WO2023284302A1 - 一种dc/dc变换器的控制方法及控制器 - Google Patents

一种dc/dc变换器的控制方法及控制器 Download PDF

Info

Publication number
WO2023284302A1
WO2023284302A1 PCT/CN2022/077652 CN2022077652W WO2023284302A1 WO 2023284302 A1 WO2023284302 A1 WO 2023284302A1 CN 2022077652 W CN2022077652 W CN 2022077652W WO 2023284302 A1 WO2023284302 A1 WO 2023284302A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching tube
voltage
turned
converter
tube
Prior art date
Application number
PCT/CN2022/077652
Other languages
English (en)
French (fr)
Inventor
王磊
伍梁
代胜勇
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023284302A1 publication Critical patent/WO2023284302A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present application relates to the technical field of power supplies, and in particular to a control method and a controller of a DC/DC converter.
  • the power supply efficiency and power level of power supply products have been continuously improved.
  • the DC/DC converter can convert the input DC voltage into a set DC voltage, thereby providing the load with electricity.
  • the switching tube of the DC/DC converter has switching loss during the breaking process. How to reduce the loss of the switching tube in the DC/DC converter and improve the power supply efficiency of the power supply product is a key research issue.
  • the embodiment of the present application provides a control method and controller of a DC/DC converter, which reduces the voltage at both ends of the switching tube of the DC/DC converter to a preset value when the current of the exciting inductance is used, thereby reducing the switching
  • the turn-on loss of the tube is reduced to achieve the purpose of energy saving and loss reduction.
  • the embodiment of the present application provides a control method of a DC/DC converter
  • the DC/DC converter includes a switch branch, a first capacitor and a forward transformer
  • the switch branch is coupled with a DC power supply
  • the switch branch includes The first switching tube and the second switching tube are connected in series
  • the primary side of the forward transformer includes leakage inductance and excitation inductance in series
  • the primary side of the forward transformer is connected in parallel with both ends of the second switching tube through the first capacitor.
  • a DC load is coupled to the secondary side of the first switching tube;
  • the control method includes: when the voltage across the first switching tube is a first voltage threshold, controlling the first switching tube to be turned on so that the current of the exciting inductor increases along the first direction; After the current increases along the first direction for a preset period of time, the first switching tube is controlled to be turned off, so that the voltage across the second switching tube decreases; when the voltage across the second switching tube decreases to the second voltage threshold, the control The second switch tube is turned on.
  • the first switching tube in the converter is controlled to be turned on within a preset period of time, and the DC power supply, the first capacitor, the leakage inductance and the excitation inductance form a closed loop.
  • the direction of the current in the closed loop is the first direction, that is, the current on the magnetizing inductance is along the first direction during this period of time, and increases along the first direction.
  • the excitation inductance provides the parasitic capacitance of the second switching tube with a current in the first direction, the parasitic capacitance of the second switching tube starts to discharge, and the voltage across the second switching tube starts to decrease, when the voltage across the second switch tube decreases to the second voltage threshold, the second switch tube is controlled to be turned on, which reduces the turn-on loss of the second switch tube.
  • the method further includes: when the voltage across the second switch tube decreases to a second voltage threshold, controlling the second switch tube and the first switch tube to be turned on at least once according to a preset period; After the switch tube is turned on for the last time in the preset period, when the current of the exciting inductor decreases to the first current threshold along the second direction, the first switch tube is controlled to be turned off.
  • the first switching tube after the first switching tube is turned on for the last time in the preset period, when the current of the exciting inductor decreases to the first current threshold along the second direction, the first switching tube is controlled to be turned off, which can reduce the first
  • the turn-off loss of the switch tube can also avoid the large oscillation of the DC/DC converter due to the turn-off of the switch tube, and improve the EMC characteristics of the DC/DC converter.
  • the first voltage threshold is the minimum voltage value of the first switching tube in multiple oscillation cycles; wherein, the oscillation cycle is the Oscillation period of a resonant tank in a DC/DC converter.
  • the first switch tube when the voltage across the first switch tube is the minimum voltage value of the first switch tube in multiple oscillation cycles, the first switch tube is turned on, which can reduce the turn-on loss of the first switch tube.
  • the embodiment of the present application provides a controller of a DC/DC converter, the controller is connected to the DC/DC converter; the controller is configured to: when the voltage across the first switching tube is the first voltage threshold, Controlling the first switching tube to turn on, so that the current of the exciting inductor increases along the first direction; after the current of the exciting inductor increases along the first direction for a preset period of time, controlling the first switching tube to turn off, so that the current at both ends of the second switching tube The voltage decreases; when the voltage across the second switch tube decreases to a second voltage threshold, the second switch tube is controlled to be turned on.
  • the controller is further configured to: when the voltage across the second switch tube decreases to a second voltage threshold, control the second switch tube and the first switch tube to be turned on at least once in sequence according to a preset cycle; After the first switch tube is turned on for the last time in the period, when the current of the exciting inductor decreases to the first current threshold along the second direction, the first switch tube is controlled to be turned off.
  • the first voltage threshold is the minimum voltage value of the first switching tube in multiple oscillation cycles; wherein, the oscillation cycle is DC/ Oscillation period of a resonant tank in a DC converter.
  • the embodiment of the present application also provides a power supply device, the power supply device includes a DC/DC converter and a controller, and the controller is connected to the DC/DC converter, so as to implement the first aspect and its optional implementations. any control method.
  • any one of the controllers or a power supply device provided above is used to implement the method provided above. Therefore, the beneficial effects it can achieve can refer to the beneficial effects of the corresponding solutions in the corresponding methods provided above. I won't repeat them here.
  • FIG. 1 is a schematic structural diagram of a power supply system provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a circuit topology of a DC/DC converter provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of voltage and current waveforms of the switching tube provided by the present application during the switching process
  • FIG. 4 is a schematic diagram of a control sequence of a DC/DC converter provided in an embodiment of the present application.
  • FIG. 5 is a flow chart of a control method for a DC/DC converter provided in an embodiment of the present application
  • Fig. 6a is a schematic diagram of a partial equivalent circuit of a DC/DC converter provided by an embodiment of the present application.
  • Fig. 6b is a schematic diagram of another partial equivalent circuit of the DC/DC converter provided by the embodiment of the present application.
  • Fig. 6c is a schematic diagram of another partial equivalent circuit of the DC/DC converter provided by the embodiment of the present application.
  • Fig. 6d is a schematic diagram of another partial equivalent circuit of the DC/DC converter provided by the embodiment of the present application.
  • Fig. 6e is a schematic diagram of another partial equivalent circuit of the DC/DC converter provided by the embodiment of the present application.
  • Fig. 6f is a schematic diagram of another partial equivalent circuit of the DC/DC converter provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of another control sequence of the DC/DC converter provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of another control sequence of the DC/DC converter provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of another circuit topology of the DC/DC converter provided by the embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a power supply device provided by an embodiment of the present application.
  • words such as “exemplary”, “for example” or “for example” are used to represent examples, illustrations or illustrations. Any embodiment or design described as “exemplary”, “for example” or “for example” in the embodiments of the present application shall not be construed as being more preferred or more advantageous than other embodiments or designs. Rather, the use of words such as “exemplary”, “for example” or “for example” is intended to present related concepts in a specific manner.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless specifically stated otherwise.
