WO2024000082A1 - 电芯模组的堆叠装置及堆叠方法 - Google Patents

电芯模组的堆叠装置及堆叠方法 Download PDF

Info

Publication number
WO2024000082A1
WO2024000082A1 PCT/CN2022/101371 CN2022101371W WO2024000082A1 WO 2024000082 A1 WO2024000082 A1 WO 2024000082A1 CN 2022101371 W CN2022101371 W CN 2022101371W WO 2024000082 A1 WO2024000082 A1 WO 2024000082A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
battery
tray
stacking device
battery module
Prior art date
Application number
PCT/CN2022/101371
Other languages
English (en)
French (fr)
Inventor
张成美
邱昆
吴鹰
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280049136.4A priority Critical patent/CN117642922A/zh
Priority to PCT/CN2022/101371 priority patent/WO2024000082A1/zh
Publication of WO2024000082A1 publication Critical patent/WO2024000082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding

Definitions

  • the present application relates to the technical field of battery manufacturing, and in particular to a stacking device and a stacking method of battery cell modules.
  • the power battery as the core power supply component of the vehicle, determines the vehicle's driving range, cost, service life, safety performance and other key factors. index.
  • a battery cell module of a power battery is usually composed of multiple stacked cells.
  • the length of the battery cell module continues to grow.
  • multiple battery cells are extruded and stacked on a pallet to form a module, and the battery core module is transported through the pallet. Since the cells need to be stacked at intervals before stacking, the length of the pallet is correspondingly increased, the manufacturing cost of the pallet is increased, and the length of the production line is extended.
  • the purpose of this application is to provide a stacking device and a stacking method for battery modules, which can effectively reduce the length of the tray and reduce the manufacturing cost of the tray.
  • this application proposes a stacking device for battery core modules.
  • the stacking device includes:
  • a support mechanism the support mechanism is used to support the battery core
  • the pressing mechanism is connected to the frame. Part of the pressing mechanism can move along the axial direction of the support mechanism and is used to squeeze a plurality of the battery cores into a battery core module. ;
  • a tray is provided on the frame in a manner that is movable relative to the frame and is used to support the battery module.
  • a support mechanism is provided, the battery cores are placed on the support mechanism, and the pressing mechanism moves along the axial direction of the support mechanism to squeeze multiple battery cores into battery core modules, and the batteries are
  • the core module is transferred to the pallet, and the battery module is transported to the next process through the pallet.
  • the extrusion process of the battery module does not need to be operated on the stripping tray, thereby reducing the length and size of the pallet and reducing the cost of the pallet.
  • the manufacturing cost is reduced, and the length of the production line is shortened, so that the floor space of the stacking device is reduced, which further facilitates the arrangement of other equipment.
  • the transport efficiency of the pallet can be improved, thereby improving production efficiency.
  • the battery modules since there is no need to stack the battery modules on the pallet, the battery modules only need to be transferred to the pallet for transportation, which can effectively prevent scratches caused by the battery module sliding on the pallet.
  • the support mechanism includes a first support member and a second support member arranged in parallel, and the first support member and the second support member are respectively slidably connected to the machine.
  • the frames are connected, and the sliding direction is perpendicular to the axial direction of the support structure, so that the first support member and the second support member are relatively close or relatively far away.
  • the stacking device further includes a telescopic mechanism, the telescopic mechanism is connected to the frame, and the first support member and the second support member are respectively connected to the telescopic mechanism, And move relatively close or relatively far away under the action of the telescopic mechanism.
  • the telescopic mechanism includes a first driving member and a second driving member.
  • the first driving member is drivingly connected to the first supporting member
  • the second supporting member is connected to the third supporting member.
  • the two driving parts drive the connection.
  • the tray is disposed on the frame in a relatively slidable manner.
  • the The tray can slide to the bottom of the support mechanism and be positioned opposite the first opening.
  • the stacking device further includes at least one pallet locking mechanism.
  • the pallet is provided with at least one clamping assembly.
  • the pallet locking mechanism can be connected to the clamping assembly and used to The clamping component is driven to move, so that the clamping component clamps or releases the battery module on the tray.
  • the tray locking mechanism By connecting the tray locking mechanism to the clamping component of the tray, the movement of the clamping component can be controlled to clamp or loosen the battery module on the tray, so that the position of the battery module relative to the tray is fixed.
  • the battery core module is transported to the next process through the pallet to prevent the battery core from falling during transportation.
  • the pallet locking mechanism includes a third driving member, a fourth driving member and a locking member.
  • the locking member is connectable to the clamping assembly.
  • the locking member is in The locking member moves in the vertical direction under the driving action of the third driving member, and the locking member drives the clamping assembly to move together in the axial direction of the support mechanism under the driving action of the fourth driving member.
  • the fourth driving member drives the locking member to drive the clamping components to move together in the axial direction of the support mechanism, so that the battery core module can be smoothly placed on the tray and fixedly clamped by the clamping component, so that the battery core module The group is fixed in position relative to the pallet.
  • the stacking device further includes a lifting mechanism, the lifting mechanism is connected to the frame, the lifting mechanism at least includes a top plate that can be lifted and lowered, and the pallet is provided with a second The top plate can pass through the second opening and the first opening in sequence and abut against the battery core module. After extruding multiple battery cores into a module, the top plate of the lifting mechanism is controlled to pass through the second opening and the first opening in sequence and abut the battery cores. The battery core module is supported through the top plate, and then the first support member is controlled.
  • the length dimension of the top plate is smaller than the length dimension of the second opening and larger than the length dimension of the battery module. Setting the length of the top plate smaller than the length of the second opening can ensure that the top plate passes through the second opening smoothly during the lifting process. Setting the length of the top plate greater than the length of the battery module can ensure that the battery module Within the length range, the battery module is fully supported to prevent the battery module from falling during the transfer to the pallet due to lack of support below.
  • the width dimension of the second opening is smaller than the width dimension of the battery module. Since the length dimension of the top plate is smaller than the length dimension of the second opening and larger than the length dimension of the battery module, the length dimension of the battery module is smaller than the length dimension of the second opening.
  • the lifting mechanism further includes a mounting plate and a fifth driving member.
  • the mounting plate is connected to the frame.
  • the fifth driving member is fixed to the mounting plate and connected with the The top plate driving connection is used to drive the lifting movement of the top plate.
  • the lifting mechanism is fixed on the frame through the mounting plate, and the fifth driving member drives the lifting movement of the top plate, which can effectively support the battery module and transfer the battery module to the pallet.
  • the stacking device further includes a brush mechanism, which at least includes a brush that can move along the axial direction of the support mechanism and is used to clean the Supporting mechanism.
  • a brush mechanism which at least includes a brush that can move along the axial direction of the support mechanism and is used to clean the Supporting mechanism.
  • the pressing mechanism includes a sixth driving member and a pressure plate assembly.
  • the sixth driving member is used to drive the pressure plate assembly to move along the axial direction of the support mechanism.
  • the pressure plate at least includes a pressing plate, which is used to press the electric core. By squeezing the battery cells through the pressing plate, multiple battery cells can be squeezed into a battery core module.
  • the pressing plate has a large force-bearing surface, which can prevent damage to the battery core due to stress concentration during the process of squeezing the battery core.
  • the pressing mechanism is driven to move along the axial direction of the support mechanism and squeeze multiple battery cores so that the multiple battery cores are stacked into a battery core module;
  • the step of stacking multiple cells into a cell module further includes the following steps:
  • the lifting mechanism is driven to drive the battery modules to descend together, and the lifting mechanism passes through the second opening on the tray, so that the bottom surface of the battery module is in contact with the tray, and the battery module is supported by the tray;
  • Figure 1 is a schematic structural diagram of a stacking device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the initial position of battery cells stacked on a stacking device according to an embodiment of the present application
  • Figure 3 is a schematic structural diagram of battery cells provided in an embodiment of the present application after being stacked on a stacking device to form a battery cell module;
  • Figure 6 is an enlarged structural schematic diagram of part A of the stacking device provided by an embodiment of the present application.
  • Figure 7 is an enlarged structural schematic diagram of part B of the stacking device provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a tray provided by an embodiment of the present application.
  • Figure 10 is an enlarged structural schematic diagram of part D of the tray provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a lifting mechanism provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a brush mechanism provided by an embodiment of the present application.
  • Figure 13 is a flow chart of a stacking method provided by an embodiment of the present application.
  • 60 Pallet locking mechanism
  • 61 First locking component
  • 611 Third driving component
  • 612 Fourth driving component
  • 613 Support plate
  • 62 Second locking component
  • 63 Locking component
  • 70 Lifting mechanism, 71: Top plate, 72: Installation plate, 73: Fifth driving part, 74: Guide rod, 75: Side plate;
  • a first feature "on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features may be in direct contact. Indirect contact through intermediaries.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. .
  • the battery cell modules of the power battery are usually stacked by multiple cells.
  • the battery module The length continues to increase.
  • multiple battery cells are extruded and stacked on a pallet to form a module, and the battery core module is transported through the pallet. Since the cells need to be stacked at intervals before stacking, the length of the pallet is correspondingly increased, thereby increasing the manufacturing cost of the pallet and extending the length of the production line.
  • the bottom surface of the battery core and the surface of the tray rub against each other during the process of extruding the battery core into a module, it is easy to cause scratches on the bottom surface of the battery core.
  • the inventor of the present application found that by squeezing multiple battery cells on other components and stacking them into battery cells module, and then transfer the battery module to the pallet, and transport the battery module through the pallet, which can effectively reduce the length of the pallet, reduce the expansion and contraction of the spring mechanism on the pallet, and reduce the manufacturing cost of the pallet. At the same time, It can also effectively reduce scratches on the bottom surface of the battery core caused by friction between the bottom surface of the battery core and the surface of the tray.
  • the inventor has designed a stacking device for battery core modules after in-depth research.
  • the battery cores are placed on the support mechanism, and the pressing mechanism is used along the axial direction of the support mechanism. direction, extrude multiple cells into battery modules, and transfer the battery modules to the pallet, and transport the battery modules to the next process through the pallet.
  • the extrusion process of the battery modules does not need to be carried out in The operation is performed on the tray, thereby reducing the length and size of the tray, reducing the manufacturing cost of the tray, shortening the length of the production line, reducing the footprint of the stacking device, further facilitating the layout of other equipment, and because the tray
  • the reduced length and size can improve the conveying efficiency of the pallet, thereby improving production efficiency.
  • the stacking device and stacking method of the battery core module provided by this application can be used to extrude and stack multiple battery cores into a battery core module.
  • Cell modules can be used in any battery pack or battery, or in primary and secondary batteries.
  • secondary batteries include lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries, magnesium-ion batteries, etc.
  • This kind of battery is suitable for various electrical devices that use batteries, such as mobile phones, portable devices, laptops, battery cars, electric toys, power tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include aircraft, rockets, aerospace Aircrafts and spacecrafts, etc.; batteries or battery packs are used to provide electrical energy for the above-mentioned electrical equipment.
  • FIG. 1 is a schematic structural diagram of the stacking device 1 provided by one embodiment of the present application
  • FIG. 2 is a schematic structural diagram of the initial position of the battery cells 2 stacked on the stacking device 1 provided by one embodiment of the present application.
  • Figure 3 is a schematic structural diagram of the battery cells 2 provided by one embodiment of the present application being stacked on the stacking device 1 to form a battery core module 3
  • Figure 4 is another angle structure of the stacking device 1 provided by one embodiment of the present application.
  • the stacking device 1 includes a frame 10 , a support mechanism 20 and a pressing mechanism 30 .
  • the support mechanism 20 is used to support the battery cores 2, and the pressing mechanism 30 is connected to the frame 10.
  • Some of the pressing mechanisms 30 can move along the axial direction of the support mechanism 20, and are used to squeeze multiple battery cores 2 into battery core molds.
  • the tray 40 is disposed on the frame 10 in a movable manner relative to the frame 10, and is used to support the battery module 3.
  • the stacking device 1 is used in the production process of the battery module 3 to stack multiple battery cells 2 together by extrusion to form the battery module 3 .
  • the rack 10 constitutes the basic structure of the stacking device 1 and is used to support the entire stacking device 1. Other structural components of the stacking device 1 can be respectively arranged on the rack 10.
  • the support mechanism 20 is used to support the battery core 2 so that the battery core 2 can be squeezed on the support mechanism 20 .
  • the pressing mechanism 30 can provide a certain pressing force and is used to press multiple battery cores 2, so that the multiple battery cores 2 are stacked together under the action of the pressing force of the pressing mechanism 30, and form a battery core module. 3.
  • the axial direction of the support mechanism 20 is the extension direction of the support mechanism 20 , that is, the length direction of the stacking device as shown in FIG. 1 .
  • the battery cell 2 in this application also refers to a battery cell
  • the battery cell module 3 also refers to a battery module.
  • a battery cell refers to the smallest unit that makes up a battery module or battery pack.
