WO2023282683A1 - 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2023282683A1
WO2023282683A1 PCT/KR2022/009908 KR2022009908W WO2023282683A1 WO 2023282683 A1 WO2023282683 A1 WO 2023282683A1 KR 2022009908 W KR2022009908 W KR 2022009908W WO 2023282683 A1 WO2023282683 A1 WO 2023282683A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
negative
material layer
weight
Prior art date
Application number
PCT/KR2022/009908
Other languages
English (en)
French (fr)
Inventor
전찬수
권요한
김영재
김태곤
박수진
이재욱
전서영
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202280008118.1A priority Critical patent/CN116745933A/zh
Priority to EP22838035.8A priority patent/EP4243123A1/en
Priority to JP2023537372A priority patent/JP2024500141A/ja
Publication of WO2023282683A1 publication Critical patent/WO2023282683A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to a negative electrode for a lithium secondary battery, a method for manufacturing the negative electrode for a lithium secondary battery, and a lithium secondary battery including the negative electrode.
  • a secondary battery is a representative example of an electrochemical device using such electrochemical energy, and its use area is gradually expanding.
  • lithium secondary batteries having high energy density and voltage, long cycle life, and low self-discharge rate have been commercialized and widely used.
  • an electrode for such a high-capacity lithium secondary battery research is being actively conducted on a method for manufacturing a high-density electrode having a higher energy density per unit volume.
  • a secondary battery is composed of an anode, a cathode, an electrolyte, and a separator.
  • the negative electrode includes a negative electrode active material for intercalating and deintercalating lithium ions from the positive electrode, and silicon-based particles having a high discharge capacity may be used as the negative electrode active material.
  • volume expansion itself such as a method of adjusting the driving potential, a method of additionally coating a thin film on the active material layer, and a method of controlling the particle diameter of the silicon-based compound
  • Various methods are being discussed, such as suppression methods or development of a binder that will control the volume expansion of the silicon-based compound to prevent the conductive path from being disconnected.
  • research is being conducted to supplement the lifespan characteristics of silicon-based negative electrodes by limiting the use ratio of silicon-based active materials used during initial charging and discharging through a method of prelithiation of the silicon-based active material layer and providing a reservoir role.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2009-080971
  • the present application can maximize capacity characteristics, which is the main purpose of using a silicon-based active material, and at the same time, it is possible to prevent electrode surface degradation during charging and discharging cycles, which is a conventional problem, and furthermore, by improving uniformity during pre-lithiation, capacity and As a result of research on a method capable of improving all life characteristics, it was confirmed that the above problem can be solved by adjusting the pre-lithiation ratio within a specific range.
  • the present subject matter relates to a negative electrode for a lithium secondary battery satisfying the range of Formula 1, a method for manufacturing a negative electrode for a lithium secondary battery, and a lithium secondary battery including the negative electrode.
  • An exemplary embodiment of the present specification is an anode current collector layer; a first negative active material layer provided on one side or both sides of the negative current collector layer; and a second negative electrode active material layer provided on a surface opposite to a surface of the first negative active material layer in contact with the negative electrode current collector layer, wherein the first negative electrode active material layer includes a first negative electrode active material.
  • the second negative active material layer includes a second negative active material layer composition including a second negative active material
  • the second negative active material is carbon-based It includes at least one mixture selected from the group consisting of an active material, a silicon-based active material, a metal-based active material capable of alloying with lithium, and a lithium-containing nitride, wherein the silicon-based active material is 1 part by weight or more and 100 parts by weight or less based on 100 parts by weight of the second negative active material
  • the second negative electrode active material layer provides a negative electrode for a lithium secondary battery that satisfies Formula 1 below.
  • A is the discharge capacity of the second negative electrode active material layer
  • B means the capacity of pre-lithiation lithium.
  • the first negative active material layer may be formed on a partial surface or the entire surface of the negative electrode current collector layer, and the second negative active material layer may be formed on a partial surface of the first negative electrode active material layer. Or it can be formed on the formation on the front side.
  • preparing a negative electrode current collector layer forming a first negative active material layer by coating a first negative active material layer composition on one or both surfaces of the negative current collector layer; and forming a second negative active material layer by coating a second negative active material layer composition on a surface opposite to the surface of the first negative active material layer in contact with the negative electrode current collector layer.
  • the second negative electrode active material includes at least one mixture selected from the group consisting of a carbon-based active material, a silicon-based active material, a metal-based active material capable of alloying with lithium, and a lithium-containing nitride, and the silicon-based active material includes 1 part by weight or more and 100 parts by weight or less based on 100 parts by weight of the second negative active material, and the second negative active material layer satisfies Formula 1.
  • the first negative active material layer may be formed on a partial surface or the entire surface of the negative electrode current collector layer, and the second negative active material layer may be formed on a partial surface of the first negative electrode active material layer. Or it can be formed on the formation on the front side.
  • the anode A negative electrode for a lithium secondary battery according to the present application; a separator provided between the anode and the cathode; And an electrolyte; it provides a lithium secondary battery comprising a.
  • an anode for a lithium secondary battery has a double-layer active material layer composed of a first anode active material layer and a second anode active material layer.
  • a negative electrode for a lithium secondary battery according to the present application has a double-layer active material layer having a specific composition and content as described above. can have the advantages of Furthermore, by including silicon-based or carbon-based active materials in the second negative electrode active material layer, surface deterioration of the electrode during charge and discharge cycles may be prevented, and uniformity during prelithiation may also be improved.
  • the negative electrode for a lithium secondary battery according to the present application is characterized in that the prelithiation ratio is adjusted within a specific range according to the discharge capacity of the second negative electrode active material layer composition. That is, in the negative electrode for a lithium secondary battery according to the present application, the lithium capacity provided by prelithiation compared to the discharge capacity of the second active material layer including the silicon-based active material is adjusted within the range of Equation 1 above. Accordingly, it has a first negative active material layer composition having high capacity and at the same time includes a second negative active material layer composition to solve lifespan characteristics, and limits the use ratio of silicon-based active material during initial charge and discharge and serves as a reservoir Thus, excellent effects can be obtained by optimizing capacity characteristics and life characteristics.
  • the negative electrode for a lithium secondary battery according to the present application has the advantages of an electrode in which a high content of Si particles is applied as a single-layer active material, and at the same time, the disadvantages of having it are surface degradation problems, uniformity problems during pre-lithiation, and life characteristics problems
  • the first negative electrode active material layer and the second negative electrode active material layer are characterized in that they are composed of double layers applied with a specific composition and a specific pre-lithiation ratio.
  • FIG. 1 is a diagram showing a laminated structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application.
  • FIG. 2 is a diagram showing RPT capacity retention rates according to Examples and Comparative Examples of the present application.
  • FIG. 3 is a diagram showing an increase rate of RPT resistance according to Examples and Comparative Examples of the present application.
  • FIG. 4 is a diagram showing a laminated structure of an anode for a lithium secondary battery according to an exemplary embodiment of the present application.
  • FIG. 5 is a flowchart illustrating a wet on dry process according to an exemplary embodiment of the present application.
  • FIG. 6 is a flowchart illustrating a wet on wet process according to an exemplary embodiment of the present application.
  • 'p to q' means a range of 'p or more and q or less'.
  • specific surface area is measured by the BET method, and is specifically calculated from the nitrogen gas adsorption amount under liquid nitrogen temperature (77K) using BELSORP-mino II of BEL Japan. That is, in the present application, the BET specific surface area may mean the specific surface area measured by the above measuring method.
  • Dn means a particle size distribution, and means a particle size at the n% point of the cumulative distribution of the number of particles according to the particle size. That is, D50 is the particle diameter (average particle diameter, central particle diameter) at the 50% point of the cumulative distribution of the number of particles according to the particle size, D90 is the particle size at the 90% point of the cumulative distribution of the number of particles according to the particle size, and D10 is the particle size according to the particle size It is the particle diameter at the 10% point of the particle number cumulative distribution. Meanwhile, the particle size distribution can be measured using a laser diffraction method.
  • a commercially available laser diffraction particle size measuring device e.g. Microtrac S3500
  • a commercially available laser diffraction particle size measuring device e.g. Microtrac S3500
  • a polymer includes a certain monomer as a monomer unit means that the monomer participates in a polymerization reaction and is included as a repeating unit in the polymer.