  • FIG. 1 is a schematic structural diagram of a power supply system provided by the present application.
  • the switching power supply includes 100 : a DC power supply 101 , a DC/DC converter 102 , a controller 103 and a DC load 104 .
  • the input terminal of the DC/DC converter 102 is coupled to the DC power source 101
  • the output terminal of the DC/DC converter 102 is coupled to the DC load 104
  • the control terminal of the DC/DC converter 102 is coupled to the controller 103 .
  • the DC power supply 101 provides electric energy to the DC/DC converter 102
  • the controller 103 is used to control the switch tube in the DC/DC converter 102 so that the DC/DC converter 102 supplies power to the DC load 104 .
  • the DC power supply 101 can be, for example, an energy storage battery (such as a nickel-cadmium battery, a nickel-hydrogen battery, a lithium-ion battery, a lithium polymer battery, etc.), a solar battery, an AC/DC converter and/or other DC/DC converters One of a kind.
  • an energy storage battery such as a nickel-cadmium battery, a nickel-hydrogen battery, a lithium-ion battery, a lithium polymer battery, etc.
  • a solar battery an AC/DC converter and/or other DC/DC converters
  • other DC/DC converters may be, for example, one of BUCK converters, BOOST converters and/or BUCK-BOOST converters.
  • the controller 103 can be, for example, a central processing unit (central processing unit, CPU), other general-purpose processors, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate Array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the DC load 104 can be, for example, one of a mobile phone terminal, a TV terminal and/or other electronic (electrical) equipment, or one of an energy storage battery, other DC/DC converters and/or DC/AC converters, etc. kind. It can be understood that "coupled” described in this application refers to direct or indirect connection.
  • the connection between A and B can be either direct connection between A and B, or indirect connection between A and B through one or more electrical components, such as direct connection between A and C, direct connection between C and B, So that the coupling between A and B is realized through C.
  • the DC load 104 can be a mobile phone terminal
  • the DC power supply 101 can be an AC/DC converter that converts the AC voltage of the power grid into a DC voltage
  • the DC/DC converter 102 and the controller 103 can be installed on the terminal of the mobile phone. in the power adapter.
  • the controller 103 can control the DC/DC converter 102 to convert the DC voltage output by the AC/DC converter into a set DC voltage value, such as 5V, 10V and so on. It can be understood that the usage scenarios of the DC/DC converter in the embodiment of the present application are given here as an example, rather than exhaustive. Scenarios for voltage conversion.
  • Fig. 2 is a circuit topology diagram of a DC/DC converter provided by an embodiment of the present application.
  • the DC/DC converter 102 is an asymmetrical half-bridge forward converter, and the input end of the DC/DC converter 102 is connected to the DC power supply 101 (the input end of the DC/DC converter 102 includes a positive input terminal and the negative input terminal are respectively connected to the positive pole and the negative pole of the DC power supply 101, and the input voltage V in of the converter is the voltage of the DC power supply.
  • “+” and "-" are used to distinguish the positive pole of the DC power supply 101 and negative pole
  • the output terminal of the DC/DC converter 102 is connected to the DC load 104 (that is, the resistor RL in FIG. 2 ).
  • the DC/DC converter 102 includes: a filter capacitor C in , a first switch tube Q H , a second switch tube Q L , a first rectifier diode D H , a first parasitic capacitor CH , a second rectifier diode DL , a second rectifier diode D L , and a first rectifier diode D H .
  • the same-name terminal of the forward transformer is marked.
  • the transformer with the same-name terminal on the primary side and the same-name terminal on the secondary side is a forward transformer, and the turns ratio of the forward transformer is n:1.
  • the forward transformer can be abstractly understood as the excitation inductance L m , the leakage inductance L r and the ideal transformer.
  • the first switch tube Q H and the second switch tube Q L are connected in series to form a switch branch, and both ends of the switch branch are connected to the input end of the DC/DC converter, specifically, the first switch tube Q H
  • the source of the second switching tube Q L is connected to the drain of the second switching tube Q L
  • the drain of the first switching tube Q H is connected to the positive input terminal of the DC/DC converter
  • the source of the second switching tube Q L is connected to the DC/DC converter connected to the negative input terminal of the device.
  • the drain of the first switching tube QH and the source of the second switching tube QL are respectively connected to both ends of the filter capacitor C in and then connected to the positive and negative electrodes of the DC power supply 101, that is, the filter capacitor C in is connected in parallel Between the switching branch formed by the first switching tube Q H and the second switching tube Q L connected in series and the DC power supply 104 .
  • Both the first rectifying diode D H and the first parasitic capacitance CH are connected in parallel with both ends of the first switching tube Q H , the anode of the first rectifying diode D H is connected to the source of the first switching tube Q H , and the first rectifying diode The negative pole of D H is connected to the drain of the first switching tube Q H ; similarly, both the second rectifying diode D L and the second parasitic capacitance C L are connected in parallel with both ends of the second switching tube Q L , and the second rectifying diode D The anode of L is connected to the source of the second switching transistor Q L , and the cathode of the second rectifier diode DL is connected to the drain of the second switching transistor Q L.
  • the first capacitor C r is connected in series between the connection point of the first switching tube Q H and the second switching tube Q L and the primary side of the forward transformer, specifically, the first end of the first capacitor C r is connected to the first switching tube Q
  • the source of H or the drain of the second switching tube Q L is connected
  • the second end of the first capacitor C r is connected to the first end of the leakage inductance L r of the primary side of the forward transformer
  • the second end of the leakage inductance L r terminal is connected to the first terminal of the excitation inductance L m
  • the second end of the excitation inductance L m is connected to the source of the second switching tube Q L
  • the primary side of the ideal transformer is connected in parallel with the excitation inductance L m .
  • the first end of the secondary side of the forward transformer is connected to the source of the third switching tube Q o , the drain of the third switching tube Q o is connected to the first end of the output capacitor C o ; the second end of the output capacitor C o It is connected with the second end of the secondary side of the forward transformer; the resistor RL is connected in parallel with the two ends of the output capacitor C o , specifically, the first end of the resistor R L is connected to the third switching tube Q o and the output capacitor C o
  • the connection point is connected, the second end of the DC load RL is connected to the second end of the secondary side of the forward transformer; the third rectifier diode D o and the third parasitic capacitance C are connected in parallel with the two ends of the third switching tube Q o , Specifically, the anode of the rectifying diode D o is connected to the source of the third switching transistor Q o , and the cathode of the rectifying diode D o is connected to the drain of the third switching transistor
  • each switch tube is a metal-oxide-semiconductor-field-effect transistor (MOSFET) for illustration. It should be understood that each switch tube may also be an insulated gate dual Insulated gate bipolar transistor (IGBT) and other semiconductor devices. It can be understood that, according to the connection relationship of the various devices in the above-mentioned DC/DC converter 102, it can be seen that the primary side of the forward transformer is connected in series with the first capacitor Cr and then connected in parallel at both ends of the second switching tube Q L , so the The shown DC/DC converter 102 is an asymmetrical half-bridge forward converter. In one example, the secondary side of the forward transformer in the DC/DC converter 102 shown in FIG .
  • MOSFET metal-oxide-semiconductor-field-effect transistor
  • IGBT Insulated gate bipolar transistor
  • FIG. 3 is a schematic diagram of the voltage and current waveforms of the switching tube provided in the present application during the switching process.
  • the switch tube will generate a turn-on loss, which can be understood It is the power loss generated by the switch tube from cut-off to turn-on.
  • the current drop of the switch tube and the voltage rise of the switch tube also have an overlapping period of turn-off loss. resulting power loss.
  • FIG. 4 is a control sequence diagram of a controller of a DC/DC converter provided in an embodiment of the present application.