  • the battery module may include multiple battery cells. The multiple battery cells may be connected in series, parallel, or mixed to form a battery module. The multiple battery modules may then be connected in series, parallel, or mixed to form a battery.
  • a plurality of battery cells 2 are stacked on the support mechanism 20 along the length direction of the stacking device 1 , and there is a gap between any two adjacent battery cells 2 in the stacked battery core module 3 .
  • the large faces are set opposite each other.
  • the length direction of the single cell 2 used to form the cell module 3 is perpendicular to the length direction of the stacking device 1
  • the width direction of the cell 2 is parallel to the length direction of the stacking device 1
  • the height direction of the cell 2 is parallel to the stacking device 1.
  • the height direction of the device 1 is parallel, and the outline size of the battery core 2 in the length direction is larger than the outline size of the battery core 2 in the width direction.
  • the tray 40 has a disc-shaped structure as a whole, and is used to carry the battery module 3 and can move relative to the frame 10 to transport the battery module 3 to the next process.
  • a support mechanism 20 is provided, the battery cores 2 are placed on the support mechanism 20 , and the pressing mechanism 30 moves along the axial direction of the support mechanism 20 to squeeze a plurality of battery cores 2 into battery cells.
  • Module 3 and transfer the battery module 3 to the tray 40, and transport the battery module 3 to the next process through the tray 40.
  • the extrusion process of the battery module 3 does not need to be operated on the take-off tray 40. Therefore, the length dimension of the pallet 40 is reduced, the manufacturing cost of the pallet 40 is reduced, and the length of the production line is shortened, so that the floor space of the stacking device 1 is reduced, further facilitating the arrangement of other equipment.
  • the support mechanism 20 includes a first support member 21 and a second support member 22 arranged in parallel.
  • the first support member 21 and the second support member 22 are respectively It is slidably connected to the frame 10 , and the sliding direction is perpendicular to the axial direction of the support mechanism 20 , so that the first support member 21 and the second support member 22 are relatively close or relatively far away.
  • first support member 21 and the second support member 22 are respectively used to support the battery core 2 on both sides of the battery core 2, and the first support member 21 and the second support member 22 jointly form a support mechanism.
  • first support member 21 and the second support member 22 are arranged in parallel.
  • the direction perpendicular to the axial direction of the support mechanism 20 is the width direction of the stacking device 1 .
  • the first support member 21 and the second support member 22 can be controlled to be relatively opposite to each other. away from each other, thereby increasing the distance between the first support member 21 and the second support member 22 to support the battery core 2 with a larger length; when the battery core 2 has a smaller length, the first support member can be controlled 21 and the second support member 22 are relatively close, thereby reducing the distance between the first support member 21 and the second support member 22 to support the battery core 2 with a smaller length, thereby enabling the battery core 2 to be adjusted according to the length of the battery core 2
  • the size of the distance between the first support member 21 and the second support member 22 is adjusted to support battery cores 2 of different lengths and sizes.
  • FIG. 7 is an enlarged structural schematic diagram of part B of the stacking device 1 provided in an embodiment of the present application.
  • the stacking device 1 also includes a telescopic mechanism, which is connected to the frame 10.
  • the first support member 21 and the second support member 22 are respectively connected to the telescopic mechanism, and are relatively close or relatively far away under the action of the telescopic mechanism.
  • the telescopic mechanism can reciprocate along the width direction of the stacking device 1 , and the driving ends of the telescopic mechanism are connected to the first support member 21 and the second support member 22 respectively, thereby driving the first support member 21 and the second support member 22 to face each other. Close or relatively far away.
  • the degree of automation of the stacking device 1 can be effectively improved.
  • the telescopic mechanism includes a first driving member 51 and a second driving member (not shown in the figure), and the first driving member 51 and the second driving member One supporting member 21 is drivingly connected, and the second supporting member 22 is drivingly connected with the second driving member.
  • the driving end of the first driving member 51 is connected to the first supporting member 21 for driving the first supporting member 21 closer to or away from the second supporting member 22, and the driving end of the second driving member 51 is connected to the second supporting member 22. , used to drive the second support member 22 close to or away from the first support member 21 .
  • the first driving member 51 and the second driving member are respectively provided at both ends of the frame 10 in the length direction, thereby effectively utilizing the space on the frame 1 .
  • the first driving member 51 and the second driving member may be driving cylinders respectively.
  • the degree of automation of the stacking device 1 can be further improved, and some asymmetrically structured cells 2 can be processed.
  • the support is such that the center of the asymmetrically structured battery coincides with the center of the frame 10 .
  • the telescopic mechanism can also be configured as only one driving member, with driving ends provided on both sides of the driving member, and the driving ends on both sides are connected to the first support member 21 and the second support member 22 respectively. Connected, thereby driving the first support member 21 and the second support member 22 to move simultaneously through a driving member, thereby ensuring the synchronization of the movement of the first support member 21 and the second support member 22.
  • the tray 40 is provided on the frame 10 in a relatively slidable manner.
  • the tray 40 can slide to the bottom of the support mechanism 20 and be positioned opposite the first opening 23 .
  • the tray 40 can be disposed below the support mechanism 20 during the sliding process, wherein multiple rotating drums can be spaced on the frame 10 , and the tray 40 is placed on the multiple rotating drums. As the rotating drums rotate, , the tray 40 can slide relative to the frame 10 along the rotation direction of the plurality of rotating drums. After multiple battery cells 2 are extruded and stacked to form the battery core module 3 , the battery core module 3 needs to be transferred to the tray 40 .
  • the first support member 21 and the second support member 22 are controlled to be relatively far apart, and the first opening 23 is formed between them, and the opening size of the first opening 23 is made larger than the cross-sectional size of the battery module 3, so that through The first opening 23 places the battery module 3 on the tray 40 that is disposed directly opposite the first opening 23 , thereby completing the transfer of the battery module 3 .
  • the tray 40 in order to facilitate the arrangement of the tray 40 and the transportation of the battery module 3 , the tray 40 can slide along the length direction of the stacking device 1 .
  • the tray 40 Since during the process of transferring the battery module 3 to the tray 40, it is only necessary to control the movement of the battery module 3 along the height direction of the frame 10. There is no need to move or rotate the battery module 3 on a large scale, which facilitates the transfer of the battery module 3 to the tray 40.
  • the battery module 3 is transferred to the tray 40 below, so that the battery module 3 is transported to the next process through the tray 40 .
  • the space occupancy rate during the transfer process of the battery module 3 can be reduced, and the space occupancy rate of the stacking device 1 can be further reduced, making it easier to arrange other equipment.
  • Figure 8 is an enlarged structural schematic diagram of part C of the stacking device 1 provided in one embodiment of the present application
  • Figure 9 is an enlarged structural diagram of part C of the stacking device 1 provided in one embodiment of the present application
  • the embodiment provides a schematic structural diagram of the tray 40.
  • the stacking device 1 also includes at least one pallet locking mechanism 60.
  • the pallet 40 is provided with at least one clamping assembly 43.
  • the pallet locking mechanism 60 can be connected with the clamping assembly 43 and is used to drive the clamping assembly 43 to move so that the clamping assembly 43 moves.
  • the holding assembly 43 clamps or releases the battery module 3 on the tray 40.
  • the pallet 40 is provided with a clamping assembly 43, which is used to clamp and fix the battery module 3 transferred to the pallet 40 to prevent the battery module 3 from falling during the transportation of the pallet 40. fall.
  • the clamping assembly 43 on the pallet 40 can be connected with the pallet locking unit 60 , thereby driving the clamping assembly 43 to move through the pallet locking unit 60 .
  • a tray locking unit 60 is provided at both ends of the rack 10 in the length direction.
  • a clamping assembly is provided at both ends of the tray 40 in the length direction. 43, so that the tray locking units 60 at both ends drive the clamping components 43 to move respectively, and jointly clamp and fix the battery module 3 on the tray 40.
  • the length direction of the rack 10 and the length direction of the tray 40 are respectively the same as the length direction of the stacking device 1 .
  • the clamping component 43 can be controlled to move, thereby clamping the battery module 3 on the tray 40 so that the battery module 3 is relative to the tray 40
  • the position is fixed, so that the battery module 3 is transported to the next process through the tray 40 to prevent the battery module 3 from falling during the transportation process.
  • FIG. 10 is an enlarged structural schematic diagram of part D of the tray 40 provided in one embodiment of the present application.
  • the pallet locking mechanism 60 includes a third driving member 611, a fourth driving member 612 and a locking member 63.
  • the locking member 63 can be connected to the clamping assembly 43.
  • the locking member 63 moves along the direction driven by the third driving member 611. Moving in the vertical direction, the locking member 63 drives the clamping assembly 43 to move together along the length direction of the stacking device 1 under the action of the fourth driving member 612 .
  • the driving end of the third driving member 611 is connected to the fourth driving member 612 or connected to the fourth driving member 612 through a connecting member, and is used to drive the fourth driving member 612 to move in the vertical direction, that is, along the stacking device 1 movement in the height direction.
  • the driving end of the fourth driving member 612 is connected to the locking member 63 and is used to drive the locking member 63 to move along the length direction of the stacking device 1 .
  • the locking member 63 is used to connect and fix the clamping assembly 43 to drive the clamping assembly 43 to move together along the length direction of the stacking device 1 .
  • the third driving member 611 and the fourth driving member 612 may be driving cylinders respectively.
  • the pallet locking mechanism 60 includes a first locking component 61 , a second locking component 62 and a locking piece 63 .
  • the second locking component 62 has the same structure as the first locking component 61 .
  • the first locking assembly 61 includes a third driving member 611 , a fourth driving member 612 and a support plate 613 .
  • the third driving member 611 is disposed on the frame 10.
  • the driving end of the third driving member 611 is connected to the support plate 613.
  • the fourth driving member 612 is disposed on the supporting plate 613.
  • the driving end of the fourth driving member 612 is connected to the locking member. 63 connected.
  • the third driving member 611 drives the locking member 63 to move upward to provide an avoidance space for the pallet 40 to move along the length direction of the stacking device 1.
  • the pallet 40 moves from below the locking member 63 at one end to below the support mechanism 20 and connects with the support mechanism 20.
  • the first opening 23 is disposed directly opposite.
  • the third driving member 611 drives the locking member 63 to move downward, and the locking member 63 is sleeved on the sliding rod 433 .
  • the fourth driving member 612 drives the locking member 63 to move away from the pallet 40.
  • the size of the tray 40 can be appropriately reduced.
  • the clamping mechanism 43 is only used to fix the battery module 3, so the displacement of the sliding rod 433 and the expansion and contraction of the spring 434 on the clamping mechanism 43 can also be appropriately reduced, thereby further reducing the manufacturing cost of the tray 40. .
  • the fourth driving member 612 drives the locking member 63 to drive the clamping assembly 43 to move together along the length direction of the stacking device 1 , so that the battery module 3 can be smoothly placed on the tray 40 and fixedly clamped by the clamping assembly 43 , thereby fixing the position of the battery module 3 relative to the tray 40 .
  • FIG. 11 is a schematic structural diagram of the lifting mechanism 70 provided in an embodiment of the present application.
  • the stacking device 1 also includes a lifting mechanism 70.
  • the lifting mechanism 70 is connected to the frame 10.
  • the lifting mechanism 70 at least includes a top plate 71 that can be lifted and lowered.
  • the pallet 40 is provided with a second opening 42, and the top plate 71 can pass through the second opening 42 in turn.
  • the two openings 42 and the first opening 23 are in contact with the battery module 3 .
  • the top plate 71 of the lifting mechanism 70 is controlled to pass through the second opening 42 and the first opening 23 in sequence and abut against the bottom surface of the battery core module 3.
  • the top plate 71 Support the battery core module 3, then control the first support member 21 and the second support member 22 to move away from each other to expand the first opening 23, and then control the top plate 71 to lower and drive the battery core module 3 through the first opening 23. , so that the battery module 3 is finally placed on the tray 40, and the battery module 3 is supported by the tray 40 to facilitate the transfer of the battery module 3.
  • the length dimension of the top plate 71 is smaller than the length dimension of the second opening 42 and larger than the length dimension of the second opening 42 .
  • a second opening 42 is provided at the center of the base plate 41 of the tray 40 so that the top plate 71 passes through the second opening 42 to support the battery module 3 and transfer the battery module 3 to the tray 40 superior.
  • the length direction of the second opening 42 is consistent with the length direction of the stacking device 1 .
  • support seats 44 are respectively provided on both sides of the second opening 42 in the width direction of the base plate 41 .
  • the support seats 44 are also L-shaped mechanisms.
  • the support seats 44 on both sides jointly control the electricity.
  • Core module 3 is used for support.
  • the size of the opening between the two support seats 44 is larger than the size of the opening on the base plate 41 , the movement of the top plate 71 is limited by the size of the opening on the base plate 41 .
  • the opening on the base plate 41 is the second opening 42 .
  • the opening size between the two support seats 44 is smaller than the opening size on the base plate 41, the movement of the top plate 71 is limited by the opening size between the two support seats 44.
  • the opening between the two support seats 44 is the second opening. 42.
  • Setting the length of the top plate 71 smaller than the length of the second opening 42 can ensure that the top plate 71 passes through the second opening 42 smoothly during the lifting process. Setting the length of the top plate 71 greater than the length of the battery module 3 can ensure Ensure that the battery module 3 is fully supported within the length range of the battery module 3 to prevent the battery module 3 from falling during the transfer to the tray 40 due to lack of support below.
  • the width of the second opening 42 is smaller than the battery module 3 width size.
  • the width direction of the second opening 42 is consistent with the width direction of the stacking device 2 .
  • the length of the top plate 71 is smaller than the length of the second opening 42 and larger than the length of the battery module 3 , the length of the battery module 3 is smaller than the length of the second opening 42 .