  • this is interpreted as the same as that the polymer includes a monomer as a monomer unit.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are measured using a commercially available monodisperse polystyrene polymer (standard sample) of various degrees of polymerization for molecular weight measurement as a standard material, and gel permeation chromatography (Gel Permeation It is the molecular weight in terms of polystyrene measured by chromatography; GPC).
  • molecular weight means a weight average molecular weight unless otherwise specified.
  • An exemplary embodiment of the present specification is an anode current collector layer; a first negative active material layer provided on one side or both sides of the negative current collector layer; and a second negative electrode active material layer provided on a surface opposite to a surface of the first negative active material layer in contact with the negative electrode current collector layer, wherein the first negative electrode active material layer includes a first negative electrode active material.
  • the second negative active material layer includes a second negative active material layer composition including a second negative active material
  • the second negative active material is carbon-based It includes at least one mixture selected from the group consisting of an active material, a silicon-based active material, a metal-based active material capable of alloying with lithium, and a lithium-containing nitride, wherein the silicon-based active material is 1 part by weight or more and 100 parts by weight or less based on 100 parts by weight of the second negative active material
  • the second negative electrode active material layer provides a negative electrode for a lithium secondary battery that satisfies Formula 1 below.
  • A is the discharge capacity of the second negative electrode active material layer
  • B means the capacity of pre-lithiation lithium.
  • a negative electrode for a lithium secondary battery according to the present application uses a second negative active material layer having a role of a buffer layer in order to properly use the first negative active material included in the first negative active material layer.
  • prelithiation can be performed without damaging the first negative electrode active material layer.
  • the second negative electrode active material layer of the present application may function as a buffer layer.
  • An electrode containing a Si active material has excellent capacitance characteristics compared to an electrode containing SiO or a carbon-based active material.
  • the surface of the negative electrode active material layer is deteriorated due to rapid reaction with Li ions during charging and discharging of the electrode including the Si active material. This also occurs during a prelithiation process in which lithium ions are previously included in the negative electrode active material layer.
  • the buffer layer is used to prevent direct contact between the Si-based electrode and lithium and to prevent surface deterioration. Therefore, the second negative electrode active material layer of the present invention has the same role and effect as the buffer layer in the pre-lithiation process.
  • first negative active material layer composition having high capacity and at the same time includes a second negative active material layer composition to solve lifespan characteristics, and limits the use ratio of silicon-based active material during initial charge and discharge and serves as a reservoir
  • second negative active material layer composition to solve lifespan characteristics, and limits the use ratio of silicon-based active material during initial charge and discharge and serves as a reservoir
  • FIG. 1 is a diagram showing a laminated structure of a negative electrode for a lithium secondary battery according to an exemplary embodiment of the present application.
  • the negative electrode 100 for a lithium secondary battery including the first negative active material layer 20 and the second negative active material layer 30 on one side of the negative current collector layer 30, FIG. It shows that the negative electrode active material layer is formed on one side, but may be included on both sides of the negative electrode current collector layer.
  • the first negative active material layer may be formed on the entire surface of the negative electrode current collector layer, and the second negative active material layer may be formed on the entire surface of the first negative active material layer. can be formed in formation.
  • the first negative active material layer 20 and the second negative active material layer 30 may be formed on both sides of the negative current collector layer 30 .
  • it may have an arrangement of 10>20>30>20>10, and additionally a negative electrode current collector layer such as 10>20>30>20, 10>20>30>10, 10>20>30>10>20, etc.
  • both sides of the anode current collector layer preferably have the same composition, and may specifically have a structure of 10>20>30>20>10.
  • the negative current collector layer a first negative active material layer provided on one side or both sides of the negative current collector layer; and a second negative active material layer provided on a surface opposite to a surface of the first negative active material layer in contact with the negative electrode current collector layer.
  • the negative current collector layer generally has a thickness of 1 ⁇ m to 100 ⁇ m.
  • Such an anode current collector layer is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • fine irregularities may be formed on the surface to enhance the bonding strength of the negative active material, and may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and nonwoven fabrics.
  • the thickness of the negative current collector layer may be 1 ⁇ m or more and 100 ⁇ m or less.
  • the thickness of the first negative active material layer is 10 ⁇ m or more and 200 ⁇ m or less
  • the thickness of the second negative active material layer is 10 ⁇ m or more and 100 ⁇ m or less.
  • the thickness may be variously modified depending on the type and purpose of the negative electrode used, but is not limited thereto.
  • the weight loading amount (a) of the first negative electrode active material layer composition satisfies 1.5 times or more of the weight loading amount (b) of the second negative electrode active material layer composition for a lithium secondary battery. provide a cathode.
  • the weight loading amount (a) of the first negative active material layer composition is 1.5 times or more and 10 times or less, preferably 2.2 times the weight loading amount (b) of the second negative active material layer composition. A range of more than 6 times or less can be satisfied.
  • the weight loading amount may mean the weight of the composition for forming the negative active material layer, and specifically, the weight loading amount of the composition may have the same meaning as the loading amount of the slurry containing the composition.
  • the weight loading amount (a) of the first negative active material layer composition is 2 mg/cm 2 or more and 5 mg/cm 2 or less, preferably 2.2 mg/cm 2 or more and 4 mg/cm 2 or less. range can be satisfied.
  • the weight loading amount (b) of the second negative electrode active material layer composition is 0.5 mg/cm 2 or more and 1.5 mg/cm 2 or less, preferably 0.8 mg/cm 2 or more and 1.3 mg/cm A range of 2 or less may be satisfied.
  • the ratio of active materials included in the first negative active material layer and the second negative active material layer may be adjusted. That is, capacitance characteristics may be optimized by adjusting the amount of the first negative active material included in the first negative active material layer, and capacity characteristics may be improved by adjusting the amount of the second negative active material included in the second negative active material layer. It does not degrade and suppresses the surface reaction of the negative electrode, so that it can have the characteristics of enhancing lifespan characteristics.
  • the first negative electrode active material may particularly use pure silicon (Si) particles.
  • the first anode active material used in the first anode active material layer of the present invention accompanies a very complex crystal change in a reaction of electrochemically absorbing, storing, and releasing lithium atoms.
  • the composition and crystal structure of the silicon particles are Si (crystal structure: Fd3m), LiSi (crystal structure: I41/a), Li 2 Si (crystal structure: C2 /m), Li 7 Si 2 (Pbam), Li 22 Si 5 (F23), etc.
  • the volume of the silicon particle expands about 4 times according to the change of the complex crystal structure.
  • the silicon particles are destroyed, and as the bond between the lithium atoms and the silicon particles is formed, the insertion site of the lithium atoms initially possessed by the silicon particles is damaged, and the cycle life may be significantly reduced. .
  • the pure silicon particles are included in a high content, the capacity characteristics are excellent, but the lifetime reduction characteristics due to the surface non-uniform reaction occur accordingly. Accordingly, the above problem was solved by including the second negative electrode active material layer according to the present invention in a specific weight loading amount.
  • the average particle diameter (D50) of the first negative electrode active material of the present invention may be 3 ⁇ m to 10 ⁇ m, specifically 4 ⁇ m to 8 ⁇ m, and more specifically 5 ⁇ m to 7 ⁇ m.
  • the average particle diameter is within the above range, the viscosity of the negative electrode slurry is formed within an appropriate range, including the specific surface area of the particles within a suitable range. Accordingly, the dispersion of the particles constituting the negative electrode slurry becomes smooth.
  • the size of the first negative electrode active material has a value greater than or equal to the lower limit
  • the contact area between the silicon particles and the conductive material is excellent due to the composite made of the conductive material and the binder in the negative electrode slurry, so that the conductive network is likely to continue. This increases the capacity retention rate.
  • the average particle diameter satisfies the above range, excessively large silicon particles are excluded to form a smooth surface of the negative electrode, thereby preventing current density non-uniformity during charging and discharging.
  • the first negative electrode active material generally has a characteristic BET surface area.