  • V g (Q H ) is the pulse sent by the controller 103 to the first switching tube Q H
  • V g (Q L ) is the pulse sent by the controller 103 to the second switching tube Q L
  • V DS -QL is the voltage across the two ends of the second switching tube Q L
  • I(L m ) is the current of the exciting inductance L m , wherein the sum of the voltage across the first switching tube Q H and the voltage across the second switching tube Q L is equal to
  • the input voltage V in of the converter 102 that is, the voltage of the DC power supply 101
  • the voltage across the first switching tube Q H can be calculated according to the voltage across the second switching tube Q L and the input voltage.
  • a control period of the DC/DC converter 102 by the controller 103 is the period between time t0 and time t5 .
  • the controller 103 sends a high-level pulse to the first switch tube Q H during the t0-t1 period and t4-t5 period, and sends a low-level pulse to the first switch tube Q H during the t1-t4 period , so that the first switching tube Q H is turned on only during the t0-t1 period and the t4-t5 period; similarly, the controller 103 sends a high-level pulse to the second switching tube Q L during the t2-t3 period, and in the control period Send low-level pulses to the second switching tube Q L during other periods, so that the second switching tube Q L is turned on only during the t2-t3 period. It can be understood that before the time t0 and after the time t
  • Fig. 5 is a flow chart of a control method for a DC/DC converter provided by an embodiment of the present application.
  • the DC/DC converter may be the aforementioned DC/DC converter 102 shown in FIG. 2
  • the control method may be executed by the controller 103 of the DC/DC converter 102 .
  • the control method includes the following steps S1-S6. Each step of the method shown in FIG. 5 will be introduced below with reference to FIG. 4 and FIGS. 6a-6f.
  • step S1 when the voltage across the first switching transistor QH reaches a first voltage threshold, the first switching transistor QH is controlled to be turned on, so that the current of the exciting inductor Lm increases along a first direction.
  • the controller 103 controls the first switching transistor Q H to turn on when it determines that the voltage across the first switching transistor Q H is at the first voltage threshold at time t0 .
  • the first parasitic capacitance CH of the first switching transistor Q H , the second parasitic capacitance CL of the second switching transistor Q L , the first capacitance C r , the excitation inductance L m and the leakage inductance L r forms a resonant circuit
  • the partial equivalent circuit diagram of the resonant circuit before time t0 is shown in Fig. 6a.
  • the capacitive device and the inductive device will be continuously charged and discharged, so that the voltage at both ends of the two switch tubes oscillates periodically, and the voltage at both ends of the first switch tube Q H is equal to the input voltage Vin and the second switch tube.
  • the switching tubes are in the oscillation cycle of the resonant circuit in the DC/DC converter when they are turned off, and the oscillation is caused by the parasitic capacitance, leakage inductance and excitation inductance of the switching tubes in the DC/DC converter.
  • FIG. 6b a schematic diagram of a partial equivalent circuit of the DC/DC converter is shown in Figure 6b.
  • the DC power supply, the first switching tube Q H , the first capacitor C r , Leakage inductance L r and excitation inductance L m form a closed loop.
  • the first capacitor C r , the leakage inductance L r and the excitation inductance L m are in the charging state, wherein the voltage across the first capacitor C r starts to increase from its voltage value at time t0, and the current in the loop
  • the direction is clockwise, and the current I(L m ) of the exciting inductance L m increases in the clockwise direction (ie, the first direction).
  • a current is generated on the secondary winding of the forward transformer, so that the converter 102 can provide current to the load.
  • the first parasitic capacitor CH is short-circuited, so that the voltage across the first parasitic capacitor CH decreases from the voltage at time t0 to 0, that is, the first switching tube Q H
  • the voltage at the terminal becomes 0, otherwise, the voltage at both ends of the second switching transistor Q L (that is, the voltage at both ends of the second parasitic capacitor) increases to the input voltage V in .
  • the controller 103 may determine whether to control the first switching transistor Q H to be turned on according to the first signal from the DC/DC converter 102 . Specifically, the controller 103 may acquire the voltage across the first switching tube Q H when receiving the first signal, and then determine whether the voltage across the first switching tube Q H satisfies the first voltage threshold. When the voltage across Q H reaches the first voltage threshold, the controller 103 starts to send a high-level pulse to the first switching tube Q H , that is, the voltage across the first switching tube Q H meets the preset first voltage threshold The moment of is the moment t0 in the aforementioned FIG. 4 .
  • a voltage sensor may be coupled to the output terminal of the converter 102, and when the voltage sensor detects that the output voltage of the converter 102 is lower than a third voltage threshold, it generates a first signal and sends the first signal to the control device 103.
  • step S2 after the current of the magnetizing inductor L m increases along the first direction for a first period of time, the first switching tube is controlled to be turned off, so that the voltage across the second switching tube decreases.
  • the controller 103 controls the first switching tube Q at time t1 H is turned off, that is, during the time period t0-t1, the first switching tube Q H is in the on state, and the second switching tube Q L remains in the off state.
  • FIG. 6c a schematic diagram of a partial equivalent circuit of the DC/DC converter is shown in FIG. 6c.
  • the first parasitic capacitance CH is re-connected to the circuit, and the first parasitic capacitance C L , the first capacitance C r , the leakage inductance L r and the excitation inductance L m form a closed circuit.
  • the inductance current cannot change abruptly, the current of the exciting inductor L m will continue to maintain a clockwise current direction, and the overall current direction of the closed loop is clockwise.
  • the current of the exciting inductance L m flows through the second parasitic capacitance C L , that is, the current direction of the second parasitic capacitance C L is from bottom to top, and the second parasitic capacitance C L is in a discharge state, so that the second parasitic capacitance C L
  • the voltage at both ends that is, the voltage at both ends of the second switching transistor Q L ) gradually decreases from the voltage at time t1 .
  • step S3 when the voltage across the second switching transistor QL decreases to a second voltage threshold, the second switching transistor QL is controlled to be turned on.
  • the controller 103 controls the second switching transistor Q L to turn on when it is determined that the voltage across the second switching transistor Q L decreases to the second voltage threshold at time t2.
  • a schematic diagram of the equivalent circuit of the DC/DC converter 102 at time t2 is shown in FIG. 6d , the second switching tube Q L , the first capacitor C r , the leakage inductance L r and the excitation inductance L m form a closed loop. In the closed loop, the first capacitor C r discharges in a counterclockwise direction, and the current of the exciting inductor L m increases in a counterclockwise direction.
  • the second voltage threshold is set to 0, that is, the voltage across the second switching tube Q L decreases to 0 at time t2, the second switching tube Q L can be turned on at zero voltage, reducing the second switch The turn-on loss of tube Q L. It can be understood that the current of the magnetizing inductor L m at the moment t1 needs to meet the condition that the voltage across the second switching transistor Q L can be reduced to zero.
  • step S4 after the second switching tube Q L is turned on for a second period of time, the second switching tube Q L is controlled to be turned off, so that the voltage across the first switching tube Q H decreases.
  • the second time period is controlled.
  • the switching tube Q L is turned off, that is, during the period t2-t3, the second switching tube Q L is in the on state, and the first switching tube Q H is in the off state, wherein the current of the exciting inductance L m at the time t3 can make the first
  • the voltage of the switching tube Q H starts to decrease from the time t3.
  • a schematic diagram of a partial equivalent circuit of the DC/DC converter at time t3 is shown in Fig. 6e. In Fig.
  • step S5 when the voltage across the first switching transistor QH decreases to a second voltage threshold, the first switching transistor QH is controlled to be turned on.
  • the controller 103 determines that the voltage across the first switching tube QH decreases to the second voltage threshold at time t4, and controls the first switching tube QH to be turned on, that is During the period t3-t4, the first switching tube Q H is in an off state, and the second switching tube Q L is also in an off state.
  • FIG. 6f A schematic diagram of a partial equivalent circuit of the DC/DC converter 102 at time t4 is shown in FIG. 6f .
  • the DC power supply, the first capacitor C r , the leakage inductance L r and the excitation inductance L m form a closed loop.