  • the width dimension is smaller than the width dimension of the battery module 3, and the battery module 3 can be supported by the partial structures on both sides of the width direction of the second opening 42, effectively preventing the battery module 3 from falling through the second opening 42. fall.
  • the lifting mechanism 70 also includes a mounting plate 72 and a fifth driving member 73.
  • the mounting plate 72 is connected to the frame 10.
  • the five driving parts 73 are fixed on the mounting plate 72 and are drivingly connected with the top plate 71 for driving the top plate 71 to move up and down.
  • the mounting plate 72 is used to integrally fix the lifting mechanism 70 to the frame 10 .
  • the fifth driving member 73 is fixed on the mounting plate 72 , and the driving end of the fifth driving member 73 is drivingly connected to the top plate 71 , thereby driving the top plate 71 to move along the height direction of the stacking device 1 .
  • the fifth driving member 73 is a driving cylinder.
  • the lifting mechanism 70 includes a top plate 71 , a mounting plate 72 , a fifth driving member 73 and a guide rod 74 .
  • the mounting plate 72 is connected to the frame 10 to integrally fix the lifting mechanism 70 to the frame 10 .
  • the fifth driving member 73 is installed on the mounting plate 72.
  • the driving end of the fifth driving member 73 passes through the mounting plate 72 and is connected to the top plate 71 (the drawing does not show that the driving end is fully connected to the top plate 71) for driving the top plate.
  • 71 reciprocates along the height direction of the stacking device 1 .
  • the guide rod 74 can telescopically move along its own axis. One end of the guide rod 74 is fixed on the frame 10 .
  • the other end of the guide rod 74 passes through the mounting plate 72 and is connected to the top plate 71 , thereby ensuring the linear motion of the top plate 71 .
  • side plates 75 can also be provided on both sides of the top plate 71 . The distance between the side plates 75 on both sides is slightly larger than the length of the battery module 3 . Therefore, when the battery module 3 is placed on the side plates on both sides, When placed on the top plate 71 of the space 75, the side plates 75 can prevent the battery module 3 from falling from the top plate 71.
  • the lifting mechanism 70 is fixed on the frame 10 through the mounting plate 72, and the fifth driving member 73 drives the lifting movement of the top plate 71, which can effectively support the battery module 3 and transfer the battery module 3 to the tray. 40 on.
  • FIG. 12 is a schematic structural diagram of the brush mechanism 80 provided in an embodiment of the present application.
  • the stacking device 1 also includes a brush mechanism 80 .
  • the brush mechanism 80 at least includes a brush 81 .
  • the brush 811 can move along the axial direction of the support mechanism 20 and is used to clean the support mechanism 20 .
  • the brush 81 is a flexible piece with a certain cleaning effect.
  • the brush 81 can move along the length direction of the stacking device 1 to clean the surfaces of the first support member 71 and the second support member 72 to prevent impurities or Dust adheres to the surfaces of the first support member 71 and the second support member 72 and will not cause scratches to the surface of the support mechanism 20 .
  • the brush mechanism 81 further includes a seventh driving member 82, and the seventh driving member 82 may be a servo electric cylinder.
  • the seventh driving member 82 is installed on the frame 10.
  • the seventh driving member 82 is provided with a second sliding plate 83, and the second sliding plate 83 is provided with a brush 81.
  • the second sliding plate 83 83 can drive the brush 81 to move together along the axial direction of the seventh driving member 82 , that is, along the length direction of the stacking device 1 , thereby cleaning the surfaces of the first support member 21 and the second support member 22 .
  • the surface of the support mechanism 20 can be effectively cleaned, dust or particles on the support mechanism 20 can be removed, and the squeeze of the battery core 3 can be prevented.
  • the battery core 3 will be polluted and scratched during the pressing process.
  • the pressing mechanism 30 includes a sixth driving member 31 and a pressure plate assembly.
  • the sixth driving member 32 is used to drive the pressure plate.
  • the assembly moves along the axial direction of the support mechanism 20 .
  • the pressure plate assembly at least includes a pressure plate 33 , and the pressure plate 33 is used to squeeze the battery core 2 .
  • the pressing plate 33 has a plate structure with a large surface, and the large surface of the pressing plate 33 is used to fit the battery core 2 and squeeze the battery core 2 .
  • the sixth driving member 31 can drive the pressing plate 33 to move along the length direction of the stacking device 1 , thereby extruding and stacking multiple battery cores 2 into the battery core module 3 .
  • the sixth driving member 31 may be a servo electric cylinder.
  • the pressing mechanism 30 includes a sixth driving member 31 , a first sliding plate 32 and a pressure plate 33 .
  • the sixth driving member 31 is installed on the frame 10.
  • the sixth moving member 31 is provided with a first sliding plate 32.
  • the first sliding plate 32 is connected to a pressure plate 33.
  • the first sliding plate 32 The pressing plates 33 can be driven to move together in the axial direction of the sixth driving member 31 , that is, along the length direction of the stacking device 1 , thereby squeezing a plurality of battery cores 2 and stacking them into a battery core module 3 .
  • an elastic layer such as rubber, can be provided on the surface of the pressing plate 33 facing the battery core module 1, thereby further reducing stress concentration and avoiding deformation of the battery core 2 during the pressing process of the pressing plate 33 on the battery core 2. or damaged.
  • the pressure plate 33 By squeezing the battery cores 2 through the pressure plate 33, multiple battery cores 2 can be squeezed into the battery core module 3. At the same time, the pressure plate 33 has a large force-bearing surface, which can prevent stress concentration during the process of squeezing the battery cores 2 from causing damage. Damage to battery cell 2.
  • the first support member 21 includes a first support base plate 211 and a first support side plate 212 .
  • the first support base plate 211 and the first support side plate 212 are A supporting side plate 212 is connected to form an L-shaped structure; and/or the second supporting member 22 includes a second supporting bottom plate and a second supporting side plate, and the second supporting bottom plate and the second supporting side plate are connected to form an L-shaped structure.
  • the first support member 21 includes a first support bottom plate 211 and a first support side plate 212 .
  • the first supporting bottom plate 211 is arranged along the horizontal direction and is used to support the battery core 2 from the bottom of the battery core 2.
  • the first support side plate 212 is arranged in the vertical direction and is used to support the battery core 2 from the side of the battery core 2, thereby stably supporting the battery core 2 and the battery core module 3 through the L-shaped structure, and preventing the battery core from The module 3 moves between the first supporting member 21 and the second supporting member 22 .
  • the first support member 21 and/or the second support member 22 are arranged into an L-shaped structure, and the L-shaped structure supports the bottom surface of the battery core 21 and positions the sides of the battery core 21 to ensure that multiple battery cells 2 They are aligned along the same axial direction to ensure the regular shape of the extruded battery core module 3.
  • FIG. 13 is a flow chart of a stacking method provided by an embodiment of the present application.
  • the stacking method is implemented according to the stacking device 1 of any of the above embodiments, and includes the following steps:
  • Multiple battery cores 2 are stacked on the support mechanism 20 along the axial direction of the support mechanism 20, and any two adjacent battery cores 2 are spaced apart;
  • the pressing mechanism 30 is driven to move along the axial direction of the support mechanism 20 and squeeze the plurality of battery cores 2 so that the plurality of battery cores 2 are stacked into a battery core module 3;
  • connection relationship and working process among the support mechanism 20 , the pressing mechanism 30 , the tray 40 and the battery core 2 have been disclosed in the above description of the stacking device 1 , and will not be described again here.
  • the step of stacking multiple cells 2 into a cell module 3 further includes the following steps:
  • the lifting mechanism 70 is driven to lift the battery module 3 so that the bottom surface of the battery module 3 is separated from the support mechanism 20;
  • the telescopic mechanism is driven to move the first support member 21 and the second support member 22 away from each other relatively, and the opening size of the first opening 23 between the first support member 21 and the second support member 22 is larger than the cross-sectional size of the battery module 3;
  • the lifting mechanism 70 is driven to drive the battery core modules 3 to descend together, and the lifting mechanism 70 passes through the second opening 42 on the tray 40, so that the bottom surface of the battery core module 3 is in contact with the tray 40, and the battery core module is supported by the tray 40.
  • the tray 40 loaded with the battery module 3 is transported to the next process.
  • the fifth driving member 73 drives the top plate 71 to move upward along the height direction of the stacking device 1 and abuts against the bottom surface of the battery core module 3, further driving the top plate 71 to move upward, thereby disengaging the battery core module 3.
  • the support of the support mechanism 20 in order to facilitate the top plate 71 to drive the battery module 3 to move downward and pass through the first opening 23, the first support member 21 and the second support member 22 are driven relatively away from each other through the telescopic mechanism, thereby increasing the area size of the first opening 23. , thereby causing the top plate 71 to drive the battery module 3 to move downward and pass through the first opening 23 .
  • the top plate 71 is further driven to move downward and pass through the second opening 42.
  • the tray 40 is driven to move along the length direction of the stacking device 1, and then moves to the conveying device 4, and the pallet 40 and the battery module 3 are conveyed to the next process through the conveying device 4.
  • the stacking method of this application also includes the following steps:
  • the tray locking mechanism 60 drives the clamping component 43 of the tray 40 to move toward the outside of the tray 40 , thereby placing the battery module 3 on the tray 40 , and then the tray locking mechanism 60 drives the clamping component 43 toward the outside of the tray 40
  • the center moves, and the battery module 3 is clamped and fixed by the spring 434 and the sliding rod 433, thereby fixing the battery module 3 on the tray 40, and then transferring the battery module 3 through the tray 40.
  • the connection relationship and control process between the pallet locking mechanism 60 and the clamping assembly 43 have been disclosed in the above description of the stacking device 1 and will not be described again here.
  • the stacking device 1 includes a frame 10, and a support mechanism 20 is provided above the frame 10.
  • the support mechanism 20 includes a first support member 21 and a second support member 22 arranged oppositely, wherein the first support member 21 and a second support member 22 are arranged oppositely. Both the supporting member 21 and the second supporting member 22 have an L-shaped structure.
  • the first supporting member 21 is connected to the first driving member 51
  • the second supporting member 22 is connected to the second driving member. Under the control of the first driving member 51 and the second driving member, the first supporting member 21 and the second supporting member 22 can be relatively close or relatively far away, and a first opening 23 is formed between the first support member 21 and the second support member 22 .
  • the two ends of the bottoms of the plurality of battery cores 2 are respectively provided on the first support member 21 and the second support member 22.
  • a pressing mechanism 30 is also provided above the frame 10.
  • the pressing mechanism 30 includes a sixth driving member 31, a first sliding plate 32 and a pressure plate 33.
  • the sixth driving member 31 is connected to the frame 10, and the first sliding plate 32 can
  • the pressing plate 33 is driven to move together along the length direction of the stacking device 1 , so that the plurality of battery cores 2 are squeezed into the battery core module 3 through the pressing plate 33 .
  • a slidable tray 40 is also provided below the support mechanism 20 , and a second opening 42 is provided on the tray 40 .
  • the stacking device 1 also includes a lifting mechanism 70.
  • the second locking mechanism 62 has the same structure as the first locking mechanism 61.
  • the first locking mechanism 61 includes a third driving member 611, a fourth driving member 612 and a support plate 613.
  • the driving end of the third driving member 611 Connected to the support plate 613, it is used to drive the support plate 613 to move up and down along the height direction of the stacking device 1.
  • the fourth driving member 612 is provided on the support plate 613.
  • the driving end of the fourth driving member 612 is connected to the locking member 63.
  • the locking member 63 is driven to move along the length direction of the stacking device 1 .
  • the tray 40 also includes a base plate 41 and a clamping assembly 43 provided on the base plate 41 .
  • the clamping assembly 43 includes a connecting plate 431 , a mounting base 432 , a sliding rod 433 and a spring 434 .
  • Two mounting seats 432 are spaced apart on the surface of the base plate 41 .
  • Each of the two mounting seats 432 is provided with a sliding rod 433 .
  • the sliding rod 433 can move along the axial direction of the tray 40 .
  • the sliding rod 433 is close to the outer edge of the base plate 41 .
  • One end is connected to the connecting plate 431 , and a spring 434 is provided between the other end of the sliding rod 433 and the mounting base 432 .
  • the spring 434 is pressed when the sliding rod 433 moves toward the outside of the base plate 41 .
  • the locking member 63 is sleeved on the outside of the sliding rod 433, and is driven by the fourth driving member 612 to contact the connecting plate 431, thereby driving the connecting plate 431 and the sliding rod 433 to move together.
  • a brush mechanism 80 is also provided above the frame 10.
  • the brush mechanism 80 includes a seventh driving member 82.
  • the seventh driving member 82 is installed on the frame 10.
  • the seventh driving member 82 is provided with a second sliding plate 83.
  • the second sliding plate 83 is provided with a brush 81. Under the driving action of the seventh driving member 82, the second sliding plate 83 can drive the brush 81 to move together along the length direction of the stacking device 1, thereby supporting the first supporting member 21 and the second supporting member 81.
  • the surface of the support 22 is cleaned.
  • the stacking method includes the following steps:
  • the brush mechanism 80 is driven to clean the surface of the support mechanism 20;
  • the pressing mechanism 30 is driven to move along the axial direction of the support mechanism 20 and squeeze the plurality of battery cores 2 so that the plurality of battery cores are stacked to form a battery core module.
  • the lifting mechanism 70 is driven to lift the battery module 3 so that the bottom surface of the battery module 3 is separated from the support mechanism 20;
  • the telescopic mechanism is driven to move the first support member 21 and the second support member 22 away from each other relatively, and the opening size of the first opening 23 between the first support member 21 and the second support member 22 is larger than the cross-sectional size of the battery module 3;
  • the tray locking mechanism 60 is driven to move the clamping assembly 43 toward the outside of the tray 40;
  • the lifting mechanism 70 is driven to drive the battery core modules 3 to descend together, and the lifting mechanism 70 passes through the second opening 42 on the tray 40, so that the bottom surface of the battery core module 3 is in contact with the tray 40, and the battery core module is supported by the tray 40.
  • the tray 40 loaded with the battery module 3 is transferred to the next process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请涉及电池制造技术领域,特别涉及一种电芯模组的堆叠装置及堆叠方法。本申请的电芯模组的堆叠装置包括机架、支撑机构、压紧机构和托盘,支撑机构用于支撑电芯,压紧机构与机架相连,部分压紧机构能够沿支撑机构的轴向方向移动,并用于将多个电芯挤压成电芯模组,托盘以可相对机架移动的方式设于机架,并用于支撑电芯模组。本申请的技术方案中,电芯模组的挤压过程无需在脱盘上进行操作,从而减小了托盘的长度尺寸,降低了托盘的制造成本,同时缩短了生产线的长度,使堆叠装置的占地面积减小,进一步地便于其他设备的布置。

