • multiple battery cells can directly form a battery, or they can first form a battery module, and then the battery module can form a battery.
  • the battery is further installed in the electrical equipment to provide electrical energy to the electrical equipment.
  • the casing of the battery cell is usually in direct contact with the electrolyte in the battery cell.
  • the aluminum casing of the battery cell and the negative electrode may be electrically connected via the electrolyte, which will cause The aluminum casing is corroded, causing leakage of the battery cells, which is not conducive to improving the safety performance of the battery cells.
  • a packaging film is set outside the electrode assembly, and the electrode assembly provided with the packaging film is placed in the casing of the battery cell. The packaging film can avoid the problem of liquid leakage to a certain extent.
  • the electrode assembly provided with the packaging film expands during the formation process before being put into the shell, in order to prevent the shell from scratching the packaging film and ensure the effect of the packaging film, it is necessary to reserve a larger space in the housing to accommodate
  • the expanded electrode assembly is not conducive to improving the volumetric energy density of the battery cell.
  • aluminum casings usually need to be matched with aluminum end caps, which is not conducive to reducing the weight of the battery cells and affects the weight energy density of the battery cells. Therefore, how to provide a battery cell to improve battery performance is an urgent problem to be solved.
  • a battery cell which includes an electrode assembly, a packaging structure and a casing.
  • the packaging structure is used to package the electrode assembly
  • the casing is used to accommodate the electrode assembly with the packaging structure.
  • leakage caused by external mechanical damage or corrosion of the casing by the internal electrolyte and a series of safety hazards caused by leakage can be avoided. problem, which is conducive to improving the safety performance of battery cells.
  • the shell is a flexible shell. In this way, compared with the aluminum shell, the weight of the shell is reduced, which is beneficial to improving the weight energy density of the battery cell. At the same time, the flexible shell material is soft and elastic.
  • the technical solutions of the embodiments of the present application can improve battery performance.
  • batteries such as mobile phones, portable devices, laptops, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spacecraft, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells.
  • FIG. 2 it is a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box 11.
  • the inside of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • a plurality of battery cells 20 are connected in parallel or in series or in a mixed combination and then placed in the box 11 .
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the electrically conductive means can also belong to the bus part.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 forms a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • the battery may include multiple battery modules, which may be connected in series, parallel or mixed connection.
  • FIG. 3 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of a battery cell according to an embodiment of the present application, wherein, For ease of presentation, the packaging structure is not shown in Figure 3 .
  • the battery cell 20 includes an electrode assembly 22 , a packaging structure 25 and a casing 21 .
  • the packaging structure 25 is used to package the electrode assembly 22, and the housing 21 is used to accommodate the electrode assembly 22 packaged with the packaging structure 25.
  • the housing 21 is a flexible housing.
  • the electrode assembly 22 includes a positive electrode sheet, a negative electrode sheet and a separator.
  • the separator is used to isolate the positive electrode sheet and the negative electrode sheet to reduce the risk of short circuit between the positive electrode sheet and the negative electrode sheet.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the separator may be made of polypropylene or polyethylene, which is not specifically limited in the embodiments of the present application.
  • the electrode assembly 22 may have a wound structure or a laminated structure, which is not specifically limited in the embodiment of the present application.
  • the electrode assembly 22 may be provided as a single or multiple electrode components according to actual usage requirements. As shown in FIG. 3 , the battery cell 20 is provided with four independent electrode assemblies 22 .
  • the packaging structure 25 is used to package the electrode assembly 22 , wherein the packaging structure 25 can package a partial area of the electrode assembly 22 .
  • the packaging structure 25 encapsulates the non-tab area of the electrode assembly 22 or encapsulates the non-tab area and part of the tab area of the electrode assembly 22 , that is, the tabs of the electrode assembly 22 protrude from the packaging structure 25 .
  • the encapsulation structure 25 can also encapsulate the entire area of the electrode assembly 22 , which can be specifically set according to actual conditions.
  • the shape of the packaging structure 25 can be square or other shapes, or can be set according to the shape of the electrode assembly 22 , as long as the electrode assembly 22 can be packaged, and the embodiment of the present application does not impose any specific restrictions on this.
  • the electrode assembly 22 may be packaged by arranging the electrode assembly 22 inside the packaging structure 25 to avoid direct contact between the electrode assembly 22 and the outside world (for example, the electrolyte or the outer shell 21 ).
  • the packaging structure 25 can have a one-to-one correspondence with the electrode components 22 , or all the electrode components 22 can be packaged for the packaging structure 25 . This can be specifically set according to actual needs, and the embodiments of the present application do not specifically limit this.
  • the shell 21 is used to accommodate the electrode assembly 22 encapsulated with the packaging structure 25. In this way, there is no need to provide electrolyte in the space between the packaging structure 25 and the shell 21, which can avoid external mechanical damage causing damage to the shell 21 or internal electrolyte.
  • the corrosion of the casing 21 causes the casing 21 to be damaged, thereby avoiding the leakage of the electrolyte caused by the damage of the casing 21 to a certain extent, which is beneficial to improving the safety performance of the battery cell 20 .
  • Flexibility can refer to a physical property in which an object deforms after being subjected to force and can return to its original shape after the force is lost.
  • the flexible shell deforms after being acted upon by an external force. After the external force disappears, the flexible shell can return to its original shape.
  • the shell 21 is a flexible shell. In this way, compared with the aluminum shell, the weight of the flexible shell is reduced, which is conducive to improving the weight energy density of the battery cell 20; at the same time, the flexible shell material is soft and elastic, and will be packaged with the packaging structure 25 When the electrode assembly 22 is placed in the casing 21, while preventing the casing 21 from scratching the packaging structure 25, there is no need to reserve more space for the electrode assembly 22 in the casing 21, which is beneficial to improving the volumetric energy density of the battery cell 20. .
  • the gravimetric energy density of the battery cell 20 can be the ratio of the capacity of the battery cell 20 to the weight of the battery cell 20. When the capacity of the battery cell 20 is constant, the greater the weight of the battery cell 20, the greater the gravimetric energy density. The lower.
  • the volume energy density of the battery cell 20 can be the ratio of the capacity of the battery cell 20 to the volume of the battery cell 20 .
  • the capacity of the battery cell 20 is constant, the larger the volume of the battery cell 20 , the higher the volume energy density. The lower.
  • the battery cell 20 may also include a pressure relief mechanism 213, which is used to release the pressure inside the battery cell 20 when the internal pressure or temperature of the battery cell 20 reaches a predetermined value.
  • the pressure relief mechanism 213 can be an explosion-proof valve, explosion-proof disk, air valve, pressure relief valve or safety valve and other components.
  • the battery cell 20 includes an electrode assembly 22, a packaging structure 25 and a casing 21.
  • the packaging structure 25 is used to package the electrode assembly 22, and the housing 21 is used to accommodate the electrode assembly 22 packaged with the packaging structure 25.
  • leakage and leakage caused by external mechanical damage or corrosion of the housing 21 by the internal electrolyte can be avoided.
  • a series of safety problems caused by liquid are conducive to improving the safety performance of the battery cell 20.
  • the shell 21 is a flexible shell. In this way, compared with the aluminum shell, the weight of the flexible shell is reduced, which is beneficial to improving the weight energy density of the battery cell 20; at the same time, the material of the flexible shell is soft and elastic.
  • the packaging structure 25 When the packaging structure 25 is packaged, When the electrode assembly 22 is placed in the casing 21, it avoids the casing 21 from scratching the packaging structure 25 and eliminates the need to reserve more space for the electrode assembly 22 in the casing 21, which is beneficial to increasing the volumetric energy density of the battery cell 20. Therefore, the technical solutions of the embodiments of the present application can improve battery performance.