  • the first capacitor C r begins to charge, and a current from top to bottom is generated on the excitation inductance L m , so that the current flowing through the excitation inductance L m is in the counterclockwise direction Decreases gradually, that is, increases in a clockwise direction.
  • the secondary winding of the forward transformer generates current, and the converter 102 can supply current to the load.
  • step S6 when the current of the magnetizing inductor L m decreases to the first current threshold along the second direction, the first switching tube Q H is controlled to be turned off.
  • the controller 103 determines that the current of the magnetizing inductance L m decreases to the first current threshold in the counterclockwise direction (that is, the second direction) at time t5, the controller 103 controls the first current threshold.
  • a switch tube Q H is turned off.
  • the first switching tube Q H can be turned off with zero current at the time t5.
  • the controller 103 controls the first switching tube Q H to be turned on at the time t0, so that the current of the exciting inductance L m can increase clockwise at the time t1, and then the controller 103 controls the first switching tube Q H to be turned on at the time t1.
  • a switch tube Q H is turned off, and the current of the magnetizing inductance L m flows through the second parasitic capacitor, so that the voltage across the second switch tube Q L can be reduced to 0 at time t2, and then the controller 103 controls the second switch tube Q L realizes zero-voltage turn-on at time t2, thereby reducing the turn-on loss of the second switching tube Q L.
  • the controller 103 controls the second switching tube Q L to be turned on during the t2 period, the first capacitor C r is discharged, so that the current of the exciting inductance L m begins to increase in the counterclockwise direction, and then the controller controls the second switching tube Q L at the time t3 L is turned off, and the current of the exciting inductance L m flows through the first parasitic capacitor CH , so that the voltage across the first switching tube Q H can be reduced to 0 at time t4, and the controller 103 controls the first switching tube Q at time t4 H realizes zero-voltage turn-on, thereby reducing the turn-on loss of the first switch tube Q H .
  • the controller 103 controls the first switching tube to be turned on at the time t4, the current of the excitation inductance L m will always decrease in the counterclockwise direction, and finally decrease to 0 at the time t5, and the controller 103 controls the first switching tube at the time t5 Q H is turned off, and the first switching tube Q H realizes zero-current shutdown, which reduces the turn-off loss of the first switching tube Q H , and at the same time slows down the oscillation of the DC/DC converter caused by switching off the switching tube, improving the EMC characteristics of DC/DC converters.
  • the voltage at both ends of the first switch tube is at a minimum value among multiple periodic oscillation voltages, so the turn-on loss of the first switch tube at time t0 is very small.
  • the duration t0-t1 of the first opening and the duration t4-t5 of the last opening of the control cycle shown in Figure 4 can be given an initial value of the time length between each two moments, and then The purpose of realizing zero-voltage turn-on when the first switch tube is turned on for the first time and zero-current turn-off of the first switch tube at the last moment of the control cycle is determined by adjusting the initial value according to the time step.
  • the first switching tube can be controlled to turn on the T1 period, that is, the duration of the t0-t1 period is T1, and the value of T1 is adjusted according to the time step, so that the second switching tube can be To realize zero-voltage turn-on, the period t1-t2 in FIG. 4 may be the cut-off time of the first switch tube.
  • the second switching tube can realize zero-voltage turn-on, record the current value of T1.
  • the duration of the t0-t1 period and the t0-t2 period can be determined.
  • the duration of the t0-t2 period is T1 and the first The sum of the cut-off times of the switching tubes.
  • the duration of the t4-t5 period can be determined by the same method of first giving the initial value and then adjusting, so that the current of the exciting inductor is 0 at the time t5, so that the first The switching tube realizes zero-current shutdown at time t5.
  • the pulse control timing diagram shown in FIG. 4 is only a control method provided by the embodiment of the present application.
  • the controller 103 can also After the time, the period of t1-t5 is taken as a period to periodically control the second switching tube Q L and the first switching tube Q H to be turned on and off, that is, the controller 103 periodically repeats the control of the period t1-t5, so that the second The turn-on and turn-off of the switch tube Q L and the first switch tube Q H present periodic changes. It should be noted that, in the control sequence shown in Fig. 7 and Fig.
  • the first switching tube realizes zero-current shutdown only when it is turned off for the last time, that is, it is ensured that the current of the excitation inductance is Before this, when the first switching tube is turned off, the current of the exciting inductor is not zero.
  • the time length between every two moments can also be determined according to the aforementioned method for determining the duration of each time period in FIG. 4 .
  • the initial value T1 of the t0-t1 period is given first, and the t1-t2 period can be the cut-off time of the first switching tube, and T1 is adjusted according to the time step, and the second switching tube is recorded.
  • the T1 value when the zero voltage is turned on can determine the duration of t0-t2; then the initial value of t8-t9 is given, and the initial value is adjusted according to the time step, so that the current of the exciting inductor is 0 at the time t9, so that The first switching tube is turned off at zero current at time t9.
  • the duration of each period of the control period in the control timing diagram shown in FIG. 8 refer to the methods for determining the duration in FIG. 4 and FIG. 7 .
  • Fig. 4, Fig. 7 and Fig. 8 only show a control cycle of the converter 102 by the controller 103 in the embodiment of the present application, and in practical applications, the control cycle in the figure can be repeated according to actual needs Multiple controls.
  • FIG. 9 is another topology structure of a DC/DC converter provided by an embodiment of the present application.
  • the DC/DC converter shown in Figure 9 is similar to the DC/DC converter shown in Figure 2, and is also an asymmetrical half-bridge forward converter. The difference is that the DC/DC converter shown in Figure 9 The primary side of the forward transformer and the first capacitor are connected in parallel at both ends of the first switch tube.
  • the control process of the DC/DC converter shown in Figure 9 is similar to the aforementioned control process, the difference is that the positions of the first switch tube and the second switch tube are interchanged in the aforementioned control process, that is, the DC/DC converter shown in Figure 2
  • the controller 103 of the DC converter controls the opening of the first switching tube in the DC/DC converter shown in FIG.
  • Fig. 10 is a power supply device provided by an embodiment of the present application.
  • the power supply device includes a DC/DC converter 102 and a controller 103 , and the controller 103 is used for switching off the switch tube of the DC/DC converter 102 .
  • the DC/DC converter 102 may be the DC/DC converter topology shown in the aforementioned FIG. 2
  • the controller 103 may execute the method steps shown in the aforementioned FIG. It can be understood that the DC/DC converter may also be the topology of the DC/DC converter shown in FIG. 9, and the controller 103 may control the DC/DC converter 102. The step after switching the position of the tube and the second switch tube.
  • the embodiment of the present application also provides a power supply device.
  • the power supply device includes a memory and a processor.
  • Computer instructions are stored in the memory.
  • the processor executes the computer instructions, the aforementioned method steps shown in FIG. 5 are implemented, so that the excitation inductance is used
  • the high current allows the switching tube in the DC/DC converter to realize zero-voltage turn-on, so as to reduce the turn-on loss.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • the software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory (programmable rom) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or known in the art any other form of storage medium.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted via a computer-readable storage medium.
  • the computer instructions may be transmitted from one website site, computer, server, or data center to another website site by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) , computer, server or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (such as a floppy disk, a hard disk, or a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a solid state disk (solid state disk, SSD)), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请提供了一种DC/DC变换器的控制方法及控制器。该控制方法包括:当第一开关管两端的电压为第一电压阈值时,控制第一开关管开通,使得励磁电感的电流沿第一方向增大;在励磁电感的电流沿第一方向增大预设时段之后,控制第一开关管关断,使得第二开关管两端的电压减小;当第二开关管两端的电压减小为第二电压阈值时,控制第二开关管开通。本申请通过控制第一开关管开通一段时间,在励磁电感上产生,可以使第二开关管两端的电压在开通时降低到第二电压阈值的电流,实现减小第二开关管开通损耗的目的。