Description

电芯模组的堆叠装置及堆叠方法 技术领域
本申请涉及电池制造技术领域,特别涉及一种电芯模组的堆叠装置及堆叠方法。
背景技术
随着国家对新能源领域的大力推广,电动汽车已经成为未来的主流趋势。电动汽车设计的关键是三电技术,包括电池、电机、电控,其中动力电池作为整车中最为核心的动力供给部件,决定了整车的续驶里程、成本、使用寿命、安全性能等关键指标。
相关技术中,动力电池的电芯模组通常由多个电芯堆叠而成,随着对电芯模组的成组效率要求的提高,电芯模组的长度不断加长。现有技术中,通过在托盘上将多个电芯挤压堆叠成模组,并通过托盘对电芯模组进行转运。由于电芯在堆叠前需间隔码放,从而相应地增加了托盘的长度,增加了托盘的制造成本,且延长了生产线的长度。
发明内容
鉴于现有技术存在的缺陷,本申请的目的在于提供一种电芯模组的堆叠装置及堆叠方法,其能够有效减少托盘的长度,降低托盘的制造成本。
第一方面,本申请提出了一种电芯模组的堆叠装置,所述堆叠装置包括:
机架;
支撑机构,所述支撑机构用于支撑电芯;
压紧机构,所述压紧机构与所述机架相连,部分所述压紧机构能够沿所述支撑机构的轴向方向移动,并用于将多个所述电芯挤压成电芯模组;
托盘,所述托盘以可相对所述机架移动的方式设于所述机架,并用于支撑所述电芯模组。
本申请的技术方案中,通过设置支撑机构,将电芯放置于支撑机构上,通过压紧机构沿支撑机构的轴向方向移动,将多个电芯挤压成电芯模组,并将电芯模组转移至托盘上,通过托盘将电芯模组输送至下一工序,电芯模组的挤压过程无需在脱盘上进行操作,从而减小了托盘的长度尺寸,降低了托盘的制造成本,同时缩短了生产线的长度,使堆叠装置的占地面积减小,进一步地便于其他设备的布置,同时由于托盘的长度尺寸减小,能够提高托盘的输送效率,进而提高了生产效率。
同时,由于无需在托盘上进行堆叠,仅需将电芯模组转移至托盘上进行输送,能够有效地防止由于电芯模组在托盘上滑动而造成的刮伤。
在本申请的一些实施方式中,所述支撑机构包括平行设置的第一支撑件和第二支撑件,所述第一支撑件和所述第二支撑件分别以可滑动的方式与所述机架相连,且滑动的方向与所述支撑结构的轴向方向相垂直,以使所述第一支撑件和所述第二支撑件相对靠近或相对远离。通过将第一支撑件和第二支撑件分别以可滑动的方式与机架相连,能够根据电芯的长度尺寸调节第一支撑件和第二支撑件的间距尺寸,从而对不同长度尺寸的电芯进行支撑。
在本申请的一些实施方式中,所述堆叠装置还包括伸缩机构,所述伸缩机构与所述机架相连,所述第一支撑件和所述第二支撑件分别与所述伸缩机构相连,并在所述伸缩机构的作用下相对靠近或相对远离。通过伸缩机构控制第一支撑件和第二支撑件相对靠近运动或相对远离运动,能够有效地提高堆叠装置的自动化程度。
在本申请的一些实施方式中,所述伸缩机构包括第一驱动件和第二驱动件,所述第一驱动件与所述第一支撑件驱动连接,所述第二支撑件与所述第二驱动件驱动连接。通过第一驱动件和第二驱动件分别对第一支撑件和第二支撑件进行控制,能够进一步地提高堆叠装置的自动化程度,并能够对一些不对称结构的电池 进行支撑,使不对称结构的电池的中心与机架的中心相重合。
在本申请的一些实施方式中,所述托盘以可相对滑动的方式设于所述机架,当所述第一支撑件和所述第二支撑件间隔设置且形成有第一开口时,所述托盘能够滑动至所述支撑机构的下方并与所述第一开口正对设置。通过将托盘以可滑动的方式与机架相连,并在托盘的滑动过程中与第一支撑件和第二支撑件间的第一开口正对设置,便于将电芯模组通过第一开口转移至下方的托盘上,从而通过托盘将电芯模组输送至下一工序。
在本申请的一些实施方式中,所述堆叠装置还包括至少一个托盘锁紧机构,所述托盘上设有至少一个夹持组件,所述托盘锁紧机构可与所述夹持组件相连,并用于驱动所述夹持组件移动,以使所述夹持组件夹紧或松开所述托盘上的电芯模组。通过将托盘锁紧机构与托盘的夹持组件相连,能够控制夹持组件的移动,从而对托盘上的电芯模组进行夹紧或松开,使电芯模组相对托盘的位置固定,从而通过托盘将电芯模组输送至下一工序,避免电芯在输送过程中发生掉落。
在本申请的一些实施方式中,所述托盘锁紧机构包括第三驱动件、第四驱动件和锁紧件,所述锁紧件可与所述夹持组件相连,所述锁紧件在所述第三驱动件的驱动作用下沿竖直方向运动,所述锁紧件在所述第四驱动件的作用下带动所述夹持组件共同沿所述支撑机构的轴向方向移动。通过第三驱动件驱动锁紧件沿竖直方向运动,能够在托盘的移动过程中进行避让,防止锁紧件对托盘的移动造成干涉,影响托盘的正常移动过程。通过第四驱动件驱动锁紧件带动夹持组件共同沿支撑机构的轴向方向移动,能够使电芯模组顺利的放置于托盘上,并通过夹持组件固定夹紧,从而使电芯模组相对托盘的位置固定。
在本申请的一些实施方式中,所述堆叠装置还包括升降机构,所述升降机构连接于所述机架,所述升降机构至少包括可升降运动的顶板,所述托盘上贯穿设有第二开口,所述顶板能够穿过依次穿过所述第二开口和所述第一开口并与所述电芯模组相抵接。将多个电芯挤压成模组后,控制升降机构的顶板依次穿过第二开口和第一开口并与电芯相抵接,通过顶板对电芯模组进行支撑,然后控制第一支撑件和第二支撑件相对远离并使第一开口扩大,然后控制顶板下降并带动电芯模组穿过第一开口,从而最终将电芯模组放置于托盘上,并通过托盘对电芯模组 进行支撑,便于对电芯模组进行转移。
在本申请的一些实施方式中,沿所述支撑机构的轴向方向,所述顶板的长度尺寸小于所述第二开口的长度尺寸,并大于所述电芯模组的长度尺寸。将顶板的长度尺寸小于第二开口的长度尺寸设置,能够保证顶板在升降过程中顺利穿过第二开口,将顶板的长度尺寸大于电芯模组的长度尺寸设置,能够保证在电芯模组的长度范围内,完全对电芯模组进行支撑,防止由于电芯模组的下方由于缺少支撑,而在转移至托盘的过程中发生跌落现象。
在本申请的一些实施方式中,沿垂直于所述支撑机构的轴向方向的方向,所述第二开口的宽度尺寸小于所述电芯模组的宽度尺寸。由于顶板的长度尺寸小于第二开口的长度尺寸,并大于电芯模组的长度尺寸,因此电芯模组的长度尺寸小于第二开口长度尺寸,通过将第一开口的宽度尺寸小于电芯模组的宽度尺寸设置,能够有效地防止电芯模组通过第二开口掉落。
在本申请的一些实施方式中,所述升降机构还包括安装板和第五驱动件,所述安装板与所述机架相连,所述第五驱动件固定于所述安装板并与所述顶板驱动连接,用于驱动所述顶板升降运动。通过安装板将升降机构固定于机架上,并通过第五驱动件驱动顶板升降运动,能够有效地对电芯模组进行支撑,并将电芯模组转移至托盘上。
在本申请的一些实施方式中,所述堆叠装置还包括毛刷机构,所述毛刷机构至少包括毛刷,所述毛刷能够沿所述支撑机构的轴向方向移动,并用于清洁所述支撑机构。通过设置毛刷,并使毛刷沿支撑机构的轴向方向移动,能够对支撑机构的表面进行有效地清洁,去除支撑机构上的粉尘和/或颗粒,防止在电芯的挤压过程中对电芯造成污染和/或刮伤。
在本申请的一些实施方式中,所述压紧机构包括第六驱动件和压板组件,所述第六驱动件用于驱动所述压板组件沿所述支撑机构的轴向方向移动,所述压板组件至少包括压板,所述压板用于挤压所述电芯。通过压板挤压电芯,能够将多个电芯挤压成电芯模组,同时压板的受力面大,能够防止在挤压电芯的过程中由于应力集中,造成电芯的损坏。
在本申请的一些实施方式中,所述第一支撑件包括第一支撑底板和第一支撑 侧板,所述第一支撑底板和所述第一支撑侧板相连且形成L型结构;和/或,所述第二支撑件包括第二支撑底板和第二支撑侧板,所述第二支撑底板和所述第二支撑侧板相连且形成L型结构。将第一支撑件和/或第二支撑件设置成L型结构,并通过L型结构对电芯的底面进行支撑以及对电芯的侧面进行定位,能够保证多个电芯沿同一轴向方向对齐设置,进而保证挤压后的电芯模组的形状规则。
第二方面,本申请提出了一种电芯模组的堆叠方法,所述堆叠方法根据上述任一项所述的堆叠装置进行实施,包括以下步骤:
将多个电芯沿支撑机构的轴向方向码放于支撑机构上,且任意相邻的两个电芯间隔设置;
驱动压紧机构沿支撑机构的轴向方向移动,并挤压多个电芯,使多个电芯堆叠成电芯模组;
将电芯模组转移至托盘上。
在本申请的一些实施方式中,所述使多个电芯堆叠成电芯模组的步骤后还包括以下步骤:
驱动升降机构对电芯模组进行顶升,使电芯模组的底面与支撑机构相脱离;
驱动伸缩机构使第一支撑件和第二支撑件相对远离,并使第一支撑件和第二支撑件间第一开口的开口尺寸大于电芯模组的截面尺寸;
驱动升降机构带动电芯模组共同下降,并使升降机构穿过托盘上的第二开口,使电芯模组的底面与托盘相抵接,通过托盘支撑电芯模组;
将装载有电芯模组的托盘输送至下一工序。
由于本申请的堆叠方法根据上述任一项的堆叠装置进行实施,能够达到相同的技术效果,在此不再进行赘述。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本申请一实施方式提供的堆叠装置的结构示意图;
图2是本申请一实施方式提供的电芯码放于堆叠装置上的初始位置结构示意图;
图3是本申请一实施方式提供的电芯码放于堆叠装置上堆叠成电芯模组后的结构示意图;
图4是本申请一实施方式提供的堆叠装置的另一角度结构示意图;
图5是本申请一实施方式提供的电芯模组转移至托盘后的构示意图;
图6是本申请一实施方式提供的堆叠装置的A部放大结构示意图;
图7是本申请一实施方式提供的堆叠装置的B部放大结构示意图;
图8是本申请一实施方式提供的堆叠装置的C部放大结构示意图;
图9是本申请一实施方式提供的托盘的结构示意图;
图10是本申请一实施方式提供的托盘的D部放大结构示意图;
图11是本申请一实施方式提供的升降机构的结构示意图;
图12是本申请一实施方式提供的毛刷机构的结构示意图;
图13是本申请一实施方式提供的堆叠方法的流程图。
具体实施方式中的附图标号如下:
1:堆叠装置;
10:机架;
20:支撑机构、21:第一支撑件、211:第一支撑底板、212:第二支撑侧板、22:第二支撑件、23:第一开口;
30:压紧机构、31:第六驱动件、32:第一滑板、33:压板;
40:托盘、41:基板、42:第二开口、43:夹持组件、431:连接板、432:安装座、433:滑杆、434:弹簧、44:支撑座;
51:第一驱动件;
60:托盘锁紧机构、61:第一锁紧组件、611:第三驱动件、612:第四驱动件、613:支撑板、62:第二锁紧组件、63:锁紧件;
70:升降机构、71:顶板、72:安装板、73:第五驱动件、74:导向杆、75:侧板;