  • the BET surface area of the first negative electrode active material is preferably 0.01 m 2 /g to 150.0 m 2 /g, more preferably 0.1 m 2 /g to 100.0 m 2 /g, particularly preferably 0.2 m 2 /g to 80.0 m 2 /g. m 2 /g, most preferably from 0.2 m 2 /g to 18.0 m 2 /g.
  • the BET surface area is measured according to DIN 66131 (using nitrogen).
  • the first negative active material may exist in a crystalline or amorphous form, for example, and is preferably not porous.
  • the silicon particles are preferably spherical or fragment-shaped particles.
  • the silicone particles may also have a fibrous structure or be present in the form of a silicone-comprising film or coating.
  • the first negative electrode active material may have a non-spherical shape and its sphericity is, for example, 0.9 or less, for example, 0.7 to 0.9, for example 0.8 to 0.9, for example 0.85 to 0.9.
  • the circularity (circularity) is determined by the following formula A-1, A is an area, P is a boundary line.
  • the first negative active material provides a negative electrode for a lithium secondary battery in which 60 parts by weight or more based on 100 parts by weight of the first negative active material layer composition.
  • the first negative active material may include 60 parts by weight or more, preferably 65 parts by weight or more, and more preferably 70 parts by weight or more based on 100 parts by weight of the first negative active material layer composition. And, it may include 95 parts by weight or less, preferably 90 parts by weight or less, and more preferably 80 parts by weight or less.
  • the second negative active material layer described later is used together, so that the capacity performance of the entire negative electrode is not reduced and charging and discharging are performed.
  • the problem of surface deterioration in lithiation, the problem of uniformity during pre-lithiation, and the problem of life characteristics were solved.
  • the first negative active material layer composition may include a first negative electrode conductive material; And it may further include one or more selected from the group consisting of a first negative electrode binder.
  • first negative electrode conductive material and the first negative electrode binder included in the first negative active material layer composition those used in the art may be used without limitation.
  • the first negative electrode conductive material may be a material that can be generally used in the art without limitation, and specifically, a point-shaped conductive material; planar conductive material; And it may include one or more selected from the group consisting of a linear conductive material.
  • the point-shaped conductive material may be used to improve conductivity of the negative electrode, and has conductivity without causing chemical change, and means a conductive material having a point-shaped or spherical shape.
  • the point-shaped conductive material is natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, channel black, farnes black, lamp black, thermal black, conductive fiber, fluorocarbon, aluminum powder, nickel powder, zinc oxide, It may be at least one selected from the group consisting of potassium titanate, titanium oxide, and polyphenylene derivatives, and may preferably include carbon black in terms of high conductivity and excellent dispersibility.
  • the point-shaped conductive material may have a BET specific surface area of 40 m 2 /g or more and 70 m 2 /g or less, preferably 45 m 2 /g or more and 65 m 2 /g or less, more preferably 50 m 2 /g or less. /g or more and 60 m 2 /g or less.
  • the particle diameter of the dotted conductive material may be 10 nm to 100 nm, preferably 20 nm to 90 nm, and more preferably 20 nm to 60 nm.
  • the first negative electrode conductive material may include a planar conductive material.
  • the planar conductive material is a plate-shaped conductive material or a bulk type conductive material that can improve conductivity by increasing surface contact between silicon particles in the negative electrode and at the same time suppress the disconnection of the conductive path due to volume expansion.
  • the planar conductive material may include at least one selected from the group consisting of plate-like graphite, graphene, graphene oxide, and graphite flakes, and preferably may be plate-like graphite.
  • the average particle diameter (D50) of the planar conductive material may be 2 ⁇ m to 7 ⁇ m, specifically 3 ⁇ m to 6 ⁇ m, and more specifically 4 ⁇ m to 5 ⁇ m. .
  • D50 average particle diameter
  • the planar conductive material provides a negative electrode composition in which D10 is 0.5 ⁇ m or more and 1.5 ⁇ m or less, D50 is 2.5 ⁇ m or more and 3.5 ⁇ m or less, and D90 is 7.0 ⁇ m or more and 15.0 ⁇ m or less.
  • the planar conductive material is a high specific surface area planar conductive material having a high BET specific surface area; Alternatively, a planar conductive material having a low specific surface area may be used.
  • the planar conductive material includes a high specific surface area planar conductive material;
  • a planar conductive material with a low specific surface area can be used without limitation, but in particular, the planar conductive material according to the present application can be affected to some extent in the electrode performance by the dispersion effect, so that a planar conductive material with a low specific surface area that does not cause a problem in dispersion is used. may be particularly desirable.
  • the planar conductive material may have a BET specific surface area of 5 m 2 /g or more.
  • the planar conductive material may have a BET specific surface area of 5 m 2 /g or more and 500 m 2 /g or less, preferably 5 m 2 /g or more and 300 m 2 /g or less, more preferably 5 m 2 /g or more. g or more and 250 m 2 /g or less.
  • the planar conductive material is a high specific surface area planar conductive material, and the BET specific surface area is 50 m 2 /g or more and 500 m 2 /g or less, preferably 80 m 2 /g or more and 300 m 2 /g or less, more preferably Preferably, a range of 100 m 2 /g or more and 300 m 2 /g or less may be satisfied.
  • the planar conductive material is a planar conductive material with a low specific surface area, and the BET specific surface area is 5 m 2 /g or more and 40 m 2 /g or less, preferably 5 m 2 /g or more and 30 m 2 /g or less, more preferably Preferably, a range of 5 m 2 /g or more and 25 m 2 /g or less may be satisfied.
  • Other conductive materials may include linear conductive materials such as carbon nanotubes.
  • the carbon nanotubes may be bundled carbon nanotubes.
  • the bundled carbon nanotubes may include a plurality of carbon nanotube units.
  • the term 'bundle type' herein means, unless otherwise specified, a bundle in which a plurality of carbon nanotube units are arranged side by side or entangled in substantially the same orientation with axes in the longitudinal direction of the carbon nanotube units. It refers to a secondary shape in the form of a bundle or rope.
  • the carbon nanotube unit has a graphite sheet having a cylindrical shape with a nano-sized diameter and an sp2 bonding structure.
  • the characteristics of a conductor or a semiconductor may be exhibited according to the angle and structure of the graphite surface being rolled.
  • the bundled carbon nanotubes can be uniformly dispersed during manufacturing of the negative electrode, and the conductivity of the negative electrode can be improved by smoothly forming a conductive network in the negative electrode.
  • the linear conductive material may include single-walled carbon nanotubes; Alternatively, multi-walled carbon nanotubes may be used.
  • the single-walled carbon nanotube is a material in which carbon atoms arranged in a hexagonal shape form a tube, and exhibits insulator, conductor, or semiconductor properties depending on its unique chirality, and the carbon atoms are connected by strong covalent bonds. It has tensile strength approximately 100 times higher than that of steel, excellent flexibility and elasticity, and chemically stable properties.
  • the average diameter of the single-walled carbon nanotubes is 0.5 nm to 15 nm. According to one embodiment of the present invention, the average diameter of the single-walled carbon nanotubes may be 1 nm to 10 nm, 1 nm to 5 nm, or 1 nm to 2 nm.
  • the single-walled carbon or furnace tubes may be aggregated and present in an entangled state (aggregate). Accordingly, the average diameter is determined by determining the diameter of any entangled single-walled carbon nanotube aggregate extracted from the conductive material dispersion by SEM or TEM, and then determining the diameter of the single-walled carbon nanotube constituting the aggregate. It can be derived by dividing by the number of
  • the BET specific surface area of the single-walled carbon nanotubes may be 500 m 2 /g to 1,500 m 2 /g, or 900 m 2 /g to 1,200 m 2 /g, and specifically 250 m 2 /g to 330 m 2 It can be /g.
  • the BET specific surface area may be measured through a nitrogen adsorption BET method.
  • An aspect ratio of the single-walled carbon nanotubes may be 50 to 20,000, or a length of the single-walled carbon nanotubes may be 5 to 100 ⁇ m, or 5 to 50 ⁇ m.
  • the aspect ratio or length satisfies this range, since the specific surface area is high, the single-walled carbon nanotubes may be adsorbed to the active material particles with strong attraction in the negative electrode. Accordingly, the conductive network may be smoothly maintained even when the volume of the negative electrode active material expands.
