WO2021258666A1 - 多播交换光开关 - Google Patents

多播交换光开关 Download PDF

Info

Publication number
WO2021258666A1
WO2021258666A1 PCT/CN2020/135959 CN2020135959W WO2021258666A1 WO 2021258666 A1 WO2021258666 A1 WO 2021258666A1 CN 2020135959 W CN2020135959 W CN 2020135959W WO 2021258666 A1 WO2021258666 A1 WO 2021258666A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
axis
optical
switch
terminal
Prior art date
Application number
PCT/CN2020/135959
Other languages
English (en)
French (fr)
Inventor
谢卉
徐晓辉
郑洁
李迪
岳青岩
张博
肖清明
罗勇
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2021258666A1 publication Critical patent/WO2021258666A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/351Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements
    • G02B6/3512Optical coupling means having switching means involving stationary waveguides with moving interposed optical elements the optical element being reflective, e.g. mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/35442D constellations, i.e. with switching elements and switched beams located in a plane
    • G02B6/3546NxM switch, i.e. a regular array of switches elements of matrix type constellation

Definitions

  • This application relates to the field of optical communication technology, and in particular to a multicast switching optical switch.
  • a multicast switch optical switch (MCS, Multicast Switch) includes M input ports, M optical splitting devices, N control switches, and N output ports.
  • the M optical splitters divide one of the M optical signals from the M input ports into N sub-optical signals, and the control switch is used to transmit one of the N sub-optical signals to one of the N output ports, usually M
  • Each input port, M optical splitting devices, N control switches, and N output ports are all discrete devices, and the discrete devices are spliced by fiber fusion splicing. This makes the multicast switching optical switch large in size and complex in fiber optics.
  • the embodiments of the present application expect to provide a multicast switching optical switch, which has the characteristics of high integration and small size.
  • the technical solutions of the embodiments of the present application are implemented as follows:
  • the embodiment of the present application provides a multicast switching optical switch, including:
  • M is a positive integer greater than 1
  • the control switch includes N reflection switches, where N is a positive integer greater than 1;
  • the light splitting device includes a substrate, and M input ends, N output ends, N transmission ends, and M planar waveguide light splitting units on the substrate.
  • the transmission end includes M first sub-ends and 1 Second sub-ends, the substrate has opposite P ends and Q ends, M of the input ends and N of the output ends are located at the P end of the substrate, and N of the transmission ends are located at the
  • the Q terminal of the substrate, the input terminal and the first port are arranged in a one-to-one correspondence, the planar waveguide light splitting unit is arranged in a one-to-one correspondence with the input terminal, and the second sub-terminal and the output terminal are arranged one-to-one Corresponding settings, the output terminal and the second port are set in a one-to-one correspondence;
  • the planar waveguide light splitting unit can divide the corresponding optical signal at the input end into N sub-optical signals, and the planar waveguide light splitting unit directs one of the N sub-optical signals to the M first sub-signals of the transmission end.
  • One of the sub-terminals, the first sub-terminal guides the sub-optical signal to one of the N reflection switches, and the reflection switch can reflect the sub-optical signal to one of the N second sub-terminals ,
  • the second sub-end directs the sub-optical signal to the corresponding output end.
  • the reflection switch can rotate around a first axis to reflect the sub-optical signal to one of the N second sub-ends, and the first axis is perpendicular to the plane where the substrate is located.
  • the second sub-end is located on one side of the M first sub-ends, and the reflection switch rotates around the first axis toward the second sub-end.
  • the second sub-end is located between two adjacent first sub-ends, and the reflection switch rotates around the first axis toward both sides of the second sub-end.
  • each transmission end the distance between two adjacent first sub-ends is not equal, and the distance between adjacent first sub-ends and second sub-ends not equal.
  • the reflection switch can be rotated along a second axis to achieve interference-free switching, the second axis is perpendicular to the first axis, and the second axis is parallel to the plane where the substrate is located.
  • the multicast switching optical switch includes:
  • a diffraction grating, the diffraction grating and the reflection switch cooperate to reflect the sub-light signal of the set wavelength to one of the N second sub-ends.
  • the engraved line of the diffraction grating is perpendicular to the second axis, and the included angle between the engraved line of the diffraction grating and the first axis is ⁇ , where 0° ⁇ 90°.
  • the multicast switching optical switch includes:
  • N collimating lens groups are located between the beam splitting device and the control switch, the collimating lens group includes M+1 collimating lenses, and the collimating lens groups are arranged in a one-to-one correspondence with the transmission end ,
  • the M+1 collimating lenses of the collimating lens group are arranged corresponding to the M first sub-ends and 1 second sub-end of the corresponding transmission end, and the collimating lens is used to collimate the first sub-end A sub-optical signal of a sub-terminal or a sub-optical signal of the second sub-terminal.
  • the working distance of the collimating lens is W
  • the optical path of the sub-light signal from the light exit surface of the collimator lens to the light entrance surface of the reflection switch is S, where W is two times S Times.
  • the input end, the output end, the transmission end and the planar waveguide splitting unit are all integrated on the substrate, which is not only small in size, but also can avoid the loss caused by the optical fiber fusion splicing of discrete devices;
  • the coupling process between the first port, the control switch, the second port and the optical splitting device is less difficult.
  • FIG. 1 is a schematic structural diagram of a multicast switching optical switch provided by an embodiment of this application;
  • FIG. 2 is a schematic structural diagram of a spectroscopic device provided by an embodiment of the application.
  • Figure 3 is an enlarged view of A in Figure 2;
  • FIG. 4 is a schematic diagram of the cooperation of the transmission end, the collimating lens group, and the reflection switch in FIG. 2;
  • FIG. 5 is a schematic structural diagram of a transmission end provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of another transmission terminal provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of another multicast switching optical switch provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of the cooperation of the diffraction grating, the reflection switch, the collimating lens group and the beam splitting device in an embodiment of the application.
  • the embodiments of the present application provide a multicast switching optical switch.
  • the multicast switching optical switch (MCS, Multicast Switch) includes M first ports 10, control switches 20, and N second ports 30. ⁇ 40 ⁇ And the spectroscopic device 40.
  • the control switch 20 includes N reflection switches 21. Among them, M is a positive integer greater than 1, and N is a positive integer greater than 1.
  • the light splitting device 40 includes a substrate 41, and M input terminals, N output terminals, N transmission terminals, and M planar waveguide light splitting units 45 on the substrate 41. That is, M input terminals, N output terminals, N transmission terminals, and M planar waveguide light splitting units 45 are all located on the substrate 41.
  • the input end, the output end, the transmission end and the planar waveguide light splitting unit 45 are all integrated on the substrate 41.
  • the transmission end includes M first sub-ends 421 and one second sub-end 422.
  • the substrate 41 has opposite P ends and Q ends, M input ends and N output ends are located at the P end of the substrate 41, and N transmission ends are located at the Q end of the substrate 41.
  • the input terminal and the first port 10 are arranged in a one-to-one correspondence.
  • the planar waveguide light splitting unit 45 is arranged in a one-to-one correspondence with the input end.
  • the second sub-terminal 422 and the output terminal are arranged in a one-to-one correspondence.
  • the output terminal and the second port 30 are arranged in a one-to-one correspondence. In this way, cascaded optical switch design can be avoided, with low loss and low power consumption.