80:毛刷机构、81:毛刷、82:第七驱动件、83:第二滑板;
2:电芯;
3:电芯模组;
4:输送装置。
具体实施方式
下面将结合附图对本申请技术方案的实施方式进行详细的描述。以下实施方式仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
需要注意的是,除非另有说明,本申请实施方式使用的技术术语或者科学术语应当为本申请实施方式所属领域技术人员所理解的通常意义。
在本申请实施方式的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施方式的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗 示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施方式的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请实施方式的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施方式中的具体含义。
在本申请实施方式的描述中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。
本发明人注意到,在动力电池的生产过程中,动力电池的电芯模组通常由多个电芯堆叠而成,随着对电芯模组的成组效率要求的提高,电芯模组的长度不断加长。现有技术中,通过在托盘上将多个电芯挤压堆叠成模组,并通过托盘对电芯模组进行转运。由于电芯在堆叠前需间隔码放,从而相应地增加了托盘的长度,进而增加了托盘的制造成本,且延长了生产线的长度。同时,由于电芯在挤压成模组的过程中,电芯的底面与托盘表面间相互摩擦,从而容易造成电芯底面的划伤。
为了解决由于托盘的长度过长,弹簧机构的伸缩量大,导致托盘的制造成本高的问题,本申请发明人研究发现,通过在其他部件上对多个电芯进行挤压并堆叠成电芯模组,再将电芯模组转移至托盘上,通过托盘对电芯模组进行输送,能 够有效地减少托盘的长度,减少托盘上弹簧机构的伸缩量,并降低托盘的制造成本,同时,还能够有效地减少因电芯的底面与托盘表面间相互摩擦,造成的电芯底面的划伤。
基于上述考虑,发明人经过深入研究,设计了一种电芯模组的堆叠装置,通过在堆叠装置中设置支撑机构,将电芯放置于支撑机构上,通过压紧机构沿支撑机构的轴向方向移动,将多个电芯挤压成电芯模组,并将电芯模组转移至托盘上,通过托盘将电芯模组输送至下一工序,电芯模组的挤压过程无需在脱盘上进行操作,从而减小了托盘的长度尺寸,降低了托盘的制造成本,同时缩短了生产线的长度,使堆叠装置的占地面积减小,进一步地便于其他设备的布置,同时由于托盘的长度尺寸减小,能够提高托盘的输送效率,进而提高了生产效率。
同时,由于无需在托盘上进行堆叠,仅需在将电芯模组转移至托盘上进行输送,能够有效地防止由于电芯模组在托盘上滑动而造成的刮伤。
本申请提供的电芯模组的堆叠装置和堆叠方法,可用于将多个电芯挤压堆叠成电芯模组。电芯模组可用于任何电池包或电池,或者一次电池和二次电池,例如,二次电池包括锂离子电池、钠离子电池、锂硫电池、镁离子电池等。这种电池适用于各种使用电池的用电设备,例如手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等;电池或电池包用于为上述用电设备提供电能。
第一方面,本申请提出了一种电芯模组的堆叠装置。结合图1至图6所示,图1是本申请一实施方式提供的堆叠装置1的结构示意图;图2是本申请一实施方式提供的电芯2码放于堆叠装置1上的初始位置结构示意图;图3是本申请一实施方式提供的电芯2码放于堆叠装置1上堆叠成电芯模组3后的结构示意图;图4是本申请一实施方式提供的堆叠装置1的另一角度结构示意图;图5是本申请一实施方式提供的电芯模组3转移至托盘40后的构示意图;图6是本申请一实施方式提供的堆叠装置1的A部放大结构示意图。在本申请的一些实施方式中,堆叠装置1包括机架10、支撑机构20和压紧机构30。支撑机构20用于支撑电芯2,压紧机构30与机架10相连,部分压紧机构30能够沿支撑机构20的轴向方向移动,并用于将多个电芯2挤压成电芯模组3,托盘40以可相对机架 10移动的方式设于机架10,并用于支撑电芯模组3。
具体地,堆叠装置1用于电芯模组3的生产过程中,可以将多个电芯2通过挤压的方式堆叠至一起,并形成电池模组3。机架10构成堆叠装置1的基本结构,用于支撑整个堆叠装置1,堆叠装置1的其他结构组成可分别设置于机架10上。支撑机构20用于支撑电芯2,使电芯2能够在支撑机构20上完成挤压。压紧机构30能够提供一定的压紧力并用于压紧多个电芯2,从而使多个电芯2在压紧机构30的压紧力的作用下堆叠在一起,并形成电芯模组3。支撑机构20的轴向方向即支撑机构20的延伸方向,即如图1所示的堆叠装置的长度方向。本申请中的电芯2也指电池单体,电芯模组3也指电池模组。电池单体是指组成电池模块或电池包的最小单元。电池模块可以包括多个电池单体,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。其中,在本申请的一些实施方式中,多个电芯2沿堆叠装置1的长度方向码放于支撑机构20上,堆叠后的电芯模组3中的任意相邻的两个电芯2间的大面相对设置。用于形成电芯模组3的单个电芯2的长度方向与堆叠装置1的长度方向相垂直,电芯2的宽度方向与堆叠装置1的长度方向相平行,电芯2的高度方向与堆叠装置1的高度方向相平行,且电芯2的长度方向的轮廓尺寸大于电芯2的宽度方向的轮廓尺寸。托盘40整体为盘状结构,用于承载电芯模组3,并能够相对机架10移动,从而将电芯模组3输送至下一工序。
本申请的技术方案中,通过设置支撑机构20,将电芯2放置于支撑机构20上,通过压紧机构30沿支撑机构20的轴向方向移动,将多个电芯2挤压成电芯模组3,并将电芯模组3转移至托盘40上,通过托盘40将电芯模组3输送至下一工序,电芯模组3的挤压过程无需在脱盘40上进行操作,从而减小了托盘40的长度尺寸,降低了托盘40的制造成本,同时缩短了生产线的长度,使堆叠装置1的占地面积减小,进一步地便于其他设备的布置。
同时,由于无需在托盘40上进行堆叠,仅需在将电芯模组3转移至托盘40上进行输送,能够有效地防止由于电芯模组3在托盘40上滑动而造成的刮伤。
在本申请的一些实施方式中,结合图1至图3所示,支撑机构20包括平行设置的第一支撑件21和第二支撑件22,第一支撑件21和第二支撑件22分别以 可滑动的方式与机架10相连,且滑动的方向与支撑机构20的轴向方向相垂直,以使第一支撑件21和第二支撑件22相对靠近或相对远离。
具体地,第一支撑件21和第二支撑件22分别用于在电芯2的两侧支撑电芯2,第一支撑件21和第二支撑件22共同形成支撑机构。且为保证第一支撑件21和第二支撑件22能够同时对多个电芯3支撑,第一支撑件21和第二支撑件22间平行设置。其中,与支撑机构20的轴向方向相垂直的方向即为堆叠装置1的宽度方向。
通过将第一支撑件21和第二支撑件22分别以可滑动的方式与机架10相连,当电芯2的长度尺寸较大时,可控制第一支撑件21和第二支撑件22相对远离,从而增大第一支撑件21和第二支撑件22的间距尺寸,用于对长度尺寸较大的电芯2进行支撑;当电芯2的长度尺寸较小时,可控制第一支撑件21和第二支撑件22相对靠近,从而减小第一支撑件21和第二支撑件22的间距尺寸,用于对长度尺寸较小的电芯2进行支撑,进而能够根据电芯2的长度尺寸调节第一支撑件21和第二支撑件22的间距尺寸,对不同长度尺寸的电芯2进行支撑。
在本申请的一些实施方式中,结合图1、图2和图7所示,图7是本申请一实施方式提供的堆叠装置1的B部放大结构示意图。堆叠装置1还包括伸缩机构,伸缩机构与机架10相连,第一支撑件21和第二支撑件22分别与伸缩机构相连,并在伸缩机构的作用下相对靠近或相对远离。
具体地,伸缩机构能够沿堆叠装置1的宽度方向往复运动,伸缩机构的驱动端分别与第一支撑件21和第二支撑件22相连,从而驱动第一支撑件21和第二支撑件22相对靠近或相对远离。
通过伸缩机构控制第一支撑件21和第二支撑件22相对靠近运动或相对远离运动,能够有效地提高堆叠装置1的自动化程度。
在本申请的一些实施方式中,再次结合图1、图2和图7所示,伸缩机构包括第一驱动件51和第二驱动件(图中未示出),第一驱动件51与第一支撑件21驱动连接,第二支撑件22与第二驱动件驱动连接。
具体地,第一驱动件51的驱动端与第一支撑件21相连,用于驱动第一支撑件21靠近或远离第二支撑件22,第二驱动件的驱动端与第二支撑件22相连, 用于驱动第二支撑件22靠近或远离第一支撑件21。在本申请的一些实施方式中,第一驱动件51和第二驱动件分别设于机架10的长度方向的两端,从而有效地利用机架1上的空间。第一驱动件51和第二驱动件可以分别为驱动气缸。
通过第一驱动件51和第二驱动件分别对第一支撑件21和第二支撑件22进行控制,能够进一步地提高堆叠装置1的自动化程度,并能够对一些不对称结构的电芯2进行支撑,使不对称结构的电池的中心与机架10的中心相重合。
在本申请的一些实施方式中,还可以将伸缩机构仅设置成一个驱动件,驱动件的两侧分别设有驱动端,两侧的驱动端分别与第一支撑件21和第二支撑件22相连,从而通过一个驱动件驱动第一支撑件21和第二支撑件22同时运动,进而保证第一支撑件21和第二支撑件22运动的同步性。
在本申请的一些实施方式中,结合图1至图6所示,托盘40以可相对滑动的方式设于机架10,当第一支撑件21和第二支撑件22间隔设置且形成有第一开口23时,托盘40能够滑动至支撑机构20的下方并与第一开口23正对设置。
具体地,托盘40可在滑动过程中设于支撑机构20的下方,其中,可以在机架10上间隔设有多个转筒,托盘40放置于多个转筒上,随着转筒的转动,托盘能40够沿多个转筒的转动方向相对机架10滑动。当多个电芯2挤压堆叠成电芯模组3后,需要将电芯模组3转移至托盘40上。此时控制第一支撑件21和第二支撑件22相对远离,并在二者间形成第一开口23,并使第一开口23的开口尺寸大于电芯模组3的横截面尺寸,从而通过第一开口23将电芯模组3放置于与第一开口23正对设置的托盘40上,从而完成对电芯模组3的转移。
在本申请的一些实施方式中,为了便于托盘40的设置以及对电芯模组3的输送,托盘40能够沿堆叠装置1的长度方向滑动。