Description

一种DC/DC变换器的控制方法及控制器
本申请要求于2021年07月13日提交中国国家知识产权局、申请号为202110791796.7、申请名称为“一种DC/DC变换器的控制方法及控制器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中
技术领域
本申请涉及电源技术领域,尤其涉及一种DC/DC变换器的控制方法及控制器。
背景技术
随着快充技术的推进,适配器等电源产品的供电效率和功率等级不断提高。在一种电源产品中,可以通过控制电源产品内部DC/DC变换器中的开关管的通断,使得DC/DC变换器可以将输入的直流电压转换为设定的直流电压,从而向负载提供电量。然而DC/DC变换器的开关管在开断过程中是存在开关损耗的,如何降低DC/DC变换器中开关管的损耗,提高电源产品的供电效率是重点研究的问题。
发明内容
本申请实施例提供了一种DC/DC变换器的控制方法及控制器,利用励磁电感的电流让DC/DC变换器的开关管两端的电压在开通时降低到预设值,从而减小开关管的开通损耗,达到节能降损的目的。
第一方面,本申请实施例提供了一种DC/DC变换器的控制方法,DC/DC变换器包括开关支路、第一电容和正激变压器;开关支路与直流电源耦合,开关支路包括串联的第一开关管和第二开关管;正激变压器的原边包括串联的漏感和励磁电感,正激变压器的原边通过第一电容并联在第二开关管的两端,正激变压器的副边耦合有直流负载;该控制方法包括:当第一开关管两端的电压为第一电压阈值时,控制第一开关管开通,使得励磁电感的电流沿第一方向增大;在励磁电感的电流沿第一方向增大预设时段之后,控制第一开关管关断,使得第二开关管两端的电压减小;当第二开关管两端的电压减小为第二电压阈值时,控制第二开关管开通。
该实施方式,控制变换器中第一开关管在预设时段内开通,直流电源、第一电容、漏感和励磁电感组成闭合回路。该闭合回路中的电流方向为第一方向,即励磁电感上的电流在这段时间内沿第一方向,且沿第一方向增大。第一开关管在预设时段的最后时刻关断时,励磁电感为第二开关管的寄生电容提供第一方向的电流,第二开关管的寄生电容开始放电,第二开关管两端的电压开始减小,当第二开关管两端的电压减小至第二电压阈值时,控制第二开关管开通,减小了第二开关管的开通损耗。
在一种可能的实施方式中,方法还包括:当第二开关管两端的电压减小为第二电压阈值,按照预设周期控制第二开关管和第一开关管开通至少一次;在第一开关管在预设周期内最后一次开通之后,当励磁电感的电流沿第二方向减小为第一电流阈值时,控制第一开 关管关断。
该实施方式,在第一开关管在预设周期内最后一次开通之后,当励磁电感的电流沿第二方向减小为第一电流阈值时,控制第一开关管关断,可以减小第一开关管的关断损耗,也可以避免DC/DC变换器由于开关管关断产生较大的振荡,改善了DC/DC变换器的EMC特性。
在一种可能的实施方式中,第一电压阈值为第一开关管在多个振荡周期中的最小电压值;其中,振荡周期为所述第一开关管和第二开关管关断时所述DC/DC变换器中谐振回路的振荡周期。
该实施方式,当第一开关管两端的电压为第一开关管在多个振荡周期中的最小电压值时,开通第一开关管,可以减小第一开关管的开通损耗。
第二方面,本申请实施例提供了一种DC/DC变换器的控制器,控制器与DC/DC变换器连接;控制器用于:当第一开关管两端的电压为第一电压阈值时,控制第一开关管开通,使得励磁电感的电流沿第一方向增大;在励磁电感的电流沿第一方向增大预设时段之后,控制第一开关管关断,使得第二开关管两端的电压减小;当第二开关管两端的电压减小为第二电压阈值时,控制第二开关管开通。
在一种可能的实施方式中,控制器还用于:当第二开关管两端的电压减小为第二电压阈值,按照预设周期控制第二开关管和第一开关管依次开通至少一次;在第一开关管在周期内最后一次开通之后,当励磁电感的电流沿第二方向减小为第一电流阈值时,控制第一开关管关断。
在一种可能的实施方式中,第一电压阈值为第一开关管在多个振荡周期中的最小电压值;其中,振荡周期为所述第一开关管和第二开关管关断时DC/DC变换器中谐振回路的振荡周期。
第三方面,本申请实施例还提供一种电源设备,电源设备包括DC/DC变换器和控制器,控制器与DC/DC变换器连接,用于实现第一方面及其可选实施方式中的任一项控制方法。
上述提供的任一种控制器或一种电源设备,均用于实现上文所提供的方法,因此,其所能达到的有益效果可参考上文提供的对应方法中的对应方案的有益效果,此处不再赘述。
附图说明
图1是本申请实施例提供的一种电源系统的结构示意图;
图2是本申请实施例提供的DC/DC变换器的一种电路拓扑结构示意图;
图3是本申请提供的开关管在开关过程中电压与电流的波形示意图;
图4是本申请实施例提供的DC/DC变换器的一种控制时序示意图;
图5是本申请实施例提供的DC/DC变换器的控制方法流程图;
图6a是本申请实施例提供的DC/DC变换器的一种部分等效电路示意图;
图6b是本申请实施例提供的DC/DC变换器的另一种部分等效电路示意图;
图6c是本申请实施例提供的DC/DC变换器的另一种部分等效电路示意图;
图6d是本申请实施例提供的DC/DC变换器的另一种部分等效电路示意图;
图6e是本申请实施例提供的DC/DC变换器的另一种部分等效电路示意图;
图6f是本申请实施例提供的DC/DC变换器的另一种部分等效电路示意图;
图7是本申请实施例提供的DC/DC变换器的另一种控制时序示意图;
图8是本申请实施例提供的DC/DC变换器的另一种控制时序示意图;
图9是本申请实施例提供的DC/DC变换器的另一种电路拓扑结构示意图。
图10是本申请实施例提供的一种电源设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本申请实施例中的技术方案进行描述。
在本申请实施例的描述中,“示例性的”、“例如”或者“举例来说”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”、“例如”或者“举例来说”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”、“例如”或者“举例来说”等词旨在以具体方式呈现相关概念。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1是本申请提供的一种电源系统的结构示意图。如图1所示,该开关电源包括100:直流电源101、DC/DC变换器102、控制器103和直流负载104。DC/DC变换器102的输入端耦合直流电源101,DC/DC变换器102的输出端耦合直流负载104,DC/DC变换器102的控制端耦合控制器103。直流电源101向DC/DC变换器102提供电能,控制器103用于控制DC/DC变换器102中开关管的开断,使得DC/DC变换器102向直流负载104供电。具体地,直流电源101可以例如是储能电池(如镍镉电池、镍氢电池、锂离子电池、锂聚合物电池等)、太阳能电池、AC/DC变换器和/或其他DC/DC变换器中一种。其中,其他DC/DC变换器可以是例如BUCK变换器、BOOST变换器和/或BUCK-BOOST变换器中一种。控制器103例如可以是中央处理单元(central processing unit,CPU)、其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。直流负载104可以例如是手机终端、电视终端和/或者其他电子(电器)设备中的一种,还可以是储能电池、其他DC/DC变换器和/或DC/AC变换器等中的一种。可以理解,本申请中所描述的“耦合”指的是直接或间接连接。例如, A与B连接,既可以是A与B直接连接,也可以是A与B之间通过一个或多个电学元器件间接连接,例如可以是A与C直接连接,C与B直接连接,从而使得A与B之间通过C实现耦合。
在一个应用场景中,直流负载104可以是手机终端,直流电源101可以是将电网交流电压转换为直流电压的AC/DC变换器,DC/DC变换器102和控制器103可以设置在手机终端的电源适配器中。控制器103可以控制DC/DC变换器102将该AC/DC变换器输出的直流电压转换为设定的直流电压值,例如5V、10V等。可以理解,此处为对本申请实施例DC/DC变换器的使用场景进行示例,而非穷举,应当理解为本申请实施例中控制器可以控制DC/DC变换器102应用在任何需要对直流电压转换的场景。
图2是本申请实施例提供的一种DC/DC变换器的电路拓扑结构图。如图2所示,该DC/DC变换器102为非对称半桥正激变换器,DC/DC变换器102的输入端与直流电源101连接(DC/DC变换器102的输入端包括正极输入端和负极输入端,分别与直流电源101的正极和负极连接,变换器的输入电压V in即为直流电源的电压,本实施例中,用“+”和“-”区分直流电源101的正极和负极),DC/DC变换器102的输出端与直流负载104(即图2中的电阻R L)连接。该DC/DC变换器102包括:滤波电容C in、第一开关管Q H、第二开关管Q L、第一整流二极管D H、第一寄生电容C H、第二整流二极管D L、第二寄生电容C L、第一电容C r和正激变压器、第三开关管Q o、第三整流二极管D o、第三寄生电容C、输出电容C o和电阻R L。如图2中正激变压器的同名端标记,原边同名端和副边同名端位于同一侧的变压器为正激变压器,正激变压器的匝数比为n:1。在理想情况下,根据正激变压器的电气特性可以将正激变压器抽象理解为励磁电感L m、漏感L r和理想变压器。