  • the planar waveguide light splitting unit 45 can divide the optical signal of the corresponding input end into N sub-optical signals.
  • the planar waveguide light splitting unit 45 corresponds to the input end one to one, that is, each optical signal is divided into N sub-optical signals by the corresponding planar waveguide light splitting unit 45. Since there are M optical signals, M*N sub-lights are formed. Signal.
  • the planar waveguide light splitting unit 45 guides one of the N sub-optical signals to one of the M first sub-ends 421 of the transmission end. That is to say, one of the N sub-optical signals output from a planar waveguide light splitting unit 45 is transmitted to any one of the first sub-ends 421 of a transmission end.
  • the first sub-terminal 421 directs the sub-optical signal to one of the N reflective switches 21, the reflective switch 21 can reflect the sub-optical signal to one of the N second sub-terminals 422, and the second sub-terminal 422 directs the sub-optical signal to one of the N second sub-terminals 422.
  • Corresponding output terminal That is to say, the optical signal can enter the optical splitting device 40 through the first port 10, and be divided into M*N sub-optical signals by the optical splitting device 40, and the M*N first sub-terminals 421 will project the M*N sub-optical signals to the control switch 20, Then, the M*N sub-optical signals are reflected to the N output terminals through the N reflection switches 21, and then output through the second port 30.
  • the optical signal can also enter the optical splitting device 40 through the second port 30 and output from the first port 10. That is to say, the multicast switching optical switch provided in the embodiment of the present application can not only forwardly download optical signals from M first ports 10 to N second ports 30. It is also possible to upload optical signals from the N second ports 30 to the M first ports 10.
  • some multicast switching optical switches adopt the design of a monolithic integrated splitter and a cascaded optical switch. This technology is complicated in design, large in loss, high in power consumption, and low in chip yield.
  • some multicast switching optical switches adopt three-dimensional stacking of multilayer planar waveguide splitters.
  • the three-dimensional stacked planar waveguide splitter and cylindrical lens group form a free space optical path.
  • the stacking design of multilayer planar waveguide splitter is highly difficult. Reduced, the free space optical path formed with the cylindrical lens group is complicated, the coupling process between the devices requires high, and it is difficult to reduce the volume, and the product is difficult to mass produce.
  • the input end, output end, transmission end, and planar waveguide light splitting unit 45 are all integrated on the substrate 41, which is not only small in size, but also avoids loss caused by optical fiber fusion splicing of discrete devices; the first port 10,
  • the coupling process between the control switch 20, the second port 30 and the optical splitting device 40 is less difficult, the optical path design is relatively simple, the loss is small, the power consumption is low, the chip yield is high, and it can avoid the monolithic integrated splitter and
  • the design of the cascaded optical switch brings about problems such as complex design, large loss, high power consumption, and low chip yield. It can also avoid the problems of large volume, complex optical path, and high coupling process that exist in free space optical paths.
  • M is 8 and N is 4, that is, an 8*4 multicast switching optical switch is provided.
  • 8 input terminals and 4 output terminals There are 4 transmission ends and 8 planar waveguide splitting units 45.
  • Each transmission terminal includes eight first sub-terminals 421 and one second sub-terminal 422.
  • the 8 input terminals are defined as I1, I2, I3, I4, I5, I6, I7, and I8.
  • the 4 output terminals are defined as O1, O2, O3, and O4.
  • the 4 transmission terminals are defined as Q1. , Q2, Q3 and Q4.
  • the eight first sub-ends 421 of the Q1 transmission end are I11, I12, I13, I14, I15, I16, I17, and I18, respectively.
  • One second sub-end 422 of the Q1 transmission end is O11.
  • the eight first sub-ends 421 of the Q2 transmission end are I21, I22, I23, I24, I25, I26, I27, and I28, respectively.
  • One second sub-end 422 of the Q2 transmission end is O21.
  • the eight first sub-ends 421 of the Q3 transmission end are respectively I31, I32, I33, I34, I35, I36, I37, and I38.
  • One second sub-end 422 of the Q3 transmission end is O31.
  • the eight first sub-ends 421 of the Q4 transmitting end are respectively I41, I, I, I44, I45, I46, I47, and I48.
  • One second sub-end 422 of the Q4 transmission end is O41.
  • the eight planar waveguide splitting units 45 are respectively defined as L1, L2, L3, L4, L5, L6, L7, and L8. Among them, O11 and O1 are set correspondingly, O21 and O2 are set correspondingly, O31 and O3 are set correspondingly, and O41 and O4 are set correspondingly.
  • I1 and L1 are set correspondingly, I2 and L2 are set correspondingly, I3 and L3 are set correspondingly, I4 and L4 are set correspondingly, I5 and L5 are set correspondingly, I6 and L6 are set correspondingly, I7 and L7 are set correspondingly, I8 and L8 are set correspondingly.
  • the optical signal of I1 enters L1, L1 divides the optical signal from I1 into 4 sub-optical signals, and the 4 sub-optical signals from L1 enter Q1, Q2, Q3, and Q4 respectively.
  • 1 sub-optical signal from L1 enters I11
  • 1 sub-optical signal from L2 enters I12
  • 1 sub-optical signal from L3 enters I31
  • 1 sub-optical signal from L4 enters I41
  • 1 sub-optical signal from L5 enters I51
  • a sub-optical signal from L6 enters I61
  • a sub-optical signal from L7 enters I71
  • a sub-optical signal from L8 enters I81.
  • the remaining three sub-optical signals from L1 enter I21, I31, and I41 respectively.
  • the specific paths of the other sub-optical signals are shown in Fig. 2 and will not be described here.
  • I11 directs a sub-optical signal from L1 to one of the four reflective switches 21, and the reflective switch 21 reflects the received sub-optical signal from I11 to O11, O21, O31, or O41.
  • the reflective switch 21 will receive The received sub-optical signal from I11 is reflected to O11, and O11 directs the received sub-optical signal to O1.
  • the optical signal transmission of the 8*4 multicast switching optical switch is realized.
  • a sub-light signal from L1 can also enter I12, I13, I14, I15, I16, I17, or I18 of Q1
  • a sub-light signal from L2 can also enter I11, I13 of Q1.
  • I14, I15, I16, I17 or I18 the same principle applies to other ports.
  • the description of the path of the sub-optical signal in this specific embodiment is only for ease of description, and is not a limitation of the application.
  • the reflection switch 21 can rotate about the first axis Y to reflect the sub-optical signal to one of the N second sub-ends 422, the first axis being perpendicular to the plane where the substrate 41 is located. .
  • the direction in which the optical signal enters from the first port 10 is defined as the Z axis
  • the direction of the first axis is the Y axis
  • the direction perpendicular to the ZY plane is the X axis.
  • the direction of the second axis is the X axis, where the X axis, the Y axis, and the Z axis form a mutually perpendicular coordinate system, such as the orientation or position relationship shown in FIG. 1 and FIG. 7.
  • the M first ports 10 are 1*M optical fiber arrays. Specifically, the M first ports 10 are distributed along the X-axis direction.
  • the N second ports 30 are 1*N optical fiber arrays. Specifically, the N second ports 30 are distributed along the X-axis direction.
  • the M first ports 10 constitute a one-dimensional optical fiber array
  • the N second ports 30 also constitute a one-dimensional optical fiber array.
  • the optical fiber may be a cladding corroded optical fiber.
  • the M first ports 10 are composed of M corroded optical fibers to form a 1*M optical fiber array.
  • the M etched optical fibers are fixed on the first silicon substrate at a first set interval in the X-axis direction.
  • a first V-shaped groove is formed on the first silicon substrate, and the etched optical fiber is located in the first V-shaped groove.
  • the N second ports 30 are composed of corroded optical fibers to form a 1*N optical fiber array.
  • the N etched optical fibers are fixed on the second silicon substrate at a second set interval in the X-axis direction.
  • a second V-shaped groove is formed on the first silicon substrate, and the etched optical fiber is located in the second V-shaped groove.