由于在电芯模组转3移至托盘40的过程中,仅需控制电芯模组3沿机架10的高度方向运动,无需对电芯模组3进行大规模的移动或转动,便于将电芯模组3转移至下方的托盘40上,从而通过托盘40将电芯模组3输送至下一工序。同时,可减少电芯模组3转移过程中的空间占用率,进一步地缩小堆叠装置1的空间占用率,便于布置其他设备。
在本申请的一些实施方式中,结合图1、图3、图8和图9所示,图8是本 申请一实施方式提供的堆叠装置1的C部放大结构示意图;图9是本申请一实施方式提供的托盘40的结构示意图。堆叠装置1还包括至少一个托盘锁紧机构60,托盘40上设有至少一个夹持组件43,托盘锁紧机构60可与夹持组件43相连,并用于驱动夹持组件43移动,以使夹持组件43夹紧或松开托盘40上的电芯模组3。
具体地,托盘上40设有夹持组件43,夹持组件43用于对转移至托盘40上的电芯模组3进行夹紧固定,防止电芯模组3在托盘40的输送过程中掉落。在托盘40的移动过程中,托盘40上的夹持组件43可与托盘锁紧单元60相连,从而通过托盘锁紧单元60驱动夹持组件43移动。在本申请的一个实施方式中,在机架10的长度方向的两端分别设有一个托盘锁紧单元60,相对应的,在托盘40的长度方向的两端还分别设有一个夹持组件43,从而通过两端的托盘锁紧单元60分别驱动夹持组件43运动,共同对托盘上40的电芯模组3进行夹紧固定。其中,在机架10的长度方向以及托盘40的长度方向分别与堆叠装置1的长度方向相同。
通过将托盘锁紧机构60与托盘40的夹持组件43相连,能够控制夹持组件43移动,从而对托盘40上的电芯模组3进行夹紧,使电芯模组3相对托盘40的位置固定,从而通过托盘40将电芯模组3输送至下一工序,避免电芯模组3在输送过程中发生掉落。
在本申请的一些实施方式中,结合图1、图2、图3、图8、图9和图10所示,图10是本申请一实施方式提供的托盘40的D部放大结构示意图。托盘锁紧机构60包括第三驱动件611、第四驱动件612和锁紧件63,锁紧件63可与夹持组件43相连,锁紧件63在第三驱动件611的驱动作用下沿竖直方向运动,锁紧件63在第四驱动件612的作用下带动夹持组件43共同沿堆叠装置1的长度方向移动。
具体地,第三驱动件611的驱动端与第四驱动件612相连,或通过连接件与第四驱动件612相连,并用于驱动第四驱动件612沿竖直方向运动,即沿堆叠装置1的高度方向运动。第四驱动件612的驱动端与锁紧件63相连,并用于驱动锁紧件63沿堆叠装置1的长度方向移动。锁紧件63用于连接固定夹持组件43, 从而带动夹持组件43共同沿堆叠装置1的长度方向移动。其中,第三驱动件611和第四驱动件612可以分别为驱动气缸。
在本申请的一些实施方式中,托盘40包括基板41,基板41的长度方向的两端分别设有一个夹持组件43。其中,夹持组件43包括连接板431、安装座432、滑杆433和弹簧434。两个安装座432间隔设置于基板41的表面,两个安装座432上分别穿设有一个滑杆433,滑杆433能够沿托盘40的长度方向运动,滑杆433靠近基板41的外侧边缘的一端与连接板431相连,从而通过连接板431带动滑杆433共同移动,滑杆433的另一端与安装座432间设有弹簧434,并在滑杆434朝向基板41的外侧方向的移动过程中挤压弹簧434。
托盘锁紧机构60包括第一锁紧组件61、第二锁紧组件62和锁紧件63。其中,第二锁紧组件62与第一锁紧组件61的结构相同。为描述方便,本申请仅以第一锁紧组件61为例进行举例说明。其中,第一锁紧组件61包括第三驱动件611、第四驱动件612和支撑板613。第三驱动件611设于机架10上,第三驱动件611的驱动端与支撑板613相连,第四驱动件612设于支撑板613上,第四驱动件612的驱动端与锁紧件63相连。当第三驱动件611的驱动端运动时,能够带动第四驱动件612和锁紧件63共同沿堆叠装置的高度方向运动,当第四驱动件62的驱动端运动时,能够带动锁紧件63沿堆叠装置1的长度方向运动。锁紧件63为具有豁口的条形板状结构,当锁紧件63与夹持组件43相连时。锁紧件63上的豁口刚好套设于连接板431上的两个滑杆433的外部,且在锁紧件63朝向托盘40的外侧的运动过程中,能够与连接板431相抵接,并带动连接板431和滑杆433共同朝向托盘41的外侧运动。
当多个电芯2被挤压堆叠成电芯模组3后,需要将电芯模组3转移至托盘40上。通过第三驱动件611驱动锁紧件63向上移动,为托盘40沿堆叠装置1的长度方向移动提供避让空间,托盘40从一端的锁紧件63的下方移动至支撑机构20的下方,并与第一开口23正对设置。此时通过第三驱动件611驱动锁紧件63向下移动,并使锁紧件63套设于滑杆433上。通过第四驱动件612驱动锁紧件63远离托盘40运动,锁紧件63在移动过程中与连接板431的相抵接并带动连接板431共同远离托盘40运动,从而增加了托盘40两端的滑杆433间的间距尺寸,从而能够将电芯模组3通过第一开口23转移至托盘40上。电芯模组3 转移至托盘40后,通过第四驱动件612驱动锁紧件63朝向托盘40的中心运动,并最终将两端的滑杆433抵接于电芯模组3的两侧,此时,弹簧434由于变形仍具有一定的弹力,从而通过电芯模组3两侧的弹簧434和滑杆433共同挤压电芯模组3,将电芯模组3固定于托盘40上。由于无需在托盘40上进行对多个电芯3的挤压,因此托盘40的尺寸可适当的减小。而夹持机构43仅用于固定电芯模组3,因此夹紧机构43上滑杆433的位移量以及弹簧434的伸缩量也可适当的减小,从而进一步地降低了托盘40的制造成本。
通过第三驱动件611驱动锁紧件63沿竖直方向运动,能够在托盘40的移动过程中进行避让,防止锁紧件63对托盘40造成干涉,影响托盘40的正常移动过程。通过第四驱动件612驱动锁紧件63带动夹持组件43共同沿堆叠装置1的长度方向移动,能够使电芯模组3顺利的放置于托盘40上,并通过夹持组件43固定夹紧,从而使电芯模组3相对托盘40的位置固定。
在本申请的一些实施方式中,结合图1、图3、图9和图11所示,图11是本申请一实施方式提供的升降机构70的结构示意图。堆叠装置1还包括升降机构70,升降机构70连接于机架10,升降机构70至少包括可升降运动的顶板71,托盘40上贯穿设有第二开口42,顶板71能够穿过依次穿过第二开口42和第一开口23并与电芯模组3相抵接。
具体地,顶板71为平板状结构,能够沿堆叠装置1的高度方向上下运动,从而用于支撑电芯模组3,并带动电芯模组3共同沿堆叠装置1的高度方向上下运动。
将多个电芯2挤压成电芯模组3后,控制升降机构70的顶板71依次穿过第二开口42和第一开口23并与电芯模组3的底面相抵接,通过顶板71对电芯模组3进行支撑,然后控制第一支撑件21和第二支撑件22相对远离并使第一开口23扩大,然后控制顶板71下降并带动电芯模组3穿过第一开口23,从而最终将电芯模组3放置于托盘40上,并通过托盘40对电芯模组3进行支撑,便于对电芯模组3进行转移。
在本申请的一些实施方式中,再次结合图1、图3、图9和图11所示,沿支撑机构20的轴向方向,顶板71的长度尺寸小于第二开口42的长度尺寸,并大 于电芯模组3的长度尺寸。
具体地,托盘40的基板41的中心位置设有第二开口42,以便顶板71穿设于第二开口42中,从而用于支撑电芯模组3并将电芯模组3转移至托盘40上。其中,第二开口42的长度方向与堆叠装置1的长度方向相一致。
在本申请的一些实施方式中,基板41上的第二开口42的宽度方向的两侧还分别设有支撑座44,支撑座44同样为L型机构,通过两侧的支撑座44共同对电芯模组3进行支撑。当两个支撑座44间的开口尺寸大于基板41上的开口尺寸时,顶板71的运动受基板41上的开口尺寸限制,此时基板41上的开口即为第二开口42。当两个支撑座44间的开口尺寸小于基板41上的开口尺寸时,顶板71的运动受两个支撑座44间的开口尺寸限制,此时两个支撑座44间的开口即为第二开口42。
将顶板71的长度尺寸小于第二开口42的长度尺寸设置,能够保证顶板71在升降过程中顺利穿过第二开口42,将顶板71的长度尺寸大于电芯模组3的长度尺寸设置,能够保证在电芯模组3的长度范围内,完全对电芯模组3进行支撑,防止由于电芯模组3的下方由于缺少支撑,而在转移至托盘40的过程中发生跌落现象。
在本申请的一些实施方式中,再次结合图1、图3、图9和图11所示,沿垂直于支撑机构20的轴向的方向,第二开口42的宽度尺寸小于电芯模组3的宽度尺寸。
具体地,第二开口42的宽度方向与堆叠装置2的宽度方向相一致。
由于顶板71的长度尺寸小于第二开口42的长度尺寸,并大于电芯模组3的长度尺寸,因此电芯模组3的长度尺寸小于第二开口42长度尺寸,通过将第二开口42的宽度尺寸小于电芯模组3的宽度尺寸设置,能够通过第二开口42宽度方向的两侧的部分结构对电芯模组3进行支撑,有效地防止电芯模组3通过第二开口42掉落。
在本申请的一些实施方式中,再次结合图1、图3、图9和图11所示,升降机构70还包括安装板72和第五驱动件73,安装板72与机架10相连,第五驱动件73固定于安装板72并与顶板71驱动连接,用于驱动顶板71升降运动。
具体地,安装板72用于将升降机构70整体固定于机架10上。第五驱动件73固定于安装板72上,第五驱动件73的驱动端与顶板71驱动连接,从而驱动顶板71沿堆叠装置1的高度方向运动。其中,第五驱动件73为驱动气缸。
在本申请的一些实施方式中,升降机构70包括顶板71、安装板72、第五驱动件73和导向杆74。安装板72与机架10相连,从而将升降机构70整体固定于机架10上。第五驱动件73安装于安装板72上,第五驱动件73的驱动端穿过安装板72并与顶板71相连(附图中未体现出驱动端与顶板71完全连接),用于驱动顶板71沿堆叠装置1的高度方向往复运动。导向杆74能够沿自身轴线伸缩运动,导向杆74的一端固定于机架10上,导向杆74的另一端穿过安装板72并于顶板71相连,从而保证顶板71的直线运动。进一步地,顶板71的两侧还可设置有侧板75,两侧的侧板75的间距尺寸略大于电芯模组3的长度尺寸,从而当电芯模组3放置于两侧的侧板75间的顶板71上时,能够通过侧板75防止电芯模组3从顶板71上掉落。
通过安装板72将升降机构70固定于机架10上,并通过第五驱动件73驱动顶板71升降运动,能够有效地对电芯模组3进行支撑,并将电芯模组3转移至托盘40上。
