WO2023286548A1 - メモリ装置 - Google Patents

メモリ装置 Download PDF

Info

Publication number
WO2023286548A1
WO2023286548A1 PCT/JP2022/024891 JP2022024891W WO2023286548A1 WO 2023286548 A1 WO2023286548 A1 WO 2023286548A1 JP 2022024891 W JP2022024891 W JP 2022024891W WO 2023286548 A1 WO2023286548 A1 WO 2023286548A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output
dac
area
digital
Prior art date
Application number
PCT/JP2022/024891
Other languages
English (en)
French (fr)
Inventor
雄一 國生
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2023535197A priority Critical patent/JPWO2023286548A1/ja
Publication of WO2023286548A1 publication Critical patent/WO2023286548A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Definitions

  • the invention disclosed in this specification relates to a voltage regulation circuit.
  • abnormal voltage detection circuits such as an overvoltage detection circuit (for example, Patent Document 1) that detects an overvoltage of the output voltage of a power supply circuit, or a reduced voltage detection circuit that detects a reduced voltage of the output voltage are known.
  • an overvoltage detection circuit for example, Patent Document 1
  • a reduced voltage detection circuit that detects a reduced voltage of the output voltage
  • Abnormal voltage detection circuits such as those described above often have a DAC (Digital Analog Converter) and a comparator.
  • a reference voltage as an output of the DAC and a voltage based on the output voltage are input to the comparator.
  • the voltage regulation circuit disclosed herein a digital-to-analog converter; a comparator including a first input terminal to which a predetermined voltage can be input, and a second input terminal to which a voltage based on the output of the digital-to-analog converter is input; a control unit that outputs DAC data to the digital-analog conversion unit; with The control unit is configured to perform a first search for determining bits of the DAC data in order from the upper bit based on the output result of the comparator.
  • FIG. 1 is a diagram showing the configuration of a power supply device according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a configuration example of an OTP block.
  • FIG. 3 is a diagram showing a specific configuration example of a memory cell.
  • FIG. 4 is a flowchart of an example of write processing to a register.
  • FIG. 5 is a diagram showing an example of writing to a register.
  • FIG. 6 is a diagram showing an example of writing to a register.
  • FIG. 7 is a diagram illustrating an example of writing to a register;
  • FIG. 8 is a diagram showing the configuration of a power supply device according to another embodiment.
  • FIG. 9 is a diagram showing a configuration example of the overvoltage detection circuit and the undervoltage detection circuit.
  • FIG. 9 is a diagram showing a configuration example of the overvoltage detection circuit and the undervoltage detection circuit.
  • FIG. 10 is a diagram showing an example of the first search.
  • FIG. 11 is a diagram showing an example of the second search.
  • FIG. 12 is a diagram showing the configuration of a voltage adjustment circuit according to another embodiment.
  • FIG. 13 is a diagram illustrating a configuration example related to other functional unit stop control.
  • FIG. 14 is a timing chart showing an example of other functional unit stop control.
  • FIG. 1 shows the configuration of a power supply device 5 as an example of a target (application) to which a memory device according to an exemplary embodiment of the present disclosure is applied.
  • the power supply 5 includes a memory device 10 .
  • the power supply device 5 is a semiconductor device (IC package) having an OTP block 1, a control section (controller) 2, DC/DC converter circuits 3A to 3D, and a detection section 4 integrated in one chip. .
  • the power supply device 5 can generate a plurality of output voltages VO1 to VO4, and is mounted on a vehicle, for example.
  • the OTP block 1 consists of memory cells and their peripheral circuits (both not shown). Various setting information and the like are stored in the memory cells. A detailed configuration of the OTP block 1 will be described later.
  • the control section 2 is a device that controls each section of the power supply device 5 .
  • the control unit 2 controls the OTP block 1, for example.
  • a memory device 10 is configured by the OTP block 1 and the control unit 2 . That is, the power supply device 5 has a memory device 10 .
  • the control unit 2 has a register 20. Data read from the OTP block 1 (memory cells) according to an instruction from the control unit 2 is stored in the register 20 .
  • Each of the DC/DC converter circuits 3A-3D DC/DC-converts an input voltage into output voltages VO1-VO4 and outputs them.
  • the set values of the output voltages VO1 to VO4 are set by the data stored in the register 20.
  • the detection unit 4 detects overvoltage or undervoltage of each of the output voltages VO1 to VO4 and outputs a detection signal RST.
  • a threshold value for detection of the detection unit 4 is set by data stored in the register 20 .
  • FIG. 2 is a block diagram showing a configuration example of the OTP block 1. As shown in FIG.
  • the OTP block 1 has an input buffer 11, a timing circuit 12, an X decoder 13, memory cells 14, a bit detection section 15, and a data input/output section 16. .
  • the input buffer 11 stores addressing information input from the control unit 2 .
  • the timing circuit 12 performs timing control of the X-decoder 13 , bit detection section 15 and data input/output section 16 .
  • the X-decoder 13 selects word lines (rows) in the memory cells 14 based on addressing information input from the input buffer 11 via the timing circuit 12 .
  • the memory cell 14 is composed of a plurality of cells arranged in a matrix.
  • One cell is composed of a transistor.
  • the bit detection unit 15 detects the logical value (0 or 1) of bit data stored in each cell of the word line selected by the X-decoder 13 in the memory cell 14 .
  • the data input/output unit 16 outputs the data of each cell of the selected word line to the control unit 2 based on the detection result by the bit detection unit 15 . That is, the data of the selected word line is read out from the memory cell 14 by the bit detection section 15 and the data input/output section 16 .
  • FIG. 3 is a diagram showing a specific configuration example of the memory cell 14. As shown in FIG. It should be noted that FIG. 3 illustrates only a part of the memory cells 14 .
  • the memory cell 14 has a normal area and a counter area.
  • OTP cells 141 are arranged in a matrix in the normal area.
  • Counter cells 142 are arranged in a matrix in the counter area.
  • the OTP cell 141 is composed of two MOS transistors. Each gate of the two MOS transistors is commonly connected to the word line WL. The first ends of the two MOS transistors are connected together. A second end of one MOS transistor is connected to the bit line BL. A second end of the other MOS transistor is connected to the bit line BLC.
  • bit line units BU each consisting of bit line BL and bit line BLC are provided.
  • a sense amplifier 15A is inserted between the bit lines BL and BLC in one bit line unit BU. That is, 32 sense amplifiers 15A are provided in the normal area.
  • the sense amplifier 15A constitutes the bit detection section 15.
  • a voltage can be commonly applied by the voltage applying unit VCC to each node where the first ends of the MOS transistors in each OTP cell 141 connected between the bit lines BL and BLC in one bit line unit BU are connected. be.
  • the OTP cell 141 data is written only once by injecting charges into the gate of either one of the MOS transistors.
  • the bit data value (0 or 1) stored in the OTP cell 141 differs depending on the MOS transistor into which charge is injected. By injecting charge into the gate of any one of the MOS transistors, the threshold voltage of each MOS transistor in the OTP cell 141 is made different.
  • the X-decoder 13 selects the word line WL by applying a predetermined voltage to the word line WL.
  • a voltage is applied to the OTP cell 141 of the selected word line WL by the voltage applying unit VCC.
  • the degree of ON of each MOS transistor differs due to the difference in the threshold voltage of each MOS transistor in the OTP cell 141 of the selected word line WL. Therefore, a difference occurs in the current flowing through each MOS transistor.
  • the sense amplifier 15A amplifies and outputs the current difference. Thereby, the sense amplifier 15A detects the logical value of the bit data stored in the OTP cell 141 of the selected word line WL.
  • Each bit data of the 32 OTP cells 141 of the selected word line WL in the normal area is detected by each of the 32 sense amplifiers 15A.
  • the data input/output unit 16 outputs 32-bit normal area data DOUT based on the detection result of each sense amplifier 15A.
  • the counter cell 142 is composed of a first cell 142A composed of one MOS transistor and a plurality of second cells 142B composed of two MOS transistors.
  • the counter cell 142 has, for example, three second cells 142B.
  • the gate of the MOS transistor forming the first cell 142A is connected to the word line WL.
  • a first terminal of the MOS transistor is connected to a voltage application terminal of the voltage application section VCC.
  • a second end of the MOS transistor in question is connected to the bit line BLC.
  • the second cell 142B is composed of two MOS transistors. Each gate of the two MOS transistors is commonly connected to the word line WL to which the gate of the first cell 142A is connected. That is, each gate of the plurality of second cells 142B is connected to a common word line WL. The first ends of the two MOS transistors are connected together. A second end of one MOS transistor is connected to the bit line BL. A second end of the other MOS transistor is connected to the bit line BLC.
  • a word line WL is common to the normal area and the counter area. That is, 32 OTP cells 141 and 3 counter cells 142 are provided for one word line WL (one word region W in FIG. 3).
  • bit line units BU consisting of bit lines BL and bit lines BLC.
  • a sense amplifier 15B is inserted between the bit lines BL and BLC in one bit line unit BU. That is, three sense amplifiers 15B are provided in the counter area.
  • the sense amplifier 15B constitutes the bit detection section 15 together with the sense amplifier 15A.
  • a voltage can be commonly applied by a voltage applying unit VCC to the first ends of the MOS transistors forming the cells 142A and 142B in the counter cells 142 connected to the bit lines BL and BLC in one bit line unit BU. be.
  • the X-decoder 13 selects the word line WL by applying a predetermined voltage to the word line WL.
  • a voltage is applied by the voltage application unit VCC to the counter cell 142 (first cell 142A, second cell 142B) of the selected word line WL.
  • the sense amplifier 15B amplifies and outputs the current difference. If the state in which the current on the bit line BLC side is large is assumed to be "0" in the bit data, the sense amplifier 15B sets the logic value of the bit data stored in the counter cell 142 of the selected word line WL to "0". Detect as
  • the threshold voltage of the MOS transistors on the bit line BLC side is equal to the bit line It is larger than the threshold voltage of the MOS transistor on the BL side. Therefore, the current flowing from the counter cell 142 of the selected word line WL to the bit lines BL and BLC is larger on the bit line BL side.
  • the sense amplifier 15B amplifies and outputs the current difference. When bit data "0" is defined as described above, the sense amplifier 15B detects the logical value of the bit data stored in the counter cell 142 of the selected word line WL as "1".
  • bit data can be changed by writing from a non-written state. Note that the counter cell 142 can be written only once.
  • Each bit data of the three counter cells 142 of the selected word line WL in the counter area is detected by each of the three sense amplifiers 15B.
  • the data input/output unit 16 outputs 3-bit counter area data COUNTOUT based on the detection result of each sense amplifier 15B.
  • the larger bit data among the bit data of the counter area data COUNTOUT is determined as the read bit data. That is, the read bit data is determined by majority vote. This makes it possible to read bit data from the counter area more reliably.