继续参阅图2,第一开关管Q H和第二开关管Q L串联组成开关支路,开关支路的两端与DC/DC变换器的输入端连接,具体地,第一开关管Q H的源极与第二开关管Q L的漏极连接,第一开关管Q H的漏极与DC/DC变换器的正极输入端连接,第二开关管Q L的源极与DC/DC变换器的负极输入端连接。第一开关管Q H的漏极和第二开关管Q L的源极分别与滤波电容C in的两端连接后再与直流电源101的正负极连接,也就是说,滤波电容C in并联在第一开关管Q H和第二开关管Q L串联形成的开关支路和直流电源104之间。第一整流二极管D H和第一寄生电容C H均与第一开关管Q H的两端并 联,第一整流二极管D H的正极与第一开关管Q H的源极连接,第一整流二极管D H的负极与第一开关管Q H的漏极连接;同样地,第二整流二极管D L和第二寄生电容C L均与第二开关管Q L的两端并联,第二整流二极管D L的正极与第二开关管Q L的源极连接,第二整流二极管D L的负极与第二开关管Q L的漏极连接。第一电容C r串联在第一开关管Q H与第二开关管Q L的连接点和正激变压器的原边之间,具体地,第一电容C r的第一端与第一开关管Q H的源极或第二开关管Q L的漏极连接,第一电容C r的第二端与正激变压器的原边的漏感L r的第一端连接,漏感L r的第二端与励磁电感L m的第一端连接,励磁电感L m的第二端与第二开关管Q L的源极连接,理想变压器的原边与励磁电感L m并联。正激变压器的副边的第一端与第三开关管Q o的源极连接,第三开关管Q o的漏极与输出电容C o的第一端连接;输出电容C o的第二端与正激变压器的副边的第二端连接;电阻R L则并联在输出电容C o的两端,具体地,电阻R L的第一端与第三开关管Q o和输出电容C o的连接点连接,直流负载R L的第二端与正激变压器的副边的第二端连接;第三整流二极管D o和第三寄生电容C均与第三开关管Q o的两端并联,具体地,整流二极管D o的正极与第三开关管Q o的源极连接,整流二极管D o的负极与第三开关管Q o的漏极连接。可以理解,只有当第一开关管开通时,正激变压器的原边绕组才会有正向的电压,从而使正激变压器的副边绕组产生电流。
本申请实施例以各个开关管均为金属氧化物半导体场效应管(metal-oxide-semiconductor-field-effect transistor,MOSFET)进行示例性说明,应当理解的是,各个开关管还可以是绝缘栅双极型晶体管(insulated gate bipolar transistor,IGBT)等其他半导体器件。可以理解的,根据上述DC/DC变换器102中各个器件的连接关系可以看出,正激变压器的原边与第一电容Cr串联后并联在第二开关管Q L两端,所以图2所示的DC/DC变换器102是一种非对称半桥正激变换器。在一个示例中,图2所示DC/DC变换器102中正激变压器的副边还可以采用不包括第三开关管Q o的结构,即正激变压器的副边和输出电容C o之间只连接有第三整流二极管D o和第三寄生电容C。图3是本申请提供的开关管在开关过程中电压与电流的波形示意图。如图3所示,在开关管开通的过程中,开关管电流上升与开关管电压下降有一个交叠时段,也就是在这个交叠的时段,开关管会产生开通损耗,该开通损耗可以理解为开关管从 截止到导通时所产生的功率损耗。同样的,在开关管关断的过程中,开关管的电流下降与开关管的电压上升也有一个产生关断损耗的交叠时段,该关断损耗可以理解为开关管从导通到截止时所产生的功率损耗。
在电源产品轻载控制中,以包含上述图2所示DC/DC变换器102的电源产品为例,通常采用间断控制DC/DC变换器102中两个开关管来实现电压转换,即在控制第一开关管和第二开关管在一次连续开通和关断之后,间隔一个时间段之后再进行下一次控制。然而这种控制方法中开关管首次开通存在较大的开通损耗,同时,在一个控制周期的结束时刻,第一开关管关断时,DC/DC变换器中各个器件组成的谐振回路中还存在电压振荡,使得第一开关管关断时存在较大的关断损耗。本申请实施例提供一种DC/DC变换器的控制器,图4是本申请实施例提供的一种DC/DC变换器的控制器的控制时序图。如图4所示,V g(Q H)为控制器103向第一开关管Q H发送的脉冲,V g(Q L)为控制器103向第二开关管Q L发送的脉冲,V DS-QL为第二开关管Q L两端的电压,I(L m)为励磁电感L m的电流,其中,第一开关管Q H两端的电压与第二开关管Q L两端的电压之和等于变换器102的输入电压V in(即直流电源101的电压),第一开关管Q H两端的电压可以根据第二开关管Q L两端的电压和输入电压计算得到。
继续参阅图4中的第一开关管Q H和第二开关管Q L的脉冲控制时序图,控制器103对DC/DC变换器102的一个控制周期为t0时刻-t5时刻之间的时段。在t0-t5时段内,控制器103在t0-t1时段和t4-t5时段向第一开关管Q H发送高电平脉冲,在t1-t4时段向第一开关管Q H发送低电平脉冲,使得第一开关管Q H只在t0-t1时段和t4-t5时段为开通状态;类似的,控制器103在t2-t3时段向第二开关管Q L发送高电平脉冲,在控制周期的其他时段向第二开关管Q L发送低电平脉冲,使得第二开关管Q L只在t2-t3时段为开通状态。可以理解的,在t0时刻之前和t5时刻之后,第一开关管Q H和第二开关管Q L均处于关断状态。
图5是本申请实施例提供的一种DC/DC变换器的控制方法流程图。其中,DC/DC变换器可以是前述图2所示的DC/DC变换器102,该控制方法可以由该DC/DC变换器102的控制器103执行。如图5所示,该控制方法包括如下的步骤S1-步骤S6。下面将结合图4、以及图6a-图6f,介绍图5所示方法的各个步骤。
在步骤S1中,当第一开关管Q H两端的电压为第一电压阈值时,控制第一开关管 Q H开通,使得励磁电感L m的电流沿第一方向增大。
本实施例中,如图4所示的控制时序图,控制器103在t0时刻确定第一开关管Q H两端的电压在为第一电压阈值时,控制第一开关管Q H开通。需要说明的是,t0时刻之前,第一开关管Q H的第一寄生电容C H、第二开关管Q L的第二寄生电容C L、第一电容C r、励磁电感L m以及漏感L r形成谐振回路,该谐振回路在t0时刻之前的部分等效电路图如图6a所示。在图6a所示的回路中,电容器件和电感器件会不断地进行充电和放电,使得两个开关管两端的电压周期性振荡,第一开关管Q H两端的电压为输入电压V in和第二开关管Q L两端的电压的差值,其中,第一电压阈值可以是第一开关管Q H两端的电压在多个振荡周期中的最小电压值,振荡周期为第一开关管和第二开关管均处于关断时DC/DC变换器中谐振回路的振荡周期,该振荡是由DC/DC变换器中开关管的寄生电容、漏感和励磁电感引起的。
本实施例中,第一开关管Q H在t0时刻开通之后,DC/DC变换器的部分等效电路示意图如图6b所示,直流电源、第一开关管Q H、第一电容C r、漏感L r和励磁电感L m形成闭合回路。该闭合回路中,第一电容C r、漏感L r和励磁电感L m为充电状态,其中,第一电容C r两端的电压由其在t0时刻的电压值开始增大,回路中的电流方向为顺时针方向,励磁电感L m的电流I(L m)沿顺时针方向(即第一方向)增大。此时在正激变压器的副边绕组上产生了电流,使得变换器102可以向负载提供电流。可以理解,第一开关管Q H开通之后,第一寄生电容C H由于被短路,使得第一寄生电容C H两端的电压由t0时刻的电压减小至0,即第一开关管Q H两端的电压变为0,反之,第二开关管Q L两端的电压(即第二寄生电容两端的电压)增大至输入电压V in
在一种可能的实施方式中,控制器103可以根据来自DC/DC变换器102的第一信号确定是否控制第一开关管Q H开通。具体可以是,控制器103可以在接收到第一信号时,获取第一开关管Q H两端的电压,然后判断第一开关管Q H两端的电压是否满足第一电压阈值,当第一开关管Q H两端的电压为第一电压阈值时,控制器103开始向第一开关管Q H发送高电平脉冲,也就是说,第一开关管Q H两端的电压满足预设的第一电压阈值的时刻为前述图4中的t0时刻。示例性的,可以在变换器102的输出端耦合电压传感器,该电压传感器在检测到变换器102的输出电压低于第三电压阈值时, 生成第一信号,并将该第一信号发送至控制器103。
在步骤S2中,在励磁电感L m的电流沿第一方向增大第一时段之后,控制第一开关管关断,使得第二开关管两端的电压减小。
本实施例中,如图4所示,当励磁电感L m的电流沿顺时针方向从t0时刻增大至t1时刻时(即第一时段),控制器103在t1时刻控制第一开关管Q H关断,即在t0-t1时段内,第一开关管Q H为开通状态,第二开关管Q L保持关断状态不变。
本实施例中,第一开关管Q H在t1时刻关断之后,DC/DC变换器的部分等效电路示意图如图6c。图6c中,由于第一开关管Q H关断,第一寄生电容C H重新接入电路,第一寄生电容C L、第一电容C r、漏感L r和励磁电感L m组成一个闭合回路。该闭合回路中,由于电感电流不可突变,励磁电感L m的电流会继续保持顺时针电流方向,该闭合回路总体的电流方向为顺时针方向。励磁电感L m的电流流经第二寄生电容C L,即第二寄生电容C L的电流方向为由下到上的方向,第二寄生电容C L为放电状态,使得第二寄生电容C L两端的电压(也即第二开关管Q L两端的电压)由t1时刻的电压逐渐减小。