在本申请的一些实施方式中,结合图1、图2、图3和图12所示,图12是本申请一实施方式提供的毛刷机构80的结构示意图。堆叠装置1还包括毛刷机构80,毛刷机构80至少包括毛刷81,毛刷811能够沿支撑机构20的轴向方向移动,并用于清洁支撑机构20。
具体地,毛刷81为具有一定清洁作用的柔性件,毛刷81能够沿堆叠装置1的长度方向运动,从而对第一支撑件71和第二支撑件72的表面进行清洁,防止有杂质或灰尘附着在第一支撑件71和第二支撑件72的表面,且不会对支撑机构20的表面造成划伤。
在本申请的一些实施方式中,毛刷机构81还包括第七驱动件82,第七驱动件82可以为伺服电缸。第七驱动件82安装于机架10上,第七驱动件82上设有第二滑板83,第二滑板83上设有毛刷81,在第七驱动件82的驱动作用下,第二滑板83能够带动毛刷81共同沿第七驱动件82的轴向方向移动,即沿堆叠装 置1的长度方向移动,从而对第一支撑件21和第二支撑件22的表面进行清洁。
通过设置毛刷81,并使毛刷81沿支撑机构20的轴向方向移动,能够对支撑机构20的表面进行有效地清洁,去除支撑机构20上的粉尘或颗粒,防止在电芯3的挤压过程中对电芯3造成污染和刮伤。
在本申请的一些实施方式中,结合图1、图2、图3、图6和图7所示,压紧机构30包括第六驱动件31和压板组件,第六驱动件32用于驱动压板组件沿支撑机构20的轴向方向移动,压板组件至少包括压板33,压板33用于挤压电芯2。
具体地,压板33为具有一个大面的板面结构,且压板33的大面用于贴合电芯2并对电芯2进行挤压。第六驱动件31能够驱动压板33沿堆叠装置1的长度方向运动,从而将多个电芯2挤压堆叠成电芯模组3。其中,第六驱动件31可以是伺服电缸。
在本申请的一些实施方式中,压紧机构30包括第六驱动件31、第一滑板32和压板33。第六驱动件31安装于机架10上,第六动件31上设有第一滑板32,第一滑板32上连接有压板33,在第六驱动件31的驱动作用下,第一滑板32能够带动压板33共同沿第六驱动件31的轴向方向移动,即沿堆叠装置1的长度方向移动,从而对多个电芯2进行挤压,并使其堆叠成电芯模组3。进一步地,压板33朝向电芯模组1的表面还可设置弹性层,如橡胶,从而在压板33对电芯2的挤压过程中,进一步地减小应力集中,避免造成电芯2的变形或损坏。
通过压板33挤压电芯2,能够将多个电芯2挤压成电芯模组3,同时压板33的受力面大,能够防止在挤压电芯2的过程中由于应力集中,造成电芯2的损坏。
在本申请的一些实施方式中,结合图1、图2、图3和图7所示,第一支撑件21包括第一支撑底板211和第一支撑侧板212,第一支撑底板211和第一支撑侧板212相连且形成L型结构;和/或,第二支撑件22包括第二支撑底板和第二支撑侧板,第二支撑底板和第二支撑侧板相连且形成L型结构。
具体地,以第一支撑件21包括第一支撑底板211和第一支撑侧板212举例说明。第一支撑底板211沿水平方向设置,用于从电芯2的底部对电芯2进行支 撑。第一支撑侧板212沿竖直方向设置,用于从电芯2的侧面对电芯2进行,从而通过L型结构对电芯2以及电芯模组3进行稳定的支撑,且防止电芯模组3在第一支撑件21和第二支撑件22间发生窜动。
将第一支撑件21和/或第二支撑件22设置成L型结构,并通过L型结构对电芯21的底面进行支撑以及对电芯21的侧面进行定位,能够保证多个电芯2沿同一轴向方向对齐设置,进而保证挤压后的电芯模组3的形状规则。
第二方面,本申请提出了一种电芯模组3的堆叠方法。结合图1至图6,以及图13所示,图13是本申请一实施方式提供的堆叠方法的流程图。在本申请的一些实施方式中,该堆叠方法根据上述任一实施方式的堆叠装置1进行实施,包括以下步骤:
将多个电芯2沿支撑机构20的轴向方向码放于支撑机构20上,且任意相邻的两个电芯2间隔设置;
驱动压紧机构30沿支撑机构20的轴向方向移动,并挤压多个电芯2,使多个电芯2堆叠成电芯模组3;
将电芯模组3转移至托盘40上。
其中,支撑机构20、压紧机构30、托盘40以及电芯2之间的连接关系及工作过程已在上述堆叠装置1的描述中进行了公开,在此不再进行赘述。
由于本申请的堆叠方法根据上述任一实施方式的堆叠装置1进行实施,能够达到相同的技术效果,在此不再进行赘述。
在本申请的一些实施方式中,再结合图1至图9所示,使多个电芯2堆叠成电芯模组3的步骤后还包括以下步骤:
驱动升降机构70对电芯模组3进行顶升,使电芯模组3的底面与支撑机构20相脱离;
驱动伸缩机构使第一支撑件21和第二支撑件22相对远离,并使第一支撑件21和第二支撑件22间第一开口23的开口尺寸大于电芯模组3的截面尺寸;
驱动升降机构70带动电芯模组3共同下降,并使升降机构70穿过托盘40上的第二开口42,使电芯模组3的底面与托盘40相抵接,通过托盘40支撑电 芯模组3;
将装载有电芯模组3的托盘40输送至下一工序。
具体地,通过第五驱动件73驱动顶板71沿堆叠装置1的高度方向向上运动,并与电芯模,3的底面相抵接,进一步地驱动顶板71向上运动,从而使电芯模组3脱离支撑机构20的支撑。然后为了便于顶板71带动电芯模组3向下运动并穿过第一开口23,通过伸缩机构驱动第一支撑件21和第二支撑件22相对远离,从而增大第一开口23的面积尺寸,进而使顶板71带动电芯模组3向下运动并穿过第一开口23。然后进一步地驱动顶板71向下运动并穿过第二开口42,当顶板穿过第二开口42后,电芯模组3的底面与托盘40相抵接,通过托盘40支撑电芯模组3,从而将电芯模组3由支撑机构20转移至托盘40上。然后驱动托盘40沿堆叠装置1的长度方向运动,进而移动至输送装置4上,并通过输送装置4将托盘40和电芯模组3输送至下一工序。
本申请的堆叠方法,还包括以下步骤:
通过托盘锁紧机构60驱动托盘40的夹持组件43朝向托盘40的外侧运动,从而将电芯模组3放置于托盘40上,然后通过托盘锁紧机构60驱动夹持组件43朝向托盘40的中心运动,通过弹簧434和滑杆433对电芯模组3夹紧固定,从而将电芯模组3固定于托盘40上,进而通过托盘40转移电芯模组3。其中,托盘锁紧机构60与夹持组件43的连接关系及控制过程在上述对堆叠装置1的描述中已公开,在此不再进行赘述。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
在本申请的一个实施方式中,堆叠装置1包括机架10,机架10的上方设有支撑机构20,支撑机构20包括相对设置的第一支撑件21和第二支撑件22,其中第一支撑件21和第二支撑件22均为L型结构。第一支撑件21与第一驱动件51相连,第二支撑件22与第二驱动件相连,在第一驱动件51和第二驱动件的控制下,第一支撑件21和第二支撑件22能够相对靠近或相对远离,并在第一支撑件21和第二支撑件22间形成第一开口23。多个电芯2的底部的两端分别设 于第一支撑件21和第二支撑件22上。机架10的上方还设有压紧机构30,压紧机构30包括第六驱动件31、第一滑板32和压板33,其中,第六驱动件31与机架10相连,第一滑板32能够沿堆叠装置1的长度方向带动压板33共同移动,从而通过压板33将多个电芯2挤压成电芯模组3。支撑机构20的下方还设有可滑动的托盘40,托盘40上设有第二开口42。堆叠装置1还包括升降机构70,升降机构70包括顶板71、安装板72、第五驱动件73和导向杆74,安装板72与机架10相连,第五驱动件73设于安装板72上,顶板71在第五驱动件73的驱动作用下沿堆叠装置1的高度方向上下移动,从而穿过第一开口23和第二开口42,并将支撑机构20上的电芯模组3转移至托盘40上。堆叠装置1还包括托盘锁紧机构60,托盘锁紧机构60包括第一锁紧机构61和第二锁紧机构62,第一锁紧机构61和第二锁紧机构62之间设有锁紧件63。其中,第二锁紧机构62与第一锁紧机构61的结构相同,第一锁紧机构61包括第三驱动件611和第四驱动件612以及支撑板613,第三驱动件611的驱动端与支撑板613相连,用于驱动支撑板613沿堆叠装置1的高度方向上下移动,第四驱动件612设于支撑板613上,第四驱动件612的驱动端与锁紧件63相连,用于驱动锁紧件63沿堆叠装置1的长度方向移动。托盘40还包括基板41和设于基板41上的夹持组件43,夹持组件43包括连接板431、安装座432、滑杆433和弹簧434。两个安装座432间隔设置于基板41的表面,两个安装座432上分别穿设有一个滑杆433,滑杆433能够沿托盘40的轴向方向运动,滑杆433靠近基板41外侧边缘的一端与连接板431相连,滑杆433的另一端与安装座432间设有弹簧434,并在滑杆433朝向基板41的外侧方向的移动过程中挤压弹簧434。锁紧件63套设于滑杆433的外部,并在第四驱动件612的驱动下与连接板431相抵接,从而带动连接板431和滑杆433共同移动。机架10的上方还设有毛刷机构80,毛刷机构80包括第七驱动件82,第七驱动件82安装于机架10上,第七驱动件82上设有第二滑板83,第二滑板83上设有毛刷81,在第七驱动件82的驱动作用下,第二滑板83能够带动毛刷81共同沿堆叠装置1的长度方向移动,从而对第一支撑件21和第二支撑件22的表面进行清洁。
在本申请的一些实施方式中,堆叠方法包括以下步骤:
驱动毛刷机构80对支撑机构20的表面进行清洁;
将多个电芯2沿支撑机构20的轴向方向码放于支撑机构20的第一支撑件21和第二支撑件22上,且任意相邻的两个电芯间隔设置;
驱动压紧机构30沿支撑机构20的轴向方向移动,并挤压多个电芯2,使多个电芯堆叠成电芯模组.;
驱动升降机构70对电芯模组3进行顶升,使电芯模组3的底面与支撑机构20相脱离;
驱动伸缩机构使第一支撑件21和第二支撑件22相对远离,并使第一支撑件21和第二支撑件22间第一开口23的开口尺寸大于电芯模组3的截面尺寸;
驱动托盘锁紧机构60使夹持组件43朝向托盘40的外侧移动;
驱动升降机构70带动电芯模组3共同下降,并使升降机构70穿过托盘40上的第二开口42,使电芯模组3的底面与托盘40相抵接,通过托盘40支撑电芯模组3;
驱动托盘锁紧机构60使夹持组件43朝向托盘40的中心移动,并对电芯模组3夹紧固定;
将装载有电芯模组3的托盘40转移至下一工序。
最后应说明的是:以上各实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施方式中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施方式,而是包括落入权利要求的范围内的所有技术方案。