  • the aspect ratio can be confirmed by obtaining an average of the aspect ratios of 15 single-wall carbon nanotubes having a large aspect ratio and 15 single-wall carbon nanotubes having a small aspect ratio when observing the single-wall carbon nanotube powder through an SEM.
  • single-walled carbon nanotubes are advantageous in that an electrical network can be constructed using only a small amount because they have a large aspect ratio, a long length, and a large volume.
  • the first negative electrode conductive material may satisfy 10 parts by weight or more and 40 parts by weight or less based on 100 parts by weight of the first negative electrode active material layer composition.
  • the first negative electrode conductive material is 10 parts by weight or more and 40 parts by weight or less, preferably 10 parts by weight or more and 30 parts by weight or less, more preferably based on 100 parts by weight of the first negative electrode active material layer composition. It may include 15 parts by weight or more and 25 parts by weight or less.
  • the first negative electrode conductive material is a dotted conductive material; planar conductive material; and a linear conductive material, wherein the dotted conductive material:planar conductive material:linear conductive material may satisfy a ratio of 1:1:0.01 to 1:1:1.
  • the dotted conductive material is 1 part by weight or more and 60 parts by weight or less, preferably 5 parts by weight or more and 50 parts by weight or less, more preferably 10 parts by weight based on 100 parts by weight of the first negative electrode conductive material. Part or more and 50 parts by weight or less may be satisfied.
  • the planar conductive material is 1 part by weight or more and 60 parts by weight or less, preferably 5 parts by weight or more and 50 parts by weight or less, more preferably 10 parts by weight based on 100 parts by weight of the first negative electrode conductive material. Part or more and 50 parts by weight or less may be satisfied.
  • the linear conductive material is 0.01 parts by weight or more and 10 parts by weight or less, preferably 0.05 parts by weight or more and 8 parts by weight or less, more preferably 0.1 parts by weight based on 100 parts by weight of the first negative electrode conductive material. A range of 5 parts by weight or more and 5 parts by weight or less may be satisfied.
  • the first negative electrode conductive material is a linear conductive material; And it may include a planar conductive material.
  • the first negative electrode conductive material includes a linear conductive material and a planar conductive material, and the ratio of the linear conductive material: planar conductive material may satisfy 0.01:1 to 0.1:1.
  • the first negative electrode conductive material includes a point-like conductive material and a planar conductive material, and 45 to 60 parts by weight of the dot-like conductive material based on 100 parts by weight of the first negative electrode conductive material; And it provides a negative electrode composition comprising 40 to 55 parts by weight of the planar conductive material.
  • the first negative electrode conductive material includes a point-like conductive material and a planar conductive material, and 45 to 60 parts by weight of the point-like conductive material based on 100 parts by weight of the first negative electrode conductive material, preferably 47 to 58 parts by weight parts by weight, more preferably 50 to 55 parts by weight.
  • the first negative electrode conductive material includes a point-like conductive material and a planar conductive material, and 40 to 55 parts by weight of the planar conductive material based on 100 parts by weight of the first negative electrode conductive material, preferably 42 to 53 parts by weight parts by weight, more preferably 45 to 50 parts by weight.
  • the ratio of the dot-like conductive material: the planar conductive material may satisfy 1:1.
  • the first negative electrode conductive material satisfies the above composition and ratio, it does not significantly affect the lifespan characteristics of an existing lithium secondary battery, and the number of points available for charging and discharging increases, resulting in a high C-rate. has excellent output characteristics.
  • the first negative electrode conductive material according to the present application has a completely different configuration from the conductive material applied to the positive electrode. That is, in the case of the first negative electrode conductive material according to the present application, it serves to hold the contact between silicon-based active materials whose volume expansion of the electrode is very large due to charging and discharging. As a role of imparting some conductivity, its configuration and role are completely different from those of the negative electrode conductive material of the present invention.
  • the first negative electrode conductive material according to the present application is applied to a silicon-based active material and has a completely different configuration from that of a conductive material applied to a graphite-based active material. That is, the conductive material used in the electrode having the graphite-based active material simply has smaller particles than the active material, so it has characteristics of improving output characteristics and imparting some conductivity, and as in the present invention, the first negative electrode conductive material applied together with the silicon-based active material. are completely different in composition and role.
  • the first negative electrode binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidenefluoride, polyacrylonitrile ), polymethylmethacrylate, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid , ethylene-propylene-diene monomer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, polyacrylic acid (polyacrylic acid), and a group consisting of materials in which hydrogen is substituted with Li, Na or Ca, etc. It may include at least one selected from, and may also include various copolymers thereof.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene
  • the first anode binder serves to hold the first anode active material and the first anode conductive material in order to prevent distortion and structural deformation of the anode structure in volume expansion and relaxation of the first anode active material.
  • all general binders can be applied, specifically, a water-based binder can be used, and more specifically, a PAM-based binder can be used.
  • the first negative electrode binder is 30 parts by weight or less, preferably 25 parts by weight or less, more preferably 20 parts by weight based on 100 parts by weight of the first negative active material layer composition. It may include parts by weight or less, and may include 5 parts by weight or more and 10 parts by weight or more.
  • the point-type conductive material has hydrophobicity and has excellent bonding strength with the conductive material/binder. have characteristics.
  • the second negative electrode active material includes at least one mixture selected from the group consisting of a carbon-based active material, a silicon-based active material, a metal-based active material capable of alloying with lithium, and a lithium-containing nitride, and the silicon-based active material is Based on 100 parts by weight of the second negative electrode active material, it may be 1 part by weight or more and 100 parts by weight or less.
  • the second negative electrode active material includes a mixture of one or more and three or less selected from the group consisting of a carbon-based active material, a silicon-based active material, a metal-based active material capable of alloying with lithium, and a lithium-containing nitride, wherein the The silicon-based active material may be 1 part by weight or more and 100 parts by weight or less based on 100 parts by weight of the second negative electrode active material.
  • the second negative electrode active material may include a carbon-based active material and a silicon-based active material.
  • the second negative electrode active material includes a silicon-based active material and a carbon-based active material, and the lithium secondary including 1 part by weight or more and 95 parts by weight or less of the silicon-based active material based on 100 parts by weight of the second negative electrode active material.
  • a negative electrode for a battery is provided.
  • the silicon-based active material included in the second negative electrode active material may include at least one selected from the group consisting of SiOx (0 ⁇ x ⁇ 2), SiC, and a Si alloy.
  • the silicon-based active material included in the second negative electrode active material includes at least one selected from the group consisting of SiOx (0 ⁇ x ⁇ 2), SiC, and a Si alloy, and the second negative electrode active material 1 part by weight or more of SiOx (0 ⁇ x ⁇ 2) based on 100 parts by weight of the active material may be included.
  • the silicon-based active material included in the second negative active material includes at least one selected from the group consisting of SiOx (0 ⁇ x ⁇ 2), SiC, and a Si alloy, and the second negative active material 1 part by weight or more, 10 parts by weight or more, and 99 parts by weight or less of SiOx (0 ⁇ x ⁇ 2) based on 100 parts by weight may be included.
  • the silicon-based active material included in the second negative electrode active material may include SiOx (0 ⁇ x ⁇ 2).
  • the silicon-based active material included in the second negative electrode active material may include SiC.
  • the negative electrode for a lithium secondary battery according to the present application includes the second negative active material in the second negative active material layer as described above. Accordingly, the above-described first anode active material maintains high capacity and high density, and at the same time, the second anode active material serves as a buffer layer, and the problem of surface deterioration during charging and discharging, the problem of uniformity and lifespan during pre-lithiation It has characteristics that can solve the problem of characteristics.
  • representative examples of the carbon-based active material include natural graphite, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotube, fullerene, or activated carbon, If it is commonly used for carbon materials for lithium secondary batteries, it may be used without limitation, and may be specifically processed into a spherical or dotted shape.
  • the carbon-based active material includes graphite
  • the graphite includes artificial graphite and natural graphite
  • the weight ratio of the artificial graphite and natural graphite is 5: 5 to 9.5: 0.5
  • a negative electrode for a lithium secondary battery is provided.