  • the counter area data may be 5 or more odd bits.
  • the memory cell 14 has a first region R1 and a second region R2. Note that the address in the memory cell 14 shown in FIGS. 5 to 7 indicates one word.
  • the first 8-bit region r81 from the uppermost in the normal area indicates its own address
  • the second 8-bit region r82 indicates the start address of the write region in the register 20
  • 3 8-bit areas r83 and r84 of the 4th and 8-bit areas respectively indicate the start and end addresses of the areas of the normal area in which data to be written in the register 20 are stored.
  • the number of bits in the regions r82, r83, and r84 is not limited to 8 bits.
  • the first area R1 also includes a counter area. If the data at the start and end addresses have not yet been written to the normal area having the same address as the counter area, the counter area has not yet been written. In this case, each of the three bit data is "0" in the counter area. Writing to the first region R1 is performed only once for each address, and is performed in order from the start address of the first region R1.
  • writing is performed in the counter area, and each of the three bit data is set to "1".
  • Writing in the normal area and the counter area is performed by applying an overvoltage to one side of a set of MOS transistors in the memory cell by a circuit (not shown) to inject charge into the gate.
  • the first area R1 is the area from the top address (0x00) to 0x1F in the examples shown in FIGS.
  • the first area R1 is not limited to this.
  • it may start from an address other than the top address, and the end address is not limited to 0x1F.
  • the second area R2 has a start address next to the end address (0x1F) of the first area R1 and an end address of 0xBF.
  • Main data is stored in the normal area of the second region R2.
  • the main data is various setting information and the like.
  • the setting information includes, for example, the set output voltages of the DC/DC converter circuits 3A to 3D, the threshold voltage of the detection section 4, and the like.
  • control unit 2 first reads data for one address (one word) from the first region R1 in the memory cell 14 by designating an address (step S1). First, data is read from the start address of the first region R1.
  • step S2 determines whether the bit data (count value) read from the counter area is "1" (step S2). If so (Yes in step S2), data is written in the 8-bit areas r82 to r83 in the normal area. Therefore, in step S3, the control unit 2 converts the data in the area included in the normal area of the second area from the start address written in the 8-bit area r83 to the end address written in the 8-bit area r84 to 8 Write to an area of register 20 starting from the starting address written to bit area r82. The end address in the area of the register 20 to be written is determined from the amount of data in the area from the start address to the end address in the second area R2.
  • step S3 the process returns to step S1, and the control unit 2 reads from the address next to the previous address in the first area R1.
  • step S2 if the read count value is "0" (No in step S2), the flowchart shown in FIG. 4 is completed. In other words, the data in the area other than the area rewritten by the processing shown in FIG. 4 in the register 20 is used with the initial value.
  • FIG. 5 in the first area R1 of the memory cell 14, writing to the 8-bit areas r82 to r83 is not performed for any addresses, and each bit data in the counter area is all "0".
  • step S2 When the processing shown in FIG. 4 is performed in the state of the memory cell 14 shown in FIG. 5, reading is performed from the start address of the first area in step S1. Then, since the read count value is "0" in step S2, the process is completed.
  • address information (0x20, 0x40, 0x4F) is written in the 8-bit areas r82 to r84 of the start address of the first area R1 from the state of the memory cell 14 shown in FIG.
  • writing is performed in the counter area of the start address of the first region R1, and each of the three bit data is "1".
  • step S2 When the processing shown in FIG. 4 is performed in the state shown in FIG. 6, reading is performed from the start address of the first area in step S1. Then, in step S2, since the read count value is "1", the process proceeds to step S3, where the address from the start address 0x40 written in the 8-bit area r83 to the end address 0x4f written in the 8-bit area r84 is read. Data is written from the area included in the normal area of the second area R2 to the area of the register 20 starting from the start address 0x20 written in the 8-bit area r82.
  • address information (0x20, 0x60, 0x6F) is written in the 8-bit areas r82 to r84 at the address next to the start address of the first area R1 from the state of the memory cell 14 shown in FIG. ing.
  • writing is performed in the counter area of the address next to the start address of the first area R1, and each of the three bit data is "1".
  • step S2 When the processing shown in FIG. 4 is performed in the state shown in FIG. 7, reading is performed from the start address of the first area in step S1. Then, in step S2, since the read count value is "1", the process proceeds to step S3, where the address from the start address 0x40 written in the 8-bit area r83 to the end address 0x4f written in the 8-bit area r84 is read. Data is written from the area included in the normal area of the second area R2 to the area of the register 20 starting from the start address 0x20 written in the 8-bit area r82.
  • step S2 since the read count value is "1", the process proceeds to step S3, where the address from the start address 0x60 written in the 8-bit area r83 to the end address 0x6f written in the 8-bit area r84 is read. Data is written from the area included in the normal area of the second area R2 to the area of the register 20 starting from the start address 0x20 written in the 8-bit area r82.
  • the OTP cell can be written only once in the normal area of the second region R2, the data to be written to the register 20 is updated by writing to the first region R1 (FIG. 6). , FIG. 7). Therefore, it is possible to pseudo-write to the OTP memory multiple times, and it is possible to flexibly change functions such as various settings.
  • FIG. 8 is a diagram showing the configuration of a power supply device 50 according to another embodiment.
  • the difference between the power supply device 50 shown in FIG. 8 and the power supply device 5 (FIG. 1) according to the above-described embodiment is that it has an overvoltage detection circuit 6 and a reduced voltage detection circuit 7 .
  • An overvoltage detection circuit (OVD) 6 compares the output voltage VO1 with a threshold voltage set by the control unit 2, and when it detects that the output voltage VO1 has risen and exceeded the threshold voltage, overvoltage detection indicating an overvoltage abnormality. It outputs the signal DT_OV.
  • a voltage drop detection circuit (UVD) 7 compares the output voltage VO1 with a threshold voltage set by the control unit 2, and indicates a voltage drop abnormality when detecting that the output voltage VO1 has dropped below the threshold voltage. It outputs a voltage drop detection signal DT_UV.
  • FIG. 9 is a diagram showing a configuration example of the overvoltage detection circuit 6 and the undervoltage detection circuit 7. As shown in FIG.
  • the overvoltage detection circuit 6 has voltage dividing resistors Ra and Rb, a comparator 61 , and a digital analog converter (hereinafter referred to as "DAC") 62 .
  • One end of the resistor Ra is connected to the external terminal T1.
  • the external terminal T1 is provided in the power supply device 50 (FIG. 8) and can be applied with the output voltage VO1.
  • the other end of resistor Ra is connected to one end of resistor Rb.
  • the other end of the resistor Rb is connected to the ground application end. That is, the resistors Ra and Rb are connected in series between the application terminal of the output voltage VO1 and the application terminal of the ground.
  • the node to which the resistors Ra and Rb are connected is connected to the non-inverting input terminal (+) of the comparator 61 .
  • the input signal IN obtained by dividing the output voltage VO1 by the resistors Ra and Rb can be input to the non-inverting input terminal of the comparator 61.
  • the DAC 62 D/A converts the DAC data DT_DAT_OVD input from the control unit 2 and inputs an analog signal to the inverting input terminal ( ⁇ ) of the comparator 61 .
  • the comparator 61 compares the input signal IN with the analog signal as the reference voltage output from the DAC 62, and outputs the overvoltage detection signal DET_OVD as a comparison result.
  • the comparator 61 may be a hysteresis comparator having hysteresis, or may be a comparator having no hysteresis.
  • the voltage drop detection circuit 7 has resistors Ra and Rb for voltage division, a comparator 71 and a DAC 72 .
  • the resistors Ra and Rb are shared with the overvoltage detection circuit 6 .
  • the node to which the resistors Ra and Rb are connected is connected to the inverting input terminal ( ⁇ ) of the comparator 71 .
  • the input signal IN obtained by dividing the output voltage VO1 by the resistors Ra and Rb can be input to the inverting input terminal of the comparator 71.
  • the DAC 72 D/A converts the DAC data DAC_UV input from the control unit 2 and inputs an analog signal to the non-inverting input terminal (+) of the comparator 71 .
  • the comparator 71 compares the input signal IN with the analog signal as the reference voltage output from the DAC 72, and outputs the reduced voltage detection signal DET_UVD as a comparison result.
  • the comparator 71 may be a hysteresis comparator having hysteresis or a comparator without hysteresis.
  • the voltage drop detection signal DET_UVD output from the comparator 71 is switched from low level to high level assuming that the output voltage VO1 has fallen below the threshold voltage.
  • the first search which will be described later, is restricted in that it is not possible to search within a range equal to or less than the hysteresis width. This is because, for example, when the output of the comparator is switched from low level to high level, it is not possible to find the exact switching point from low level to high level unless it is returned from high level to low level once.
  • a voltage adjustment circuit 60 is composed of a comparator 61 and a DAC 62 included in the overvoltage detection circuit 6 and the control section 2 .
  • the voltage adjustment circuit 60 adjusts the output (analog voltage) of the DAC 62 to a desired reference voltage.
  • the reference voltage in the overvoltage detection circuit 6 as indicated by the dashed line in FIG. Search for DAC data DAC_OV whose output matches the input signal IN.
  • a voltage adjustment circuit 70 is configured from the comparator 71 and the DAC 72 included in the voltage reduction detection circuit 7 and the control section 2 .
  • the voltage adjustment circuit 70 adjusts the output (analog signal) of the DAC 72 to a desired reference voltage.
  • a search is made for DAC data DAC_UV such that the output of DAC 72 matches the input signal IN.
  • the first search and the second search are combined.
  • the first search is specifically a binary search.
  • the second search is specifically a monotonically changing (monotonically increasing or monotonically decreasing) search.
  • the first search is a method in which the input signal IN and the outputs of the DACs 62 and 72 are compared by the comparators 61 and 71, and the bits of the DAC data are determined in order from the upper bits.
  • the DAC 72 is assumed to be a 12-bit DAC as an example.
  • FIG. 10 the DAC data DAC_UV set chronologically by the control unit 2 is at the top, the DAC data DAC_UV code (binary, decimal notation) is on the vertical axis of the graph, and the output (analog voltage) of the DAC 72 is on the time axis. and the output of the comparator 71 at the bottom.
  • FIG. 10 also shows the input signal IN. Note that this also applies to FIG. 11, which will be described later.
  • the input signal IN is lower than the output of the DAC 72, and the output of the comparator 71 becomes high level.
  • the input signal IN is higher than the output of the DAC 72, and the output of the comparator 71 becomes low level.