  • the housing 21 includes a housing 211 and an end cover 212.
  • the housing 211 is provided with an opening 2111 and is used to accommodate the electrode assembly 22.
  • the end cover 212 is used to cover the opening 2111.
  • the housing 21 includes a housing 211 and an end cover 212. It can also be said that the housing 211 and the end cover 212 form the housing 21.
  • the wall of the housing 211 and the end cover 212 can both be referred to as the wall of the battery cell 20 .
  • the wall of the housing 211 includes a bottom wall and four side walls.
  • the shape of the housing 211 may be determined according to the combined shape of one or more electrode assemblies 22 .
  • the housing 211 can be a hollow rectangular parallelepiped, a cube, or a cylinder, and one surface of the housing 211 has an opening 2111 so that one or more electrode assemblies 22 can be placed in the housing 211 .
  • one of the planes of the housing 211 is an opening surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 are connected.
  • the end surface of the housing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the housing 211 are connected.
  • the end cap 212 covers the opening 2111 and is connected with the housing 211 to form a closed cavity in which the electrode assembly 22 is placed.
  • the housing 211 is filled with electrolyte, such as electrolyte solution.
  • the electrolyte may be filled inside the packaging structure 25 in the housing 211 , that is, no electrolyte is provided between the electrode assembly 22 in which the packaging structure 25 is packaged and the housing 211 .
  • the battery cell 20 may further include two electrode terminals 214 , which may be disposed on the end cap 212 .
  • the end cap 212 is generally in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat surface of the end cap 212.
  • the two electrode terminals 214 are respectively a positive electrode terminal 214a and a negative electrode terminal 214b.
  • the case 211 is used to accommodate the electrode assembly 22 encapsulated with a packaging structure, and the end cover 212 is sealingly connected to the case 211 to form the battery cell 20 .
  • This arrangement facilitates the assembly of the battery cell 20 and is beneficial to the assembly of the battery cell 20 . Preparation of battery cells 20 .
  • the thickness of the end cap 212 is 1.5-4.5 mm.
  • the thickness of the end cover 212 is greater than 4.5 mm, although it is beneficial to improve the strength of the end cover 212 and the battery cells 20, this arrangement will cause the end cover 212 to occupy more space, which is not conducive to improving the space utilization of the battery and is difficult to Meet the volumetric energy density requirements of the battery cell 20 .
  • the thickness of the end cap 212 is less than 1.5 mm, although this is beneficial to improving the volumetric energy density of the battery cell 20 , the end cap 212 with this thickness cannot meet the strength requirements.
  • the thickness of the end cap 212 is 1.5-4.5 mm, which ensures that the thickness of the end cap 212 is within a suitable range, which can not only meet the strength requirements of the end cap 212 but also meet the requirements of the battery cells 20 Requirements for volumetric energy density.
  • the thickness of the end cap 212 is 2 to 4 mm. In this way, strength and volumetric energy density can be further balanced.
  • the thickness of the housing 211 is 0.6 to 2 mm.
  • the thickness of the case 211 can be ensured to be within an appropriate range, which can meet both the strength requirements of the case 211 and the volumetric energy density requirements of the battery cells 20 .
  • the thickness of the housing 211 is 0.8-2 mm. In this way, strength and volumetric energy density can be further balanced.
  • the packaging structure 25 is a packaging film covering the outer surface of the electrode assembly 22 .
  • the packaging structure 25 is a packaging film covering the outer surface of the electrode assembly 22 , thereby saving the space occupied by the packaging structure 25 and improving the volumetric energy density of the battery cell 20 .
  • the packaging film includes: polyethylene terephthalate (Polyethylene Glycol Terephthalate, PET) composite film or aluminum plastic film.
  • PET composite film is a type of composite film formed by combining PET film with other base materials or film base materials. PET composite film combines the characteristics of PET film and other base materials.
  • the PET composite film is lighter in weight, which is beneficial to reducing the weight of the packaging structure 25 , thereby helping to increase the weight energy density of the battery cell 20 ; the PET composite film is transparent, which facilitates the formation of the battery cell 20 and other processes. Observing the gas production and expansion process inside the battery cell 20 is beneficial to monitoring the status of the battery cell 20 .
  • Formation refers to activating the internal activity of the battery to ensure it has good charge and discharge performance and cycle life.
  • formation can refer to a series of process measures that allow the battery cells to perform initial charge and discharge after the electrolyte is injected, thereby stabilizing the performance of the battery cells.
  • FIG. 6 is a schematic diagram of an aluminum-plastic film according to an embodiment of the present application.
  • the aluminum-plastic film may include a nylon layer 101 , an aluminum layer 102 and a polypropylene (PP) layer 103 arranged in sequence along the thickness direction.
  • the nylon layer 101 can ensure the shape of the aluminum-plastic film and ensure that the aluminum-plastic film will not deform before it is manufactured into the battery cell 20 .
  • the aluminum layer 102 may be composed of a layer of metal Al, which functions to prevent water from penetrating; metal Al will react with oxygen in the air at room temperature to form a dense oxide film, preventing water vapor from penetrating and protecting the battery cells. 20 interior.
  • the PP layer will melt at a certain temperature and is sticky, making it easier to encapsulate the aluminum-plastic film.
  • the use of aluminum-plastic film facilitates encapsulation of the packaging film by hot melting, and does not require the use of welding processes to encapsulate the packaging film, thereby avoiding the impact of metal particles and other impurities generated during the welding process on the battery cells 20 .
  • a PET composite film or an aluminum-plastic film is used to prepare the packaging film, which facilitates the preparation and monitoring of the battery cells 20 and helps improve the performance of the battery cells 20 .
  • the material of the shell 21 includes: polyethylene terephthalate (Polyethylene Glycol Terephthalate, PET), polypropylene (Polypropylene, PP), polycarbonate (Polycarbonate, PC). ), at least one of polyarylate (Polyarylate, PAR), polytetrafluoroethylene (PTFE), polyimide (Polyimide, PI), and resin.
  • polyethylene terephthalate Polyethylene Glycol Terephthalate, PET
  • polypropylene Polypropylene
  • PP polycarbonate
  • PC Polycarbonate
  • PAR polyarylate
  • PAR polytetrafluoroethylene
  • PI polyimide
  • the material of the housing 21 can also be other flexible materials.
  • the material of the housing 21 is the above-mentioned material, corrosion of the housing 21 due to short circuit will not occur, thus ensuring the safety of the battery cells 20 .
  • the material of the shell 21 includes: at least one of polyethylene terephthalate, polycarbonate, polyarylate, polytetrafluoroethylene, and polyimide. .
  • the casing 21 can be ensured to be a transparent casing, and liquid leakage can be detected in time, which facilitates the maintenance and replacement of the battery cells 20 .
  • the material of the housing 21 can also be other transparent and flexible materials.
  • the housing 211 and the end cover 212 are connected by hot melting.
  • welding is usually used to connect the shell and the end cover. Welding slag, metal particles, etc. generated during the welding process may pierce the insulating film on the surface of the battery cell, causing short circuits, abnormal self-discharge and other phenomena.
  • the end cap 212 and the casing 211 are connected by hot melting, which can prevent particles from penetrating the insulating film on the outer surface of the battery cell 20 and cause short circuits, abnormal self-discharge, etc., thus helping to improve the performance of the battery cells. performance.
  • the temperature used in the hot melt method is 140-160°C. At this temperature, the performance of the battery cell 20 due to excessive temperature can be avoided, and the connection between the end cover 212 and the casing 211 can be achieved.