  • Artificial graphite according to an embodiment of the present invention may be in the form of primary particles or may be in the form of secondary particles in which a plurality of the primary particles are aggregated.
  • initial particle refers to the original particle when a different type of particle is formed from certain particles, and a plurality of primary particles are aggregated, combined, or assembled to form secondary particles. can form
  • second paricles used in the present invention refers to physically distinguishable large particles formed by aggregating, combining, or assembling individual primary particles.
  • the artificial graphite of the primary particles may be prepared by heat-treating at least one selected from the group consisting of needle cokes, mosaic cokes, and coal tar pitch.
  • the artificial graphite is generally prepared by carbonizing raw materials such as coal tar, coal tar pitch, and petroleum-based heavy oil at a temperature of 2,500 ° C or higher, and after such graphitization, particle size adjustment such as pulverization and secondary particle formation is performed. can be used as an anode active material.
  • particle size adjustment such as pulverization and secondary particle formation is performed.
  • crystals are randomly distributed within the particles, and have a slightly pointed shape with a lower degree of sphericity than natural graphite.
  • the artificial graphite used in one embodiment of the present invention is MCMB (mesophase carbon microbeads), MPCF (mesophase pitch-based carbon fiber), which are commercially used, artificial graphite graphitized in block form, and artificial graphite graphitized in powder form. There may be graphite and the like.
  • the artificial graphite may have a sphericity of 0.91 or less, or 0.6 to 0.91, or 0.7 to 0.9.
  • the artificial graphite may have a particle diameter of 5 ⁇ m to 30 ⁇ m, preferably 10 ⁇ m to 25 ⁇ m.
  • the artificial graphite primary particle may have a D50 of 6 ⁇ m to 15 ⁇ m, 6 ⁇ m to 10 ⁇ m, or 6 ⁇ m to 9 ⁇ m.
  • the primary particles may be formed to a degree of high graphitization, and the orientation index of the negative electrode active material particles may be appropriately secured to improve rapid charging performance.
  • the artificial graphite secondary particles may be formed by granulating primary particles. That is, the secondary particles may be a structure formed by aggregating the primary particles through a granulation process.
  • the secondary particles may include a carbonaceous matrix that aggregates the primary particles.
  • the carbonaceous matrix may include at least one of soft carbon and graphite.
  • the soft carbon may be formed by heat-treating pitch.
  • the carbonaceous matrix may be included in the secondary particle in an amount of 8% to 16% by weight, specifically 9% to 12% by weight. This range is less than the content of the carbonaceous matrix used in conventional artificial graphite secondary particles. This is because the particle size of the primary particles in the secondary particles is controlled, so that structurally stable secondary particles can be produced even if the content of the carbonaceous matrix required for granulation is small, and the amount of primary particles constituting the secondary particles can be uniform.
  • a carbon coating layer may be included on the surface of the artificial graphite secondary particle, and the carbon coating layer may include at least one of amorphous carbon and crystalline carbon.
  • the crystalline carbon may further improve conductivity of the anode active material.
  • the crystalline carbon may include at least one selected from the group consisting of florene and graphene.
  • the amorphous carbon can properly maintain the strength of the coating layer and suppress expansion of the natural graphite.
  • the amorphous carbon may be a carbon-based material formed by using at least one carbide selected from the group consisting of tar, pitch, and other organic materials, or a hydrocarbon as a source of chemical vapor deposition.
  • the other organic carbide may be an organic carbide selected from carbides of sucrose, glucose, galactose, fructose, lactose, mannose, ribose, aldohexose or ketohexose, and combinations thereof.
  • the artificial graphite secondary particle may have a D50 of 10 ⁇ m to 25 ⁇ m, specifically 12 ⁇ m to 22 ⁇ m, and more specifically 13 ⁇ m to 20 ⁇ m. When the above range is satisfied, the secondary particles of artificial graphite can be evenly dispersed in the slurry, and the charging performance of the battery can be improved.
  • the tap density of the artificial graphite secondary particles may be 0.85 g/cc to 1.30 g/cc, specifically 0.90 g/cc to 1.10 g/cc, and more specifically 0.90 g/cc to 1.07 g/cc. can be When the above range is satisfied, it means that since the artificial graphite secondary particles can be smoothly packed in the negative electrode, the negative electrode adhesion can be improved.
  • the natural graphite may be in the form of a plate-shaped aggregate before being generally processed, and the plate-shaped particles are spherical particles having a smooth surface through post-processing such as particle grinding and reassembly in order to be used as an active material for electrode manufacturing. It can be made into a form.
  • Natural graphite used in one embodiment of the present invention may have a sphericity greater than 0.91 and less than or equal to 0.97, or 0.93 to 0.97, or 0.94 to 0.96.
  • the natural graphite may have a particle size of 5 ⁇ m to 30 ⁇ m or 10 ⁇ m to 25 ⁇ m.
  • the weight ratio of the artificial graphite and the natural graphite is 5:5 to 9.5:0.5, or 5:5 to 9.3:0.7, or 5:5 to 9:1, or 6:4 to 9 : can be 1.
  • the weight ratio of the artificial graphite and the natural graphite satisfies this range, more excellent output may be exhibited, and life and rapid charging performance may be advantageous.
  • the planar conductive material used as the negative electrode conductive material described above has a different structure and role from the carbon-based active material generally used as the negative electrode active material.
  • the carbon-based active material used as the negative electrode active material may be artificial graphite or natural graphite, and refers to a material processed into a spherical or dotted shape to facilitate storage and release of lithium ions.
  • the planar conductive material used as the negative electrode conductive material is a material having a planar or plate-shaped shape, and may be expressed as plate-shaped graphite. That is, as a material included to maintain a conductive path in the negative active material layer, it means a material used to secure a conductive path in a planar shape inside the negative active material layer, rather than playing a role in storing and releasing lithium.
  • plate-like graphite is used as a conductive material means that it is processed into a planar or plate-like shape and used as a material that secures a conductive path rather than a role of storing or releasing lithium.
  • the negative active material included together has high capacity characteristics for storing and releasing lithium, and serves to store and release all lithium ions transferred from the positive electrode.
  • a carbon-based active material as an active material means that it is processed into a point shape or sphere and used as a material that stores or releases lithium.
  • artificial graphite or natural graphite which is a carbon-based active material, may satisfy a BET specific surface area of 0.1 m 2 /g or more and 4.5 m 2 /g or less.
  • the plate-like graphite which is a planar conductive material, may have a planar BET specific surface area of 5 m 2 /g or more.
  • the metal-based active material include Al, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti, Sb, Ga, Mn, Fe, Co, Ni, Cu, Sr, and Ba. It may be a compound containing any one or two or more metal elements selected from the group consisting of. These metal compounds can be used in any form, such as simple elements, alloys, oxides (TiO 2 , SnO 2 , etc.), nitrides, sulfides, borides, and alloys with lithium. It can be.
  • the second negative electrode active material provides a negative electrode for a lithium secondary battery comprising 60 parts by weight or more based on 100 parts by weight of the second negative active material layer composition.
  • the second negative active material may be 60 parts by weight or more, 100 parts by weight or less, and 99 parts by weight or less based on 100 parts by weight of the second negative active material layer composition.
  • the second negative active material layer composition according to the present application uses the second negative active material in the above range, which has lower capacity characteristics than the first negative active material but has less particle breakage due to charging and discharging, and does not degrade the capacity performance of the negative electrode. By suppressing the surface reaction, it is possible to have the characteristic of enhancing lifespan characteristics.
  • the second negative electrode active material layer composition includes a second negative electrode conductive material; And it provides a negative electrode for a lithium secondary battery further comprising at least one selected from the group consisting of a second negative electrode binder.
  • the same contents as those of the first negative electrode conductive material and the first negative electrode binder may be applied to the second negative electrode conductive material and the second negative electrode binder.
  • the second negative electrode active material layer provides a negative electrode for a lithium secondary battery that satisfies Formula 1 below.
  • A is the discharge capacity of the second negative electrode active material layer
  • B means the capacity of pre-lithiation lithium.
  • Equation 1 satisfies a range of 0.5 ⁇ B/A ⁇ 2, preferably a ratio of 0.7 ⁇ B/A ⁇ 1.8, more preferably 0.9 ⁇ B/A ⁇ 1.6. can be satisfied.