  • the second sub-end 422 is located on one side of the M first sub-ends 421, and the reflective switch 21 rotates around the first axis Y toward the second sub-end 422. In this way, it is ensured that the reflection switch 21 can reflect the sub-light signal from the first sub-terminal 421 to the second sub-terminal 422 when rotating around the first axis Y. It should be noted that the number of first sub-terminals 421 in FIG. 5 is only for example.
  • the second sub-end 422 is located between two adjacent first sub-ends 421, and the reflective switch 21 faces both sides of the second sub-end 422 around the first axis Y Rotate.
  • the reflective switch 21 can reflect the sub-optical signal from the first sub-terminal 421 to the second sub-terminal 422 when the reflective switch 21 rotates around the first axis Y.
  • the number of first sub-terminals 421 in FIG. 4 and FIG. 6 is only for example.
  • the distance between two adjacent first sub-terminals 421 is not equal, and the distance between the adjacent first sub-terminal 421 and second sub-terminal 422 is not equal.
  • the spacing between them is not equal. That is to say, the optical paths of all channels are asymmetric, so as to ensure that under the working conditions of any channel, the sub-optical signal will not enter another non-working first sub-terminal 421 from one non-working first sub-terminal 421, but Entering the working first sub-terminal 421, that is, the sub-optical signal will not enter another non-working channel from one non-working channel, which can avoid the directivity problem of optical signal transmission.
  • the reflection switch 21 can be rotated along the second axis X to achieve interference-free switching, the second axis X and the first axis Y are perpendicular, and the second axis X is parallel to where the substrate 41 is located. flat.
  • the reflective switch 21 can be rotated in two directions, the reflective switch 21 is rotated around the first axis Y to realize port selection, and the reflective switch 21 is rotated around the second axis X to prevent the sub-light signal from entering from a non-working first sub-terminal 421
  • the other working first sub-terminal 421, that is, the sub-optical signal will not enter another non-working channel from one non-working channel, so as to realize the function of hitless switching (Hitless).
  • the multicast switching optical switch includes a diffraction grating 50.
  • the diffraction grating 50 is located between the beam splitting device 40 and the reflection switch 21.
  • the diffraction grating 50 and the reflection switch 21 cooperate to reflect the sub-light signal of the set wavelength to one of the N second sub-ends 422.
  • the diffraction grating 50 causes the sub-optical signals of different wavelengths to be diffracted at different angles, so that the sub-optical signals of different wavelengths are spatially separated. Only the sub-optical signals of the set wavelength enter the reflection switch 21 and return in the same way.
  • the sub-optical signals are separated on the yz plane, and cannot all enter the spectroscopic device 40 for coupling, and the loss curves of different wavelengths form a certain filtering spectrum.
  • Figure 8 shows the sub-optical signals of the three optical paths B, C, and D.
  • the wavelengths of the sub-optical signals of the three optical paths B, C, and D are all different.
  • the sub-optical signal of the B optical path and the sub-optical signal of the D optical path cannot enter the spectroscopic device 40, and the sub-optical signal of the C optical path can enter the spectroscopic device 40 as a sub-optical signal of the set wavelength for coupling.
  • the reflective switch 21 rotates around the second axis X so that the sub-light signal of the selected set wavelength can be received by the working end, thereby achieving wavelength selection, and the reflective switch 21 rotates around the first axis Y to select the sub-light of the set wavelength.
  • the signal is reflected to one of the N second sub-ends 422. That is to say, the reflection switch 21 rotates around the second axis X to select the sub-optical signal of the set wavelength, and the reflection switch 21 rotates around the first axis Y to select the second sub-end 422. Since there are N transmission terminals, each transmission terminal has a second sub-terminal 422. Therefore, there are N second sub-terminals 422, and each second sub-terminal 422 corresponds to an output terminal. Therefore, the reflection switch can be used 21 rotates around the first axis Y to reflect the received sub-optical signal of the set wavelength to the corresponding output end, thereby achieving wavelength selective output.
  • the scribed line of the diffraction grating 50 is perpendicular to the second axis X, and the angle between the scribed line of the diffraction grating 50 and the first axis Y is ⁇ , where 0° ⁇ 90°. That is to say, the engraved line of the diffraction grating 50 is located in a plane perpendicular to the second axis X, that is, the engraved line of the diffraction grating 50 is located in the YZ plane, and the angle ⁇ between the engraved line of the diffraction grating 50 and the first axis Y is greater than 0° is less than 90°. In this way, the angle between the engraved line of the diffraction grating 50 and the sub-light signal transmitted to the diffraction grating 50 is the angle with the highest diffraction efficiency.
  • the reflective switch 21 includes, but is not limited to, a Micro-Electronic-Mechanical System (MEMS) mirror, a liquid crystal on silicon (LCoS, namely Liquid Crystal on Silicon) chip, etc.
  • MEMS Micro-Electronic-Mechanical System
  • LCDoS liquid crystal on silicon
  • N micro-mechanical system mirrors can form a micro-mechanical system mirror array.
  • the MEMS mirror array can be a one-dimensional MEMS mirror array, that is, the MEMS mirrors can rotate around the first axis Y.
  • the MEMS mirror array can be a two-dimensional MEMS mirror array, that is, the MEMS mirror can rotate around the first axis Y and the second axis X.
  • the sub-optical signals of different wavelengths are spatially separated by the diffraction grating 50, and these discrete sub-optical signals are transmitted to the MEMS mirror array, and the MEMS mirror array is rotated around the second axis X and the first axis Y to achieve no Interference switching.
  • the N MEMS mirrors can also be discrete structures.
  • the N silicon-based liquid crystal chips may be an array or a discrete structure.
  • the multicast switching optical switch includes N collimating lens groups 60.
  • the N collimating lens groups 60 are located between the beam splitting device 40 and the control switch 20.
  • the collimating lens group 60 includes M+1 collimating lenses. In other words, there are N*(M+1) collimating lenses.
  • the collimating lens group 60 is arranged in a one-to-one correspondence with the transmission end. In other words, each collimating lens group 60 corresponds to a transmission end.
  • the M+1 collimating lenses of the collimating lens group 60 are arranged corresponding to the M first sub-ends 421 and one second sub-end 422 of the corresponding transmission end.
  • each first sub-end 421 corresponds to a collimating lens to collimate the sub-light signal from the first sub-end 421; each second sub-end 422 also corresponds to a collimating lens to collimate the sub-light signal from the second sub-end The sub-optical signal of terminal 422.
  • the N*(M+1) collimating lenses can form an array structure or a discrete structure.
  • the working distance of the collimator lens is W
  • the multicast switching optical switch is a low-port multicast switching optical switch.
  • it is easier to control the crossing between the input end, the output end, the transmission end, and the planar waveguide splitting unit 45, which facilitates the arrangement of the above-mentioned structure on the substrate 41, avoids multi-point crossing between the above-mentioned structures, and avoids signals passing through the above-mentioned structure. Interfere with each other.
  • the input end, the output end, the transmission end, and the planar waveguide light splitting unit 45 may all be connected by waveguides. Waveguides include but are not limited to silicon dioxide and the like.
  • the crossing angle between the waveguides is greater than a preset value.
  • the area of the waveguide can be increased by increasing the area of the substrate 41, so as to ensure that the crossing angle between the waveguides is greater than a preset value.
  • the crossing points between the waveguides can be minimized through reasonable wiring, so as to further prevent the signals in the waveguides from interfering with each other.
  • the multicast switching optical switch provided in the embodiments of the present application can be used in a colorless, non-directional, non-competitive, reconfigurable optical add/drop multiplexing system (CDC ROADM) to implement the broadcast function in the CDC ROADM add/drop.
  • CDC ROADM reconfigurable optical add/drop multiplexing system