  • the temperature used in the hot melt method is 150°C.
  • the battery cell 20 further includes an electrolyte, and the electrolyte is injected into the packaging structure 25 after the electrode assembly 22 is accommodated in the housing 211 .
  • Figure 7 is a schematic diagram of a method for preparing a battery cell according to an embodiment of the present application. As shown in Figure 7, method 300 includes the following steps.
  • Step 310 provide electrode assembly 22.
  • Step 320 Provide a packaging structure 25 to package the electrode assembly 22 through the packaging structure 25.
  • Step 330 Provide a housing 21, which is a flexible housing, and accommodate the electrode assembly 22 encapsulated with the packaging structure 25 in the housing 21.
  • step 330 includes: accommodating the electrode assembly 22 encapsulated with the packaging structure 25 in the housing 211 .
  • accommodating the electrode assembly 22 encapsulated with the packaging structure 25 in the housing 211 In this way, after the electrode assembly 22 is accommodated in the housing 211, subsequent operations on the electrode assembly 22 through the housing 211 are facilitated.
  • the housing 211 can also be clamped and baked to remove moisture from the electrode assembly 22 .
  • Clamping and baking the casing 211 can be done by clamping the casing 211 with a clamp. Under the clamping of the clamp, the casing 211 is placed in a device such as an oven, and the casing 211, especially the electrode assembly, is 22 is baked to remove excess moisture from the electrode assembly 22 .
  • the shell 211 is a flexible shell, when clamped by the clamp, the force exerted by the clamp on the shell 211 can be transmitted to the electrode assembly 22, which is beneficial to further squeezing out the moisture of the electrode assembly 22, thereby benefiting the electrode assembly. 22. Moisture removal. In addition, compared to baking without using a jig, baking using a jig is also beneficial to more uniform removal of moisture from the electrode assembly 22 .
  • the electrolyte can also be injected into the packaging structure 25. In this way, after the electrolyte is injected, subsequent chemical formation and other steps are facilitated.
  • the housing 211 housing the electrode assembly 22 is allowed to stand, so that the electrode assembly 22 absorbs the electrolyte.
  • the case 211 can also be clamped to form the electrode assembly 22 .
  • Clamping the case 211 to form the electrode assembly 22 may be done by using a clamp to hold the case 211, and the electrode assembly 22 is formed under the clamping of the clamp.
  • the casing 211 is a flexible casing, and the force exerted by the clamp on the casing 211 can be transmitted to the electrode assembly 22.
  • using the clamp for the formation is conducive to timely elimination of gas generated during the formation process, and avoids gas remaining on the electrode piece.
  • using a clamp for formation is beneficial to fixing the shape of the pole pieces, achieving close contact between the pole pieces, and avoiding rebound and wrinkles of the pole pieces. Therefore, the use of fixtures for formation is beneficial to improving the performance of the formed battery cells.
  • the clamping direction of the housing 211 is perpendicular to the thickness direction of the electrode assembly 22 .
  • the force on the electrode assembly 22 can be perpendicular to the thickness direction of the electrode assembly 22, which is beneficial to squeezing out the moisture of the electrode assembly 22 during the baking process of the clamp, and is also conducive to discharging air bubbles and preventing the formation of the clamp during the molding process. Wrinkle.
  • the clamping direction of the housing 211 can also be at an acute angle or an obtuse angle with the thickness direction of the electrode assembly 22, which can be specifically set according to actual needs.
  • the specific arrangement of the clamp is not specifically limited in this application, as long as it can clamp the housing 211 and apply a corresponding force to the housing 211 .
  • FIG. 8 is a flow chart of a method for manufacturing a battery cell according to an embodiment of the present application. As shown in FIG. 8 , taking the aluminum plastic film as the packaging structure 25 as an example, the preparation process of the battery cell 20 is described in detail.
  • Step 510 Use aluminum plastic film to encapsulate the electrode assembly 22.
  • a corresponding mold can be used to punch out a pit that can accommodate the electrode assembly 22 on the upper surface of the aluminum-plastic film, so that the electrode assembly 22 is placed in the aluminum-plastic film, and then the electrode assembly is sealed through a hot-pressing packaging process. 22Encapsulated in aluminum plastic film.
  • FIG 9 is a schematic diagram of an electrode assembly encapsulated with an aluminum plastic film according to an embodiment of the present application.
  • the aluminum plastic film covers the non-tab area of the electrode assembly 22, and the tabs 221a and 222a of the electrode assembly 22 protrude from the aluminum plastic film, so that the tabs 221a and 222a are respectively connected with the adapter piece 231 and the adapter.
  • Tab 232 connects.
  • the positive electrode tab 221a is connected to the positive electrode terminal 214a through an aluminum positive electrode adapter piece 231
  • the negative electrode tab 222a is connected to the negative electrode terminal 214b through a copper negative electrode adapter piece 7 with a nickel layer on the surface.
  • a preparation process of the electrode assembly 22 may be performed.
  • processes such as winding or stacking pole pieces, hot-pressing and shaping the rolled pole pieces, pairing the wound pole pieces, ultrasonic welding of pole tabs and adapter pieces, etc.
  • Step 520 put the electrode assembly 22 encapsulated with the aluminum plastic film into the housing 211 .
  • Step 530 Use a clamp to hold the housing 211 for baking.
  • electrolyte is injected into the aluminum-plastic film so that the electrode piece can absorb the electrolyte and facilitate subsequent formation processes.
  • Step 540 Use a clamp to hold the shell 211 for chemical formation.
  • electrolyte can be injected into the aluminum-plastic film again to further meet the electrolyte requirement of the pole piece.
  • the aluminum-plastic film is sealed to isolate the electrode assembly 22, specifically, the non-tab area of the electrode assembly 22, from the external environment.
  • the tabs 221a and 222a and the adapter pieces 231 and 232 are connected by welding, such as ultrasonic welding.
  • Step 550 Use hot melt to connect the end cover 212 and the housing 211.
  • a helium detection process is used to detect the sealing of the battery cell 20.
  • the capacity of the battery cell 20 is detected.
  • the internal resistance and self-discharge performance of the battery cell 20 are tested.
  • the battery cells 20 are unloaded.
  • unloading can refer to taking the battery cell 20 out of the warehouse, which means that the battery cell 20 has been prepared.
  • the process of covering the outer surface of the battery cell 20 with an insulating film can be omitted, that is, in After the internal resistance and self-discharge test of the battery cells and before the battery cells are shipped out of the warehouse, there is no need to additionally cover the outer surface of the battery cells with an insulating film, which is beneficial to reducing the number of processes.
  • the embodiment of the present application provides a battery 10, including: the battery cell 20 in any of the foregoing embodiments and a box 11.
  • the box 11 is used to accommodate the battery cell 20.
  • the embodiment of the present application provides an electrical device, which includes: the battery 10 described above, and the battery 10 is used to provide power to the electrical device.
  • a battery cell 20 is provided.
  • the battery cell 20 includes an electrode assembly 22 , an aluminum plastic film covering the outer surface of the electrode assembly 22 , and a flexible outer shell 21 .
  • the shell 21 is used to accommodate the electrode assembly 22 covered with an aluminum plastic film, and the electrolyte is disposed inside the aluminum plastic film. In this way, liquid leakage caused by external mechanical damage or corrosion of the casing 21 by the internal electrolyte and a series of safety problems caused by liquid leakage can be avoided, which is beneficial to improving the safety performance of the battery cells.