Claims (16)

  1. 一种电芯模组的堆叠装置,其特征在于,包括:
    机架;
    支撑机构,所述支撑机构用于支撑电芯;
    压紧机构,所述压紧机构与所述机架相连,部分所述压紧机构能够沿所述支撑机构的轴向方向移动,并用于将多个所述电芯挤压成电芯模组;
    托盘,所述托盘以可相对所述机架移动的方式设于所述机架,并用于支撑所述电芯模组。
  2. 根据权利要求1所述的电芯模组的堆叠装置,其特征在于,所述支撑机构包括平行设置的第一支撑件和第二支撑件,所述第一支撑件和所述第二支撑件分别以可滑动的方式与所述机架相连,且滑动的方向与所述支撑结构的轴向方向相垂直,以使所述第一支撑件和所述第二支撑件相对靠近或相对远离。
  3. 根据权利要求2所述的电芯模组的堆叠装置,其特征在于,所述堆叠装置还包括伸缩机构,所述伸缩机构与所述机架相连,所述第一支撑件和所述第二支撑件分别与所述伸缩机构相连,并在所述伸缩机构的作用下相对靠近或相对远离。
  4. 根据权利要求3所述的电芯模组的堆叠装置,其特征在于,所述伸缩机构包括第一驱动件和第二驱动件,所述第一驱动件与所述第一支撑件驱动连接,所述第二支撑件与所述第二驱动件驱动连接。
  5. 根据权利要求3所述的电芯模组的堆叠装置,其特征在于,所述托盘以可相对滑动的方式设于所述机架,当所述第一支撑件和所述第二支撑件间隔设置且形成有第一开口时,所述托盘能够滑动至所述支撑机构的下方并与所述第一开口正对设置。
  6. 根据权利要求5所述的电芯模组的堆叠装置,其特征在于,所述堆叠装置还包括至少一个托盘锁紧机构,所述托盘上设有至少一个夹持组件,所述托盘锁紧机构可与所述夹持组件相连,并用于驱动所述夹持组件移动,以使所述夹持组件夹紧或松开所述托盘上的电芯模组。
  7. 根据权利要求6所述的电芯模组的堆叠装置,其特征在于,所述托盘锁紧机构包括第三驱动件、第四驱动件和锁紧件,所述锁紧件可与所述夹持组件相连,所述锁紧件在所述第三驱动件的驱动作用下沿竖直方向运动,所述锁紧件在所述第四驱动件的作用下带动所述夹持组件共同沿所述支撑机构的轴向方向移动。
  8. 根据权利要求5所述的电芯模组的堆叠装置,其特征在于,所述堆叠装置还包括升降机构,所述升降机构连接于所述机架,所述升降机构至少包括可升降运动的顶板,所述托盘上贯穿设有第二开口,所述顶板能够穿过依次穿过所述第二开口和所述第一开口并与所述电芯模组相抵接。
  9. 根据权利要求8所述的电芯模组的堆叠装置,其特征在于,沿所述支撑机构的轴向方向,所述顶板的长度尺寸小于所述第二开口的长度尺寸,并大于所述电芯模组的长度尺寸。
  10. 根据权利要求9所述的电芯模组的堆叠装置,其特征在于,沿垂直于所述支撑机构的轴向的方向,所述第二开口的宽度尺寸小于所述电芯模组的宽度尺寸。
  11. 根据权利要求8所述的电芯模组的堆叠装置,其特征在于,所述升降机构还包括安装板和第五驱动件,所述安装板与所述机架相连,所述第五驱动件固定于所述安装板并与所述顶板驱动连接,用于驱动所述顶板升降运动。
  12. 根据权利要求1-11中任一项所述的电芯模组的堆叠装置,其特征在于,所述堆叠装置还包括毛刷机构,所述毛刷机构至少包括毛刷,所述毛刷能够沿所述支撑机构的轴向方向移动,并用于清洁所述支撑机构。
  13. 根据权利要求1-11中任一项所述的电芯模组的堆叠装置,其特征在于,所述压紧机构包括第六驱动件和压板组件,所述第六驱动件用于驱动所述压板组件沿所述支撑机构的轴向方向移动,所述压板组件至少包括压板,所述压板用于挤压所述电芯。
  14. 根据权利要求1-11中任一项所述的电芯模组的堆叠装置,其特征在于,所述第一支撑件包括第一支撑底板和第一支撑侧板,所述第一支撑底板和所述第一支撑侧板相连且形成L型结构;和/或,所述第二支撑件包括第二支撑底板和第二支撑侧板,所述第二支撑底板和所述第二支撑侧板相连且形成L型结构。
  15. 一种电芯模组的堆叠方法,其特征在于,根据权利要求1-14中任一项所述的堆叠装置进行实施,包括以下步骤:
    将多个电芯沿支撑机构的轴向方向码放于支撑机构上,且任意相邻的两个电芯间隔设置;
    驱动压紧机构沿支撑机构的轴向方向移动,并挤压多个电芯,使多个电芯堆叠成电芯模组;
    将电芯模组转移至托盘上。
  16. 根据权利要求15所述的电芯模组的堆叠方法,其特征在于,所述使多个电芯堆叠成电芯模组的步骤后还包括以下步骤:
    驱动升降机构对电芯模组进行顶升,使电芯模组的底面与支撑机构相脱离;
    驱动伸缩机构使第一支撑件和第二支撑件相对远离,并使第一支撑件和第二支撑件间第一开口的开口尺寸大于电芯模组的截面尺寸;
    驱动升降机构带动电芯模组共同下降,并使升降机构穿过托盘上的第二开口,使电芯模组的底面与托盘相抵接,通过托盘支撑电芯模组;
    将装载有电芯模组的托盘输送至下一工序。
PCT/CN2022/101371 2022-06-27 2022-06-27 电芯模组的堆叠装置及堆叠方法 WO2024000082A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280049136.4A CN117642922A (zh) 2022-06-27 2022-06-27 电芯模组的堆叠装置及堆叠方法
PCT/CN2022/101371 WO2024000082A1 (zh) 2022-06-27 2022-06-27 电芯模组的堆叠装置及堆叠方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/101371 WO2024000082A1 (zh) 2022-06-27 2022-06-27 电芯模组的堆叠装置及堆叠方法

Publications (1)

Publication Number Publication Date
WO2024000082A1 true WO2024000082A1 (zh) 2024-01-04

Family

ID=89383630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101371 WO2024000082A1 (zh) 2022-06-27 2022-06-27 电芯模组的堆叠装置及堆叠方法

Country Status (2)

Country Link
CN (1) CN117642922A (zh)
WO (1) WO2024000082A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117601414A (zh) * 2024-01-23 2024-02-27 宁德时代新能源科技股份有限公司 电池贴膜设备及其贴膜方法
CN117775711A (zh) * 2024-02-23 2024-03-29 宁德时代新能源科技股份有限公司 校准抓取装置、堆叠设备、电池的生产线及堆叠方法
CN117895053A (zh) * 2024-03-14 2024-04-16 宁德时代新能源科技股份有限公司 一种装配装置、装配生产线及装配方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208738364U (zh) * 2018-08-30 2019-04-12 大族激光科技产业集团股份有限公司 一种电池模组整形装置
KR20210037327A (ko) * 2019-09-27 2021-04-06 (주)휴민텍 전지셀 인덱스 장치
CN113889672A (zh) * 2020-07-01 2022-01-04 恒大新能源技术(深圳)有限公司 堆叠单元及电池模组堆叠装置
CN215437423U (zh) * 2021-07-28 2022-01-07 合肥国轩高科动力能源有限公司 一种方形电池模组堆叠转运托盘
CN114069015A (zh) * 2021-11-12 2022-02-18 博众精工科技股份有限公司 一种自适应居中堆叠设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208738364U (zh) * 2018-08-30 2019-04-12 大族激光科技产业集团股份有限公司 一种电池模组整形装置
KR20210037327A (ko) * 2019-09-27 2021-04-06 (주)휴민텍 전지셀 인덱스 장치
CN113889672A (zh) * 2020-07-01 2022-01-04 恒大新能源技术(深圳)有限公司 堆叠单元及电池模组堆叠装置
CN215437423U (zh) * 2021-07-28 2022-01-07 合肥国轩高科动力能源有限公司 一种方形电池模组堆叠转运托盘
CN114069015A (zh) * 2021-11-12 2022-02-18 博众精工科技股份有限公司 一种自适应居中堆叠设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117601414A (zh) * 2024-01-23 2024-02-27 宁德时代新能源科技股份有限公司 电池贴膜设备及其贴膜方法
CN117775711A (zh) * 2024-02-23 2024-03-29 宁德时代新能源科技股份有限公司 校准抓取装置、堆叠设备、电池的生产线及堆叠方法
CN117895053A (zh) * 2024-03-14 2024-04-16 宁德时代新能源科技股份有限公司 一种装配装置、装配生产线及装配方法

Also Published As

Publication number Publication date
CN117642922A (zh) 2024-03-01

Similar Documents

Publication Publication Date Title
WO2024000082A1 (zh) 电芯模组的堆叠装置及堆叠方法
US11367891B2 (en) Integrated equipment of die-cutting and stacking
CN112490479B (zh) 二次电池的电池单元堆制造系统及方法
KR102253764B1 (ko) 2차 전지 셀 스택 제조용 전극 이송장치
CN211480188U (zh) 一种燃料电池膜电极成型切割和视觉检测装置
CN219017724U (zh) 一种堆叠装置
CN114203861A (zh) 一种太阳能光伏电池低压水平热处理多功能系统
CN217035594U (zh) 一种翻转整片机构
WO2020087614A1 (zh) 电芯配组装置
CN218414976U (zh) 一种聚合物锂电池自动注液生产线
CN116525916A (zh) 电芯包膜生产设备及电芯包膜生产系统
CN212062612U (zh) 一种叠片设备
CN213459673U (zh) 太阳能硅片的安全搬运装置
CN213442612U (zh) 一种新能源汽车生产用锂电池转运装置
CN109841554B (zh) 一种硅片百片整形上料设备
CN219906108U (zh) 一种切离机构及循环输送机构
WO2024000623A1 (zh) 堆叠设备
CN219448373U (zh) 多电芯搬运装置
CN216889006U (zh) 铝壳电芯上料装置
CN219807435U (zh) 一种托盘和栈板的抓取机构及搬运装置
CN117832634A (zh) 一种用于电池模组自动线的电芯组装托盘装置
CN218230634U (zh) 一种变距传送机构
CN220165116U (zh) 一种交替送料装置及印刷设备
CN117288760B (zh) 锂电池包蓝膜外观检测装置
CN212355633U (zh) 一种用于锂电池组装载的夹取装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280049136.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948207

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 22 948 207.0

Country of ref document: EP

Ref document number: 2022948207

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022948207

Country of ref document: EP

Effective date: 20240417