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种多播交换光开关,包括M个第一端口(10)、控制开关(20)、N个第二端口(30)以及分光装置(40)。控制开关(20)包括N个反射开关(21)。分光装置(40)包括衬底(41)、以及位于衬底(41)上的M个输入端、N个输出端、N个传输端和M个平面波导分光单元(45),传输端包括M个第一子端(421)和1个第二子端(422),衬底(41)具有相对的P端和Q端,M个输入端和N个输出端位于衬底(41)的P端,N个传输端位于衬底(41)的Q端,输入端与第一端口(10)一一对应设置,平面波导分光单元(45)与输入端一一对应设置,第二子端(422)与输出端一一对应设置,输出端与第二端口(30)一一对应设置。由于输入端、输出端、传输端和平面波导分光单元均集成在衬底上,多播交换光开关具有集成度高、体积小的特性。

Description

多播交换光开关
相关申请的交叉引用
本申请基于申请号为202010577017.9、申请日为2020年6月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及光通讯技术领域,尤其涉及一种多播交换光开关。
背景技术
现有技术中,多播交换光开关(MCS,Multicast Switch)包括M个输入端口、M个分光装置、N个控制开关及N个输出端口。M个分光装置将来自M个输入端口的M路光信号中的其中一路分为N路子光信号,控制开关用于将N路子光信号中的一路传输至N个输出端口的其中一个,通常M个输入端口、M个分光装置、N个控制开关及N个输出端口均为分立器件,各分立器件之间通过光纤熔接实现拼接,如此,使得多播交换光开关体积大、盘纤复杂。
发明内容
有鉴于此,本申请实施例期望提供一种多播交换光开关,具有集成度高、体积小的特性。为达到上述有益效果,本申请实施例的技术方案是这样实现的:
本申请实施例提供一种多播交换光开关,包括:
M个第一端口,其中,M为大于1的正整数;
控制开关,包括N个反射开关,其中,N为大于1的正整数;
N个第二端口;以及
分光装置,包括衬底、以及位于所述衬底上的M个输入端、N个输出端、N个传输端和M个平面波导分光单元,所述传输端包括M个第一子端和1个 第二子端,所述衬底具有相对的P端和Q端,M个所述输入端和N个所述输出端位于所述衬底的P端,N个所述传输端位于所述衬底的Q端,所述输入端与所述第一端口一一对应设置,所述平面波导分光单元与所述输入端一一对应设置,所述第二子端与所述输出端一一对应设置,所述输出端与所述第二端口一一对应设置;
所述平面波导分光单元能够将对应的所述输入端的光信号分成N个子光信号,且所述平面波导分光单元将N个所述子光信号的其中一个导向所述传输端的M个第一子端的其中一个,所述第一子端将所述子光信号导向N个所述反射开关的其中一个,所述反射开关能够将所述子光信号反射至N个所述第二子端的其中一个,所述第二子端将所述子光信号导向对应的所述输出端。
进一步地,所述反射开关能够绕第一轴线转动以将所述子光信号反射至N个所述第二子端的其中一个,所述第一轴线垂直于所述衬底所在的平面。
进一步地,所述第二子端位于M个所述第一子端的一侧,所述反射开关绕所述第一轴线朝所述第二子端转动。
进一步地,所述第二子端位于相邻的两个所述第一子端之间,所述反射开关绕所述第一轴线朝所述第二子端的两侧转动。
进一步地,每个所述传输端中,相邻的两个所述第一子端之间的间距不相等,且相邻的所述第一子端和所述第二子端之间的间距不相等。
进一步地,所述反射开关能够沿第二轴线转动以实现无干扰切换,所述第二轴线和所述第一轴线垂直,且所述第二轴线平行于所述衬底所在的平面。
进一步地,所述多播交换光开关包括:
衍射光栅,所述衍射光栅和所述反射开关配合以将设定波长的所述子光信号反射至N个所述第二子端的其中一个。
进一步地,所述衍射光栅的刻线垂直于所述第二轴线,且所述衍射光栅的刻线与所述第一轴线的夹角为α,其中,0°<α<90°。
进一步地,所述多播交换光开关包括:
N个准直透镜组,位于所述分光装置和所述控制开关之间,所述准直透镜 组包括M+1个准直透镜,所述准直透镜组与所述传输端一一对应设置,所述准直透镜组的M+1个准直透镜与对应的所述传输端的M个第一子端和1个第二子端对应设置,所述准直透镜用于准直所述第一子端的子光信号或所述第二子端的子光信号。
进一步地,所述准直透镜的工作距离为W,所述子光信号从所述准直透镜的出光面到所述反射开关的入光面的光程为S,其中,W为S的两倍。
本申请实施例提供的多播交换光开关,输入端、输出端、传输端和平面波导分光单元均集成在衬底上,不仅尺寸较小,还可以避免分立器件光纤熔接带来的损耗;第一端口、控制开关、第二端口以及分光装置之间的耦合工艺难度较低。
附图说明
图1为本申请实施例提供的一种多播交换光开关的结构示意图;
图2为本申请实施例提供的一种分光装置的结构示意图;
图3为图2中A处的放大图;
图4为图2中的传输端和准直透镜组、反射开关的配合示意图;
图5为本申请实施例提供的一种传输端的结构示意图;
图6为本申请实施例提供的另一种传输端的结构示意图;
图7为本申请实施例提供的另一种多播交换光开关的结构示意图;
图8为本申请实施例中衍射光栅、反射开关、准直透镜组和分光装置的配合示意图。
附图标记说明
第一端口10;控制开关20;反射开关21;第二端口30;分光装置40;衬底41;第一子端421;第二子端422;平面波导分光单元45;衍射光栅50;准直透镜组60。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的技术特征可以相互组合,具体实施方式中的详细描述应理解为本申请宗旨的解释说明,不应视为对本申请的不当限制。下面结合附图及具体实施例对本申请再作进一步详细的说明。