  • the shell 21 is a flexible shell. In this way, compared with the aluminum shell, the weight of the shell 21 is reduced, which is conducive to improving the weight energy density of the battery cell.
  • the flexible shell material is soft and elastic.
  • the plastic film electrode assembly When it is packaged or covered with aluminum, it avoids the casing 21 from scratching the aluminum plastic film and does not need to reserve more space for the electrode assembly 22 in the casing, which is beneficial to increasing the volumetric energy density of the battery cell. Therefore, the technical solutions of the embodiments of the present application can improve battery performance.
  • a method of preparing a battery cell is provided.
  • an electrode assembly 22, an aluminum plastic film and a flexible housing 21 are provided.
  • the outer surface of the electrode assembly 22 is covered with an aluminum plastic film to encapsulate the electrode assembly 22 , and the encapsulated electrode assembly 22 covered with the aluminum plastic film is accommodated in a flexible housing 21 .
  • This method is not only conducive to improving the safety performance of the battery cell, but also conducive to increasing the volume energy density and weight energy density of the battery cell, thereby improving the performance of the battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种电池单体及其制备方法、电池和用电设备。该电池单体包括:电极组件;封装结构,封装结构用于封装电极组件;外壳,外壳用于容纳封装有封装结构的电极组件,外壳为柔性外壳。本申请的技术方案可以提高电池的性能。

Description

电池单体及其制备方法、电池和用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体及其制备方法、电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
电池单体的空间利用率,强度,长期充放电性能等对电池的性能至关重要。因此,如何提高电池的性能是一项亟需解决的问题。
发明内容
本申请提供一种电池单体及其制备方法、电池和用电设备,可以提高电池的性能。
第一方面,本申请实施例提供一种电池单体,包括:电极组件;封装结构,所述封装结构用于封装所述电极组件;外壳,所述外壳用于容纳封装有所述封装结构的所述电极组件,所述外壳为柔性外壳。
在本申请实施例中,电池单体包括电极组件,封装结构和外壳。封装结构用于封装电极组件,外壳用于容纳封装有封装结构的电极组件,这样,可以避免外界的机械破坏或内部电解液对外壳的腐蚀所导致的漏液和因漏液引起的一系列安全问题,有利于提高电池单体的安全性能。外壳为柔性外壳,这样,相较于铝壳,外壳的重量降低,有利于提升电池单体的重量能量密度;同时,柔性外壳材质柔软并具有弹性,在将封装有封装结构的电极组件放入外壳时,在避免外壳刮破封装结构的同时不需要在外壳内为电极组件预留更多的空间,有利于提升电池单体的体积能量密度。因 此,本申请实施例的技术方案可以提高电池的性能。
在一种可能的实现方式中,所述外壳包括壳体和端盖,所述壳体设置有开口并用于容纳所述电极组件,所述端盖用于盖合所述开口。这样,壳体用于容纳封装有封装结构的电极组件,端盖与壳体密封连接,以形成电池单体,该设置便于电池单体的组装,有利于电池单体的制备。
在一种可能的实现方式中,所述端盖的厚度为1.5~4.5mm。这样,可以保证端盖的厚度在一个合适的范围内,既能满足端盖对于强度的要求,又能满足电池单体对于体积能量密度的要求。
在一种可能的实现方式中,所述端盖的厚度为2~4mm。这样,可以进一步兼顾强度和体积能量密度。
在一种可能的实现方式中,所述壳体的厚度为0.6~2mm。这样,可以保证壳体的厚度在一个合适的范围内,既能满足壳体对于强度的要求,又能满足电池单体对于体积能量密度的要求。
在一种可能的实现方式中,所述壳体的厚度为0.8~2mm。这样,可以进一步兼顾强度和体积能量密度。
在一种可能的实现方式中,所述封装结构为包覆于所述电极组件的外表面的封装膜。封装结构为包覆于电极组件的外表面的封装膜,便于节省封装结构占用的空间,有利于提升电池单体的体积能量密度。
在一种可能的实现方式中,所述封装膜包括:聚对苯二甲酸乙二醇酯复合膜或铝塑膜。使用聚对苯二甲酸乙二醇酯复合膜或铝塑膜制备封装膜,便于电池单体的制备和监测,有利于提升电池单体的性能。
在一种可能的实现方式中,所述外壳的材料包括:聚对苯二甲酸乙二醇酯、聚丙烯、聚碳酸酯、聚芳酯、聚四氟乙烯、聚酰亚胺、树脂中的至少一种。这样,可以保证外壳为柔性外壳,具备柔性材料的性质。此外,即使在封装结构漏液的情况下,该材质的外壳也不会因被腐蚀,有利于提升电池单体的安全性能。
在一种可能的实现方式中,所述外壳的材料包括:聚对苯二甲酸乙二醇酯、聚碳酸酯、聚芳酯、聚四氟乙烯、聚酰亚胺中的至少一种。这样,可以保证外壳 为透明外壳,在发生漏液时可以及时发现,便于电池单体的维修和更换。
在一种可能的实现方式中,所述壳体与所述端盖通过热熔方式连接。这样,在端盖与壳体连接的过程中可以避免由于焊接工序而产生的颗粒,从而可以避免颗粒刺穿电池单体表面的绝缘膜造成的短路、自放电异常等现象,有利于提升电池单体的性能。
在一种可能的实现方式中,所述热熔方式采用的温度为140~160℃。在该温度下,既可以避免因温度过高而影响电池单体的性能,又能实现端盖与壳体的连接。
在一种可能的实现方式中,所述电池单体还包括电解液,所述电解液在所述电极组件容纳于所述壳体后,注入到所述封装结构内。这样,可以在封装有封装结构的电极组件容纳于壳体后,进行电解液的注入,电池单体的化成等工序。
第二方面,提供一种制备电池单体的方法,其特征在于,包括:提供电极组件;提供封装结构,通过所述封装结构封装所述电极组件;提供外壳,所述外壳为柔性外壳,将封装有所述封装结构的所述电极组件容纳于所述外壳内。
在一种可能的实现方式中,所述将封装有所述封装结构的所述电极组件容纳于所述外壳内,包括:将封装有所述封装结构的所述电极组件容纳于所述壳体内。这样,在将电极组件容纳于壳体内后,便于通过壳体对电极组件进行后续的操作。
在一种可能的实现方式中,在所述将封装有所述封装结构的所述电极组件容纳于所述壳体内之后,所述方法还包括:夹持并烘烤所述壳体,以去除所述电极组件的水分。这样,有利于更均匀地去除电极组件的水分。
在一种可能的实现方式中,在所述夹持并烘烤所述壳体之后,所述方法还包括:向所述封装结构内注入电解液。这样,注入电解液后,便于进行后续的化成等步骤。