  • the values of the upper and lower limits may be applied in combination. Specifically, values of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0 may be used in various combinations. For example, 0.6 ⁇ B/A ⁇ 1.9, 0.8 ⁇ B/A ⁇ 1.7, 1.0 ⁇ B/A ⁇ 1.5, 1.1 ⁇ B/A ⁇ 1.4, and 1.2 ⁇ B/A ⁇ 1.3.
  • the negative electrode for a lithium secondary battery has two layers of negative electrode active material.
  • the negative electrode according to the present application is subjected to a pre-lithiation process in order to limit the use ratio of the silicon-based active material during initial charging and discharging, to prevent deterioration of the electrode surface, and to provide a reservoir role.
  • it is characterized in that it has excellent effects by optimizing capacity characteristics and lifetime characteristics by satisfying the prelithiation ratio of Equation 1 based on the discharge capacity of silicon included in the second negative active material layer composition.
  • the maximum charging depth for realizing Si's lifetime performance is usually ⁇ 100mV, and the crystalline phase of LixSiy is formed in the range below this range. At this time, if the range of x/y values is 3.75 or more, a crystalline phase is created. Therefore, when the range of Equation 1 is exceeded, the cycle proceeds while Li is deeply charged to the first anode active material of the first anode active material layer, so the volume of Si particles increases and the effect of pulverization is greater, so fading occurs quickly. In addition, when it is less than the range of Equation 1, it is difficult to expect an increase in life characteristics, which is an effect due to prelithiation.
  • the negative electrode for a lithium secondary battery according to the present application has a double layer structure by coating the second negative electrode active material layer as a buffer layer of the first negative electrode active material layer. It is characterized in that the maximization of life characteristics was achieved by satisfying the range of Equation 1 while minimizing the
  • the negative electrode for a lithium secondary battery may be pre-lithiated.
  • the negative electrode for a lithium secondary battery according to the present application is composed of a double layer, and in particular, the second negative electrode active material layer having a specific loading amount serves as a buffer layer during pre-lithiation, so that uniform lithiaiton can occur in the depth direction of the electrode during cycle charging and discharging. It also has a role to help.
  • preparing a negative current collector layer forming a first negative active material layer by coating a first negative active material layer composition on one or both surfaces of the negative current collector layer; and forming a second negative active material layer by coating a second negative active material layer composition on a surface opposite to the surface of the first negative active material layer in contact with the negative electrode current collector layer.
  • the second negative electrode active material includes at least one mixture selected from the group consisting of a carbon-based active material, a silicon-based active material, a metal-based active material capable of alloying with lithium, and a lithium-containing nitride, and the silicon-based active material includes 1 part by weight or more and 99 parts by weight or less based on 100 parts by weight of the second negative electrode active material, and the second negative electrode active material layer satisfies Formula 1.
  • the above-described contents may be applied to the composition and content included in each step.
  • a step of forming a first negative electrode active material layer by applying a first negative active material layer composition to one or both surfaces of the negative electrode current collector layer is provided.
  • the above step is a step of forming an active material layer on the negative electrode current collector layer, and may mean a step of forming the active material layer on a surface (lower layer) in contact with the negative electrode current collector layer in a double layer structure.
  • applying the first negative active material layer composition may include the first negative active material layer composition; and applying and drying a first negative electrode slurry containing a negative electrode slurry solvent.
  • the solid content of the first negative electrode slurry may satisfy a range of 10% to 40%.
  • the forming of the first negative electrode active material layer may include mixing the first negative electrode slurry; and coating the mixed first negative electrode slurry on one or both surfaces of the negative electrode current collector layer, and the coating may be performed using a coating method commonly used in the art.
  • the weight loading amount of the above-described first negative active material layer composition may be used as the same meaning as the weight loading amount of the first negative electrode slurry.
  • a step of forming a second negative electrode active material by applying a second negative electrode active material layer composition to a surface opposite to a surface of the first negative electrode active material layer in contact with the negative electrode current collector layer is provided.
  • the above step is a step of forming a second negative electrode active material layer on the first negative electrode active material layer, which means forming the active material layer on the surface (upper layer) away from the negative electrode current collector layer in the double layer structure. can do.
  • applying the second negative active material layer composition may include a second negative active material layer composition; and applying and drying a second negative electrode slurry containing a negative electrode slurry solvent.
  • the solid content of the second anode slurry may satisfy a range of 10% to 40%.
  • the forming of the second negative electrode active material layer may include mixing the second negative electrode slurry; and coating the mixed second negative electrode slurry on a surface opposite to a surface of the first negative electrode active material layer in contact with the negative electrode current collector layer.
  • a coating method commonly used in the art may be used.
  • the weight loading amount of the above-described second negative electrode active material layer composition may be used as the same meaning as the weight loading amount of the second negative electrode slurry.
  • the forming of the second negative active material layer may be applied in the same manner as the description of the forming of the first negative active material layer.
  • the forming of the second negative active material layer on the first negative active material layer may include a wet on dry process; Or wet on wet (wet on wet) process; it provides a method for producing a negative electrode for a lithium secondary battery comprising a.
  • the wet on dry process may refer to a process of applying the first negative active material layer composition, partially or completely drying the composition, and then applying the second negative active material layer composition thereon. there is.
  • a first negative electrode slurry mixture (a first negative electrode active material, a first negative electrode conductive agent, a first negative electrode binder, and a first solvent) is prepared and applied to the negative electrode current collector layer. Thereafter, the first negative active material layer is formed by drying the first negative electrode slurry mixture. Thereafter, a second negative electrode slurry mixture is prepared, applied to the first negative electrode active material layer, and dried to form a second negative electrode active material layer. Thereafter, each layer may be rolled and compressed to form a negative electrode for a rechargeable lithium battery according to the present application.
  • the wet-on-wet process means a process of applying the first negative active material layer composition and then applying the second negative active material layer composition thereon without drying.
  • FIG. 6 is a flowchart illustrating a wet on wet process according to an exemplary embodiment of the present application.
  • a first negative electrode slurry mixture is prepared and applied to the negative electrode current collector layer, and at the same time, a second negative electrode slurry mixture is prepared and applied to the first negative electrode slurry mixture, and the first and second Dry the cathode slurry mixture.
  • each layer may be rolled and compressed to form a negative electrode for a rechargeable lithium battery according to the present application.
  • the forming of the second negative active material layer on the first negative active material layer includes a wet on dry process, and the wet on dry process includes the first negative active material layer.
  • the forming of the second negative active material layer on the first negative active material layer includes a wet on wet process, and the wet on wet process includes the first negative active material layer. applying a layer composition; and applying the second negative active material layer composition to the first negative active material layer composition while the first negative active material layer composition is not dried.
  • the wet on dry process is to apply the first negative active material layer composition, partially or completely dry it, and then apply the second negative active material layer composition thereon.
  • the first negative active material layer and the second negative active material layer may have a clear boundary. Accordingly, the composition included in the first negative electrode active material layer and the second negative electrode active material layer do not mix and have a feature that can be configured as a double layer.
  • the negative electrode slurry solvent may be used without limitation as long as it can dissolve the first negative active material layer composition and the second negative active material layer composition, and specifically, water or NMP may be used.
  • the viscosity of the first negative active material layer composition must be lower than the viscosity of the second negative active material layer composition so that mutual mixing can occur in the bonding area and process.
  • the second negative active material layer is formed so that the interface between the two layers is clearly divided.
  • the second negative active material layer is applied in a state where the first negative active material layer composition is not completely dried (simultaneous application of the first negative active material layer composition and the second negative active material layer composition), mixing occurs at the interface between the two layers. A bonding area is formed.
  • the step of pre-lithiation of the negative electrode on which the first negative electrode active material layer and the second negative electrode active material layer are formed on the negative electrode current collector layer may include a lithium electrolytic plating process; lithium metal transfer process; lithium metal deposition process; Or it provides a method for producing a negative electrode for a lithium secondary battery comprising a stabilized lithium metal powder (SLMP) coating process.