请参见图1~图8,本申请实施例提供一种多播交换光开关,多播交换光开关(MCS,Multicast Switch)包括M个第一端口10、控制开关20、N个第二端口30以及分光装置40。控制开关20包括N个反射开关21。其中,M为大于1的正整数,N为大于1的正整数。分光装置40包括衬底41、以及位于衬底41上的M个输入端、N个输出端、N个传输端和M个平面波导分光单元45。即,M个输入端、N个输出端、N个传输端和M个平面波导分光单元45均位于衬底41上。也就是说,输入端、输出端、传输端和平面波导分光单元45均集成在衬底41上。传输端包括M个第一子端421和1个第二子端422。衬底41具有相对的P端和Q端,M个输入端和N个输出端位于衬底41的P端,N个传输端位于衬底41的Q端。输入端与第一端口10一一对应设置。平面波导分光单元45与输入端一一对应设置。第二子端422与输出端一一对应设置。输出端与第二端口30一一对应设置。如此,可以避免级联式光开关设计,损耗小,功耗低。
平面波导分光单元45能够将对应的输入端的光信号分成N个子光信号。平面波导分光单元45与输入端一一对应,也就是说,每个光信号被对应的平面波导分光单元45分成N个子光信号,由于有M个光信号,这样就形成了M*N个子光信号。且平面波导分光单元45将N个子光信号的其中一个导向传输端的M个第一子端421的其中一个。也就是说,从一个平面波导分光单元45输出的N个子光信号的其中一个,传输至一个传输端的任意一个第一子端421。第一子端421将子光信号导向N个反射开关21的其中一个,反射开关21能够将子光信号反射至N个第二子端422的其中一个,第二子端422将子光信号导 向对应的输出端。也就是说,光信号可以通过第一端口10进入分光装置40,通过分光装置40分成M*N个子光信号,M*N个第一子端421将M*N个子光信号投向控制开关20,再通过N个反射开关21将M*N个子光信号反射至N个输出端,再通过第二端口30输出。当然,光信号也可以通过第二端口30进入分光装置40,从第一端口10输出。也就是说,本申请实施例提供的多播交换光开关不仅可以正向的从M个第一端口10向N个第二端口30下载光信号。也可以从N个第二端口30向M个第一端口10上传光信号。
现有技术中,有些多播交换光开关采用单片集成分路器和级联式光开关的设计,此种技术,设计复杂,损耗大,功耗高,芯片良率低。另外有些多播交换光开关采用将多层平面波导分路器立体堆叠,立体堆叠的平面波导分路器与柱面透镜组形成自由空间光路,然而,多层平面波导分路器堆叠设计高度难以降低,与柱面透镜组形成的自由空间光路复杂,器件之间的耦合工艺要求高,且难以缩小体积,产品难以批量生产。
本申请实施例中,输入端、输出端、传输端和平面波导分光单元45均集成在衬底41上,不仅尺寸较小,还可以避免分立器件光纤熔接带来的损耗;第一端口10、控制开关20、第二端口30以及分光装置40之间的耦合工艺难度较低,光路设计较为简单,损耗较小,功耗较低,芯片良率较高,可以避免单片集成分路器和级联式光开关的设计带来的设计复杂,损耗大,功耗高,芯片良率低等问题,还可以避免自由空间光路存在的体积大、光路复杂、耦合工艺高等问题。
示例性的,请参见图2~图4,在一具体实施例中,M为8,N为4,即提供8*4的多播交换光开关,则输入端为8个,输出端为4个,4个传输端和8个平面波导分光单元45。每个传输端包括8个第一子端421和1个第二子端422。为便于表述,将8个输入端分别定义为I1、I2、I3、I4、I5、I6、I7和I8。4个输出端分别定义为O1、O2、O3和O4。4个传输端定义为Q1、Q2、Q3和Q4。Q1传输端的8个第一子端421分别为I11、I12、I13、I14、I15、I16、I17和I18。Q1传输端的1个第二子端422为O11。Q2传输端的8个第一子端421分别为 I21、I22、I23、I24、I25、I26、I27和I28。Q2传输端的1个第二子端422为O21。Q3传输端的8个第一子端421分别为I31、I32、I33、I34、I35、I36、I37和I38。Q3传输端的1个第二子端422为O31。Q4传输端的8个第一子端421分别为I41、I、I、I44、I45、I46、I47和I48。Q4传输端的1个第二子端422为O41。8个平面波导分光单元45分别定义为L1、L2、L3、L4、L5、L6、L7和L8。其中,O11和O1对应设置,O21和O2对应设置,O31和O3对应设置,O41和O4对应设置。I1和L1对应设置,I2和L2对应设置,I3和L3对应设置,I4和L4对应设置,I5和L5对应设置,I6和L6对应设置,I7和L7对应设置,I8和L8对应设置。I1的光信号进入L1,L1将来自I1的光信号分成4个子光信号,来自L1的4个子光信号分别进入Q1、Q2、Q3、Q4。来自L1的1个子光信号进入I11,来自L2的1个子光信号进入I12,来自L3的1个子光信号进入I31,来自L4的1个子光信号进入I41,来自L5的1个子光信号进入I51,来自L6的1个子光信号进入I61,来自L7的1个子光信号进入I71,来自L8的1个子光信号进入I81。来自L1的其余3个子光信号分别进入I21、I31和I41,其他子光信号的具体路径见图2中所示,在此不再一一描述。如此,I11将来自L1的1个子光信号导向4个反射开关21的其中一个,反射开关21将接收到的来自I11的子光信号反射至O11、O21、O31或O41,例如反射开关21将接收到的来自I11的子光信号反射至O11,O11将接收到的子光信号导向O1。如此,实现8*4的多播交换光开关的光信号传输。本领域技术人员可以理解的是,来自L1的1个子光信号也可以进入Q1的I12、I13、I14、I15、I16、I17或I18,来自L2的1个子光信号也可以进入Q1的I11、I13、I14、I15、I16、I17或I18,其他端口亦是同样的原理。在本具体实施例中对子光信号的路径的描述,仅仅为便于表述,并不是对本申请的限定。