在一种可能的实现方式中,在所述向所述封装结构内注入电解液之后,所述方法还包括:夹持所述壳体以对所述电极组件进行化成。一方面夹具化成有利于及时排除化成过程中产生的气体,避免气体残留在极片之间导致的析锂;另一方面,夹具化成有利于固定极片形貌,实现极片之间的紧密接触,避免极片的反弹及打皱。因此,使用夹具化成有利于提升化成的电池单体的性能。
在一种可能的实现方式中,所述壳体的夹持方向垂直于所述电极组件的厚度方向。这样,可以使电极组件受到的力垂直于电极组件的厚度方向,有利于在夹具烘烤的过程中挤压出电极组件的水分,也有利于在夹具化成的过程中排出气泡以及避免打皱。
第三方面,提供了一种电池,包括:第一方面及第一方面的可能的实现方式中的任一项所述的电池单体;箱体,所述箱体用于容纳所述电池单体。
第四方面,提供了一种用电设备,包括:第三方面所述的电池,所述电池用于向所述用电设备供电。
在本申请实施例中,电池单体包括电极组件,封装结构和外壳。封装结构用于封装电极组件,外壳用于容纳封装有封装结构的电极组件,这样,可以避免外界的机械破坏或内部电解液对外壳的腐蚀所导致的漏液和因漏液引起的一系列安全问题,有利于提高电池单体的安全性能。外壳为柔性外壳,这样,相较于铝壳,外壳的重量降低,有利于提升电池单体的重量能量密度;同时,柔性外壳材质柔软并具有弹性,在将封装有封装结构的电极组件放入外壳时,在避免外壳刮破封装结构的同时不需要在外壳内为电极组件预留更多的空间,有利于提升电池单体的体积能量密度。因此,本申请实施例的技术方案可以提高电池的性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的一种车辆的结构示意图;
图2是本申请一实施例的一种电池的结构示意图;
图3是本申请一实施例的一种电池单体的结构示意图;
图4为本申请一实施例的电池单体的结构示意图;
图5为本申请一实施例的电池单体的结构示意图;
图6为本申请一实施例的铝塑膜的示意图;
图7为本申请一实施例的制备电池单体的方法的示意图;
图8为本申请一实施例的电池单体的制备方法的流程图;
图9为本申请一实施例的封装有铝塑膜的电极组件的示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性 说明,而不应对本申请构成任何限定。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆主体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
为了满足不同的电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率、安全性等。电池单体的壳体通常直接与电池单体内的电解液接触,在电池单体的使用过程中,电池单体的铝制壳体与负极之间可能会经由电解液电连接,这将会导致铝制壳体被腐蚀,从而引发电池单体发生漏液等情况,不利于电池单体的安全性能的提升。为了解决漏液的问题,在电极组件的外部设置了封装膜,并将设置有封装膜的电极组件置于电池单体的壳体内,该封装膜可以在一定程度上避免漏液的问题。但由于设置有封装膜的电极组件在入壳前的化成等工序中发生了膨胀,为了避免外壳刮破封装膜以保证封装膜的效果,此时需要在壳体内预留更大的空间以容纳膨胀后的电极组件,这不利于电池单体的体积能量密度的提升。此外,铝制壳体通常需要搭配铝制端盖,这不利于电池单体的重量的减轻,影响电池单体的重量能量密度。因此,如何提供一种电池单体,以提高电池的性能是一项亟待解决的问题。
鉴于此,本申请实施例提供一种电池单体,电池单体包括电极组件,封装结构和外壳。封装结构用于封装电极组件,外壳用于容纳封装有封装结构的电极组件,这样,可以避免外界的机械破坏或内部电解液对外壳的腐蚀所导致的漏液和因漏 液引起的一系列安全问题,有利于提高电池单体的安全性能。外壳为柔性外壳,这样,相较于铝壳,外壳的重量降低,有利于提升电池单体的重量能量密度;同时,柔性外壳材质柔软并具有弹性,在将封装有封装结构的电极组件放入外壳时,在避免外壳刮破封装结构的同时不需要在外壳内为电极组件预留更多的空间,有利于提升电池单体的体积能量密度。因此,本申请实施例的技术方案可以提高电池的性能。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。例如,多个电池单体20相互并联或串联或混联组合后置于箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属 于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
图3为本申请一实施例的电池单体的结构示意图,图4为本申请一实施例的电池单体的结构示意图,图5为本申请一实施例的电池单体的结构示意图,其中,为便于展示,图3未示出封装结构。结合图3,图4和图5所示,电池单体20包括电极组件22,封装结构25和外壳21。其中,封装结构25用于封装电极组件22,外壳21用于容纳封装有封装结构25的电极组件22,该外壳21为柔性外壳。
电极组件22包括正极片、负极片和隔膜,隔膜用于将正极片和负极片隔离,以降低正极片和负极片之间出现的短路的风险。
正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。
负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。以锂离子电池为例,负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。
隔膜的材质可以为聚丙烯或聚乙烯等,本申请实施例对此不作具体限制。
电极组件22可以是卷绕式结构,也可以是叠片式结构,本申请实施例对此不作具体限制。在电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图3所示,电池单体20内设置有4个独立的电极组件22。
封装结构25用于封装电极组件22,其中,封装结构25可以封装电极组件22的部分区域。例如,封装结构25封装电极组件22的非极耳区域或封装电极组件22的非极耳区域和部分极耳区域,即电极组件22的极耳凸出于封装结构25。
在其它实施例中,封装结构25也可以封装电极组件22的全部区域,这可以根据实际情况具体设置。
封装结构25的形状可以为方形,也可以为其它形状,也可以根据电极组件22的形状设置,只要可以实现对电极组件22的封装即可,本申请实施例对此不作具体限制。例如,对电极组件22的封装可以为,将电极组件22设置于封装结构25的内部,以避免电极组件22与外界(例如,电解液或外壳21)的直接接触。
封装结构25可以与电极组件22为一一对应的关系,也可以为封装结构25封装所有的电极组件22,这可以根据实际需要具体设置,本申请实施例对此不作具体限制。
外壳21用于容纳封装有封装结构25的电极组件22,这样,不需要在封装结构25与外壳21之间的空间内设置有电解液,可以避免外界的机械破坏导致外壳21破损或内部电解液对外壳21的腐蚀导致的外壳21破损,从而可以一定程度上避免因外壳21破损导致的电解液的漏液问题,有利于提高电池单体20的安全性能。
柔性可以指物体受力后变形,作用力失去后物体自身能够恢复原来形状的一种物理性质。对于柔性外壳而言,柔性外壳受到外力作用后变形,在外力消失后,柔性外壳可以恢复到初始形状。
该外壳21为柔性外壳,这样,相较于铝壳,柔性外壳的重量降低,有利于提升电池单体20的重量能量密度;同时,柔性外壳材质柔软并具有弹性,在将封装有封装结构25的电极组件22放入外壳21时,在避免外壳21刮破封装结构25的同时,不需要在外壳21内为电极组件22预留更多的空间,有利于提升电池单体20的体积能量密度。
电池单体20的重量能量密度可以为电池单体20的容量与电池单体20的重量的比值,在电池单体20的容量一定的情况下,电池单体20的重量越大,重量能量密度越低。
电池单体20的体积能量密度可以为电池单体20的容量与电池单体20的体积的比值,在电池单体20的容量一定的情况下,电池单体20的体积越大,体积能量密度越低。
电池单体20还可以包括泄压机构213,泄压机构213用于在电池单体20的内部压力或温度达到预定值时泄放电池单体20内部的压力。泄压机构213可以为防爆 阀、防爆片、气阀、泄压阀或安全阀等部件。