  • SLMP stabilized lithium metal powder
  • the second negative electrode active material layer includes the above-described second negative electrode active material and is provided as a mixed composition of a silicon-based active material and a carbon-based active material, so that the advantage of rapid charging can be obtained.
  • the mixture Since it has a large composition and is irreversible, it can be advantageously applied even during the pre-lithiation process of pre-charging the negative electrode.
  • the second anode active material has a second anode active material having the above composition, so that a uniform prelithiation process can be performed on the upper part of the anode electrode, and thus the lifespan can be improved.
  • the porosity of the first and second negative electrode active material layers may satisfy a range of 10% or more and 60% or less.
  • the porosity of the first and second negative electrode active material layers ranges from 10% to 60%, preferably from 20% to 50%, and more preferably from 30% to 45%. can be satisfied
  • the porosity is the active material included in the first and second negative electrode active material layers; conductive material; And it varies according to the composition and content of the binder, and accordingly, the electrical conductivity and resistance of the electrode are characterized by having an appropriate range.
  • a secondary battery may include the anode for a lithium secondary battery described above.
  • the secondary battery may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, a detailed description thereof will be omitted.
  • the cathode may include a cathode current collector layer and a cathode active material layer formed on the cathode current collector layer and including a cathode active material.
  • the positive electrode current collector layer is not particularly limited as long as it has conductivity without causing chemical change in the battery, and is, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. A surface treated with carbon, nickel, titanium, silver, or the like may be used.
  • the cathode current collector layer may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and adhesion of the cathode active material may be increased by forming fine irregularities on the surface of the current collector. For example, it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the cathode active material may be a commonly used cathode active material.
  • the cathode active material may include layered compounds such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ), or compounds substituted with one or more transition metals; lithium iron oxides such as LiFe 3 O 4 ; lithium manganese oxides such as Li 1+c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7 ; Represented by the formula LiNi 1-c2 M c2 O 2 (where M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B, and Ga, and satisfies 0.01 ⁇ c2 ⁇ 0.3) Ni site-type lithium nickel oxide; Formula Li
  • the positive electrode active material layer may include a positive electrode conductive material and a positive electrode binder together with the positive electrode active material described above.
  • the positive electrode conductive material is used to impart conductivity to the electrode, and in the configured battery, any material that does not cause chemical change and has electronic conductivity can be used without particular limitation.
  • any material that does not cause chemical change and has electronic conductivity can be used without particular limitation.
  • Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the positive electrode binder serves to improve adhesion between particles of the positive electrode active material and adhesion between the positive electrode active material and the positive electrode current collector.
  • specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like may be used alone or in a mixture of two or more of them.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ion movement. If it is normally used as a separator in a secondary battery, it can be used without particular limitation. It is desirable Specifically, a porous polymer film, for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminated structure of two or more layers of may be used.
  • porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single-layer or multi-layer structure.
  • electrolyte examples include, but are not limited to, organic liquid electrolytes, inorganic liquid electrolytes, solid polymer electrolytes, gel polymer electrolytes, solid inorganic electrolytes, and molten inorganic electrolytes that can be used in manufacturing a lithium secondary battery.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butyllolactone, 1,2-dimethine Toxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxorane, formamide, dimethylformamide, dioxorane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Triester, trimethoxy methane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl propionate, propionic acid
  • An aprotic organic solvent such as ethyl may be used.
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • an electrolyte having high electrical conductivity can be made and can be used more preferably.
  • the metal salt may be a lithium salt, and the lithium salt is a material that is soluble in the non-aqueous electrolyte.
  • the anion of the lithium salt is F - , Cl - , I - , NO 3 - , N (CN ) 2 - , BF 4 - , ClO 4 - , PF 6 - , (CF 3 ) 2 PF 4 - , (CF 3 ) 3 PF 3 - , (CF 3 ) 4 PF 2 - , (CF 3 ) 5 PF - , (CF 3 ) 6 P - , CF 3 SO 3 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C
  • the electrolyte may include, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides for the purpose of improving battery life characteristics, suppressing battery capacity decrease, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included.
  • One embodiment of the present invention provides a battery module including the secondary battery as a unit cell and a battery pack including the same. Since the battery module and the battery pack include the secondary battery having high capacity, high rate and cycle characteristics, a medium or large-sized device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system can be used as a power source for
  • a negative active material layer composition was prepared.
  • a first negative electrode slurry was prepared by adding distilled water as a solvent for forming the negative electrode slurry (solid content concentration: 25% by weight).
  • the first conductive material is carbon black C (specific surface area: 58 m 2 /g, diameter: 37 nm), and the second conductive material is plate-shaped graphite (specific surface area: 17 m 2 /g, average particle diameter (D50): 3.5 um), , the third conductive material is a carbon nanotube.
  • the first conductive material, the second conductive material, the third conductive material, the binder and the water are dispersed using a homo mixer at 2500 rpm, 30 min, and then the active material is added, and then the slurry is dispersed at 2500 rpm, 30 min. did
  • both sides of a copper current collector were coated with the first negative electrode slurry at a loading amount of 2.75 mg/cm 2 , rolled, and in a vacuum oven at 130° C. for 10 hours After drying, a first negative electrode active material layer (thickness: 33 ⁇ m) was formed.
  • SiO average particle diameter (D50): 3.5 ⁇ m
  • a first conductive material a first conductive material
  • a second conductive material a second conductive material
  • polyacrylamide as a binder
  • a second negative electrode slurry was prepared by adding distilled water as a solvent for forming the negative electrode slurry (solid content concentration: 25% by weight).
  • the first conductive material is plate-shaped graphite (specific surface area: 17 m 2 /g, average particle diameter (D50): 3.5 um), and the second conductive material is carbon nanotube.
  • a slurry was prepared by dispersing the first conductive material, the second conductive material, the binder and water at 2500 rpm for 30 min using a homo mixer, and then adding the active material and then dispersing at 2500 rpm for 30 min.
  • the second negative active material layer (thickness: 15 ⁇ m) was formed.
  • prelithiation was performed by transferring lithium metal to the upper portion of the second negative electrode active material layer.
  • Pre-lithiation lithium capacity/negative charge capacity first anode active material layer + second anode active material layer
  • Pre-lithiation is performed on the cathode and lithiation is performed by combining coin half cells.
  • 0.1C CC/CV 5mV, 0,005C cut off, delithiation: Charge/discharge at 0.1C 1.0V CC, (pristine charging capacity - prelithiation electrode charging capacity) Compare whether or not it is the same as the Lithium capacity that proceeded with Lithiation.
  • 3) (Pristine charging capacity - prelithiation electrode charging capacity)/Pristine charging capacity * 100 Lithiation dosage (%), and check the amount of lithium loss when prelithiation proceeds.
  • a first negative active material layer was prepared in the same manner as in Example 1.
  • Example 1 SiO (average particle diameter (D50): 3.5 ⁇ m) as a silicon-based active material, artificial graphite as a carbon-based active material, the first conductive material, the second conductive material, and polyacrylamide as a binder are 30:50: It was prepared in the same manner as in Example 1, except that distilled water was added as a solvent for forming the negative electrode slurry at a weight ratio of 5:5:10 to prepare a second negative electrode slurry (solid content concentration: 25% by weight).
  • D50 average particle diameter (D50): 3.5 ⁇ m) as a silicon-based active material, artificial graphite as a carbon-based active material, the first conductive material, the second conductive material, and polyacrylamide as a binder are 30:50: It was prepared in the same manner as in Example 1, except that distilled water was added as a solvent for forming the negative electrode slurry at a weight ratio of 5:5:10 to prepare a second negative electrode slurry (solid content concentration: 25% by weight
  • the first conductive material was carbon black C (specific surface area: 58 m 2 /g, diameter: 37 nm), and the second conductive material was plate-like graphite (specific surface area: 17 m 2 /g, average particle diameter (D50): 3.5 um). .
  • Equation 1 satisfied 1.8
  • prelithiation dosage satisfied 19.1%.
  • the second negative electrode active material layer of Example 1 SiC (average particle diameter (D50): 3.5 ⁇ m) as a silicon-based active material, a first conductive material, a second conductive material, and polyacrylamide as a binder were prepared in a ratio of 70:19.8:
  • a negative electrode was prepared under the same conditions as in Example 1 except that the second negative electrode active material layer composition was prepared at a weight ratio of 0.2:10 and added to distilled water as a solvent for forming the negative electrode slurry to prepare a second negative electrode slurry (solid content concentration 25% by weight).