在步骤S3中,当第二开关管Q L两端的电压减小为第二电压阈值时,控制第二开关管Q L开通。
本实施例中,如图4所示的控制时序图,控制器103在确定第二开关管Q L两端的电压在t2时刻减小为第二电压阈值时,控制第二开关管Q L开通。DC/DC变换器102在t2时刻的等效电路示意图如图6d所示,第二开关管Q L、第一电容C r、漏感L r和励磁电感L m组成闭合回路。该闭合回路中,第一电容C r沿逆时针方向放电,励磁电感L m的电流沿逆时针方向增大。示例性的,当第二电压阈值设置为0时,即第二开关管Q L两端的电压在t2时刻减小至0,可以使第二开关管Q L实现零电压开通,减小第二开关管Q L的开通损耗。可以理解的,励磁电感L m在t1时刻的电流需满足第二开关管Q L两端的电压能够减小至0的条件。
在步骤S4中,在第二开关管Q L开通第二时段之后,控制第二开关管Q L关断,使得第一开关管Q H两端的电压减小。
本实施例中,如图4所示的控制时序图,当励磁电感L m的电流沿逆时针方向从t2时刻增大至t3时刻时(即增大的时段为第二时段),控制第二开关管Q L关断,即在t2-t3时段,第二开关管Q L为开通状态,第一开关管Q H为关断状态,其中,励磁电感L m在t3时刻的电流可以使得第一开关管Q H的电压从t3时刻开始降低。DC/DC变换器在t3时刻的部分等效电路示意图如图6e所示。图6e中,第二开关管Q L在t3时刻关断时,励磁电感L m的电流I m保持原有的逆时针电流方向不变,励磁电感L m的电流经过漏感L r和第一电容C r,第一寄生电容C H和第二寄生电容C L为充电状态,第一寄生电容C H的电流方向为从下到上,,第一寄生电容C H为放电状态,第一寄生电容C H两端的电压(也即第一开关管Q H两端的电压)逐渐减小,相反的,第二寄生电容C L的电流方向为从上到下,第二寄生电容C L为充电状态,第二寄生电容C L两端的电压(也即第二开关管Q L两端的电压)逐渐增大。
在步骤S5中,当第一开关管Q H两端的电压减小为第二电压阈值时,控制第一开关管Q H开通。
本实施例中,如图4所示的控制时序图,控制器103确定第一开关管Q H两端的电压在t4时刻减小至第二电压阈值时,控制第一开关管Q H开通,即在t3-t4时段内,第一开关管Q H为关断状态,第二开关管Q L也为关断状态。当励磁电感L m在t3时刻的电流需满足,励磁电感的电流在t3-t4时段流经第一寄生电容C H时,可以使第一寄生电容C H两端的电压可以在t4时刻降为0,从而使得第一开关管Q H在t4时刻可以实现零电压开通,减小第一开关管Q H的开通损耗。DC/DC变换器102在t4时刻的部分等效电路示意图如图6f所示,直流电源、第一电容C r、漏感L r和励磁电感L m组成闭合回路。图6f中,第一开关管Q H开通之后,第一电容C r为开始充电,在励磁电感L m上产生了由上到下的电流,使得流经励磁电感L m的电流沿逆时针方向逐渐减小,即在顺时针方向上增大。在t4-t5时段,正激变压器的副边绕组产生电流,变换器102可以给负载提供电流。
在步骤S6中,当励磁电感L m的电流沿第二方向减小为第一电流阈值时,控制第一开关管Q H关断。
本实施例中,如图4所示的控制时序图,控制器103在确定励磁电感L m的电流在t5时刻沿逆时针方向(即第二方向)减小为第一电流阈值时,控制第一开关管Q H关断。当励磁电感L m的电流在t5时刻减小为0时,第一开关管Q H即可在t5时刻实现零电流关断。
上述本申请的方法实施例,控制器103在t0时刻控制第一开关管Q H开通,使得励磁电感L m的电流可以在t1时刻沿顺时针方向增大,然后控制器103在t1时刻控制第一开关管Q H关断,励磁电感L m的电流流经第二寄生电容,使得第二开关管Q L两端的电压在在t2时刻可以减小至0,接着控制器103控制第二开关管Q L在t2时刻实现零电压开通,从而减小了第二开关管Q L的开通损耗。控制器103在t2时段控制第二开关管Q L开通时,第一电容C r放电,使得励磁电感L m的电流开始沿逆时针方向增大,然后控制器在t3时刻控制第二开关管Q L关断,励磁电感L m的电流流经第一寄生电容C H,使得第一开关管Q H两端的电压在t4时刻可以减小至0,控制器103在t4时刻控制第一开关管Q H实现零电压开通,从而减小了第一开关管Q H的开通损耗。控制器103在t4时刻控制第一开关管开通之后,励磁电感L m的电流会沿逆时针方向一直减小,最终在t5时刻减小为0时,控制器103在t5时刻控制第一开关管Q H关断,第一开关管Q H实现零电流关断,减小了第一开关管Q H的关断损耗,同时减缓了DC/DC变换器因开关管关断引起的振荡,改善了DC/DC变换器的EMC特性。其中,t0时刻开通第一开关管时,第一开关管两端的电压处于多个周期振荡电压中的最小值,因此第一开关管在t0时刻的开通损耗很小。
在实际的应用中,图4所示的控制周期首次开通的时长t0-t1和末次开通的时长t4-t5,可以通过先给定每两个时刻之间的时间长度的一个初值,然后以第一开关管在首次开通时实现零电压开通和第一开关管在控制周期最后时刻实现零电流关断为目的,按照时间步长调整该初值来确定。以图4所示的控制时序图为例,可以先控制第一开关管开通T1时段,即在t0-t1时段的时长为T1,并按照时间步长调整T1的值,使得第二开关管可以实现零电压开通,图4中t1-t2时段可以是第一开关管的截止时间。当第二开关管可以实现零电压开通时,记录下当前T1的值,这个时候也就可以确定出t0-t1时段和t0-t2时段的时长,t0-t2时段的时长即为T1和第一开关管的截止时间之和。同理,在确定出t0-t1时段的时长之后,可以按照同样的先给定初值再调整的方法确定 t4-t5时段的时长,使得励磁电感的电流在t5时刻为0,从而让第一开关管在t5时刻实现零电流关断。
可以理解,图4所示的脉冲控制时序图仅仅是本申请实施例提供的一种控制方式,在其他实施例中,例如图7和图8所示控制时序图,控制器103还可以在t1时刻之后,以t1-t5时段为一个周期,周期性控制第二开关管Q L和第一开关管Q H开通和关断,即控制器103周期性重复t1-t5时段的控制,使第二开关管Q L和第一开关管Q H的开通和关断呈现周期性的变化。需要说明的是,在图7和图8所示的控制时序中,第一开关管只在末次关断时实现零电流关断,即保证励磁电感的电流在末次关断第一开关管时为零,在此之前,第一开关管关断时,励磁电感的电流均不为零。在图7和图8的控制时序图中,每两个时刻之间的时间长度同样可以按照前述确定图4中各个时段时长的方法确定。
以图7所示的控制时序为例,先给定t0-t1时段的初值T1,t1-t2时段可以是第一开关管的截止时间,按照时间步长调整T1,记录下第二开关管实现零电压开通时的T1值,即可确定出t0-t2的时长;然后再给定t8-t9的初值,按照时间步长调整初值,使得励磁电感的电流在t9时刻为0,让第一开关管在t9时刻实现零电流关断。图8所示的控制时序图中控制周期的每个时段的时长可以参照图4和图7中确定时长的方法。
可以理解,图4、图7和图8仅仅是示出了本申请实施例所述控制器103对变换器102的一个控制周期,在实际应用中,可以根据实际需要按照图中的控制周期重复多次控制。
图9是本申请实施例提供的另一种DC/DC变换器的拓扑结构。图9所示的DC/DC变换器与图2所示的DC/DC变换器类似,同样为非对称半桥正激变换器,不同的是,图9所示的DC/DC变换器中的正激变压器的原边和第一电容并联在在第一开关管的两端。图9所示的DC/DC变换器的控制过程与前述的控制过程类似,区别在将前述的控制过程中第一开关管和第二开关管的位置互换,即图2所示的DC/DC变换器的控制器103控制图2所示的DC/DC变换器中第一开关管开通,修改为图9所示的DC/DC变换器的控制器控制图9所示的DC/DC变换器中第二开关管开通。图9所示的DC/DC变换器的控制器所实现的有益效果同前述控制器103的效果,此处不再赘述。
图10本申请实施例提供的一种电源设备。如图10所示,该电源设备包括DC/DC变换器102和控制器103,控制器103用于DC/DC变换器102的开关管的开断。其中,DC/DC变换器102可以是前述图2所示的DC/DC变换器拓扑结构,对应的,控制器 103可以执行前述图5所示的方法步骤来控制DC/DC变换器102。可以理解,DC/DC变换器也可以是前述图9所示的DC/DC变换器拓扑结构,控制器103控制DC/DC变换器102的方法步骤可以是将图5所示步骤中第一开关管和第二开关管调换位置后的步骤。
本申请实施例还提供一种电源设备,该电源设备包括存储器和处理器,存储器中存储有计算机指令,处理器执行该计算机指令时,实现前述图5所示的方法步骤,从而使得利用励磁电感的电流让DC/DC变换器中的开关管实现零电压开通,达到减小开通损耗的目的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器(programmable rom,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光 纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。