在本申请实施例中,电池单体20包括电极组件22,封装结构25和外壳21。封装结构25用于封装电极组件22,外壳21用于容纳封装有封装结构25的电极组件22,这样,可以避免外界的机械破坏或内部电解液对外壳21的腐蚀所导致的漏液和因漏液引起的一系列安全问题,有利于提高电池单体20的安全性能。外壳21为柔性外壳,这样,相较于铝壳,柔性外壳的重量降低,有利于提升电池单体20的重量能量密度;同时,柔性外壳材质柔软且具有弹性,在将封装有封装结构25的电极组件22放入外壳21时,在避免外壳21刮破封装结构25的同时,不需要在外壳21内为电极组件22预留更多的空间,有利于提升电池单体20的体积能量密度。因此,本申请实施例的技术方案可以提高电池的性能。
可选地,在本申请一实施例中,外壳21包括壳体211和端盖212,壳体211设置有开口2111并用于容纳电极组件22,端盖212用于盖合开口2111。
外壳21包括壳体211和端盖212,也可以说,壳体211和端盖212形成外壳21。壳体211的壁以及端盖212均可称为电池单体20的壁,其中对于长方体形电池单体20,壳体211的壁包括底壁和四个侧壁。
壳体211的形状可以根据一个或多个电极组件22组合后的形状而定。例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口2111以便一个或多个电极组件22放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。
端盖212覆盖开口2111并且与壳体211连接,以形成放置电极组件22的封闭的腔体。
壳体211内填充有电解质,例如电解液。电解液可以填充在壳体211内的封装结构25的内部,即,封装有封装结构25的电极组件22与壳体211之间不设置有电解液。
电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在端盖212上。端盖212通常是平板形状,两个电极端子214固定在端盖212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。
在该实施例中,壳体211用于容纳封装有封装结构的电极组件22,端盖212与壳体211密封连接,以形成电池单体20,该设置便于电池单体20的组装,有利于电池单体20的制备。
可选地,在本申请一实施例中,端盖212的厚度为1.5~4.5mm。
端盖212的厚度大于4.5mm时,虽然有利于提升端盖212及电池单体20的强度,但该设置会导致端盖212占据较多的空间,不利于电池的空间利用率的提升,难以满足电池单体20对于体积能量密度的要求。
端盖212的厚度小于1.5mm时,虽然这有利于提升电池单体20的体积能量密度,但此厚度的端盖212难以满足强度要求。
在该实施例中,端盖212的厚度为1.5~4.5mm,这样可以保证端盖212的厚度在一个合适的范围内,既能满足端盖212对于强度的要求,又能满足电池单体20对于体积能量密度的要求。
可选地,在本申请一实施例中,端盖212的厚度为2~4mm。这样,可以进一步兼顾强度和体积能量密度。
可选地,在本申请一实施例中,壳体211的厚度为0.6~2mm。这样,可以保证壳体211的厚度在一个合适的范围内,既能满足壳体211对于强度的要求,又能满足电池单体20对于体积能量密度的要求。
可选地,在本申请一实施例中,壳体211的厚度为0.8~2mm。这样,可以进一步兼顾强度和体积能量密度。
可选地,在本申请一实施例中,封装结构25为包覆于电极组件22的外表面的封装膜。
在该实施例中,封装结构25为包覆于电极组件22的外表面的封装膜,便于节省封装结构25占用的空间,有利于提升电池单体20的体积能量密度。
可选地,在本申请一实施例中,所述封装膜包括:聚对苯二甲酸乙二醇酯(Polyethylene Glycol Terephthalate,PET)复合膜或铝塑膜。
PET复合膜是将PET薄膜与其他基材或薄膜基材复合而成的一类复合膜,PET复合膜兼具了PET薄膜和其他基材的特性。
PET复合膜重量较轻,有利于减小封装结构25的重量,从而有利于电池单体20的重量能量密度的提升;PET复合膜的材质透明,在电池单体20进行化成等工 序时,便于观测到电池单体20内部的产气及膨胀过程,有利于监测电池单体20的状态。
化成指对电池内部活性进行激活以保证其具有良好的充放电性能、循环寿命。例如化成可以指,使注入电解液后的电池单体执行初次充放电的一系列工艺措施,从而使电池单体的性能趋于稳定。
图6为本申请一实施例的铝塑膜的示意图。如图6所示,铝塑膜可以包括沿厚度方向依次排列的尼龙层101,铝层102和聚丙烯(Polypropylene,PP)层103。尼龙层101可以保证铝塑膜的外形,保证在制造成电池单体20之前,铝塑膜不会发生变形。铝层102可以由一层金属Al构成,其作用是防止水的渗入;金属Al在室温下会与空气中的氧反应生成一层致密的氧化膜,导致水气无法渗入,保护了电池单体20的内部。PP层在一定温度下会发生熔化,并且具有黏性,便于实现铝塑膜的封装。采用铝塑膜便于通过热熔的方式实现封装膜的封装,不需要使用焊接工艺进行封装膜的封装,从而可以避免在焊接过程中产生的金属颗粒及其它杂质对电池单体20的影响。
在该实施例中,使用PET复合膜或铝塑膜制备封装膜,便于电池单体20的制备和监测,有利于提升电池单体20的性能。
可选地,在本申请一实施例中,外壳21的材料包括:聚对苯二甲酸乙二醇酯(Polyethylene Glycol Terephthalate,PET)、聚丙烯(Polypropylene,PP)、聚碳酸酯(Polycarbonate,PC)、聚芳酯(Polyarylate,PAR)、聚四氟乙烯(Polytetrafluoroethylene,PTFE)、聚酰亚胺(Polyimide,PI)、树脂中的至少一种。这样,可以保证外壳21为柔性外壳,具备柔性材料的性能。
可选地,外壳21的材料也可以为其他柔性材料。
此外,即使封装结构25破损导致电解液从封装结构25漏出,由于外壳21的材料为上述材料,也不会发生因短路导致的外壳21的腐蚀,从而可以保证电池单体20的安全性。
可选地,在本申请一实施例中,外壳21的材料包括:聚对苯二甲酸乙二醇酯、聚碳酸酯、聚芳酯、聚四氟乙烯、聚酰亚胺中的至少一种。这样,可以保证外壳21为透明外壳,在发生漏液时可以及时发现,便于电池单体20的维修和更换。
可选地,外壳21的材料也可以为其他透明的柔性材料。
可选地,在本申请一实施例中,壳体211与端盖212通过热熔方式连接。
对于金属的壳体和端盖而言,通常采用焊接工艺实现壳体与端盖的连接。在焊接过程中产生的焊渣、金属颗粒等可能会刺穿电池单体表面的绝缘膜,从而导致短路、自放电异常等现象。
在该实施例中,端盖212与壳体211通过热熔方式连接,可以避免颗粒刺穿电池单体20外表面的绝缘膜造成短路、自放电异常等现象,从而有利于提升电池单体的性能。
可选地,在本申请一实施例中,热熔方式采用的温度为140~160℃。在该温度下,既可以避免因温度过高而影响电池单体20的性能,又能实现端盖212与壳体211的连接。
可选地,热熔方式采用的温度为150℃。
可选地,在本申请一实施例中,电池单体20还包括电解液,电解液在电极组件22容纳于壳体211后,注入到封装结构25内。
这样,可以在封装有封装结构25的电极组件22容纳于壳体211后,进行电解液的注入,电池单体20的化成等工序。
上文结合图1至图6,详细描述了本申请的电池单体的结构的实施例,下文将详细描述本申请的制备电池单体的方法的实施例。应理解,在方法实施例与结构的实施例相互对应的部分,类似的描述可以参照电池单体的结构的实施例,在此不再赘述。
图7为本申请一实施例的制备电池单体的方法的示意图。如图7所示,方法300包括以下步骤。
步骤310,提供电极组件22。
步骤320,提供封装结构25,通过封装结构25封装电极组件22。
步骤330,提供外壳21,该外壳21为柔性外壳,将封装有封装结构25的电极组件22容纳于外壳21内。
可选地,在本申请一实施例中,步骤330包括:将封装有封装结构25的电极组件22容纳于壳体211内。这样,在将电极组件22容纳于壳体211内后,便于通过壳体211对电极组件22进行后续的操作。
可选地,在本申请一实施例中,在将封装有封装结构25的电极组件22容纳于壳体211内之后,还可以夹持并烘烤壳体211,以去除电极组件22的水分。
夹持并烘烤壳体211,可以为,通过夹具夹持壳体211,在夹具的夹持下,将壳体211放入例如烘箱内的装置中,对壳体211,特别是对电极组件22进行烘烤,以去除电极组件22中多余的水分。
由于壳体211为柔性壳体,在夹具的夹持下,夹具所施加在壳体211的力可以传导到电极组件22上,有利于进一步挤压出电极组件22的水分,从而有利于电极组件22的水分的去除。此外,相比于不使用夹具进行烘烤而言,使用夹具烘烤还有利于更均匀地去除电极组件22的水分。
可选地,在本申请一实施例中,在夹持并烘烤壳体211之后,还可以向封装结构25内注入电解液。这样,注入电解液后,便于进行后续的化成等步骤。
可选地,在向封装结构25注入电解液后,将容纳有电极组件22的壳体211静置,以使电极组件22吸收电解液。
可选地,在本申请一实施例中,在向封装结构25内注入电解液之后,还可以夹持壳体211以对电极组件22进行化成。
在电极组件22进行化成的过程中,会产生一些气体,这些气体以气泡的形式残留在极片之间,导致电解液对极片的浸润不足,从而引发析锂。此外,在化成过程中,由于不同极片以及极片不同部分受到的力不同或不均匀,可能会导致极片发生反弹以及打皱等现象。
夹持壳体211对电极组件22进行化成,可以为,使用夹具夹持壳体211,在夹具的夹持下,对电极组件22进行化成。壳体211为柔性壳体,夹具施加在壳体211上的力可以传导到电极组件22上,这样,一方面使用夹具进行化成有利于及时排除化成过程中产生的气体,避免气体残留在极片之间导致的析锂;另一方面,使用夹具进行化成有利于固定极片形貌,实现极片之间的紧密接触,避免极片的反弹及打皱。因此,使用夹具化成有利于提升化成的电池单体的性能。
可选地,在本申请一实施例中,壳体211的夹持方向垂直于电极组件22的厚度方向。这样,可以使电极组件22受到的力垂直于电极组件22的厚度方向,有利于在夹具烘烤的过程中挤压出电极组件22的水分,也有利于在夹具化成的过程中排出气泡以及避免打皱。
可选地,壳体211的夹持方向还可以与电极组件22的厚度方向呈锐角或钝角,这可以根据实际需要具体设置。
夹具的具体设置本申请对此不作具体限制,只要能够实现对壳体211的夹持并向壳体211施加相应的力即可。
图8为本申请一实施例的电池单体的制备方法的流程图。如图8所示,以铝塑膜为封装结构25为例,具体描述电池单体20的制备流程。
步骤510,使用铝塑膜封装电极组件22。
具体地,可以在冲坑工序,使用相应模具,在铝塑膜上表面冲出可以容纳电极组件22的坑,以将电极组件22置于铝塑膜内,之后通过热压封装工艺将电极组件22封装于铝塑膜内。
图9为本申请一实施例的封装有铝塑膜的电极组件的示意图。如图9所示,铝塑膜包覆电极组件22的非极耳区域,电极组件22的极耳221a和222a凸出于铝塑膜,以便极耳221a和222a分别与转接片231和转接片232连接。例如,正极极耳221a通过铝制正极转接片231与正极电极端子214a连接,负极极耳222a通过表面镀有镍层的铜材质的负极转接片7与负极电极端子214b连接。
可选地,在步骤510之前,可以进行电极组件22的制备工序。例如,卷绕或堆叠极片,对卷绕的极片进行热压整形,对卷绕好的极片进行配对,超声波焊接极耳与转接片等工序。
步骤520,将封装有铝塑膜的电极组件22放入壳体211。
步骤530,使用夹具夹持壳体211进行烘烤。
可选地,在步骤530之后以及步骤540之前,向铝塑膜内注入电解液,以便于极片吸收电解液以及便于进行后续的化成工序。
步骤540,使用夹具夹持壳体211进行化成。
可选地,在步骤540之后,可以再次向铝塑膜内注入电解液,以进一步满足极片对于电解液的需求。
可选地,在向铝塑膜内再次注入电解液之后,密封该铝塑膜,以使电极组件22,具体地,电极组件22的非极耳区域,与外部环境隔绝。
可选地,在密封铝塑膜后,使用氦检工艺检测铝塑膜的密封性。
可选地,在氦检工艺的检测结果合格后,通过焊接,例如超声波焊接的方式,连接极耳221a和222a与转接片231和232。
步骤550,使用热熔方式连接端盖212和壳体211。
可选地,在步骤550之后,使用氦检工艺检测电池单体20的密封性。
可选地,在采用氦检工艺完成氦检后,检测电池单体20的容量。
可选地,在电池单体20的容量检测完成后,测试电池单体20的内阻以及自放电性能。
可选地,在内阻以及自放电性能测试完成后,进行电池单体20的下仓。其中,下仓可以指电池单体20的出仓,即表示电池单体20已制备完成。
在本申请实施例中,由于电极组件22被密封在密封结构25中,且外壳为柔性材质或塑料材质,从而可以省去在电池单体20的外表面包覆绝缘膜的工序,即,在电池单体的内阻和自放电测试之后以及电池单体出仓之前,不需要额外为电池单体的外表面包覆绝缘膜,从而有利于工序的减少。
本申请实施例提供了一种电池10,包括:前述任一种实施例中的电池单体20和箱体11,该箱体11用于容纳电池单体20。
本申请实施例提供了提供了一种用电设备,包括:前文所述的电池10,该电池10用于向用电设备供电。
在本申请一实施例中,提供了一种电池单体20。该电池单体20包括电极组件22,包覆在电极组件22的外表面的铝塑膜,和柔性外壳21。外壳21用于容纳包覆有铝塑膜的电极组件22,电解液设置于铝塑膜的内部。这样,可以避免外界的机械破坏或内部电解液对外壳21的腐蚀所导致的漏液和因漏液引起的一系列安全问题,有利于提高电池单体的安全性能。外壳21为柔性外壳,这样,相较于铝壳,外壳21的重量降低,有利于提升电池单体的重量能量密度;同时,柔性外壳材质柔软并具有弹性,在将封装或包覆有有铝塑膜的电极组件放入外壳时,在避免外壳21刮破铝塑膜的同时不需要在外壳内为电极组件22预留更多的空间,有利于提升电池单体的体积能量密度。因此,本申请实施例的技术方案可以提高电池的性能。
在本申请一实施例中,提供了一种制备电池单体的方法。在该方法中,提供电极组件22,铝塑膜和柔性外壳21。通过铝塑膜包覆电极组件22的外表面以将电极组件22封装,并将封装后的包覆有铝塑膜的电极组件22容纳于柔性外壳21内。该方法既有利于提升电池单体的安全性能,又有利于提高电池单体的体积能量密度和重量能量密度,从而可以提升电池的性能。
在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (24)

  1. 一种电池单体(20),其特征在于,包括:
    电极组件(22);
    封装结构(25),所述封装结构(25)用于封装所述电极组件(22);
    外壳(21),所述外壳(21)用于容纳封装有所述封装结构(25)的所述电极组件(22),所述外壳(21)为柔性外壳。
  2. 根据权利要求1所述的电池单体(20),其特征在于,所述外壳(21)包括壳体(211)和端盖(212),所述壳体(211)设置有开口(2111)并用于容纳所述电极组件(22),所述端盖(212)用于盖合所述开口(2111)。
  3. 根据权利要求2所述的电池单体(20),其特征在于,所述端盖(212)的厚度为1.5~4.5mm。
  4. 根据权利要求3所述的电池单体(20),其特征在于,所述端盖(212)的厚度为2~4mm。
  5. 根据权利要求2至4中任一项所述的电池单体(20),其特征在于,所述壳体(211)的厚度为0.6~2mm。
  6. 根据权利要求5所述的电池单体(20),其特征在于,所述壳体(211)的厚度为0.8~2mm。
  7. 根据权利要求1至6中任一项所述的电池单体(20),其特征在于,所述封装结构(25)为包覆于所述电极组件(22)的外表面的封装膜。
  8. 根据权利要求7所述的电池单体(20),其特征在于,所述封装膜包括:聚对苯二甲酸乙二醇酯复合膜或铝塑膜。
  9. 根据权利要求1至8中任一项所述的电池单体(20),其特征在于,所述外壳(21)的材料包括:聚对苯二甲酸乙二醇酯、聚丙烯、聚碳酸酯、聚芳酯、聚四氟乙烯、聚酰亚胺、树脂中的至少一种。
  10. 根据权利要求9所述的电池单体(20),其特征在于,所述外壳(21)的材料包括:聚对苯二甲酸乙二醇酯、聚碳酸酯、聚芳酯、聚四氟乙烯、聚酰亚胺中的至少一种。
  11. 根据权利要求2至10中任一项所述的电池单体(20),其特征在于,所述壳 体(211)与所述端盖(212)通过热熔方式连接。
  12. 根据权利要求11所述的电池单体(20),其特征在于,所述热熔方式采用的温度为140~160℃。
  13. 根据权利要求2至12中任一项所述的电池单体(20),其特征在于,所述电池单体(20)还包括电解液,所述电解液在所述电极组件(22)容纳于所述壳体(211)后,注入到所述封装结构(25)内。
  14. 一种制备电池单体的方法(300),其特征在于,包括:
    提供(310)电极组件;
    提供(320)封装结构,通过所述封装结构封装所述电极组件;
    提供(330)外壳,所述外壳为柔性外壳,将封装有所述封装结构的所述电极组件容纳于所述外壳内。
  15. 根据权利要求14所述的方法,其特征在于,所述外壳包括壳体和端盖,所述壳体设置有开口并用于容纳所述电极组件,所述端盖用于盖合所述开口。
  16. 根据权利要求15所述的方法,其特征在于,所述将封装有所述封装结构的所述电极组件容纳于所述外壳内,包括:
    将封装有所述封装结构的所述电极组件容纳于所述壳体内。
  17. 根据权利要求16所述的方法,其特征在于,在所述将封装有所述封装结构的所述电极组件容纳于所述壳体内之后,所述方法还包括:
    夹持并烘烤所述壳体,以去除所述电极组件的水分。
  18. 根据权利要求17所述的方法,其特征在于,在所述夹持并烘烤所述壳体之后,所述方法还包括:
    向所述封装结构内注入电解液。
  19. 根据权利要求18所述的方法,其特征在于,在所述向所述封装结构内注入电解液之后,所述方法还包括:
    夹持所述壳体以对所述电极组件进行化成。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,所述壳体的夹持方向垂直于所述电极组件的厚度方向。
  21. 根据权利要求15至20中任一项所述的方法,其特征在于,所述方法包括:
    通过热熔方式连接所述端盖与所述壳体。
  22. 根据权利要求21所述的方法,其特征在于,所述热熔方式采用的温度为140~160℃。
  23. 一种电池(10),其特征在于,包括:
    如权利要求1至13中任一项所述的电池单体(20);
    箱体(11),所述箱体(11)用于容纳所述电池单体(20)。
  24. 一种用电设备,其特征在于,包括如权利要求23所述的电池(10),所述电池(10)用于向所述用电设备供电。
PCT/CN2022/102863 2022-06-30 2022-06-30 电池单体及其制备方法、电池和用电设备 WO2024000418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/102863 WO2024000418A1 (zh) 2022-06-30 2022-06-30 电池单体及其制备方法、电池和用电设备
CN202280062034.6A CN117941122A (zh) 2022-06-30 2022-06-30 电池单体及其制备方法、电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102863 WO2024000418A1 (zh) 2022-06-30 2022-06-30 电池单体及其制备方法、电池和用电设备

Publications (1)

Publication Number Publication Date
WO2024000418A1 true WO2024000418A1 (zh) 2024-01-04

Family

ID=89383739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102863 WO2024000418A1 (zh) 2022-06-30 2022-06-30 电池单体及其制备方法、电池和用电设备

Country Status (2)

Country Link
CN (1) CN117941122A (zh)
WO (1) WO2024000418A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571084A (zh) * 2004-04-23 2005-01-26 清华大学深圳研究生院 一种高能防电化学腐蚀的超级电容器
JP2008226563A (ja) * 2007-03-09 2008-09-25 Gs Yuasa Corporation:Kk 電池
CN102005617A (zh) * 2009-08-28 2011-04-06 比克国际(天津)有限公司 一种可避免气胀的锂动力电池
CN208873772U (zh) * 2018-09-05 2019-05-17 浙江衡远新能源科技有限公司 一种二次电池结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1571084A (zh) * 2004-04-23 2005-01-26 清华大学深圳研究生院 一种高能防电化学腐蚀的超级电容器
JP2008226563A (ja) * 2007-03-09 2008-09-25 Gs Yuasa Corporation:Kk 電池
CN102005617A (zh) * 2009-08-28 2011-04-06 比克国际(天津)有限公司 一种可避免气胀的锂动力电池
CN208873772U (zh) * 2018-09-05 2019-05-17 浙江衡远新能源科技有限公司 一种二次电池结构

Also Published As

Publication number Publication date
CN117941122A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
CN216872114U (zh) 电池和用电设备
WO2023045401A1 (zh) 注液孔密封装置、端盖组件、电池单体、电池以及用电设备
CN214477678U (zh) 盖板、电池单体、电池及用电设备
WO2024016451A1 (zh) 顶盖组件、电池单体、电池及用电设备
EP4254620A1 (en) Battery cell, battery, and power consuming device
CN216213729U (zh) 电池单体、电池及用电设备
CN216872134U (zh) 电池和用电设备
US20230395902A1 (en) Case of battery, battery and electrical device
CN217606982U (zh) 电池和用电设备
US20230369714A1 (en) Case of battery, battery, power consuming apparatus, and method and apparatus for manufacturing battery
WO2024000418A1 (zh) 电池单体及其制备方法、电池和用电设备
KR20220102642A (ko) 배터리 및 그 관련 장치, 제조 방법 및 제조 장치
WO2024016308A1 (zh) 用于电池单体的端盖组件、电池单体、电池和用电设备
WO2023078066A1 (zh) 电池、用电装置、检测方法和检测模块
WO2023193152A1 (zh) 电池单体及其制造方法和制造设备、电池以及用电装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN216015525U (zh) 电池顶盖、电池单体及用电装置
KR20230019246A (ko) 배터리의 케이스 바디, 배터리, 전기 설비, 배터리의 제조 방법 및 제조 설비
CN114696012A (zh) 电池单体及其制造方法、电池以及用电装置
CN220527142U (zh) 连接组件、电池和用电装置
CN220692248U (zh) 电池单体、电池以及用电装置
WO2024103201A1 (zh) 端盖组件、电池单体、电池和用电装置
CN220934350U (zh) 电池单体和具有其的电池及用电设备
CN221102217U (zh) 电池单体、电池及用电设备
CN221041206U (zh) 锂离子电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280062034.6

Country of ref document: CN