  • the input signal IN is lower than the output of the DAC 72, and the output of the comparator 71 becomes high level.
  • the control unit 2 determines the third high-order bit of the DAC data DAC_UV to be "0”, the next high-order bit (fourth high-order bit) to "1”, and the other bits to "1”. 0”. Thereafter, the same processing is repeated, and as shown in FIG. 10, up to the 7th high-order bit is determined, and finally the DAC data DAC_UV is set to 0x541.
  • the output of the DAC 72 here is lower than the input signal IN, and the output of the comparator 71 is at low level.
  • the control unit 2 confirms from the output of the comparator 71 that the output of the DAC 72 is lower than the input signal IN, it shifts to the second search.
  • the DAC data is incremented or decremented by 1 in decimal to monotonically increase or decrease the output of the DAC, and the DAC data where the level of the output of the comparator is switched. , as the final DAC data.
  • the second search shown in the example of FIG. 11 is performed.
  • the second search is performed in a monotonically increasing manner because in the voltage drop detection circuit 7, the comparator 71 having hysteresis outputs the input signal IN that is decreasing from the DAC 72. This is because it is necessary to detect the voltage drop by detecting that the voltage has fallen below the reference voltage. Similarly, in the overvoltage detection circuit 6, it is necessary to detect overvoltage by detecting that the rising input signal IN exceeds the reference voltage output from the DAC 62 by the comparator 61 having hysteresis. In the second search, a monotonically decreasing search is performed. Thus, the control unit 2 switches the direction of monotonous change of the second search according to the function of the abnormal voltage detection circuit. If the comparator does not have hysteresis, the second search may be monotonic change in either direction.
  • the second search does not necessarily have to be performed in the case of adjustment of the reference voltage that does not require high accuracy.
  • Such adjustment of the reference voltage can be performed at the time of shipment of the power supply device 50 from the factory or after the shipment from the factory. In particular, if adjustments are made after shipment from the factory, changes over time can be dealt with. Further, when adjustment is performed after shipment from the factory, writing may be performed to the first region R1 (FIG. 5) in the memory cell 14 described above according to the DAC data determined by the search.
  • the voltage adjustment circuit is not limited to the abnormal voltage detection circuit such as the overvoltage detection circuit and undervoltage detection circuit described above, and can be used to adjust the output voltage of the power supply circuit.
  • FIG. 12 is a diagram showing the configuration of a voltage adjustment circuit 80 used to adjust the output voltage VO1 of an LDO (Low Dropout) 81 as an example of a power supply circuit.
  • LDO Low Dropout
  • the LDO 81 is a DC/DC converter circuit that converts the input voltage VIN to the output voltage VO1.
  • the LDO 81 has a PMOS transistor 81A, an error amplifier 81B, and feedback resistors 81C and 81D.
  • the source of the PMOS transistor 81A is connected to the external terminal T2.
  • An input voltage VIN can be applied to the external terminal T2.
  • the drain of the PMOS transistor 81A is connected to one end of the feedback resistor 81C.
  • the other end of the feedback resistor 81C is connected to one end of the feedback resistor 81D.
  • the other end of the feedback resistor 81D is connected to the ground application end.
  • a node N81 to which the feedback resistors 81C and 81D are connected is connected to the non-inverting input terminal (+) of the error amplifier 81B.
  • the voltage adjustment circuit 80 is a circuit that adjusts the reference voltage input to the inverting input terminal (-) of the error amplifier 81B in order to adjust the output voltage VO1 of the LDO 81 to a desired voltage.
  • the voltage adjustment circuit 80 has a DAC 82 , a comparison circuit 83 and a control section 2 .
  • the DAC 82 D/A-converts the DAC data input from the control section 2 and outputs the analog signal as the reference voltage REF1 to the inverting input terminal of the error amplifier 81B.
  • the comparison circuit 83 has a comparator 83A, a DAC 83B, and voltage dividing resistors 83C and 83D. Voltage dividing resistors 83C and 83D are connected in series between the output terminal of the LDO 81 (the application terminal of the output voltage VO1) and the ground application terminal. The node to which the voltage dividing resistors 83C and 83D are connected is connected to the non-inverting input terminal (+) of the comparator 83A.
  • a reference voltage REF2 output from the DAC 83B is input to the inverting input terminal (-) of the comparator 83A.
  • the voltage of the node N81 is controlled to match the reference voltage REF1 to generate the output voltage VO1.
  • a voltage obtained by dividing the output voltage VO1 by the voltage dividing resistors 83C and 83D is compared with the reference voltage REF2 by the comparator 83A.
  • the comparator 83A outputs a comparison signal CMP as a comparison result.
  • the reference voltage REF2 is set to a desired voltage by the DAC 83B. It is also possible to apply the previously described search method to this setting. Then, the control unit 2 performs the above-described first search and second search while monitoring the comparison signal CMP, so that the voltage input to the non-inverting input terminal (+) of the comparator 83A becomes the reference voltage REF2. Determine the DAC data that match. This adjusts the reference voltage REF1 so that the output voltage VO1 matches the desired voltage.
  • the feedback resistors 81C and 81D may be adjusted instead of adjusting the reference voltage REF1 by the DAC.
  • FIG. 13 is a diagram showing a configuration example related to other functional unit stop control.
  • the configuration shown in FIG. 13 also includes the configurations of the overvoltage detection circuit 6 and the undervoltage detection circuit 7 described above. 13 includes a DAC control section 21, other functional section 22, and an AND circuit 23.
  • DAC data is input from the DAC control unit 21 to each of the DACs 62 and 72 of the overvoltage detection circuit 6 and the undervoltage detection circuit 7 .
  • a clock signal CLK ⁇ b>1 from the oscillator 9 is input to the DAC control unit 21 .
  • a gating signal Gt output from the DAC control unit 21 is input to a first input terminal of the AND circuit 23 .
  • a clock signal CLK1 is input to the second input terminal of the AND circuit 23 .
  • the output of the AND circuit 23 is input to the other functional section 22 as the clock signal CLK2.
  • FIG. 14 shows waveform examples of the clock signal CLK1, the gating signal Gt, and the clock signal CLK2 in order from the top.
  • the DAC control unit 21 When the DAC control unit 21 is not performing a reference voltage adjustment operation (search) using the DACs 62 and 72, the gating signal Gt is set to a high level, and the AND circuit 23 receives the clock signal CLK1 output from the oscillator 9. It is output as it is as the clock signal CLK2 (before timing t1). As a result, the other functional section 22 is operating.
  • the gating signal Gt is switched to low level.
  • the clock signal CLK2 output from the AND circuit 23 is maintained at a low level, and the supply of the clock signal CLK1 to the other functional section 22 is stopped.
  • the other functional unit 22 stops operating. Note that when the search using the DACs 62 and 72 is completed, the gating signal Gt is switched to high level, and the supply of the clock signal CLK1 to the other functional section 22 is resumed.
  • the voltage regulation circuits (60, 70, 80) disclosed herein are: a digital-to-analog converter (62, 72, 82); a comparator (61, 71, 83A) including a first input terminal capable of inputting a predetermined voltage and a second input terminal receiving a voltage based on the output of the digital-analog converter; a control unit (2) that outputs DAC data to the digital-analog conversion unit; with The control section is configured to perform a first search for sequentially determining the bits of the DAC data from the upper bit based on the output result of the comparator (first configuration, FIGS. 9 and 12).
  • the first input terminal is configured to be electrically connectable to a first external terminal (T1) capable of applying an output voltage of a power supply circuit
  • T1 a first external terminal
  • the output of the digital-analog converter may be directly input to the second input terminal (second configuration, FIG. 9).
  • a voltage based on the output voltage of a power supply circuit (81) that outputs an output voltage based on the output of the digital-analog converter may be input to the second input terminal.
  • Good (third configuration, FIG. 12).
  • the output of the digital-analog converter may be a reference voltage input to an error amplifier (81B) included in the power supply circuit (fourth configuration, FIG. 12). .
  • control unit monotonically increases or decreases the output of the digital-analog conversion unit after the first search so that the level of the output of the comparator is
  • a second search may be performed to detect the DAC data at the point of switching (fifth configuration).
  • the comparator (71) has hysteresis to detect that the voltage input to the first input terminal has decreased and has fallen below the output of the digital-analog converter (72). A voltage reduction may be detected, and the control unit may perform the second search for monotonously increasing the output of the digital-analog conversion unit (sixth configuration, FIG. 9).
  • the comparator (61) has hysteresis, and detects that the voltage input to the first input terminal rises and exceeds the output of the digital-analog converter (62). An overvoltage may be detected, and the control section may perform the second search to monotonically decrease the output of the digital-analog conversion section (seventh configuration, FIG. 9).
  • control unit includes a DAC control unit (21) that controls the digital-analog conversion unit, and a function unit ( 22), wherein the supply of the clock signal from the oscillator (9) to the other functional unit is stopped when the first search by the DAC control unit is started (the first 8, Fig. 13).
  • control section may include an AND circuit (23) to which the gating signal output from the DAC control section and the clock signal are input (the ninth configuration, Fig. 13).
  • the power supply device (50) disclosed in the present specification includes a voltage adjustment circuit having the first configuration, a power supply circuit (3A), and an overvoltage detection circuit (6) for detecting an overvoltage of the output voltage of the power supply circuit. ), wherein the overvoltage detection circuit includes the digital-analog converter and the comparator (tenth configuration, FIG. 8).
  • the power supply device (50) disclosed in this specification includes the voltage adjustment circuit having the first configuration, a power supply circuit (3A), and a voltage drop detection circuit for detecting a voltage drop in the output voltage of the power supply circuit. (7), wherein the voltage reduction detection circuit includes the digital-analog converter and the comparator (eleventh configuration, FIG. 8).
  • the system disclosed in this specification is a system comprising a voltage regulation circuit having any one of the first to ninth configurations and a memory cell (14), the memory cell includes a first region (R1) and a second region (R2) that is writable only once;
  • the control unit has a register (20), In the first area, first area information about an area in the second area in which data to be written to the register is stored, and second area information about an area in the register to which the data is written are written. is possible and The control unit writes from the second area to the register based on the first area information and the second area information stored in the first area, The first area is written based on the DAC data determined based on the first search (FIGS. 2 and 8).
  • the present disclosure can be used, for example, in power supply devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Read Only Memory (AREA)

Abstract

電圧調整回路(60、70、80)は、デジタルアナログ変換部(62、72、82)と、所定電圧を入力可能な第1入力端と、前記デジタルアナログ変換部の出力に基づく電圧が入力される第2入力端と、を含むコンパレータ(61、71、83A)と、前記デジタルアナログ変換部にDACデータを出力する制御部(2)と、を備える。前記制御部は、前記コンパレータの出力結果に基づき前記DACデータのビットを上位ビットから順に決定する第1のサーチを行う。

Description

メモリ装置
 本明細書中に開示されている発明は、電圧調整回路に関する。
 従来、電源回路の出力電圧の過電圧を検出する過電圧検出回路(例えば特許文献1)、あるいは、上記出力電圧の減電圧を検出する減電圧検出回路などの異常電圧検出回路が知られている。
特開2019-221099号公報
 上記のような異常電圧検出回路は、DAC(Digital  Analog  Converter)と、コンパレータを有する場合が多い。上記コンパレータには、上記DACの出力としての基準電圧と、上記出力電圧に基づく電圧とが入力される。ここで、DACの個体ばらつき、あるいはDACの経時変化に対応して、DACに入力させるDACデータを調整して、DACの出力である基準電圧を所望の電圧に調整する必要がある。このような基準電圧の調整は、短時間で行うことが望まれる。
 例えば、本明細書中に開示されている電圧調整回路は、
 デジタルアナログ変換部と、
 所定電圧を入力可能な第1入力端と、前記デジタルアナログ変換部の出力に基づく電圧が入力される第2入力端と、を含むコンパレータと、
 前記デジタルアナログ変換部にDACデータを出力する制御部と、
を備え、
 前記制御部は、前記コンパレータの出力結果に基づき前記DACデータのビットを上位ビットから順に決定する第1のサーチを行う構成としている。
 本明細書中に開示されている電圧調整回路によれば、デジタルアナログ変換部の出力に基づく電圧を短時間で調整することが可能となる。
図1は、本開示の例示的な実施形態に係る電源装置の構成を示す図である。 図2は、OTPブロックの構成例を示すブロック図である。 図3は、メモリセルの具体的な構成例を示す図である。 図4は、レジスタへの書き込み処理の一例に関するフローチャートである。 図5は、レジスタへの書き込みの一例を示す図である。 図6は、レジスタへの書き込みの一例を示す図である。 図7は、レジスタへの書き込みの一例を示す図である。 図8は、別実施形態に係る電源装置の構成を示す図である。 図9は、過電圧検出回路と減電圧検出回路の構成例を示す図である。 図10は、第1のサーチの一例を示す図である。 図11は、第2のサーチの一例を示す図である。 図12は、別実施形態に係る電圧調整回路に関する構成を示す図である。 図13は、他機能部停止制御に関する構成例を示す図である。 図14は、他機能部停止制御の一例を示すタイミングチャートである。
 以下、本開示の例示的な実施形態について、図面を参照して説明する。
<1.メモリ装置の適用対象>
 図1は、本開示の例示的な実施形態に係るメモリ装置を適用する対象(アプリケーション)の一例としての電源装置5の構成を示す。電源装置5は、メモリ装置10を含む。
 電源装置5は、OTPブロック1と、制御部(コントローラ)2と、DC/DCコンバータ回路3A~3Dと、検出部4と、を1つのチップに集積化して有する半導体装置(ICパッケージ)である。電源装置5は、複数の出力電圧VO1~VO4を生成可能であり、例えば車両に搭載される。
 OTPブロック1は、メモリセルおよびその周辺回路(いずれも不図示)から構成される。メモリセルには、各種設定情報などが記憶される。なお、OTPブロック1の詳細な構成については、後述する。
 制御部2は、電源装置5の各部を制御する装置である。制御部2は、例えば、OTPブロック1を制御する。OTPブロック1と、制御部2と、からメモリ装置10が構成される。すなわち、電源装置5は、メモリ装置10を有している。
 制御部2は、レジスタ20を有している。制御部2の指示によりOTPブロック1(メモリセル)から読み出されたデータは、レジスタ20に格納される。
 各DC/DCコンバータ回路3A~3Dは、入力電圧を出力電圧VO1~VO4にDC/DC変換して出力する。各出力電圧VO1~VO4の設定値は、レジスタ20に格納されたデータにより設定される。
 検出部4は、例えば、各出力電圧VO1~VO4の過電圧または低電圧を検出し、検出信号RSTを出力する。検出部4の検出用閾値は、レジスタ20に格納されたデータにより設定される。
<2.メモリ装置の構成>
 次に、メモリ装置10の構成について、より具体的に説明する。図2は、OTPブロック1の構成例を示すブロック図である。
 図2に示すように、OTPブロック1は、入力バッファ11と、タイミング回路12と、Xデコーダ13と、メモリセル14と、ビット検出部15と、データ入出力部16と、を有している。
 入力バッファ11は、制御部2から入力されるアドレス指定情報を格納する。タイミング回路12は、Xデコーダ13、ビット検出部15、およびデータ入出力部16のタイミング制御を行う。
 Xデコーダ13は、入力バッファ11からタイミング回路12を介して入力されるアドレス指定情報に基づき、メモリセル14におけるワードライン(行)を選択する。
 メモリセル14は、マトリクス状に配置された複数のセルから構成される。1つのセルは、トランジスタにより構成される。
 ビット検出部15は、メモリセル14におけるXデコーダ13により選択されたワードラインの各セルに記憶されたビットデータの論理値(0または1)を検出する。データ入出力部16は、ビット検出部15による検出結果に基づき、上記選択されたワードラインの各セルのデータを制御部2に出力する。すなわち、ビット検出部15およびデータ入出力部16により、上記選択されたワードラインのデータがメモリセル14から読み出される。
 図3は、メモリセル14の具体的な構成例を示す図である。なお、図3は、メモリセル14の一部のセルのみを図示している。
 図3に示すように、メモリセル14は、ノーマルエリアと、カウンタエリアと、を有する。ノーマルエリアには、マトリクス状にOTPセル141が配置される。カウンタエリアには、マトリクス状にカウンタセル142が配置される。
 OTPセル141は、2つのMOSトランジスタから構成される。2つのMOSトランジスタの各ゲートは、ワードラインWLに共通接続される。2つのMOSトランジスタの第1端同士は、接続される。一方のMOSトランジスタの第2端は、ビットラインBLに接続される。他方のMOSトランジスタの第2端は、ビットラインBLCに接続される。
 上記のような接続構成であるOTPセル141がワードラインWLごとに32個設けられる。従って、ノーマルエリアでは、ワードラインWLごとに32ビットのデータを記憶することが可能である。なお、ノーマルエリアのビット数は、32ビットに限ることはない。
 ノーマルエリアにおいては、ビットラインBLとビットラインBLCからなるビットライン単位BUは32個設けられる。1つのビットライン単位BUにおけるビットラインBL,BLC間には、センスアンプ15Aが挿入される。すなわち、ノーマルエリアにおいては、センスアンプ15Aが32個設けられる。センスアンプ15Aは、ビット検出部15を構成する。
 1つのビットライン単位BUにおけるビットラインBL,BLC間に接続される各OTPセル141におけるMOSトランジスタの第1端同士が接続される各ノードには、電圧印加部VCCにより電圧を共通に印加可能である。
 OTPセル141においては、一方と他方のMOSトランジスタのうちいずれかのゲートに電荷が注入されることで、1回のみデータの書き込みが行われる。電荷が注入されるMOSトランジスタの違いにより、OTPセル141に記憶されたビットデータの値(0または1)が異なる。このようないずれかのMOSトランジスタのゲートへの電荷の注入により、OTPセル141における各MOSトランジスタの閾値電圧を異ならせる。
 Xデコーダ13は、所定電圧をワードラインWLに印加させることで、ワードラインWLを選択する。選択されたワードラインWLのOTPセル141には、電圧印加部VCCにより電圧が印加される。この状態で、選択されたワードラインWLのOTPセル141における各MOSトランジスタの閾値電圧の差により、各MOSトランジスタのオンの度合いが異なることになる。従って、各MOSトランジスタに流れる電流に差が生じる。センスアンプ15Aは、その電流の差を増幅して出力する。これにより、センスアンプ15Aは、選択されたワードラインWLのOTPセル141に記憶されたビットデータの論理値を検出する。
 ノーマルエリアにおける選択されたワードラインWLの32個のOTPセル141の各ビットデータが、32個の各センスアンプ15Aにより検出されることになる。そして、データ入出力部16は、上記各センスアンプ15Aの検出結果に基づき、32ビットのノーマルエリアデータDOUTを出力する。
 カウンタセル142は、1つのMOSトランジスタから構成される第1セル142Aと、2つのMOSトランジスタから構成される複数の第2セル142Bと、から構成される。カウンタセル142は、第2セル142Bを一例として3個有する。
 第1セル142Aを構成するMOSトランジスタのゲートは、ワードラインWLに接続される。当該MOSトランジスタの第1端は、電圧印加部VCCの電圧印加端に接続される。当該のMOSトランジスタの第2端は、ビットラインBLCに接続される。
 第2セル142Bは、2つのMOSトランジスタから構成される。2つのMOSトランジスタの各ゲートは、第1セル142Aのゲートが接続されるワードラインWLに共通接続される。すなわち、複数の第2セル142Bの各ゲートは、共通のワードラインWLに接続される。2つのMOSトランジスタの第1端同士は、接続される。一方のMOSトランジスタの第2端は、ビットラインBLに接続される。他方のMOSトランジスタの第2端は、ビットラインBLCに接続される。
 上記のような接続構成であるカウンタセル142がワードラインWLごとに3個設けられる。従って、カウンタエリアでは、ワードラインWLごとに3ビットのデータを記憶することが可能である。なお、ノーマルエリアとカウンタエリアでワードラインWLは共通である。すなわち、1つのワードラインWL(図3の1ワード領域W)に対して、32個のOTPセル141と3個のカウンタセル142が設けられる。
 カウンタエリアにおいては、ビットラインBLとビットラインBLCからなるビットライン単位BUは3個設けられる。1つのビットライン単位BUにおけるビットラインBL,BLC間には、センスアンプ15Bが挿入される。すなわち、カウンタエリアにおいては、センスアンプ15Bが3個設けられる。センスアンプ15Bは、センスアンプ15Aとともにビット検出部15を構成する。
 1つのビットライン単位BUにおけるビットラインBL,BLCに接続される各カウンタセル142における各セル142A,142Bを構成するMOSトランジスタの第1端には、電圧印加部VCCにより電圧を共通に印加可能である。
 カウンタセル142からデータを読み出す場合、Xデコーダ13は、所定電圧をワードラインWLに印加させることで、ワードラインWLを選択する。選択されたワードラインWLのカウンタセル142(第1セル142A,第2セル142B)には、電圧印加部VCCにより電圧が印加される。
 ここで、カウンタセル142に未だ書き込みが行われていない場合は、第2セル142BのいずれのMOSトランジスタのゲートにも電荷が注入されておらず、当該MOSトランジスタの閾値電圧に差は生じない。一方、第1セル142Aの構成により、ビットラインBLC側に電流が多く流れる傾向とされている。従って、選択されたワードラインWLのカウンタセル142からビットラインBL,BLCに流れる電流は、ビットラインBLC側が大きくなる。センスアンプ15Bは、その電流の差を増幅して出力する。ビットラインBLC側の電流が大きい状態を仮に、ビットデータで「0」とすれば、センスアンプ15Bは、選択されたワードラインWLのカウンタセル142に記憶されたビットデータの論理値を「0」として検出する。
 一方、カウンタセル142に書き込まれた場合は、複数の第2セル142BのビットラインBLC側のMOSトランジスタのゲートに電荷が注入されており、ビットラインBLC側のMOSトランジスタの閾値電圧は、ビットラインBL側のMOSトランジスタの閾値電圧よりも大きい。従って、選択されたワードラインWLのカウンタセル142からビットラインBL,BLCに流れる電流は、ビットラインBL側のほうが大きくなる。センスアンプ15Bは、その電流の差を増幅して出力する。上記のようにビットデータ「0」を定義した場合、センスアンプ15Bは、選択されたワードラインWLのカウンタセル142に記憶されたビットデータの論理値を「1」として検出する。
 このようなカウンタセル142の構成により、書き込まれていない状態から書き込みを行うと、ビットデータを変化させることができる。なお、カウンタセル142は、1回のみ書き込みが可能である。
 カウンタエリアにおける選択されたワードラインWLの3個のカウンタセル142の各ビットデータが、3個の各センスアンプ15Bにより検出されることになる。そして、データ入出力部16は、上記各センスアンプ15Bの検出結果に基づき、3ビットのカウンタエリアデータCOUNTOUTを出力する。
 制御部2においては、カウンタエリアデータCOUNTOUTの各ビットデータのうち多いほうのビットデータを、読み出したビットデータとして決定する。すなわち、多数決により、読み出したビットデータを決定する。これにより、より確実にカウンタエリアからビットデータを読み出すことができる。なお、カウンタエリアデータは、5ビット以上の奇数ビットとしてもよい。
 このように、Xデコーダ13によりワードラインWLが選択されると、選択されたワードラインWLのノーマルエリアおよびカウンタエリアにおける各セルからデータ(32ビット+3ビット)が読み出されて出力される。ただし、カウンタエリアからは、実質的には1ビットを読み出すことになる。
<3.レジスタへの書き込み処理>
 次に、メモリ装置10におけるメモリセル14からレジスタ20への書き込み処理について、図4に示すフローチャート、および図5~図7を用いて説明する。
 ここで、図5~図7に示すように、メモリセル14は、第1領域R1と第2領域R2を有する。なお、図5~図7に示すメモリセル14におけるアドレスは、1ワードを示す。
 第1領域R1においては、ノーマルエリア(32ビット)における上位から1番目の8ビット領域r81で自己のアドレスを示し、2番目の8ビット領域r82でレジスタ20における書き込む領域の開始アドレスを示し、3番目、4番目の各8ビット領域r83、r84でレジスタ20に書き込む対象のデータが記憶されているノーマルエリアの領域の開始アドレス、終了アドレスをそれぞれ示す。なお、上記領域r82,r83,r84におけるビット数は、8ビットに限らない。
 また、第1領域R1には、ノーマルエリアに加えて、カウンタエリアも含まれる。カウンタエリアと同じアドレスのノーマルエリアに上記各開始・終了アドレスのデータが未だ書き込まれていない場合は、上記カウンタエリアにおいて書き込みは行われていない状態である。この場合、カウンタエリアにおいて、3個の各ビットデータは「0」とされている。第1領域R1への書き込みは、アドレスごとに1回のみであり、第1領域R1の開始アドレスから順に行われる。
 そして、ノーマルエリアに上記各開始・終了アドレスのデータが書き込まれた場合は、カウンタエリアにおいて書き込みが行われ、3個の各ビットデータは「1」とされる。なお、ノーマルエリアおよびカウンタエリアにおける書き込みは、メモリセルにおける1組のMOSトランジスタのうち片側だけ、図示しない回路により過電圧を印加してゲートに電荷を注入することで行われる。
 第1領域R1は、図5~図7に示す例では、先頭アドレス(0x00)から0x1Fまでの領域としている。ただし、第1領域R1は、これに限らず、例えば先頭アドレス以外のアドレスから開始されてもよいし、終了アドレスも0x1Fには限らない。
 第2領域R2は、図5~図7の例では、第1領域R1の終了アドレス(0x1F)の次のアドレスを開始アドレスとし、0xBFを終了アドレスとしている。第2領域R2のノーマルエリアには、主データが記憶されている。主データは、各種設定情報などである。上記設定情報には、例えば、DC/DCコンバータ回路3A~3Dの設定出力電圧、検出部4の閾値電圧などが含まれる。
 図4に示すフローチャートが開始されると、まず制御部2は、アドレスを指定することでメモリセル14における第1領域R1から1アドレス分(1ワード分)のデータを読み出す(ステップS1)。最初は、第1領域R1の開始アドレスから読み出される。
 次に、制御部2は、カウンタエリアから読み出されたビットデータ(カウント値)が「1」であるかを判定する(ステップS2)。もし、そうである場合は(ステップS2のYes)、ノーマルエリアにおける8ビット領域r82~r83にデータが書き込まれていることになる。そこで、ステップS3に進み、制御部2は、8ビット領域r83に書き込まれた開始アドレスから8ビット領域r84に書き込まれた終了アドレスまでの第2領域のノーマルエリアに含まれる領域のデータを、8ビット領域r82に書き込まれた開始アドレスから始まるレジスタ20の領域に書き込む。なお、書き込むレジスタ20の領域における終了アドレスは、第2領域R2における開始アドレスから終了アドレスまでの領域のデータ量から決まる。
 そして、ステップS3の後、ステップS1に戻り、制御部2は、第1領域R1における前回のアドレスの次のアドレスからの読み出しを行う。
 ステップS2で、読み出されたカウント値が「0」である場合は(ステップS2のNo)、図4に示すフローチャートは完了する。すなわち、レジスタ20における図4に示す処理により書き換えられた領域以外の領域のデータは、初期値のままで使用される。
 このような図4に示す処理の一例を、図5~図7を用いて説明する。図5においては、メモリセル14の第1領域R1において、すべてのアドレスについて8ビット領域r82~r83への書き込みは行われておらず、カウンタエリアの各ビットデータもすべて「0」である。
 図5に示すメモリセル14の状態で、図4に示す処理が行われると、ステップS1で第1領域の開始アドレスから読み出しが行われる。すると、ステップS2で、読み出されたカウント値は「0」であるため、処理は完了する。
 次に、図6においては、図5に示すメモリセル14の状態から、第1領域R1の開始アドレスの8ビット領域r82~r84にアドレス情報(0x20、0x40、0x4F)が書き込まれている。これにより、図6に示す状態では、第1領域R1の開始アドレスのカウンタエリアにおいて書き込みがされており、3つの各ビットデータが「1」となっている。
 図6に示す状態で図4に示す処理が行われると、ステップS1で第1領域の開始アドレスから読み出しが行われる。すると、ステップS2で、読み出されたカウント値は「1」であるため、ステップS3に進み、8ビット領域r83に書き込まれた開始アドレス0x40から8ビット領域r84に書き込まれた終了アドレス0x4fまでの第2領域R2のノーマルエリアに含まれる領域から、8ビット領域r82に書き込まれた開始アドレス0x20から始まるレジスタ20の領域への書き込みが行われる。
 次に、図7においては、図6に示すメモリセル14の状態から、第1領域R1の開始アドレスの次のアドレスにおける8ビット領域r82~r84にアドレス情報(0x20、0x60、0x6F)が書き込まれている。これにより、図7に示す状態では、第1領域R1の開始アドレスの次のアドレスのカウンタエリアにおいて書き込みがされており、3つの各ビットデータが「1」となっている。
 図7に示す状態で図4に示す処理が行われると、ステップS1で第1領域の開始アドレスから読み出しが行われる。すると、ステップS2で、読み出されたカウント値は「1」であるため、ステップS3に進み、8ビット領域r83に書き込まれた開始アドレス0x40から8ビット領域r84に書き込まれた終了アドレス0x4fまでの第2領域R2のノーマルエリアに含まれる領域から、8ビット領域r82に書き込まれた開始アドレス0x20から始まるレジスタ20の領域への書き込みが行われる。
 その後、ステップS1に戻り、第1領域の開始アドレスの次のアドレスから読み出しが行われる。すると、ステップS2で、読み出されたカウント値は「1」であるため、ステップS3に進み、8ビット領域r83に書き込まれた開始アドレス0x60から8ビット領域r84に書き込まれた終了アドレス0x6fまでの第2領域R2のノーマルエリアに含まれる領域から、8ビット領域r82に書き込まれた開始アドレス0x20から始まるレジスタ20の領域への書き込みが行われる。
 このように、本実施形態では、第2領域R2のノーマルエリアではOTPセルに1回しか書き込みができないにもかかわらず、第1領域R1への書き込みによって、レジスタ20に書き込むデータをアップデート(図6、図7)することができる。従って、擬似的にOTPメモリに複数回書き込むことができることになり、各種設定など機能の変更をフレキシブルに行うことが可能となる。
<4.別実施形態の電源装置>
 図8は、別実施形態に係る電源装置50の構成を示す図である。図8に示す電源装置50の先述した実施形態に係る電源装置5(図1)との相違点は、過電圧検出回路6と、減電圧検出回路7を有することである。
 過電圧検出回路(OVD)6は、出力電圧VO1と制御部2により設定される閾値電圧とを比較し、出力電圧VO1が上昇して閾値電圧を上回ったことを検出すると、過電圧異常を示す過電圧検出信号DT_OVを出力する。
 減電圧検出回路(UVD)7は、出力電圧VO1と制御部2により設定される閾値電圧とを比較し、出力電圧VO1が低下して閾値電圧を下回ったことを検出すると、減電圧異常を示す減電圧検出信号DT_UVを出力する。
<5.過電圧検出回路と減電圧検出回路>
 図9は、過電圧検出回路6と減電圧検出回路7の構成例を示す図である。
 過電圧検出回路6は、分圧用の抵抗Ra,Rbと、コンパレータ61と、デジタルアナログ変換部(Digital  Analog  Converter、以下「DAC」と称す)62と、を有している。抵抗Raの一端は、外部端子T1に接続される。外部端子T1は、電源装置50(図8)に備えられ、出力電圧VO1を印加可能である。抵抗Raの他端は、抵抗Rbの一端に接続される。抵抗Rbの他端は、グランドの印加端に接続される。すなわち、抵抗Ra,Rbは、出力電圧VO1の印加端とグランドの印加端との間に直列接続される。
 抵抗RaとRbとが接続されるノードは、コンパレータ61の非反転入力端(+)に接続される。これにより、出力電圧VO1を抵抗Ra,Rbにより分圧して得られる入力信号INをコンパレータ61の非反転入力端に入力させることができる。一方、DAC62は、制御部2から入力されるDACデータDT_DAT_OVDをD/A変換し、アナログ信号をコンパレータ61の反転入力端(-)に入力させる。
 これにより、コンパレータ61は、入力信号INと、DAC62から出力される基準電圧としてのアナログ信号と、を比較し、比較結果として過電圧検出信号DET_OVDを出力する。なお、コンパレータ61は、ヒステリシスを有するヒステリシスコンパレータであってもよいし、ヒステリシスを有しないコンパレータであってもよい。
 出力電圧VO1が上昇し、入力信号INが基準電圧を上回ると、出力電圧VO1が閾値電圧を上回ったとして、コンパレータ61から出力される過電圧検出信号DET_OVDは、ローレベルからハイレベルに切り替えられる。
 減電圧検出回路7は、分圧用の抵抗Ra,Rbと、コンパレータ71と、DAC72と、を有している。抵抗Ra,Rbは、過電圧検出回路6と共用している。
 抵抗RaとRbとが接続されるノードは、コンパレータ71の反転入力端(-)に接続される。これにより、出力電圧VO1を抵抗Ra,Rbにより分圧して得られる入力信号INをコンパレータ71の反転入力端に入力させることができる。一方、DAC72は、制御部2から入力されるDACデータDAC_UVをD/A変換し、アナログ信号をコンパレータ71の非反転入力端(+)に入力させる。
 これにより、コンパレータ71は、入力信号INと、DAC72から出力される基準電圧としてのアナログ信号と、を比較し、比較結果として減電圧検出信号DET_UVDを出力する。なお、コンパレータ71は、ヒステリシスを有するヒステリシスコンパレータであってもよいし、ヒステリシスを有しないコンパレータであってもよい。
 出力電圧VO1が低下し、入力信号INが基準電圧を下回ると、出力電圧VO1が閾値電圧を下回ったとして、コンパレータ71から出力される減電圧検出信号DET_UVDは、ローレベルからハイレベルに切り替えられる。
 なお、コンパレータ61,71をヒステリシスを有するコンパレータで構成した場合は、後述する第1のサーチでは、ヒステリシス幅以下の範囲まで検索することはできないという制約が生じる。これは、コンパレータの出力を例えばローレベルからハイレベルに切り替えると、一度ハイレベルからローレベルに戻さないと正確なローレベルからハイレベルに切り替わる点を見つけることができないためである。
<6.電圧調整回路>
 過電圧検出回路6に含まれるコンパレータ61およびDAC62と、制御部2と、から電圧調整回路60が構成される。電圧調整回路60は、DAC62の出力(アナログ電圧)を所望の基準電圧に調整する。過電圧検出回路6における基準電圧の調整時には、図9の破線に示すように、外部端子T1に外部から電圧印加部Eにより過電圧検出用の閾値電圧(所定電圧)を印加させた状態で、DAC62の出力が入力信号INと一致するようなDACデータDAC_OVをサーチする。
 減電圧検出回路7に含まれるコンパレータ71およびDAC72と、制御部2と、から電圧調整回路70が構成される。電圧調整回路70は、DAC72の出力(アナログ信号)を所望の基準電圧に調整する。減電圧検出回路7における基準電圧の調整時には、図9の破線に示すように、外部端子T1に外部から電圧印加部Eにより減電圧検出用の閾値電圧(所定電圧)を印加させた状態で、DAC72の出力が入力信号INと一致するようなDACデータDAC_UVをサーチする。
<7.サーチ手法>
 上記のサーチでは、第1のサーチと第2のサーチとを組み合わせて行われる。第1のサーチは、具体的にはバイナリサーチである。第2のサーチは、具体的には単調変化(単調増加または単調減少)サーチである。
 第1のサーチ(バイナリサーチ)は、入力信号INとDAC62,72の出力とをコンパレータ61,71により比較しつつ、DACデータのビットを上位ビットから順に決定する方法である。
 ここで、減電圧検出回路7用の電圧調整回路70による第1のサーチの一例について図10を用いて説明する。ここで、DAC72は、一例として12ビットのDACとしている。
 図10では、最も上段に制御部2により時系列に設定されるDACデータDAC_UV、グラフの縦軸にDACデータDAC_UVのコード(2進数、10進数表記)、DAC72の出力(アナログ電圧)の時間軸に対する波形、および、最も下段にコンパレータ71の出力を示す。また、図10には、入力信号INも図示している。なお、これは後述する図11でも同様である。
 図10に示すように、初期には、DACデータDAC_UVは、0x800すなわち12ビットのダイナミックレンジにおける半値(=2048)に設定される。ここでは、入力信号INがDAC72の出力よりも低く、コンパレータ71の出力はハイレベルとなる。
 このコンパレータ71の出力より、制御部2は、DACデータDAC_UVの最上位ビットを“0”と決定し、次に上位のビット(第2上位ビット)を“1”としてそれ以外のビットを“0”とする(DACデータDAC_UV=0x400)。すなわち、DACデータDAC_UVは、上記ダイナミックレンジの下半分の半値(=1024)と設定される。ここでは、入力信号INがDAC72の出力よりも高く、コンパレータ71の出力はローレベルとなる。
 このコンパレータ71の出力より、制御部2は、DACデータDAC_UVの第2上位ビットを“1”と決定し、次に上位のビット(第3上位ビット)を“1”としてそれ以外のビットを“0”とする(DACデータDAC_UV=0x600)。すなわち、DACデータDAC_UVは、前回設定された半値により半分に分割されるレンジの上半分の半値(=1536)と設定される。ここでは、入力信号INがDAC72の出力よりも低く、コンパレータ71の出力はハイレベルとなる。
 このコンパレータ71の出力より、制御部2は、DACデータDAC_UVの第3上位ビットを“0”と決定し、次に上位のビット(第4上位ビット)を“1”としてそれ以外のビットを“0”とする。以降、同様に処理を繰り返し、図10に示すように、第7上位ビットまで決定され、最終的にDACデータDAC_UV=0x541に設定される。
 ここでのDAC72の出力は入力信号INよりも低く、コンパレータ71の出力はローレベルとなる。制御部2は、コンパレータ71の出力からDAC72の出力が入力信号INより低いことを確認すると、第2のサーチに移行する。
 第2のサーチ(単調変化サーチ)は、DACデータを10進数で1ずつ増加または減少させることで、DACの出力を単調に増加または減少させ、コンパレータの出力のレベルが切り替わったところのDACデータを、最終的なDACデータとして決定する方法である。
 先述の図10の例での第1のサーチの後、図11の例に示す第2のサーチが行われる。図11の例では、DAC72の出力が入力信号INよりも低くなるDACデータDAC_UV(=0x541)から開始されるため、制御部2は、単調増加での第2のサーチを行う。これにより、DACデータDAC_UVは、0x541から10進数で1ずつ増加され、コンパレータ71の出力のレベルがローレベルからハイレベルに切り替わるときのDACデータDAC_UV(=0x551)を最終的なDACデータとして決定する。
 このように図10に示す例では単調増加での第2のサーチを行っているのは、減電圧検出回路7においては、ヒステリシスを有するコンパレータ71により、低下する入力信号INがDAC72から出力される基準電圧を下回ったことを検出することで減電圧を検出する必要があるためである。同様に、過電圧検出回路6においては、ヒステリシスを有するコンパレータ61により、上昇する入力信号INがDAC62から出力される基準電圧を上回ったことを検出することで過電圧を検出する必要があるため、DAC62による第2のサーチでは、単調減少によるサーチを行う。このように、制御部2は、異常電圧検出回路の機能に応じて第2のサーチの単調変化の方向を切り替える。なお、コンパレータがヒステリシスを有しない場合は、第2のサーチではいずれの方向の単調変化としてもよい。
 このようなサーチ方法によれば、第1のサーチによってサーチに要する時間を短縮しつつ、第2のサーチによって精度の高いサーチが可能となる。なお、高い精度の必要のない基準電圧の調整の場合は、必ずしも第2のサーチを行う必要はない。
 このような基準電圧の調整は、電源装置50の工場出荷時、あるいは工場出荷後に行うことができる。特に、工場出荷後に調整を実施すれば、経時変化に対応できる。また、工場出荷後に調整を実施する場合は、サーチによって決定されたDACデータに応じて、先述したメモリセル14における第1領域R1(図5)に書き込みを行ってもよい。
<8.電圧調整回路の別実施形態>
 電圧調整回路は、先述した過電圧検出回路および減電圧検出回路などの異常電圧検出回路に限らず、電源回路の出力電圧の調整に利用することもできる。
 図12は、電源回路の一例としてのLDO(Low  Dropout)81の出力電圧VO1を調整するために用いられる電圧調整回路80の構成を示す図である。
 LDO81は、入力電圧VINを出力電圧VO1に変換するDC/DCコンバータ回路である。LDO81は、PMOSトランジスタ81Aと、エラーアンプ81Bと、帰還抵抗81C,81Dと、を有する。PMOSトランジスタ81Aのソースは、外部端子T2に接続される。外部端子T2には、入力電圧VINを印加可能である。PMOSトランジスタ81Aのドレインは、帰還抵抗81Cの一端に接続される。帰還抵抗81Cの他端は、帰還抵抗81Dの一端に接続される。帰還抵抗81Dの他端は、グランドの印加端に接続される。帰還抵抗81Cと81Dとが接続されるノードN81は、エラーアンプ81Bの非反転入力端(+)に接続される。
 電圧調整回路80は、LDO81の出力電圧VO1を所望の電圧に調整するために、エラーアンプ81Bの反転入力端(-)に入力される基準電圧を調整する回路である。電圧調整回路80は、DAC82と、比較回路83と、制御部2と、を有する。
 DAC82は、制御部2から入力されるDACデータをD/A変換してアナログ信号を基準電圧REF1としてエラーアンプ81Bの反転入力端に出力する。比較回路83は、コンパレータ83Aと、DAC83Bと、分圧抵抗83C,83Dと、を有する。LDO81の出力端(出力電圧VO1の印加端)とグランドの印加端との間に、分圧抵抗83C,83Dが直列接続される。分圧抵抗83Cと83Dとが接続されるノードは、コンパレータ83Aの非反転入力端(+)に接続される。コンパレータ83Aの反転入力端(-)には、DAC83Bから出力される基準電圧REF2が入力される。
 LDO81においては、ノードN81の電圧が基準電圧REF1と一致するように制御され、出力電圧VO1が生成される。出力電圧VO1が分圧抵抗83C,83Dによって分圧されて得られる電圧は、基準電圧REF2とコンパレータ83Aによって比較される。コンパレータ83Aは、比較結果として比較信号CMPを出力する。
 ここで、基準電圧REF2は、DAC83Bにより所望の電圧に設定される。この設定に先述したサーチ方法を適用することも可能である。そして、制御部2は、比較信号CMPをモニタしながら先述した第1のサーチおよび第2のサーチを行うことで、コンパレータ83Aの非反転入力端(+)に入力される電圧が基準電圧REF2と一致するようなDACデータを決定する。これにより、出力電圧VO1が所望の電圧と一致するように基準電圧REF1が調整される。
 なお、DACにより基準電圧REF1を調整することに限らず、帰還抵抗81C,81Dを調整してもよい。
<9.他機能部停止制御>
 先述したようなサーチを行う場合、サーチには必要のない機能については動作させないようにすることが、精度の高い調整には有効となる。
 図13は、他機能部停止制御に関する構成例を示す図である。図13に示す構成では、先述した過電圧検出回路6および減電圧検出回路7の構成も含んでいる。また、図13に示す制御部2は、DAC制御部21と、他機能部22と、AND回路23と、を有する。
 過電圧検出回路6および減電圧検出回路7の各DAC62,72には、DAC制御部21からDACデータが入力される。DAC制御部21には、発振器9からのクロック信号CLK1が入力される。DAC制御部21から出力されるゲーティング信号Gtは、AND回路23の第1入力端に入力される。クロック信号CLK1は、AND回路23の第2入力端に入力される。AND回路23の出力はクロック信号CLK2として他機能部22に入力される。
 ここで、図14に示すタイミングチャートを用いて図13に示す構成の動作について説明する。なお、図14では、上段から順に、クロック信号CLK1、ゲーティング信号Gt、およびクロック信号CLK2の波形例を示す。
 DAC制御部21がDAC62,72を用いた基準電圧の調整動作(サーチ)を行っていない場合、ゲーティング信号Gtはハイレベルとされ、AND回路23は、発振器9から出力されるクロック信号CLK1をそのままクロック信号CLK2として出力する(タイミングt1より手前)。これにより、他機能部22は動作している。
 そして、タイミングt1で、トリガ信号TRGがDAC制御部21に入力され、DAC制御部21が基準電圧調整動作を開始すると、ゲーティング信号Gtはローレベルに切り替えられる。これにより、AND回路23から出力されるクロック信号CLK2はローレベルに維持され、他機能部22へのクロック信号CLK1の供給は停止される。これにより、他機能部22は、動作を停止する。なお、DAC62,72を用いたサーチが完了すると、ゲーティング信号Gtはハイレベルに切り替えられ、他機能部22へのクロック信号CLK1の供給が再開される。
<10.総括>
 以下では、上記で説明した種々の実施形態について総括的に述べる。
 例えば、本明細書中に開示されている電圧調整回路(60、70、80)は、
 デジタルアナログ変換部(62、72、82)と、
 所定電圧を入力可能な第1入力端と、前記デジタルアナログ変換部の出力に基づく電圧が入力される第2入力端と、を含むコンパレータ(61、71、83A)と、
 前記デジタルアナログ変換部にDACデータを出力する制御部(2)と、
を備え、
 前記制御部は、前記コンパレータの出力結果に基づき前記DACデータのビットを上位ビットから順に決定する第1のサーチを行う構成としている(第1の構成、図9、図12)。
 また、上記第1の構成において、前記第1入力端は、電源回路の出力電圧を印加可能な第1外部端子(T1)に電気的に接続可能に構成され、
 前記デジタルアナログ変換部の出力は、直接的に前記第2入力端に入力される構成としてもよい(第2の構成、図9)。
 また、上記第1の構成において、前記第2入力端には、前記デジタルアナログ変換部の出力に基づき出力電圧を出力する電源回路(81)の前記出力電圧に基づく電圧が入力される構成としてもよい(第3の構成、図12)。
 また、上記第3の構成において、前記デジタルアナログ変換部の出力は、前記電源回路に含まれるエラーアンプ(81B)に入力される基準電圧である構成としてもよい(第4の構成、図12)。
 また、上記第1から第4のいずれかの構成において、前記制御部は、前記第1のサーチの後に、前記デジタルアナログ変換部の出力を単調に増加または減少させ、前記コンパレータの出力のレベルが切り替わったところの前記DACデータを検出する第2のサーチを行う構成としてもよい(第5の構成)。
 また、上記第5の構成において、前記コンパレータ(71)は、ヒステリシスを有し、前記第1入力端に入力される電圧が低下して前記デジタルアナログ変換部(72)の出力を下回ったことを減電圧として検出し、前記制御部は、前記デジタルアナログ変換部の出力を単調に増加させる前記第2のサーチを行う構成としてもよい(第6の構成、図9)。
 また、上記第5の構成において、前記コンパレータ(61)は、ヒステリシスを有し、前記第1入力端に入力される電圧が上昇して前記デジタルアナログ変換部(62)の出力を上回ったことを過電圧として検出し、前記制御部は、前記デジタルアナログ変換部の出力を単調に減少させる前記第2のサーチを行う構成としてもよい(第7の構成、図9)。
 また、上記第1から第7のいずれかの構成において、前記制御部は、前記デジタルアナログ変換部を制御するDAC制御部(21)と、前記DAC制御部とは他の機能の他機能部(22)と、を有し、前記DAC制御部による前記第1のサーチが開始されるときに、発振器(9)から前記他機能部へのクロック信号の供給が停止される構成としてもよい(第8の構成、図13)。
 また、上記第8の構成において、前記制御部は、前記DAC制御部から出力されるゲーティング信号と、前記クロック信号とが入力されるAND回路(23)を有する構成としてもよい(第9の構成、図13)。
 また、本明細書に開示された電源装置(50)は、上記第1の構成の電圧調整回路と、電源回路(3A)と、前記電源回路の出力電圧の過電圧を検出する過電圧検出回路(6)と、を備える電源装置であって、前記過電圧検出回路は、前記デジタルアナログ変換部と、前記コンパレータと、を備える構成としている(第10の構成、図8)。
 また、本明細書に開示された電源装置(50)は、上記第1の構成の電圧調整回路と、電源回路(3A)と、前記電源回路の出力電圧の減電圧を検出する減電圧検出回路(7)と、を備える電源装置であって、前記減電圧検出回路は、前記デジタルアナログ変換部と、前記コンパレータと、を備える構成としている(第11の構成、図8)。
 また、本明細書に開示されたシステムは、上記第1から第9のいずれかの構成の電圧調整回路と、メモリセル(14)と、を備えるシステムであり、
 前記メモリセルは、第1の領域(R1)と、1回のみ書き込みが可能な第2の領域(R2)と、を含み、
 前記制御部は、レジスタ(20)を有し、
 前記第1の領域には、前記第2の領域における前記レジスタへ書き込む対象のデータが格納される領域に関する第1領域情報と、前記レジスタにおける前記データを書き込む領域に関する第2領域情報と、を書き込み可能であり、
 前記制御部は、前記第1の領域に格納される前記第1領域情報および前記第2領域情報に基づき、前記第2の領域から前記レジスタへの書き込みを行い、
 前記第1のサーチに基づき決定された前記DACデータに基づき、前記第1の領域に書き込みが行われる構成としている(図2、図8)。
<11.その他>
 なお、本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味および範囲内に属する全ての変更が含まれると理解されるべきである。
 本開示は、例えば、電源装置に利用することが可能である。
   1   OTPブロック
   2   制御部
   3A~3D DCコンバータ回路
   4   検出部
   5   電源装置
   6   過電圧検出回路
   7   減電圧検出回路
   9   発振器
  10   メモリ装置
  11   入力バッファ
  12   タイミング回路
  13   Xデコーダ
  14   メモリセル
  15   ビット検出部
  15A、15B  センスアンプ
  16   データ入出力部
  20   レジスタ
  21   DAC制御部
  22   他機能部
  23   AND回路
  50   電源装置
  60   電圧調整回路
  61   コンパレータ
  70   電圧調整回路
  71   コンパレータ
  80   電圧調整回路
  81A  PMOSトランジスタ
  81B  エラーアンプ
  81C、81D 帰還抵抗
  83   比較回路
  83A  コンパレータ
  83B  DAC
  83C,83D 分圧抵抗
 141   OTPセル
 142   カウンタセル
 142A  第1セル
 142B  第2セル
  BL、BLC ビットライン
  BU   ビットライン単位
  R1   第1領域
  R2   第2領域
  Ra、Rb   抵抗
  T1、T2   外部端子
  VCC   電圧印加部
  W   1ワード領域
  WL   ワードライン
  r81~r84 8ビット領域

Claims (12)

  1.  デジタルアナログ変換部と、
     所定電圧を入力可能な第1入力端と、前記デジタルアナログ変換部の出力に基づく電圧が入力される第2入力端と、を含むコンパレータと、
     前記デジタルアナログ変換部にDACデータを出力する制御部と、
    を備え、
     前記制御部は、前記コンパレータの出力結果に基づき前記DACデータのビットを上位ビットから順に決定する第1のサーチを行う、電圧調整回路。
  2.  前記第1入力端は、電源回路の出力電圧を印加可能な第1外部端子に電気的に接続可能に構成され、
     前記デジタルアナログ変換部の出力は、直接的に前記第2入力端に入力される、請求項1に記載の電圧調整回路。
  3.  前記第2入力端には、前記デジタルアナログ変換部の出力に基づき出力電圧を出力する電源回路の前記出力電圧に基づく電圧が入力される、請求項1に記載の電圧調整回路。
  4.  前記デジタルアナログ変換部の出力は、前記電源回路に含まれるエラーアンプに入力される基準電圧である、請求項3に記載の電圧調整回路。
  5.  前記制御部は、前記第1のサーチの後に、前記デジタルアナログ変換部の出力を単調に増加または減少させ、前記コンパレータの出力のレベルが切り替わったところの前記DACデータを検出する第2のサーチを行う、請求項1から請求項4のいずれか1項に記載の電圧調整回路。
  6.  前記コンパレータは、ヒステリシスを有し、前記第1入力端に入力される電圧が低下して前記デジタルアナログ変換部の出力を下回ったことを減電圧として検出し、
     前記制御部は、前記デジタルアナログ変換部の出力を単調に増加させる前記第2のサーチを行う、請求項5に記載の電圧調整回路。
  7.  前記コンパレータは、ヒステリシスを有し、前記第1入力端に入力される電圧が上昇して前記デジタルアナログ変換部の出力を上回ったことを過電圧として検出し、
     前記制御部は、前記デジタルアナログ変換部の出力を単調に減少させる前記第2のサーチを行う、請求項5に記載の電圧調整回路。
  8.  前記制御部は、前記デジタルアナログ変換部を制御するDAC制御部と、前記DAC制御部とは他の機能の他機能部と、を有し、
     前記DAC制御部による前記第1のサーチが開始されるときに、発振器から前記他機能部へのクロック信号の供給が停止される、請求項1から請求項7のいずれか1項に記載の電圧調整回路。
  9.  前記制御部は、前記DAC制御部から出力されるゲーティング信号と、前記クロック信号とが入力されるAND回路を有する、請求項8に記載の電圧調整回路。
  10.  請求項1に記載の電圧調整回路と、電源回路と、前記電源回路の出力電圧の過電圧を検出する過電圧検出回路と、を備える電源装置であって、
     前記過電圧検出回路は、前記デジタルアナログ変換部と、前記コンパレータと、を備える、電源装置。
  11.  請求項1に記載の電圧調整回路と、電源回路と、前記電源回路の出力電圧の減電圧を検出する減電圧検出回路と、を備える電源装置であって、
     前記減電圧検出回路は、前記デジタルアナログ変換部と、前記コンパレータと、を備える、電源装置。
  12.  請求項1から請求項9のいずれか1項に記載の電圧調整回路と、メモリセルと、を備えるシステムであり、
     前記メモリセルは、第1の領域と、1回のみ書き込みが可能な第2の領域と、を含み、
     前記制御部は、レジスタを有し、
     前記第1の領域には、前記第2の領域における前記レジスタへ書き込む対象のデータが格納される領域に関する第1領域情報と、前記レジスタにおける前記データを書き込む領域に関する第2領域情報と、を書き込み可能であり、
     前記制御部は、前記第1の領域に格納される前記第1領域情報および前記第2領域情報に基づき、前記第2の領域から前記レジスタへの書き込みを行い、
     前記第1のサーチに基づき決定された前記DACデータに基づき、前記第1の領域に書き込みが行われる、システム。
PCT/JP2022/024891 2021-07-14 2022-06-22 メモリ装置 WO2023286548A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023535197A JPWO2023286548A1 (ja) 2021-07-14 2022-06-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021116061 2021-07-14
JP2021-116061 2021-07-14

Publications (1)

Publication Number Publication Date
WO2023286548A1 true WO2023286548A1 (ja) 2023-01-19

Family

ID=84919240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024891 WO2023286548A1 (ja) 2021-07-14 2022-06-22 メモリ装置

Country Status (2)

Country Link
JP (1) JPWO2023286548A1 (ja)
WO (1) WO2023286548A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049609A (ja) * 1998-07-27 2000-02-18 Toshiba Microelectronics Corp A/dコンバータ
JP2010045944A (ja) * 2008-08-18 2010-02-25 Rohm Co Ltd 電源装置
JP2018166322A (ja) * 2017-03-28 2018-10-25 パナソニック株式会社 無線受信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000049609A (ja) * 1998-07-27 2000-02-18 Toshiba Microelectronics Corp A/dコンバータ
JP2010045944A (ja) * 2008-08-18 2010-02-25 Rohm Co Ltd 電源装置
JP2018166322A (ja) * 2017-03-28 2018-10-25 パナソニック株式会社 無線受信装置

Also Published As

Publication number Publication date
JPWO2023286548A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
US7965571B2 (en) On die thermal sensor
US11269365B2 (en) Voltage-generating circuit and semiconductor device using the same
TWI473089B (zh) 可程式臨介電晶體陣列之臨介電壓數位器
US10305457B2 (en) Voltage trimming circuit and integrated circuit including the voltage trimming circuit
US7075847B2 (en) Semiconductor memory device having optimum refresh cycle according to temperature variation
US9028141B2 (en) On die thermal sensor of semiconductor memory device
JP4505766B2 (ja) データ処理装置及びトリミングデータ読み出し方法
US9548114B2 (en) Resistive semiconductor memory capable of performing incremental step pulse programming (ISPP) based on digital code values of memory cells
US7394698B1 (en) Method and apparatus for adjusting a read reference level under dynamic power conditions
WO2023286548A1 (ja) メモリ装置
US20210351771A1 (en) Power down detection circuit and semiconductor storage apparatus
WO2023286547A1 (ja) メモリ装置
US9117505B2 (en) Voltage generation circuit, and write driver and semiconductor memory apparatus including the same
US10613571B2 (en) Compensation circuit for generating read/program/erase voltage
US20200194067A1 (en) Semiconductor memory device capable of adjusting a wordline voltage for a write operation
US20090303803A1 (en) Independent Bi-Directional Margin Control Per Level and Independently Expandable Reference Cell Levels for Voltage Mode Sensing
US9361969B2 (en) Semiconductor device and method for driving the same
ITTO990993A1 (it) Generatore di tensione commutabile fra primi e secondi valori di tensione fra loro alternati, in particolare per la programmazione di celle
US10439632B2 (en) Reference voltage generator and semiconductor device including the same
TWI826041B (zh) 記憶體電路
US8416631B2 (en) Internal voltage generator circuit and semiconductor memory device using the same
WO2011033701A1 (ja) 半導体記憶装置
KR100321150B1 (ko) 램버스 디램의 출력 드라이버 회로
JP2024508453A (ja) 不揮発性メモリのための温度センサ
CN118841046A (en) Voltage calibration circuit, memory system and voltage calibration method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535197

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22841892

Country of ref document: EP

Kind code of ref document: A1