在一实施例中,请参见图4,反射开关21能够绕第一轴线Y转动以将子光信号反射至N个第二子端422的其中一个,第一轴线垂直于衬底41所在的平面。
为便于清楚表述本申请实施例,本申请实施例中,将光信号从第一端口10 入射的方向定义为Z轴,第一轴线的方向为Y轴,垂直于Z-Y平面的方向为X轴,后续表述中,第二轴线的方向为X轴,其中X轴、Y轴和Z轴形成相互垂直的坐标系,例如图1和图7所示的方位或位置关系。
在一些实施例中,M个第一端口10为1*M光纤阵列。具体的,M个第一端口10沿X轴方向分布。N个第二端口30为1*N光纤阵列。具体的,N个第二端口30沿X轴方向分布。也就是说,M个第一端口10构成一维光纤阵列,N个第二端口30也构成一维光纤阵列。进一步地,光纤可以为包层腐蚀光纤。
进一步地,M个第一端口10由M个腐蚀光纤构成1*M光纤阵列。具体的,M个腐蚀光纤在X轴方向上按照第一设定间距固定在第一硅基上。优选地,第一硅基上形成有第一V形槽,腐蚀光纤位于第一V形槽内。N个第二端口30由个腐蚀光纤构成1*N光纤阵列。具体的,N个腐蚀光纤在X轴方向上按照第二设定间距固定在第二硅基上。优选地,第一硅基上形成有第二V形槽,腐蚀光纤位于第二V形槽内。
在一实施例中,请参见图5,第二子端422位于M个第一子端421的一侧,反射开关21绕第一轴线Y朝第二子端422转动。如此,保证反射开关21在绕第一轴线Y转动时,能够将来自第一子端421的子光信号反射至第二子端422。需要说明的是,图5中第一子端421的数量仅用于示例。
在一实施例中,请参见图4和图6,第二子端422位于相邻的两个第一子端421之间,反射开关21绕第一轴线Y朝第二子端422的两侧转动。如此,保证第一端口10的子光信号投向反射开关21,反射开关21在绕第一轴线Y转动时,能够将来自第一子端421的子光信号反射至第二子端422。需要说明的是,图4和图6中第一子端421的数量仅用于示例。
在一实施例中,请参见图6,每个传输端中,相邻的两个第一子端421之间的间距不相等,且相邻的第一子端421和第二子端422之间的间距不相等。也就是说,所有通道的光路不对称,从而保证在任意通道工作的条件下,子光信号不会从一个非工作的第一子端421进入另一个非工作的第一子端421,而是进入工作的第一子端421,即子光信号不会从一个非工作通道进入另一个非 工作通道,能够规避光信号传输的方向性问题。
在一实施例中,请参见图1,反射开关21能够沿第二轴线X转动以实现无干扰切换,第二轴线X和第一轴线Y垂直,且第二轴线X平行于衬底41所在的平面。也就是说,反射开关21可以沿两个方向转动,反射开关21绕第一轴线Y转动实现端口选择,反射开关21绕第二轴线X转动避免子光信号从一个非工作第一子端421进入另一个工作第一子端421,即子光信号不会从一个非工作通道进入另一个非工作通道,实现无干扰切换(Hitless)功能。
在一实施例中,请参见图7和图8,多播交换光开关包括衍射光栅50。具体的,衍射光栅50位于分光装置40和反射开关21之间。衍射光栅50和反射开关21配合以将设定波长的子光信号反射至N个第二子端422的其中一个。通过衍射光栅50使得不同波长的子光信号以不同角度衍射,从而使得不同波长的子光信号在空间上分离,只有设定波长的子光信号入射进入反射开关21并原路返回,其他波长的子光信号在y-z平面分开,无法全部进入分光装置40耦合,不同波长的损耗曲线形成一定的滤波光谱。示例性的,请参见图8,图8中示出了B、C、D三个光路的子光信号,其中,B、C、D三个光路的子光信号的波长均不相同,在衍射光栅50的作用下,B光路的子光信号和D光路的子光信号均无法进入分光装置40,C光路的子光信号作为设定波长的子光信号能够进入分光装置40耦合。因此,反射开关21绕第二轴线X转动从而选择设定波长的子光信号能够被工作端接收,从而实现波长选择,反射开关21绕第一轴线Y转动将被选择的设定波长的子光信号反射至N个第二子端422的其中一个。也就是说,反射开关21绕第二轴线X转动用于选择设定波长的子光信号,反射开关21绕第一轴线Y转动用于选择第二子端422。由于有N个传输端,每个传输端具有一个第二子端422,因此,第二子端422有N个,而每个第二子端422对应有一个输出端,因此,可以通过反射开关21绕第一轴线Y转动将接收到的设定波长的子光信号反射至对应的输出端,从而实现波长选择输出。
在一实施例中,衍射光栅50的刻线垂直于第二轴线X,且衍射光栅50的刻线与第一轴线Y的夹角为α,其中,0°<α<90°。也就是说,衍射光栅50的 刻线位于垂直于第二轴线X的平面内,即衍射光栅50的刻线位于Y-Z平面内,且衍射光栅50的刻线与第一轴线Y的夹角α大于0°,小于90°,如此,衍射光栅50的刻线与传输至衍射光栅50的子光信号之间的夹角为衍射效率最高的角度。
反射开关21包括但不限于微机械系统(MEMS,Micro-Electronic-Mechanical System)反射镜、硅基液晶(LCoS,即Liquid Crystal on Silicon)芯片等。N个微机械系统反射镜可以构成微机械系统反射镜阵列。MEMS反射镜阵列可以为一维MEMS反射镜阵列,即MEMS反射镜均可绕第一轴线Y转动。MEMS反射镜阵列可以为二维MEMS反射镜阵列,即MEMS反射镜均可绕第一轴线Y和第二轴线X转动。具体的,通过衍射光栅50使得不同波长的子光信号在空间上分离,这些离散的子光信号传输至MEMS反射镜阵列,MEMS反射镜阵列通过绕第二轴线X和第一轴线Y转动实现无干扰切换。N个MEMS反射镜也可以为分立结构。具体的,N个硅基液晶芯片可以为阵列也可以为分立结构。
在一实施例中,请参见图1和图7,多播交换光开关包括N个准直透镜组60。N个准直透镜组60位于分光装置40和控制开关20之间。准直透镜组60包括M+1个准直透镜。也就是说,有N*(M+1)个准直透镜。准直透镜组60与传输端一一对应设置。也就是说,每个准直透镜组60对应一个传输端。准直透镜组60的M+1个准直透镜与对应的传输端的M个第一子端421和1个第二子端422对应设置。如此,每个第一子端421对应一个准直透镜,以便准直来自第一子端421的子光信号;每个第二子端422也对应一个准直透镜,以便准直来自第二子端422的子光信号。
具体的,N*(M+1)个准直透镜可以构成阵列结构,也可以为分立结构。
在一实施例中,请参见图4,准直透镜的工作距离为W,子光信号从准直透镜的出光面到反射开关21的入光面的光程为S,其中,W为S的两倍。即W=2*S。如此,保证子光信号导向反射开关21的为平行光。
在一实施例中,1<M≤8,1<N≤8。也就是说,多播交换光开关为低端口 的多播交换光开关。如此,比较容易控制输入端、输出端、传输端、平面波导分光单元45之间的交叉,便于在衬底41上设置上述结构,避免上述结构之间出现多点交叉,避免通过上述结构的信号互相干扰。具体的,输入端、输出端、传输端、平面波导分光单元45之间均可以采用波导连接。波导包括但不限于二氧化硅等。
由于交叉点处的波导的交叉角度越大,损耗越低,串扰越小,在一些实施例中,波导之间的交叉角度大于预设值。可以通过增大衬底41的面积从而增加波导的设置面积,从而保证波导之间的交叉角度大于预设值。
在一些实施例,可以通过合理布线尽量减少波导之间的交叉点,如此,进一步地避免波导内的信号互相干扰。
本申请实施例提供的多播交换光开关可以用于无色无方向性无竞争性可重构光分插复用系统(CDC ROADM),用于实现CDC ROADM上下路中的广播功能。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不仅限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种多播交换光开关,包括:
    M个第一端口,其中,M为大于1的正整数;
    控制开关,包括N个反射开关,其中,N为大于1的正整数;
    N个第二端口;以及
    分光装置,包括衬底、以及位于所述衬底上的M个输入端、N个输出端、N个传输端和M个平面波导分光单元,所述传输端包括M个第一子端和1个第二子端,所述衬底具有相对的P端和Q端,M个所述输入端和N个所述输出端位于所述衬底的P端,N个所述传输端位于所述衬底的Q端,所述输入端与所述第一端口一一对应设置,所述平面波导分光单元与所述输入端一一对应设置,所述第二子端与所述输出端一一对应设置,所述输出端与所述第二端口一一对应设置;
    所述平面波导分光单元能够将对应的所述输入端的光信号分成N个子光信号,且所述平面波导分光单元将N个所述子光信号的其中一个导向所述传输端的M个第一子端的其中一个,所述第一子端将所述子光信号导向N个所述反射开关的其中一个,所述反射开关能够将所述子光信号反射至N个所述第二子端的其中一个,所述第二子端将所述子光信号导向对应的所述输出端。
  2. 根据权利要求1所述的多播交换光开关,所述反射开关能够绕第一轴线转动以将所述子光信号反射至N个所述第二子端的其中一个,所述第一轴线垂直于所述衬底所在的平面。
  3. 根据权利要求2所述的多播交换光开关,所述第二子端位于M个所述第一子端的一侧,所述反射开关绕所述第一轴线朝所述第二子端转动。
  4. 根据权利要求2所述的多播交换光开关,所述第二子端位于相邻的两个所述第一子端之间,所述反射开关绕所述第一轴线朝所述第二子端的 两侧转动。
  5. 根据权利要求4所述的多播交换光开关,每个所述传输端中,相邻的两个所述第一子端之间的间距不相等,且相邻的所述第一子端和所述第二子端之间的间距不相等。
  6. 根据权利要求2所述的多播交换光开关,所述反射开关能够沿第二轴线转动以实现无干扰切换,所述第二轴线和所述第一轴线垂直,且所述第二轴线平行于所述衬底所在的平面。
  7. 根据权利要求6所述的多播交换光开关,所述多播交换光开关包括:
    衍射光栅,所述衍射光栅和所述反射开关配合以将设定波长的所述子光信号反射至N个所述第二子端的其中一个。
  8. 根据权利要求7所述的多播交换光开关,所述衍射光栅的刻线垂直于所述第二轴线,且所述衍射光栅的刻线与所述第一轴线的夹角为α,其中,0°<α<90°。
  9. 根据权利要求1~8任意一项所述的多播交换光开关,所述多播交换光开关包括:
    N个准直透镜组,位于所述分光装置和所述控制开关之间,所述准直透镜组包括M+1个准直透镜,所述准直透镜组与所述传输端一一对应设置,所述准直透镜组的M+1个准直透镜与对应的所述传输端的M个第一子端和1个第二子端对应设置,所述准直透镜用于准直所述第一子端的子光信号或所述第二子端的子光信号。
  10. 根据权利要求9所述的多播交换光开关,所述准直透镜的工作距离为W,所述子光信号从所述准直透镜的出光面到所述反射开关的入光面的光程为S,其中,W为S的两倍。
PCT/CN2020/135959 2020-06-22 2020-12-11 多播交换光开关 WO2021258666A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010577017.9A CN111708119B (zh) 2020-06-22 2020-06-22 多播交换光开关
CN202010577017.9 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021258666A1 true WO2021258666A1 (zh) 2021-12-30

Family

ID=72542394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135959 WO2021258666A1 (zh) 2020-06-22 2020-12-11 多播交换光开关

Country Status (2)

Country Link
CN (1) CN111708119B (zh)
WO (1) WO2021258666A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111708119B (zh) * 2020-06-22 2022-03-11 武汉光迅科技股份有限公司 多播交换光开关

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246015A (zh) * 2012-02-07 2013-08-14 奥兰若技术有限公司 多播光学开关
US20150244492A1 (en) * 2014-02-21 2015-08-27 Dicon Fiberoptics, Inc. Apparatus and Manufacturing Method for an Integrated Multicast Switch, For Use in Reconfigurable Optical Add-Drop Networks
US20160191190A1 (en) * 2014-12-30 2016-06-30 Infinera Corporation Reduction of wavelength selective switch (wss) filter-based impairment using differentiated channel baud rates
CN107329209A (zh) * 2017-08-18 2017-11-07 中国科学院半导体研究所 M×n多播传送光开关
CN107864025A (zh) * 2016-09-21 2018-03-30 朗美通经营有限责任公司 可编程多播开关
CN111290084A (zh) * 2020-03-31 2020-06-16 武汉光谷信息光电子创新中心有限公司 多播交换光开关
CN111708119A (zh) * 2020-06-22 2020-09-25 武汉光迅科技股份有限公司 多播交换光开关

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8086080B2 (en) * 2007-07-23 2011-12-27 Nistica, Inc. Multiple function digital optical switch
JP6491563B2 (ja) * 2015-02-19 2019-03-27 日本電信電話株式会社 光クロスコネクト装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103246015A (zh) * 2012-02-07 2013-08-14 奥兰若技术有限公司 多播光学开关
US20150244492A1 (en) * 2014-02-21 2015-08-27 Dicon Fiberoptics, Inc. Apparatus and Manufacturing Method for an Integrated Multicast Switch, For Use in Reconfigurable Optical Add-Drop Networks
US20160191190A1 (en) * 2014-12-30 2016-06-30 Infinera Corporation Reduction of wavelength selective switch (wss) filter-based impairment using differentiated channel baud rates
CN107864025A (zh) * 2016-09-21 2018-03-30 朗美通经营有限责任公司 可编程多播开关
CN107329209A (zh) * 2017-08-18 2017-11-07 中国科学院半导体研究所 M×n多播传送光开关
CN111290084A (zh) * 2020-03-31 2020-06-16 武汉光谷信息光电子创新中心有限公司 多播交换光开关
CN111708119A (zh) * 2020-06-22 2020-09-25 武汉光迅科技股份有限公司 多播交换光开关

Also Published As

Publication number Publication date
CN111708119A (zh) 2020-09-25
CN111708119B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
EP3304154B1 (en) Optical coupling using polarization beam displacer
US10451805B2 (en) Wavelength division multiplexing/demultiplexing optical transceiving assembly based on diffraction grating
CN115698790A (zh) 光纤到芯片互连
US6657770B2 (en) Programmable optical multiplexer/demultiplexer
CN108732684B (zh) 一种单纤双向多波长光收发组件
CN204925459U (zh) 一种多波长单纤双向光收发模块
CA2486725A1 (en) Reconfigurable optical add-drop module, system and method
JP2016103021A (ja) ビーム処理装置、ビーム減衰および切り替え装置、ならびに光波長選択スイッチシステム
US10126556B2 (en) Light operation device
JP5623675B2 (ja) 光信号多重化方法および光多重化装置
US7054561B2 (en) Reduction of polarization-dependent loss from grating used in double-pass configuration
CN104991320A (zh) 一种多波长单纤双向光收发模块及其工作方法
CN113608305B (zh) 波束控制器及波束控制方法
US8577192B2 (en) Tunable optical filters with multiple ports
WO2021258666A1 (zh) 多播交换光开关
CN109212766B (zh) 一种分光装置、波长选择开关和分光方法
CN108897102B (zh) 一种双波长选择开关
WO2022159517A1 (en) Wavelength selective switch
US8755651B2 (en) Tunable optical filters with multiple ports
JP5651904B2 (ja) N×n波長選択スイッチ
CN1266502C (zh) 抗偏振相关损耗的光束交换方法和器件
US7277607B2 (en) Optical multiplexer/demultiplexer, optical device, and optical transmission system
US11953732B2 (en) Optical cross-connect
JP2000131542A (ja) 光送受信モジュール
US20020085801A1 (en) Wavelength division multiplexing and de-multiplexing element and wavelength router

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942012

Country of ref document: EP

Kind code of ref document: A1