Claims (7)

  1. 一种DC/DC变换器的控制方法,其特征在于,所述DC/DC变换器包括开关支路、第一电容和正激变压器;所述开关支路与直流电源耦合,所述开关支路包括串联的第一开关管和所述第二开关管;所述正激变压器的原边包括漏感和励磁电感,所述正激变压器的原边通过所述第一电容并联在所述第二开关管的两端,所述正激变压器的副边耦合有直流负载;所述方法包括:
    当所述第一开关管两端的电压为第一电压阈值时,控制所述第一开关管开通,使得所述励磁电感的电流沿第一方向增大;
    在所述励磁电感的电流沿第一方向增大预设时段之后,控制所述第一开关管关断,使得所述第二开关管两端的电压减小;
    当所述第二开关管两端的电压减小为第二电压阈值时,控制所述第二开关管开通。
  2. 根据权利要求1所述的控制方法,其特征在于,所述方法还包括:
    当所述第二开关管两端的电压减小为第二电压阈值,按照预设周期控制所述第二开关管和所述第一开关管开通至少一次;
    在所述第一开关管在所述预设周期内最后一次开通之后,当所述励磁电感的电流沿第二方向减小为第一电流阈值时,控制所述第一开关管关断。
  3. 根据权利要求1或2所述的的控制方法,其特征在于,所述第一电压阈值为所述第一开关管在多个振荡周期中的最小电压值;其中,所述振荡周期为所述第一开关管和所述第二开关管关断时所述DC/DC变换器中谐振回路的振荡周期。
  4. 一种DC/DC变换器的控制器,其特征在于,所述控制器与所述DC/DC变换器连接;所述控制器用于:
    当所述第一开关管两端的电压为第一电压阈值时,控制所述第一开关管开通,使得所述励磁电感的电流沿第一方向增大;
    在所述励磁电感的电流沿第一方向增大预设时段之后,控制所述第一开关管关断,使得所述第二开关管两端的电压减小;
    当所述第二开关管两端的电压减小为第二电压阈值时,控制所述第二开关管开通。
  5. 根据权利要求4所述的控制器,其特征在于,所述控制器还用于:
    当所述第二开关管两端的电压减小为第二电压阈值,按照预设周期控制所述第二开关管和所述第一开关管开通至少一次;
    在所述第一开关管在所述预设周期内最后一次开通之后,当所述励磁电感的电流沿第 二方向减小为第一电流阈值时,控制所述第一开关管关断。
  6. 根据权利要求4或5所述的控制器,其特征在于,所述第一电压阈值为所述第一开关管在多个振荡周期中的最小电压值;其中,所述振荡周期为所述第一开关管和所述第二开关管关断时所述DC/DC变换器中谐振回路的振荡周期。
  7. 一种电源设备,其特征在于,所述电源设备包括DC/DC变换器和控制器,所述控制器与所述DC/DC变换器连接,用于实现权利要求1-3任一项所述的控制方法。
PCT/CN2022/077652 2021-07-13 2022-02-24 一种dc/dc变换器的控制方法及控制器 WO2023284302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110791796.7 2021-07-13
CN202110791796.7A CN113595400B (zh) 2021-07-13 2021-07-13 一种dc/dc变换器的控制方法及控制器

Publications (1)

Publication Number Publication Date
WO2023284302A1 true WO2023284302A1 (zh) 2023-01-19

Family

ID=78247244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077652 WO2023284302A1 (zh) 2021-07-13 2022-02-24 一种dc/dc变换器的控制方法及控制器

Country Status (2)

Country Link
CN (1) CN113595400B (zh)
WO (1) WO2023284302A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113014104B (zh) 2021-02-10 2022-06-14 华为数字能源技术有限公司 Dc/dc变换器的控制器及其控制系统
CN113595400B (zh) * 2021-07-13 2023-08-22 华为数字能源技术有限公司 一种dc/dc变换器的控制方法及控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664530A (zh) * 2012-04-27 2012-09-12 南京航空航天大学 软开关隔离型开关电容调节器
EP3528378A1 (en) * 2018-02-19 2019-08-21 OSRAM GmbH Electronic converter and related lighting system
CN110224612A (zh) * 2019-06-14 2019-09-10 广州金升阳科技有限公司 不对称半桥变换器及控制方法
CN113014104A (zh) * 2021-02-10 2021-06-22 华为技术有限公司 Dc/dc变换器的控制器及其控制系统
CN113595400A (zh) * 2021-07-13 2021-11-02 华为技术有限公司 一种dc/dc变换器的控制方法及控制器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101471606A (zh) * 2007-12-26 2009-07-01 深圳迈瑞生物医疗电子股份有限公司 Llc谐振变换器
US7948775B2 (en) * 2008-06-16 2011-05-24 Lu wei-chun Duty-cycle-controlled half-bridge resonant converter
US8174850B2 (en) * 2009-04-09 2012-05-08 Stmicroelectronics S.R.L. Method and circuit for avoiding hard switching in half bridge converters
US9143043B2 (en) * 2012-03-01 2015-09-22 Infineon Technologies Ag Multi-mode operation and control of a resonant converter
CN203617878U (zh) * 2013-07-04 2014-05-28 深圳市威纳源电子有限公司 一种固定导通时间的谐振软开关
CN104333240A (zh) * 2014-11-21 2015-02-04 小米科技有限责任公司 一种谐振整流装置、谐振整流控制方法及装置
JP5911553B1 (ja) * 2014-11-21 2016-04-27 三菱電機株式会社 直流変換装置
WO2017223038A1 (en) * 2016-06-20 2017-12-28 Ionel Jitaru Very high efficiency soft switching converter aka the adjud converter
IT201700092532A1 (it) * 2017-08-09 2019-02-09 St Microelectronics Srl Convertitore elettronico, e relativo procedimento di controllo, circuito di controllo e prodotto informatico
CN112865549B (zh) * 2021-04-12 2022-02-08 东南大学 一种原边调制的非对称半桥反激变换器的恒流控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664530A (zh) * 2012-04-27 2012-09-12 南京航空航天大学 软开关隔离型开关电容调节器
EP3528378A1 (en) * 2018-02-19 2019-08-21 OSRAM GmbH Electronic converter and related lighting system
CN110224612A (zh) * 2019-06-14 2019-09-10 广州金升阳科技有限公司 不对称半桥变换器及控制方法
CN113014104A (zh) * 2021-02-10 2021-06-22 华为技术有限公司 Dc/dc变换器的控制器及其控制系统
CN113595400A (zh) * 2021-07-13 2021-11-02 华为技术有限公司 一种dc/dc变换器的控制方法及控制器

Also Published As

Publication number Publication date
CN113595400A (zh) 2021-11-02
CN113595400B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
CN109245569B (zh) 反激式变换器及其控制电路
WO2023284302A1 (zh) 一种dc/dc变换器的控制方法及控制器
US10333418B2 (en) Control device and control method
JP5913336B2 (ja) 直列共振形dc/dcコンバータを制御する方法
US11682977B2 (en) Controller and control system for DC/DC converter
CN103812359A (zh) 一种交流-直流变换电路及其控制方法
CN103887986A (zh) 返驰式功率转换器的时间预测控制的控制电路
US11165360B2 (en) Self-adjusting current injection technology
CN114301297B (zh) 一种功率变换器、增大逆向增益范围的方法、装置、介质
CN112803780B (zh) 一种变换器及电源适配器
CN111555626A (zh) 一种有源钳位反激变换器的控制方法及其系统
CN202276537U (zh) 一种x射线高频高压发生器变换电路
WO2024060728A1 (zh) 双向功率变换装置及其控制方法、计算机设备及计算机可读存储介质
TW201541838A (zh) 返馳式主動箝位電源轉換器
US8508962B2 (en) Power conversion apparatus
TW202247588A (zh) 適用於寬範圍輸出電壓的變換器及其控制方法
CN117277748A (zh) 用于反激式开关电源导通波谷选取切换锁定的控制装置
CN203722491U (zh) 一种交流-直流变换电路和交流-直流变换器
WO2023226896A1 (zh) 电源模组的控制电路、电源模组及电子设备
CN114598169B (zh) 一种用于dcm模式下的同步整流buck电路的控制方法
WO2023020051A1 (zh) 谐振变换器、谐振变换器的控制方法及电源适配器
WO2023010233A1 (zh) 一种变换器及变换器的控制方法
US20240014733A1 (en) Method and apparatus for controlling totem-pole pfc circuit, and electronic device
CN210898946U (zh) 一种电容钳位型半桥三电平dc-dc变换器
US11843314B2 (en) PFC circuit with auxiliary switch tube and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22840948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE