WO2023284399A1 - 波束控制器及波束控制方法 - Google Patents

波束控制器及波束控制方法 Download PDF

Info

Publication number
WO2023284399A1
WO2023284399A1 PCT/CN2022/093063 CN2022093063W WO2023284399A1 WO 2023284399 A1 WO2023284399 A1 WO 2023284399A1 CN 2022093063 W CN2022093063 W CN 2022093063W WO 2023284399 A1 WO2023284399 A1 WO 2023284399A1
Authority
WO
WIPO (PCT)
Prior art keywords
beams
sub
waveguides
waveguide
transmission
Prior art date
Application number
PCT/CN2022/093063
Other languages
English (en)
French (fr)
Inventor
郑学哲
李晨蕾
Original Assignee
苏州旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州旭创科技有限公司 filed Critical 苏州旭创科技有限公司
Priority to KR1020247004357A priority Critical patent/KR20240021992A/ko
Priority to EP22841039.5A priority patent/EP4372440A1/en
Publication of WO2023284399A1 publication Critical patent/WO2023284399A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present disclosure relates to the technical field of optical communication, and in particular, to a beam controller and a beam control method.
  • beam steering can also be applied to holographic display, biological imaging and other fields.
  • OPA optical phased array
  • an optical phased array includes: a star coupler or a beam splitter, and a waveguide array coupled to the star coupler or the beam splitter.
  • the waveguide array is composed of N parallel waveguides arranged in a row, wherein each waveguide is integrated with a controllable phase shift device, and each waveguide is also coupled with a second-order linear grating. Multiple second-order linear gratings are arranged equidistantly to form a one-dimensional optical antenna array, which is used as a laser output device.
  • optical phased arrays typically operate in the wavelength range of the micron scale.
  • OPAs optical phased arrays
  • the embodiments of the present disclosure provide a beam controller and a beam control method, which can control the synthesized beam to achieve high scanning output efficiency while achieving a large-angle emission.
  • the beam controller includes: an optical phased array, a free space beam combining area, and a shared grating emitter.
  • the optical phased array includes: a beam splitter and a waveguide array coupled with the beam splitter.
  • the beam splitter is configured to equally divide the initial beam into a plurality of sub-beams.
  • the waveguide array includes: a plurality of waveguides arranged in one-to-one correspondence with the sub-beams.
  • the waveguide is configured to receive and transmit sub-beams.
  • the transmission tail sections of multiple waveguides are fan-shaped and concentrated in the free space beam combining area.
  • the free-space beam combining area is configured to combine multiple sub-beams on the image plane.
  • the shared grating emitter is configured to: synthesize a plurality of sub-beams on the image plane and emit a synthesized beam through diffraction.
  • the synthesis of multiple sub-beams and the output of the combined beam are carried out independently, that is, the synthesis of multiple sub-beams is completed by free focusing in the free space beam combining area, and the output of the corresponding combined beam is performed by a shared grating transmitter Diffraction is complete.
  • the structure of the shared grating emitter can be designed only for the output requirements of the composite beam, without being limited to the requirements of sub-beam synthesis, that is, it is not necessary to simultaneously take into account the function of focusing multiple sub-beams into a composite beam, and combining the composite beam Diffraction function.
  • the shared grating emitter can have a larger beam exit angle.
  • the transmission tails of multiple waveguides are fan-shaped and concentrated in the free space beam combining area, which can gradually reduce the distance between the waveguide transmission tails without affecting the transmission effect of the main transmission part of the waveguide, such as making adjacent
  • the distance between the output ends of the two waveguides is less than the wavelength of the initial beam, or less than half of the wavelength of the initial beam.
  • the output end of the waveguide is the end at the junction of the transmission tail section and the free space beam combining area. Therefore, it is possible to effectively suppress the occurrence of grating side lobes in the composite beam after the focusing of multiple sub-beams, so as to ensure or improve the scanning output efficiency of the beam controller.
  • the beam controller provided by the embodiments of the present disclosure can control the synthesized beam to achieve high scanning output efficiency while achieving a large-angle emission.
  • the shape of the orthographic projection of the image plane on the reference plane includes: an arc with a radius of curvature R.
  • the shape of the orthographic projection of the free space beam combining area on the reference plane includes: a Rowland circle with a curvature radius of 2R, and the center of the Rowland circle is located on the aforementioned arc.
  • the distance between the output ends of two adjacent waveguides is smaller than the wavelength of the initial light beam.
  • the distances between the output ends of every two adjacent waveguides are equal. In this way, multiple waveguides in the waveguide array can have the same output pitch, so that it is easy to design and control the difference in transmission distance between two adjacent waveguides.
  • the product of the difference between the transmission distances of two adjacent waveguides and the group refractive index of the waveguides is an integer multiple of the wavelength of the initial light beam.
  • the beam splitter comprises a cascaded plurality of 1 ⁇ 2 waveguide beam splitters.
  • the waveguide includes sequentially connected transmission headers and transmission tails.
  • the transmission head sections of the multiple waveguides are arranged in parallel, and the distance between two adjacent transmission head sections is greater than the first threshold.
  • the beam splitter comprises a star coupler.
  • the waveguide includes a transmission head section, a transmission middle section and a transmission tail section connected in sequence.
  • the transmission head sections of multiple waveguides are fan-shaped and concentrated on the star coupler.
  • the middle transmission sections of the plurality of waveguides are arranged in parallel, and the distance between two adjacent transmission middle sections is larger than the second threshold.
  • the above-mentioned first threshold and second threshold can be selected and set according to actual needs, as long as the distance between the transmission sections of two adjacent waveguides arranged in parallel does not cause coupling crosstalk to the transmission of sub-beams.
  • the waveguide array further includes: a controllable phase shift device integrated on each waveguide.
  • the controllable phase shift device is configured to control the phase of the sub-beams. In this way, the phase of the sub-beams is adjusted by using the controllable phase shift device, so that the relative phase distribution of multiple sub-beams in the waveguide array can be controlled.
  • controllable phase shift device includes: a metal heating layer disposed on each waveguide.
  • the waveguide is a doped waveguide
  • the controllable phase shift device includes: a metal electrode connected to the doped waveguide.
  • the waveguide array further includes: a tunable optical attenuator integrated in each waveguide.
  • the tunable optical attenuator is configured to adjust the transmitted power of the waveguide. Therefore, the adjustable optical attenuator can be used to control the intensity of the sub-beams, so as to realize any form of beam synthesis.
  • some embodiments of the present disclosure provide a beam control method, which is applied to the beam controller in some of the foregoing embodiments.
  • the steps included in the beam control method are as follows.
  • the beam splitter divides the initial beam into multiple sub-beams, and transmits one sub-beam into a waveguide.
  • the multiple waveguides respectively transmit the corresponding sub-beams to the free space beam combining area.
  • the shared grating emitter synthesizes multiple sub-beams on the image plane and diffracts out the synthesized beam.
  • the beam control method further includes the following steps.
  • the wavelength of the initial beam is adjusted so that the scan angle of the synthesized beam varies along the first direction.
  • the phases of the sub-beams are adjusted so that the scan angle of the combined beam varies along the second direction.
  • the first direction and the second direction are orthogonal.
  • the beam control method provided by the embodiments of the present disclosure is applied to the beam controllers in the foregoing embodiments.
  • the beam control method can also achieve the technical effects achieved by the aforementioned beam controller, which will not be described in detail here.
  • FIG. 1 is a schematic top view of a beam controller provided in an embodiment
  • Fig. 2 is a schematic top view of another beam controller provided in an embodiment
  • Fig. 3 is a schematic structural diagram of a free-space beam combining area provided in an embodiment
  • Fig. 4 is a schematic structural diagram of a shared grating emitter provided in an embodiment
  • Fig. 5 is a schematic structural diagram of a waveguide array provided in an embodiment
  • Fig. 6 is a schematic diagram of a synthetic optical path and an outgoing optical path of an initial beam provided in an embodiment
  • FIG. 7 is a schematic diagram of another combined optical path and outgoing optical path of an initial light beam provided in an embodiment.
  • a and B the focus position of the composite beam in the horizontal direction under different phase conditions.
  • first, second, third, etc. may be used to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. . These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the present disclosure.
  • Embodiments of the invention are described herein with reference to cross-section illustrations that are schematic illustrations of idealized embodiments (and intermediate structures) of the present disclosure such that variations in the shapes shown as a result, for example, of manufacturing techniques and/or tolerances are contemplated.
  • embodiments of the present disclosure should not be limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing techniques.
  • the regions shown in the figures are schematic in nature and their shapes do not indicate the actual shape of a region of a device and are not intended to limit the scope of the invention.
  • the beam controller 100 includes: an optical phased array 1 , a free space beam combining area 2 , and a shared grating emitter 3 .
  • the optical phased array 1 includes: a beam splitter 11 and a waveguide array 12 coupled to the beam splitter 11 .
  • the beam splitter 11 is configured to equally divide the initial beam into a plurality of sub-beams.
  • the waveguide array 12 includes: a plurality of waveguides 120 arranged in one-to-one correspondence with the sub-beams.
  • the waveguide 120 is configured to receive and transmit sub-beams.
  • the transmission tails of the multiple waveguides 120 are concentrated in the free space beam combining area 2 in a fan shape.
  • the free-space beam combining area 2 is configured to combine multiple sub-beams on the image plane S0.
  • the shared grating emitter 3 is configured to synthesize a plurality of sub-beams on the image plane S0 to emit a synthesized beam through diffraction.
  • the beam splitter 11 may adopt a star coupler, or be composed of multiple 1 ⁇ 2 waveguide beam splitters cascaded.
  • the beam splitter 11 is configured to equally divide the initial light beam into a plurality of sub-beams, and the beam splitter 11 has: at least one input end, and a plurality of output ends.
  • the input end of the beam splitter 11 is coupled to the light source, and one output end of the beam splitter 11 correspondingly outputs a sub-beam.
  • the light source is a laser chip, and the light beam emitted by the light source is: a near-infrared light beam with a wavelength between 950nm and 1550nm.
  • the beam transmitted from the light source to the beam splitter 11 is an initial beam, and the wavelength of the initial beam can be adjusted by the light source.
  • the number of waveguides 120 in the waveguide array 12 corresponds to the number of output ends of the beam splitter 11 , for example, the two are the same.
  • the waveguide 120 is a planar optical waveguide.
  • the beam splitter 11 and the waveguide array 12 can be made of silicon dioxide (SiO2), glass, lithium niobate (LiNbO3), III-V semiconductor compound, silicon-on-insulator (Silicon-on-Insulator, SOI/SIMOX), nitrogen Silicon oxide (SiN), silicon oxynitride (SiON), polymer (Polymer) and other materials are prepared.
  • the structure of the waveguide 120 is also different.
  • the beam splitter 11 is a star coupler, and multiple output ends of the beam splitter 11 are distributed along the circumference.
  • the waveguide 120 includes a transmission head section 1210 , a transmission middle section 1215 and a transmission tail section 1220 connected in sequence.
  • the transmission head sections 1210 of multiple waveguides 120 are concentrated on the star coupler in a fan shape, and the transmission head section 1210 of one waveguide 120 is correspondingly coupled to an output end of the star coupler.
  • the middle transmission sections 1215 of the plurality of waveguides 120 are arranged in parallel, and the distance D1 between two adjacent middle transmission sections 1215 is greater than a first threshold.
  • the transmission tails of the multiple waveguides 120 are concentrated in the free space beam combining area 2 in a fan shape.
  • the beam splitter 11 is formed by cascading multiple 1 ⁇ 2 waveguide beam splitters 111 , and multiple output ends of the beam splitters 11 are arranged in parallel.
  • the waveguide 120 includes a transmission head section 1210 and a transmission tail section 1220 connected in sequence.
  • the transmission head sections 1210 of the plurality of waveguides 120 are arranged in parallel, and the distance D2 between two adjacent transmission head sections 1210 is larger than the second threshold.
  • the transmission distance of the waveguide 120 is generally longer, but the length of the transmission tail section 1220 of the waveguide 120 needs to be set as small as possible, so that the main transmission part in the waveguide 120 is its connection with the adjacent waveguide 120.
  • the transmission sections arranged in parallel for example, the transmission middle section 1215 in FIG. 1 or the transmission header section 1210 in FIG. 2 .
  • the first threshold and the second threshold can be selected and set according to actual needs, as long as the distance between the transmission sections of two adjacent waveguides 120 arranged in parallel does not cause coupling crosstalk to the transmission of sub-beams.
  • the length of the transmission tail section 1220 of the waveguide 120 is relatively short, although the transmission tail sections 1220 of a plurality of waveguides 120 are concentrated in a fan shape, the interval between two adjacent transmission tail sections 1220 is gradually reduced, but two adjacent transmission tail sections 1220 The coupling crosstalk between the two transmission tail segments 1220 to the sub-beam transmission can also be neglected.
  • the transmission tails of multiple waveguides 120 are concentrated in the free space beam combining area 2 in a fan shape, so that the synthesis of multiple sub-beams output by the waveguide array 12 can be completed in the free space beam combining area 2, for example, multiple The sub-beams are focused on the image plane S0, and the image plane S0 is a virtual imaging plane after multiple sub-beams are focused in the free space beam combining area 2.
  • the free space beam combining region 2 is a free propagation region (FPR for short).
  • the image plane S0 is an arc surface
  • the shape of the orthographic projection of the image plane S0 on the reference plane includes: an arc La with a radius of curvature R.
  • the shape of the orthographic projection of the free-space beam combining area 2 on the reference plane includes: a Rowland circle Rc with a radius of 2R, and the center O1 of the Rowland circle Rc is located on the aforementioned arc La.
  • the reference plane refers to a plane parallel to the plane where the waveguide array 12 is located, such as the horizontal plane shown in FIG. 1 , FIG. 2 and FIG. 3 .
  • the transmission tails of the multiple waveguides 120 are fan-shaped and concentrated in the free space beam combining region 2, which means that the output ends of the multiple waveguides 120 are distributed along the circumference of the Rowland circle Rc.
  • the shared grating emitter 3 is configured to synthesize a plurality of sub-beams on the image plane S0 to emit a composite beam through diffraction, and the shared grating emitter 3 may adopt a concentric second-order grating structure.
  • the shared grating emitter 3 is composed of multiple arc-shaped teeth 31 with the same curvature center O3.
  • the embodiment of the present disclosure does not limit the number, radius of curvature, etc. of the arc-shaped teeth 31 , as long as the combined light beam can directly exit from the image plane S0 to the shared grating emitter 3 .
  • the image plane S0 is located in the area enclosed by the arc-shaped tooth 31 and its center of curvature O3.
  • the center of curvature O2 of the image plane S0 is the same as the center of curvature O3 of the arc-shaped tooth 31 .
  • the image plane S0 overlaps the inner surface of the arc-shaped tooth 31 with the smallest curvature radius in the shared grating emitter 3 .
  • the composite light beam synthesized by multiple sub-beams on the image plane S0 can be linearly transmitted to the shared grating emitter 3 along the focusing direction and diffracted by the shared grating emitter 3 . That is to say, the combined beam of multiple sub-beams focused on the image plane S0 will be transmitted to the shared grating emitter 3 along the light output direction perpendicular to the circumferential direction of the image plane S0 .
  • the shared grating emitter 3 has a wavelength selection function. Under the condition that the wavelength of the synthesized beam satisfies the grating equation of the shared grating emitter 3 , the synthesized beam can be diffracted at a certain angle through the shared grating emitter 3 .
  • the shared grating emitter 3 adopts a plurality of arc-shaped teeth 31 arranged concentrically, and makes the image plane S0 be located in the area surrounded by the arc-shaped teeth 31 and its center of curvature O3, so that the plurality of arc-shaped teeth 31 can be used as a whole, and the object image
  • the synthesized light beam at any position on the surface S0 is diffracted and emitted.
  • the shared grating emitter 3 adopts the above structure, and the distance between two adjacent arc-shaped teeth 31 does not cause coupling crosstalk to the diffraction output of the composite beam. In this way, the number of waveguides 120 in the waveguide array 12 does not need to be reduced as much as possible due to the small size of the shared grating transmitter 3 , which is beneficial to increase the transmission power of the beam controller 100 .
  • the synthesis of multiple sub-beams and the output of the combined beam are performed separately and independently, that is, the synthesis of multiple sub-beams is completed by free focusing in the free space beam combining area 2, and the output of the corresponding combined beam is determined by Shared grating emitter 3 diffraction complete.
  • the structure of the shared grating emitter 3 can only be designed for the output requirements of the composite beam, without being limited to the requirements of sub-beam synthesis, that is, it is not necessary to take into account the function of focusing multiple sub-beams into a composite beam and combining the composite Beam diffracted outgoing function.
  • the shared grating emitter 3 can have a larger beam output angle.
  • the transmission tail sections of multiple waveguides 120 are fan-shaped and concentrated in the free space beam combining area 2, and the distance between the transmission tail sections 1220 of the waveguides 120 can be gradually reduced without affecting the transmission effect of the main transmission part in the waveguides 120. , for example, make the distance between the output ends of two adjacent waveguides 120 smaller than the wavelength of the initial beam, or less than half of the wavelength of the initial beam.
  • the output end of the waveguide 120 is the end of the junction between the transmission tail section 1220 and the free space combining area 2 . Therefore, it is possible to effectively suppress the occurrence of grating side lobes in the composite beam after the focusing of multiple sub-beams, so as to ensure or improve the scanning output efficiency of the beam controller 100 .
  • the product of the difference between the transmission distances of two adjacent waveguides 120 and the group refractive index of the waveguides 120 is an integer multiple of the wavelength of the initial light beam.
  • the multiple sub-beams transmitted by the multiple waveguides 120 are easily subjected to spatial diffraction and superposition in the free-space beam combining region 2 to be focused into a composite beam on the image plane S0.
  • the distance D3 between the output ends of every two adjacent waveguides 120 is equal, so that the plurality of waveguides 120 in the waveguide array 12 have the same output pitch, which is easy It is designed and controlled for the difference in transmission distance between two adjacent waveguides 120 .
  • the waveguide array 12 further includes: a controllable phase shifter (Phase Shifter) 121 integrated on each waveguide 120 .
  • the controllable phase shift device 121 is configured to control the phase of the sub-beams. In this way, using the controllable phase shift device 121 to adjust the phase of the sub-beams can realize the control of the relative phase distribution of multiple sub-beams in the waveguide array 12 .
  • controllable phase shift device 121 can be selected and set according to actual requirements.
  • the controllable phase shift device 121 is a metal heating layer disposed on each waveguide 120; in this way, the phase of the corresponding sub-beam can be controlled through the heating temperature provided by the metal heating layer.
  • the waveguide 120 is a doped waveguide
  • the controllable phase shift device 121 is a metal electrode connected to the waveguide 120, so that the phase of the corresponding sub-beam can be controlled through the electrical signal transmitted by the metal electrode.
  • the outgoing angle of the composite beam can be changed in the vertical plane, so as to realize the scanning of the composite beam in the first direction (for example, the vertical direction).
  • the wavelength of the initial beam can determine the vertical scan angle of the combined beam.
  • the combined beam can be focused on different positions along the circumference of the image plane S0 in the horizontal plane, so as to realize the scanning of the combined beam in the horizontal direction.
  • the phases of the sub-beams can determine the scanning angle of the synthesized beam in the second direction (eg, the horizontal direction).
  • the adjustment of the wavelength of the initial beam and the phase adjustment of the sub-beams can be performed either or simultaneously.
  • Fig. 6 and Fig. 7 respectively show the optical paths of the two combined light beams under the control of different wavelengths and different phases.
  • the wavelength of the initial beam is ⁇ 1
  • the phase control of the sub-beams adopts the first control mode.
  • the multiple sub-beams transmitted by the waveguide array 12 to the free space beam combining area 2 can be diffracted and superimposed in the free space and then focused on the position A of the image plane S0 (shown in (a) in Figure 6), and shared grating
  • the beam emits from the horizontal plane (that is, the surface of the beam controller 100 ) at an included angle ⁇ 1 (shown in (b) in FIG. 6 ).
  • the wavelength of the initial beam is ⁇ 2, and the phase control of the sub-beams adopts the second control method, where ⁇ 2 ⁇ 1, and the first control method is different from the second control method.
  • the multiple sub-beams transmitted by the waveguide array 12 to the free space beam combining area 2 can be diffracted and superimposed in the free space and then focused on the point B of the image plane S0 (shown in (a) in Figure 7), and share the grating
  • the radiation is emitted from the horizontal plane (that is, the surface of the beam controller 100 ) at an included angle ⁇ 2 (shown in (b) in FIG. 7 ).
  • the waveguide array 12 further includes: a variable optical attenuator (Variable Optical Optical Attenuator) integrated in each waveguide 120 Attenuator, referred to as VOA) 122.
  • VOA variable optical attenuator
  • the adjustable optical attenuator 122 is configured to adjust the transmission power of the waveguide 120 . Therefore, the adjustable optical attenuator 122 can be used to control the intensity of the sub-beams, so as to realize any form of beam synthesis.
  • the structure of the adjustable optical attenuator 122 can be selected and set according to actual requirements.
  • the adjustable optical attenuator 122 is formed by a Mach-Zehnder interferometer (MZI). By adjusting the phase of the sub-beams through the Mach-Zehnder Interferometer (MZI), any power attenuation can be achieved.
  • MZI Mach-Zehnder interferometer
  • Some embodiments of the present disclosure provide a beam control method, which is applied to the beam controller 100 in some of the foregoing embodiments.
  • the beam control method includes S100-S400.
  • the beam splitter 11 equally divides the initial light beam into multiple sub-beams, and transmits one sub-beam to one waveguide 120 correspondingly.
  • the beam splitter 11 may be a star coupler, or be composed of multiple 1 ⁇ 2 waveguide beam splitters cascaded. An input end of the beam splitter 11 is coupled to the light source, and an output end of the beam splitter 11 is correspondingly coupled to a waveguide 120 .
  • the light source is, for example, a laser chip, and the light beam emitted by the light source may be: a near-infrared light beam with a wavelength between 950nm and 1550nm.
  • the beam transmitted from the light source to the beam splitter 11 is an initial beam, and the wavelength of the initial beam can be adjusted by the light source.
  • the plurality of waveguides 120 respectively transmit corresponding sub-beams to the free-space beam combining region 2 .
  • the transmission tails of the multiple waveguides 120 are concentrated in the free space beam combining area 2 in a fan shape.
  • the transmission distance of the waveguide 120 is generally longer, but the length of the transmission tail section 1220 of the waveguide 120 needs to be set as small as possible, so that the main transmission part in the waveguide 120 is the transmission section arranged parallel to the adjacent waveguide 120, For example, the transmission middle segment 1215 in FIG. 1 or the transmission header segment 1210 in FIG. 2 . Based on this, the distance between the parallel transmission sections in adjacent waveguides 120 is limited to the fact that coupling crosstalk will not occur to the transmission of the sub-beams.
  • the length of the transmission tail section 1220 of the waveguide 120 is relatively short, although the transmission tail sections 1220 of a plurality of waveguides 120 are concentrated in a fan shape, the interval between two adjacent transmission tail sections 1220 is gradually reduced, but two adjacent transmission tail sections 1220 The coupling crosstalk between the two transmission tail segments 1220 to the sub-beam transmission can also be neglected.
  • the transmission tails of multiple waveguides 120 are concentrated in the free space beam combining area 2 in a fan shape, so that the synthesis of multiple sub-beams output by the waveguide array 12 can be completed in the free space beam combining area 2, for example, focusing multiple sub beams on the image plane On S0, the image plane S0 is a virtual imaging plane where multiple sub-beams are focused in the free-space beam combining area 2 .
  • the free space beam combining region 2 is a free propagation region (FPR for short).
  • the shared grating emitter 3 synthesizes multiple sub-beams on the image plane S0 to diffract the synthesized beam.
  • the composite light beam synthesized by multiple sub-beams on the image plane S0 can be linearly transmitted to the shared grating emitter 3 along the focusing direction and diffracted by the shared grating emitter 3 . That is to say, the combined beam of multiple sub-beams focused on the image plane S0 will be transmitted to the shared grating emitter 3 along the light output direction perpendicular to the circumferential direction of the image plane S0 .
  • the shared grating emitter 3 has a wavelength selection function. Under the condition that the wavelength of the synthesized beam satisfies the grating equation of the shared grating emitter 3 , the synthesized beam can be diffracted at a certain angle through the shared grating emitter 3 . Moreover, the wavelength and phase of the initial light beams are different, corresponding to the position where the combined light beam is focused on the image plane S0 and the outgoing angle of the combined light beam are also different.
  • the beam control method provided by the embodiments of the present disclosure is applied to the beam controllers in the foregoing embodiments.
  • the beam control method can also achieve the technical effects achieved by the aforementioned beam controller, which will not be described in detail here.
  • the beam control method further includes S500.
  • the wavelength of the initial beam can be adjusted by controlling the light source.
  • the phase of the sub-beams can be controlled by a controllable phase shift device (Phase Shifter) 121 implementation.
  • the controllable phase shift device 121 is a metal heating layer disposed on each waveguide 120; in this way, the phase of the corresponding sub-beam can be controlled through the heating temperature provided by the metal heating layer.
  • the waveguide 120 is a doped waveguide, and the controllable phase shift device 121 is a metal electrode connected to each waveguide 120, so that the phase of the corresponding sub-beam can be controlled through the electrical signal transmitted by the metal electrode.
  • the first direction is, for example, a vertical direction
  • the second direction is, for example, a horizontal direction.
  • the beam control method further includes S600.
  • the transmission power of the waveguides can be realized by the adjustable optical attenuator 122 integrated in each waveguide 120 .
  • the adjustable optical attenuator 122 is formed by a Mach-Zehnder interferometer (MZI).
  • MZI Mach-Zehnder interferometer
  • any power attenuation can be achieved.
  • the intensity of the sub-beams is controlled to realize any form of beam synthesis.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本公开涉及一种基于光学相控阵列的波束控制器。所述波束控制器包括光学相控阵列、自由空间合束区和共享光栅发射器。光学相控阵列包括:分束器以及与分束器耦接的波导阵列。分束器被配置为将初始光束等分为多个子波束。波导阵列包括:与子波束一一对应设置的多个波导。波导被配置为接收并传输子波束。多个波导的传输尾段呈扇形集中于自由空间合束区。自由空间合束区被配置为:使多个子波束合成于像面上。共享光栅发射器被配置为:将多个子波束合成于像面上的合成光束衍射发射。所述波束控制器能够控制合成光束在实现大角度出射的同时具有较高的扫描输出效率。

Description

波束控制器及波束控制方法 技术领域
本公开涉及光通信技术领域,特别是涉及一种波束控制器及波束控制方法。
背景技术
波束控制作为激光雷达、自由空间光通信等领域的关键技术之一,也可以应用于全息显示、生物成像等领域。目前,随着硅基光子技术的发展,波束控制采用光学相控阵列(OPA)实现,可以具有尺寸较小、速度较快和重量较轻等优势。
示例的,光学相控阵列(OPA)包括:星型耦合器或分束器,以及与星型耦合器或分束器耦接的波导阵列。波导阵列由N个平行且排成一列的波导构成,其中,每个波导上集成有可控相移器件,每个波导还与一个二阶线性光栅耦接。多个二阶线性光栅等距排放构成一个一维光学天线阵列,以作为激光输出器件。
然而,光学相控阵列(OPA)通常工作在微米量级的波长范围内。为了使二阶线性光栅出射波束的发散角尽可能小,通常需要采用弱光栅在较长距离上将波导所传输的波束以垂直于波导表面的方式出射。由于弱光栅的尺寸较大,在确保波束扫描不出现光栅旁瓣的前提下,相邻二阶线性光栅之间的间距较小,容易导致对应平行排列的波导之间产生耦合串扰。并且,波导的传输距离越长,所产生的串扰越大。从而会大大影响光学相控阵列的光学性能,例如减小其出射角度、降低其扫描输出效率等。
技术问题
基于此,本公开实施例提供了一种波束控制器及波束控制方法,能够控制合成光束在实现大角度出射的同时具有较高的扫描输出效率。
技术解决方案
为了实现上述目的,一方面,本公开一些实施例提供了一种波束控制器。该波束控制器包括:光学相控阵列、自由空间合束区、以及共享光栅发射器。光学相控阵列包括:分束器以及与分束器耦接的波导阵列。分束器被配置为:将初始光束等分为多个子波束。波导阵列包括:与子波束一一对应设置的多个波导。该波导被配置为接收并传输子波束。多个波导的传输尾段呈扇形集中于自由空间合束区。自由空间合束区被配置为:使多个子波束合成于像面上。共享光栅发射器被配置为:将多个子波束合成于像面上的合成光束衍射发射。
本公开实施例中,多个子波束的合成、以及合成光束的出射分开独立进行,即:多个子波束的合成利用自由空间合束区内的自由聚焦完成,对应合成光束的出射由共享光栅发射器衍射完成。这样共享光栅发射器的结构可以仅针对合成光束的出射需求设计,而无需再受限于子波束合成的需求,也即:无需同时兼顾将多个子波束聚焦为合成光束的功能,以及将合成光束衍射出射的功能。由此,共享光栅发射器可以具有较大的光束出射角度。
并且,多个波导的传输尾段呈扇形集中于自由空间合束区,可以在不影响波导中主要传输部分传输效果的基础上,逐步减小波导传输尾段之间的间距,例如使相邻两个波导的输出端之间的距离小于初始光束的波长,或者小于初始光束的波长的二分之一。此处,波导的输出端即为传输尾段与自由空间合束区交界的端部。从而,可以有效抑制多个子波束聚焦后的合成光束出现光栅旁瓣,以确保或提升波束控制器的扫描输出效率。
综上,本公开实施例提供的波束控制器,能够控制合成光束在实现大角度出射的同时具有较高的扫描输出效率。
在一些实施例中,像面在基准面上的正投影形状包括:曲率半径为R的弧线。自由空间合束区在基准面上的正投影形状包括:曲率半径为2R的罗兰圆,罗兰圆的圆心位于前述弧线上。
在一些实施例中,相邻两个波导的输出端之间的距离小于初始光束的波长。可选的,每相邻两个波导的输出端之间的距离相等。这样可以使波导阵列中的多个波导具有相同的输出间距,从而容易针对相邻两个波导之间传输距离的差值进行设计和控制。
在一些实施例中,相邻两个波导的传输距离之差与波导的群折射率的乘积为初始光束的波长的整数倍。这样多个波导传输的多个子波束容易在自由空间合束区内进行空间衍射叠加,以聚焦为合成光束于像面上。
在一些实施例中,分束器包括级联的多个1×2波导式分束器。波导包括顺序连接的传输头段和传输尾段。多个波导的传输头段平行设置,且相邻两个传输头段之间的距离大于第一阈值。
在另一些实施例中,分束器包括星型耦合器。波导包括顺序连接的传输头段、传输中段和传输尾段。多个波导的传输头段呈扇形集中于星型耦合器上。多个波导的传输中段平行设置,且相邻两个传输中段之间的距离大于第二阈值。
上述第一阈值和第二阈值可以根据实际需求选择设置,以相邻两个波导平行设置的传输段的间距不会对子波束的传输产生耦合串扰为限。
在一些实施例中,波导阵列还包括:集成于每个波导上的可控相移器件。可控相移器件被配置为控制子波束的相位。这样利用可控相移器件对子波束的相位进行调节,可以实现多个子波束在波导阵列中相对相位分布的控制。
可选的,可控相移器件包括:设置于每个波导上的金属加热层。
可选的,波导为掺杂波导,可控相移器件包括:与掺杂波导连接的金属电极。
在一些实施例中,波导阵列还包括:集成于每个波导中的可调光衰减器。可调光衰减器被配置为调节波导的传输功率。从而可以利用可调光衰减器,对子波束的强度进行控制,以实现任意形式的波束合成。
另一方面,本公开一些实施例提供了一种波束控制方法,应用于上述一些实施例中的波束控制器。所述波束控制方法包括的步骤如下所述。
分束器将初始光束等分为多个子波束,并将一个子波束对应传输至一个波导中。
多个波导分别将对应的子波束传输至自由空间合束区。
多个子波束在自由空间合束区内合成于像面上。
共享光栅发射器将多个子波束合成于像面上的合成光束衍射出射。
在一些实施例中,所述波束控制方法还包括如下步骤。
调节初始光束的波长,使合成光束的扫描角沿第一方向变化。调节子波束的相位,使合成光束的扫描角沿第二方向变化。其中,第一方向和第二方向正交。
有益效果
本公开实施例提供的波束控制方法,应用于前述一些实施例中的波束控制器。前述波束控制器所能实现的技术效果,该波束控制方法也均能实现,此处不再详述。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例中提供的一种波束控制器的俯视示意图;
图2为一实施例中提供的另一种波束控制器的俯视示意图;
图3为一实施例中提供的一种自由空间合束区的结构示意图;
图4为一实施例中提供的一种共享光栅发射器的结构示意图;
图5为一实施例中提供的一种波导阵列的结构示意图;
图6为一实施例中提供的一种初始光束的合成光路和出射光路的示意图;
图7为一实施例中提供的另一种初始光束的合成光路及出射光路的示意图。
 
附图标记说明:
100-波束控制器,1-光学相控阵列,2-自由空间合束区,3-共享光栅发射器,
11-分束器,12-波导阵列,120-波导,1210-传输头段,1215-传输中段,
1220-传输尾段,121-可控相移器件,122-可调光衰减器,31-弧形齿,
111-1×2波导式分束器,S0-像面,La-弧线,Rc-罗兰圆,D1-相邻传输中段之间的距离,
D2-相邻传输头段之间的距离,D3-相邻输出端之间的距离,
O1-罗兰圆的圆心,O2-像面的曲率中心,O3-弧形齿的曲率中心,
α1和α2-不同波长条件下合成光束在竖直方向上的出射角度,
A和B-不同相位条件下合成光束在水平方向上的聚焦位置。
本发明的实施方式
为了便于理解本公开,下面将参照相关附图对本公开进行更全面的描述。附图中给出了本公开的实施例。但是,本公开可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本公开的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本公开。
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。
应当明白,尽管可使用术语第一、 第二、第三等描述各种元件、部件、区、层和/或部分,但这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本公开教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可以用于描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。此外,器件也可以包括另外地取向(譬如,旋转90度或其它取向),并且在此使用的空间描述语相应地被解释。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中,术语“和/或”包括相关所列项目的任何及所有组合。
这里参考作为本公开的理想实施例(和中间结构)的示意图的横截面图来描述发明的实施例,这样可以预期由于例如制造技术和/或容差导致的所示形状的变化。因此,本公开的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造技术导致的形状偏差。图中显示的区实质上是示意性的,它们的形状并不表示器件的区的实际形状,且并不限定本发明的范围。
请参阅图1和图2,本公开一些实施例提供了一种基于光学相控阵列的波束控制器100。波束控制器100包括:光学相控阵列1、自由空间合束区2、以及共享光栅发射器3。光学相控阵列1包括:分束器11以及与分束器11耦接的波导阵列12。分束器11被配置为:将初始光束等分为多个子波束。波导阵列12包括:与子波束一一对应设置的多个波导120。波导120被配置为接收并传输子波束。多个波导120的传输尾段呈扇形集中于自由空间合束区2。自由空间合束区2被配置为:将多个子波束合成于像面S0上。共享光栅发射器3被配置为:将多个子波束合成于像面S0上的合成光束衍射发射。
分束器11可以采用星型耦合器,或者由多个1×2波导式分束器级联构成。分束器11被配置为将初始光束等分为多个子波束,分束器11具有:至少一个输入端、以及多个输出端。分束器11的输入端与光源耦接,分束器11的一个输出端对应输出一个子波束。
可选的,光源为激光芯片,光源出射的光束为:波长在950nm~1550nm之间的近红外光束。光源传输至分束器11的光束为初始光束,初始光束的波长可以通过光源调节。
波导阵列12中波导120的数量与分束器11的输出端的数量对应,例如二者相同。波导120为平面光波导。分束器11和波导阵列12可以采用二氧化硅(SiO2)、玻璃、铌酸锂(LiNbO3)、III-V族半导体化合物、绝缘体上的硅(Silicon-on-Insulator,SOI/SIMOX)、氮化硅(SiN)、氮氧化硅(SiON)、高分子聚合物(Polymer)等材料制备获得。
根据分束器11结构的不同,波导120的结构也不同。
在一些示例中,如图1所示,分束器11为星型耦合器,分束器11的多个输出端沿圆周分布。波导120包括顺序连接的传输头段1210、传输中段1215和传输尾段1220。多个波导120的传输头段1210呈扇形集中于星型耦合器上,且一个波导120的传输头段1210对应与星型耦合器的一个输出端耦接。多个波导120的传输中段1215平行设置,且相邻两个传输中段1215之间的距离D1大于第一阈值。多个波导120的传输尾段呈扇形集中于自由空间合束区2。
在另一些示例中,如图2所示,分束器11由多个1×2波导式分束器111级联构成,分束器11的多个输出端平行排布。波导120包括顺序连接的传输头段1210和传输尾段1220。多个波导120的传输头段1210平行设置,且相邻两个传输头段1210之间的距离D2大于第二阈值。
此处,可以理解的是,波导120的传输距离通常较长,但波导120的传输尾段1220的长度需要设置的尽可能小,以使波导120中的主要传输部分为其与相邻波导120平行设置的传输段,例如图1中的传输中段1215或者图2中的传输头段1210。基于此,第一阈值和第二阈值可以根据实际需求选择设置,以相邻两个波导120平行设置的传输段的间距不会对子波束的传输产生耦合串扰为限。由于波导120的传输尾段1220的长度较短,因此,虽然多个波导120的传输尾段1220呈扇形集中,使得相邻两个传输尾段1220之间的间隔逐渐减小,但相邻两个传输尾段1220之间对子波束传输的耦合串扰也可以忽略不计。
本公开实施例中,多个波导120的传输尾段呈扇形集中于自由空间合束区2,使得波导阵列12输出的多个子波束的合成可以在自由空间合束区2内完成,例如使多个子波束聚焦于像面S0上,像面S0为多个子波束在自由空间合束区2内聚焦后的虚拟成像面。自由空间合束区2为自由传输区域(Free Propagation Region,简称FPR)。
可选的,如图3所示,像面S0为弧面,像面S0在基准面上的正投影形状包括:曲率半径为R的弧线La。相应的,自由空间合束区2在基准面上的正投影形状包括:半径为2R的罗兰圆Rc,该罗兰圆Rc的圆心O1位于前述弧线La上。
此处,基准面是指与波导阵列12所在平面平行的平面,例如图1、图2和图3中所示的水平面。并且,基于此,多个波导120的传输尾段呈扇形集中于自由空间合束区2,是指多个波导120的输出端沿罗兰圆Rc的圆周分布。
本公开实施例中,共享光栅发射器3被配置为将多个子波束合成于像面S0上的合成光束衍射发射,共享光栅发射器3可以采用同心二阶光栅结构。例如图4所示,共享光栅发射器3由曲率中心O3相同的多个弧形齿31构成。本公开实施例对弧形齿31的数量、曲率半径等不做限定,以合成光束可以从像面S0直接出射至共享光栅发射器3内为限。
可选的,像面S0位于弧形齿31与其曲率中心O3围成的区域内。例如,请结合图3和图4理解,像面S0的曲率中心O2与弧形齿31的曲率中心O3相同。或者,还例如,请继续结合图3和图4理解,像面S0与共享光栅发射器3中曲率半径最小的弧形齿31的内表面重叠。
如此,多个子波束合成于像面S0上的合成光束,可以沿聚焦方向直线传输至共享光栅发射器3上并被共享光栅发射器3衍射出射。这也就是说,多个子波束聚焦于像面S0上的合成光束,会沿垂直于像面S0周向的出光方向传输至共享光栅发射器3。共享光栅发射器3具有波长选择功能,在合成光束的波长满足共享光栅发射器3的光栅方程的条件下,合成光束能够通过共享光栅发射器3实现一定角度的衍射出射。并且,初始光束的波长和相位不同,对应合成光束聚焦于像面S0的位置以及合成光束的出射角度也不同。共享光栅发射器3采用同心设置的多个弧形齿31,并使像面S0位于弧形齿31与其曲率中心O3围成的区域内,可以使得多个弧形齿31作为一个整体,对像面S0上任一位置的合成光束进行衍射出射。
此外,共享光栅发射器3采用如上结构,相邻两个弧形齿31之间的间距大小并不会对合成光束的衍射出射产生耦合串扰。这样波导阵列12中波导120的数量也无需因共享光栅发射器3的尺寸较小而尽量减少,有利于提高波束控制器100的传输功率。
综上,本公开实施例中,多个子波束的合成、以及合成光束的出射分开独立进行,即:多个子波束的合成利用自由空间合束区2内的自由聚焦完成,对应合成光束的出射由共享光栅发射器3衍射完成。这样共享光栅发射器3的结构可以仅针对合成光束的出射需求设计,而无需再受限于子波束合成的需求,也即:无需同时兼顾将多个子波束聚焦为合成光束的功能,以及将合成光束衍射出射的功能。由此,共享光栅发射器3可以具有较大的光束出射角度。
并且,多个波导120的传输尾段呈扇形集中于自由空间合束区2,可以在不影响波导120中主要传输部分传输效果的基础上,逐步减小波导120传输尾段1220之间的间距,例如使相邻两个波导120的输出端之间的距离小于初始光束的波长,或者小于初始光束的波长的二分之一。此处,波导120的输出端即为传输尾段1220与自由空间合束区2交界的端部。从而,可以有效抑制多个子波束聚焦后的合成光束出现光栅旁瓣,以确保或提升波束控制器100的扫描输出效率。
需要说明的是,在一种可能的实现方式中,相邻两个波导120的传输距离之差与波导120的群折射率的乘积为初始光束的波长的整数倍。这样多个波导120传输的多个子波束容易在自由空间合束区2内进行空间衍射叠加,以聚焦为合成光束于像面S0上。
在此基础上,可选的,如图5所示,每相邻两个波导120的输出端之间的距离D3相等,使得波导阵列12中的多个波导120具有相同的输出间距,这样容易针对相邻两个波导120之间传输距离的差值进行设计和控制。
在一些实施例中,请继续参阅图5,波导阵列12还包括:集成于每个波导120上的可控相移器件(Phase Shifter)121。可控相移器件121被配置为控制子波束的相位。这样利用可控相移器件121对子波束的相位进行调节,可以实现多个子波束在波导阵列12中相对相位分布的控制。
可控相移器件121的结构可以根据实际需求选择设置。例如,可控相移器件121为设置于每个波导120上的金属加热层;这样可以通过金属加热层提供的加热温度来控制对应子波束的相位。或者,还例如,波导120为掺杂波导,可控相移器件121为与波导120连接的金属电极,这样可以通过金属电极传输的电信号来控制对应子波束的相位。
由上,通过调整初始光束的波长,可以使合成光束的出射角度在竖直面内发生变化,以实现合成光束在第一方向(例如竖直方向)上的扫描。初始光束的波长可以决定合成光束在竖直方向上的扫描角。通过可控相移器件121控制对应子波束的相位发生变化,可以使得合成光束在水平面内沿像面S0的周向聚焦于不同位置,以实现合成光束在水平方向上的扫描。子波束的相位可以决定合成光束在第二方向(例如水平方向)上的扫描角。此外,初始光束波长的调整、以及子波束相位的调整,可以择一进行,也可以同时进行。
为了更清楚的说明不同波长和不同相位对合成光束的影响,图6和图7分别示出了两种合成光束在不同波长和不同相位控制下的光路。
如图6所示,初始光束的波长为λ1,子波束的相位控制采用第一控制方式。波导阵列12传输至自由空间合束区2内的多个子波束,可以在自由空间内衍射叠加后聚焦于像面S0的A点位置(图6中的(a)所示),并在共享光栅发射器3的作用下以夹角α1从水平面(即波束控制器100的表面)出射(图6中的(b)所示)。
如图7所示,初始光束的波长为λ2,子波束的相位控制采用第二控制方式,其中,λ2≠λ1,第一控制方式与第二控制方式不同。波导阵列12传输至自由空间合束区2内的多个子波束,可以在自由空间内衍射叠加后聚焦于像面S0的B点位置(图7中的(a)所示),并在共享光栅发射器3的作用下以夹角α2从水平面(即波束控制器100的表面)出射(图7中的(b)所示)。
在一些实施例中,请继续参阅图5,波导阵列12还包括:集成于每个波导120中的可调光衰减器(Variable Optical Attenuator,简称VOA)122。可调光衰减器122被配置为调节波导120的传输功率。从而可以利用可调光衰减器122,对子波束的强度进行控制,以实现任意形式的波束合成。
可调光衰减器122的结构可以根据实际需求选择设置。可选的,可调光衰减器122由马赫曾得干涉仪(MZI)构成。通过马赫曾得干涉仪(MZI)调节子波束的相位,可以实现任意比例的功率衰减。
本公开一些实施例提供了一种波束控制方法,应用于上述一些实施例中的波束控制器100。所述波束控制方法包括S100~S400。
S100,分束器11将初始光束等分为多个子波束,并将一个子波束对应传输至一个波导120中。
此处,分束器11可以采用星型耦合器,或者由多个1×2波导式分束器级联构成。分束器11的输入端与光源耦接,分束器11的一个输出端与一个波导120对应耦接。
此外,光源例如为激光芯片,光源出射的光束可以为:波长在950nm~1550nm之间的近红外光束。光源传输至分束器11的光束为初始光束,初始光束的波长可以通过光源调节。
S200,多个波导120分别将对应的子波束传输至自由空间合束区2。
此处,多个波导120的传输尾段呈扇形集中于自由空间合束区2。
此外,波导120的传输距离通常较长,但波导120的传输尾段1220的长度需要设置的尽可能小,以使波导120中的主要传输部分为其与相邻波导120平行设置的传输段,例如图1中的传输中段1215或者图2中的传输头段1210。基于此,相邻波导120中平行传输段的间距,以其不会对子波束的传输产生耦合串扰为限。由于波导120的传输尾段1220的长度较短,因此,虽然多个波导120的传输尾段1220呈扇形集中,使得相邻两个传输尾段1220之间的间隔逐渐减小,但相邻两个传输尾段1220之间对子波束传输的耦合串扰也可以忽略不计。
S300,多个子波束在自由空间合束区2内合成于像面S0上。
多个波导120的传输尾段呈扇形集中于自由空间合束区2,使得波导阵列12输出的多个子波束的合成可以在自由空间合束区2内完成,例如使多个子波束聚焦于像面S0上,像面S0为多个子波束在自由空间合束区2内聚焦后的虚拟成像面。自由空间合束区2为自由传输区域(Free Propagation Region,简称FPR)。
S400,共享光栅发射器3将多个子波束合成于像面S0上的合成光束衍射出射。
多个子波束合成于像面S0上的合成光束,可以沿聚焦方向直线传输至共享光栅发射器3上并被共享光栅发射器3衍射出射。这也就是说,多个子波束聚焦于像面S0上的合成光束,会沿垂直于像面S0周向的出光方向传输至共享光栅发射器3。共享光栅发射器3具有波长选择功能,在合成光束的波长满足共享光栅发射器3的光栅方程的条件下,合成光束能够通过共享光栅发射器3实现一定角度的衍射出射。并且,初始光束的波长和相位不同,对应合成光束聚焦于像面S0的位置以及合成光束的出射角度也不同。
本公开实施例提供的波束控制方法,应用于前述一些实施例中的波束控制器。前述波束控制器所能实现的技术效果,该波束控制方法也均能实现,此处不再详述。
在一些实施例中,波束控制方法还包括S500。
S500,调节初始光束的波长,使合成光束的扫描角沿第一方向变化。调节子波束的相位,使合成光束的扫描角沿第二方向变化。其中,第一方向和第二方向正交。
此处,初始光束的波长可以通过对光源的控制调节。
子波束的相位可以通过集成于每个波导120上的可控相移器件(Phase Shifter)121实现。例如,可控相移器件121为设置于每个波导120上的金属加热层;这样可以通过金属加热层提供的加热温度来控制对应子波束的相位。或者,还例如,波导120为掺杂波导,可控相移器件121为与每个波导120连接的金属电极,这样可以通过金属电极传输的电信号来控制对应子波束的相位。
第一方向例如为竖直方向,第二方向例如为水平方向。
此外,S500与S300、S400之间并无顺序上的必然限制,也即任一在前执行、或同时执行,均是允许的。
在一些实施例中,波束控制方法还包括S600。
S600,调节波导的传输功率,以使子波束的强度发生变化。
此处,波导的传输功率可以通过集成于每个波导120中的可调光衰减器122实现。
例如,可调光衰减器122由马赫曾得干涉仪(MZI)构成。通过马赫曾得干涉仪(MZI)调节子波束的相位,可以实现任意比例的功率衰减。从而对子波束的强度进行控制,以实现任意形式的波束合成。
此外,S600与S300、S400、S500之间并无顺序上的必然限制,也即任一在前执行、或同时执行,均是允许的。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种波束控制器,其特征在于,包括:光学相控阵列、自由空间合束区、以及共享光栅发射器;其中,所述光学相控阵列包括:分束器以及与所述分束器耦接的波导阵列;
    所述分束器被配置为:将初始光束等分为多个子波束;
    所述波导阵列包括:与所述子波束一一对应设置的多个波导;所述波导被配置为接收并传输所述子波束;
    多个所述波导的传输尾段呈扇形集中于所述自由空间合束区;所述自由空间合束区被配置为:使多个所述子波束合成于像面上;
    所述共享光栅发射器被配置为:将多个所述子波束合成于所述像面上的合成光束衍射发射。
  2. 根据权利要求1所述的波束控制器,其特征在于,
    所述像面在基准面上的正投影形状包括:曲率半径为R的弧线;
    所述自由空间合束区在所述基准面上的正投影形状包括:半径为2R的罗兰圆,所述罗兰圆的圆心位于所述弧线上。
  3. 根据权利要求1所述的波束控制器,其特征在于,相邻两个所述波导的输出端之间的距离小于所述初始光束的波长。
  4. 根据权利要求3所述的波束控制器,其特征在于,每相邻两个所述波导的输出端之间的距离相等。
  5. 根据权利要求1所述的波束控制器,其特征在于,相邻两个所述波导的传输距离之差与所述波导的群折射率的乘积为所述初始光束的波长的整数倍。
  6. 根据权利要求1所述的波束控制器,其特征在于,所述分束器包括星型耦合器;所述波导包括顺序连接的传输头段、传输中段和传输尾段;
    多个所述波导的传输头段呈扇形集中于所述星型耦合器上;
    多个所述波导的传输中段平行设置,且相邻两个所述传输中段之间的距离大于第一阈。
  7. 根据权利要求1所述的波束控制器,其特征在于,所述分束器包括级联的多个1×2波导式分束器;
    所述波导包括顺序连接的传输头段和传输尾段;多个所述波导的传输头段平行设置,且相邻两个所述传输头段之间的距离大于第二阈值。
  8. 根据权利要求1所述的波束控制器,其特征在于,所述波导阵列还包括:集成于每个所述波导上的可控相移器件;所述可控相移器件被配置为控制所述子波束的相位。
  9. 根据权利要求8所述的波束控制器,其特征在于,
    所述可控相移器件包括:设置于每个所述波导上的金属加热层;
    或,所述波导为掺杂波导;所述可控相移器件包括:与所述掺杂波导连接的金属电极。
  10. 根据权利要求1所述的波束控制器,其特征在于,所述波导阵列还包括:集成于每个所述波导中的可调光衰减器;所述可调光衰减器被配置为调节所述波导的传输功率。
  11. 一种波束控制方法,其特征在于,包括:
    分束器将初始光束等分为多个子波束,并将一个所述子波束对应传输至一个波导中;
    多个所述波导分别将对应的所述子波束传输至自由空间合束区;
    多个所述子波束在所述自由空间合束区内合成于像面上;
    共享光栅发射器将多个所述子波束合成于所述像面上的合成光束衍射出射。
  12. 根据权利要求11所述的波束控制方法,其特征在于,所述波束控制方法还包括:
    调节所述初始光束的波长,使所述合成光束的扫描角沿第一方向变化;
    调节所述子波束的相位,使所述合成光束的扫描角沿第二方向变化;
    其中,所述第一方向和所述第二方向正交。
PCT/CN2022/093063 2021-07-15 2022-05-16 波束控制器及波束控制方法 WO2023284399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247004357A KR20240021992A (ko) 2021-07-15 2022-05-16 빔 컨트롤러 및 빔 컨트롤 방법
EP22841039.5A EP4372440A1 (en) 2021-07-15 2022-05-16 Beam controller and beam controlling method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110801155.5 2021-07-15
CN202110801155.5A CN113608305B (zh) 2021-07-15 2021-07-15 波束控制器及波束控制方法

Publications (1)

Publication Number Publication Date
WO2023284399A1 true WO2023284399A1 (zh) 2023-01-19

Family

ID=78304708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093063 WO2023284399A1 (zh) 2021-07-15 2022-05-16 波束控制器及波束控制方法

Country Status (4)

Country Link
EP (1) EP4372440A1 (zh)
KR (1) KR20240021992A (zh)
CN (1) CN113608305B (zh)
WO (1) WO2023284399A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113608305B (zh) * 2021-07-15 2022-06-21 苏州旭创科技有限公司 波束控制器及波束控制方法
CN113985603B (zh) * 2021-12-22 2022-04-22 苏州旭创科技有限公司 光束扫描系统
CN117170032A (zh) * 2023-09-05 2023-12-05 上海铭锟半导体有限公司 一种降低awg串扰的方法及其波分复用器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332694A (ja) * 1999-05-20 2000-11-30 Nec Corp 波長可変光源
CN104914508A (zh) * 2015-06-29 2015-09-16 西安交通大学 一种Bragg齿面结构的蚀刻衍射光栅波分复用器及其设计方法
CN106597413A (zh) * 2017-03-01 2017-04-26 吉林省长光瑞思激光技术有限公司 一种激光光束扫描器
CN111830486A (zh) * 2020-07-27 2020-10-27 电子科技大学 一种全固态激光雷达片上集成芯片及其设计方法
CN113608305A (zh) * 2021-07-15 2021-11-05 苏州旭创科技有限公司 波束控制器及波束控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136671A (en) * 1991-08-21 1992-08-04 At&T Bell Laboratories Optical switch, multiplexer, and demultiplexer
JP3112246B2 (ja) * 1996-05-01 2000-11-27 日本電信電話株式会社 アレイ導波路格子
JPH112733A (ja) * 1997-06-13 1999-01-06 Nippon Telegr & Teleph Corp <Ntt> アレイ格子型光合分波器
US6421478B1 (en) * 1999-05-11 2002-07-16 Jds Fitel Inc. Tapered MMI coupler
US7376311B2 (en) * 2005-10-06 2008-05-20 Lucent Technologies Inc. Method and apparatus for wavelength-selective switches and modulators
CN102253448B (zh) * 2011-08-02 2012-10-17 浙江大学 一种阵列波导光栅实现均匀偏振补偿的方法
KR101720434B1 (ko) * 2015-11-10 2017-03-28 한국과학기술원 광 위상배열 안테나
CN106019474B (zh) * 2016-07-19 2019-08-09 华中科技大学 一种基于阵列波导光栅的混合光合束-波分解复用器
CN111220963A (zh) * 2018-11-27 2020-06-02 北京万集科技股份有限公司 多层材料相控阵激光雷达发射芯片、制作方法及激光雷达
CN109839625A (zh) * 2019-01-21 2019-06-04 浙江大学 一种基于铌酸锂薄膜的电光相控阵激光雷达
CN110737144A (zh) * 2019-09-17 2020-01-31 浙江大学 一种稀疏/半波排布二维天线的集成光学相控阵
CN110673265B (zh) * 2019-09-30 2020-10-27 西安交通大学 一种偏振-波长混合复用器的设计方法
CN111045219A (zh) * 2019-12-28 2020-04-21 中国科学院长春光学精密机械与物理研究所 基于分色聚焦衍射光学元件的平面光电探测系统
CN111220965B (zh) * 2020-01-20 2020-12-11 清华大学 多光束表面发射波导相控阵
CN111398983B (zh) * 2020-04-02 2021-02-12 华中科技大学 一种全电控二维光束扫描装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000332694A (ja) * 1999-05-20 2000-11-30 Nec Corp 波長可変光源
CN104914508A (zh) * 2015-06-29 2015-09-16 西安交通大学 一种Bragg齿面结构的蚀刻衍射光栅波分复用器及其设计方法
CN106597413A (zh) * 2017-03-01 2017-04-26 吉林省长光瑞思激光技术有限公司 一种激光光束扫描器
CN111830486A (zh) * 2020-07-27 2020-10-27 电子科技大学 一种全固态激光雷达片上集成芯片及其设计方法
CN113608305A (zh) * 2021-07-15 2021-11-05 苏州旭创科技有限公司 波束控制器及波束控制方法

Also Published As

Publication number Publication date
CN113608305A (zh) 2021-11-05
EP4372440A1 (en) 2024-05-22
CN113608305B (zh) 2022-06-21
KR20240021992A (ko) 2024-02-19

Similar Documents

Publication Publication Date Title
JP7033805B2 (ja) 合波器、この合波器を用いた画像投影装置及び画像投影システム
WO2023284399A1 (zh) 波束控制器及波束控制方法
US7386206B2 (en) Optical device with slab waveguide and channel waveguides on substrate
WO2013038713A1 (ja) 光スイッチ
US9158072B2 (en) Multicast optical switch
JP2000056146A (ja) 自己導波光回路
WO2018221310A1 (ja) 光受信器アレイ、及びライダー装置
JP2023519793A (ja) 薄型導波路イメージャ
JP2018049223A (ja) スイッチ式光アンテナ、スイッチ式光アンテナアレイ、および光走査装置
US20150023662A1 (en) Wavelength selective switch and method of manufacturing same
JP2009168840A (ja) 波長選択スイッチ
CN113885137A (zh) 基于片上超透镜结构的波长解复用器件
JP2009244326A (ja) 光波長フィルタ
CN112673273B (zh) 激光雷达装置
JP2011179979A (ja) ダブルパスモノクロメータ、波長選択光スイッチ、および光チャンネルモニタ
CN113985603B (zh) 光束扫描系统
JPH02244105A (ja) 導波路形回折格子
US20230258861A1 (en) Serpentine Optical Phased Array with Dispersion Matched Waveguides
WO2021258666A1 (zh) 多播交换光开关
JP2009198593A (ja) 可変分散補償器
JP2015011225A (ja) 光信号選択装置の制御方法および光信号選択装置
JP2018124402A (ja) 光入出力装置
US20220045753A1 (en) Free Space Optical Communication Terminal with Dispersive Optical Component
Li et al. Integrated 2D beam-steering scanner based on cross-bar structure
JP2002169048A (ja) 自己導波光回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22841039

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024500584

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247004357

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247004357

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022841039

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022841039

Country of ref document: EP

Effective date: 20240215