  • Equation 1 satisfied 1.6
  • the prelithiation dosage satisfied 16.48%.
  • a first negative active material layer was prepared in the same manner as in Example 1.
  • Example 1 SiO (average particle diameter (D50): 3.5 ⁇ m) as a silicon-based active material, artificial graphite, a first conductive material, a second conductive material, and polyacrylamide as a binder were used in a 50:20:10:10:10 ratio.
  • a second negative active material layer composition was prepared in a weight ratio. It was prepared in the same manner as in Example 1, except that distilled water was added as a solvent for forming the anode slurry to prepare a second anode slurry (solid content concentration: 25% by weight).
  • the first conductive material is plate-shaped graphite (specific surface area: 17 m 2 /g, average particle diameter (D50): 3.5 um), and the second conductive material is carbon nanotube.
  • Equation 1 satisfied 1.5, and the prelithiation dosage satisfied 15.74%.
  • An active material layer composition was prepared using Si (average particle diameter (D50): 5 ⁇ m) as a silicon-based active material, a first conductive material, and polyacrylamide as a binder in a weight ratio of 70:20:10.
  • a negative electrode slurry was prepared by adding distilled water as a solvent for forming the negative electrode slurry (solid content concentration: 25% by weight).
  • carbon black C (specific surface area: 58 m 2 /g, diameter: 37 nm) is used.
  • the slurry was prepared by dispersing the first conductive material, the binder, and water at 2500 rpm for 30 min using a homo mixer, adding the active material, and then dispersing at 2500 rpm for 30 min.
  • both sides of a copper current collector were coated with the negative electrode slurry at a loading amount of 85 mg/25 cm 2 , rolled, and dried in a vacuum oven at 130° C. for 10 hours to obtain a negative electrode An active material layer (thickness: 33 ⁇ m) was formed.
  • Equation 1 satisfied 1.6
  • the prelithiation dosage satisfied 17.28%.
  • Example 1 the negative electrode was manufactured in the same manner as in Example 1, except that the stacking order of the first negative active material layer and the second negative active material layer was changed. At this time, Equation 1 satisfied 1.6, and the prelithiation dosage satisfied 17.28%.
  • the active material layer composition was prepared at a weight ratio of 10:0.2:10.
  • a negative electrode slurry was prepared by adding distilled water as a solvent for forming the negative electrode slurry (solid content concentration: 25% by weight).
  • the first conductive material is carbon black C (specific surface area: 58 m 2 /g, diameter: 37 nm), and the second conductive material is plate-shaped graphite (specific surface area: 17 m 2 /g, average particle diameter (D50): 3.5 um), , the third conductive material is a carbon nanotube.
  • the first conductive material, the second conductive material, the third conductive material, the binder, and the water are dispersed at 2500 rpm and 30 min using a homo mixer, and then the active material is added, and then the slurry is prepared by dispersing at 2500 rpm and 30 min. did
  • both sides of a copper current collector were coated with the negative electrode slurry at a loading amount of 85 mg/25 cm 2 , rolled, and dried in a vacuum oven at 130° C. for 10 hours to obtain a negative electrode An active material layer (thickness: 33 ⁇ m) was formed.
  • Equation 1 satisfied 1.6
  • the prelithiation dosage satisfied 14.8%.
  • LiNi 0.6 Co 0.2 Mn 0.2 O 2 (average particle diameter (D50): 15 ⁇ m) as a cathode active material, carbon black (product name: Super C65, manufacturer: Timcal) as a conductive material, and polyvinylidene fluoride (PVdF) as a binder.
  • a positive electrode slurry was prepared by adding N-methyl-2-pyrrolidone (NMP) as a solvent for forming a positive electrode slurry at a weight ratio of 1.5:1.5 (solid content concentration: 78% by weight).
  • NMP N-methyl-2-pyrrolidone
  • both sides of an aluminum current collector were coated with the positive electrode slurry at a loading amount of 537 mg/25 cm 2 , rolled, and dried in a vacuum oven at 130° C. for 10 hours to obtain a positive electrode
  • An active material layer was formed to prepare a positive electrode (anode thickness: 77 ⁇ m, porosity: 26%).
  • a lithium secondary battery was manufactured by injecting an electrolyte through a polyethylene separator interposed between the positive electrode and the negative electrode of the Examples and Comparative Examples.
  • the electrolyte is an organic solvent in which fluoroethylene carbonate (FEC) and diethyl carbonate (DMC) are mixed in a volume ratio of 30:70, vinylene carbonate is added in an amount of 3% by weight based on the total weight of the electrolyte, and LiPF as a lithium salt 6 was added at a concentration of 1M.
  • FEC fluoroethylene carbonate
  • DMC diethyl carbonate
  • Capacity retention rate (%) ⁇ (discharge capacity at the Nth cycle)/(discharge capacity at the first cycle) ⁇ ⁇ 100
  • FIG. 2 is a diagram showing a graph of RPT capacity retention according to Examples and Comparative Examples.
  • Figure 3 shows a graph of the RPT resistance increase rate according to Examples and Comparative Examples.
  • RPT according to Examples and Comparative Examples (0.33C / 0.33C, 4.2-3.0V charge / discharge every 50 cycles during in-situ continuous cycle test, measured by 2.5C pulse in the discharge direction at SOC50) means a graph of resistance increase rate do.
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6
  • Capacity retention rate evaluation (%, @200cycle 88.2 93.56 94.2 89.56 87.5 87.5 84.8 83.8 85.4 84.1 82
  • Resistance increase rate (%, @200cycle 17.2 16.5 12.5 16.5 17.8 17.7 25.8 21.8 17 21.8 31 22.2
  • the lithium capacity provided by prelithiation compared to the discharge capacity of the second active material layer including the silicon-based active material was adjusted within the range of Equation 1 above.
  • Table 2 it has a first negative active material layer composition having a high capacity and at the same time includes a second negative active material layer composition to solve lifespan characteristics, and the use ratio of the silicon-based active material during initial charge and discharge It was confirmed that an excellent effect could be obtained by optimizing the capacity characteristics and lifespan characteristics by limiting and assigning a reservoir role. This corresponds, and Comparative Example 3 corresponds to a case in which prelithiation is not performed.
  • Comparative Example 4 satisfies the range of Equation 1, but corresponds to a single layer cathode having 100% pure Si
  • Comparative Example 5 satisfies the range of Equation 1, but unlike Example 1, it is a single layer cathode. and the order of the two layers is changed
  • Comparative Example 6 corresponds to a case in which the range of Equation 1 is satisfied, but a mixed active material layer of Si and SiO is formed as a single layer.
  • the present invention is characterized by a negative electrode having a double layer using the first and second negative electrode active material layers to improve lifespan characteristics and capacity characteristics, and furthermore, to maximize lifespan characteristics, the prelithiation ratio is optimized. It was confirmed through the data of the above examples and comparative examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 출원은 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법, 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.

Description

리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
본 출원은 2021년 07월 09일 한국특허청에 제출된 한국 특허 출원 제10-2021-0090580호, 2021년 12월 28일 한국특허청에 제출된 한국 특허 출원 제10-2021-0189600호 및 2022년 05월 31일 한국특허청에 제출된 한국 특허 출원 제10-2022-0066756호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 출원은 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차 전지의 수요가 급격히 증가하고 있다. 이러한 이차 전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차 전지가 상용화되어 널리 사용되고 있다. 또, 이 같은 고용량 리튬 이차 전지용 전극으로서, 단위 체적 당 에너지 밀도가 더 높은 고밀도 전극을 제조하기 위한 방법에 대해 연구가 활발히 진행되고 있다.
일반적으로 이차 전지는 양극, 음극, 전해질 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 입자가 사용될 수 있다.
특히 최근 고 밀도 에너지 전지에 대한 수요에 따라, 음극 활물질로서, 흑연계 소재 대비 용량이 10배 이상 큰 Si/C나 SiOx와 같은 실리콘계 화합물을 함께 사용하여 용량을 늘리는 방법에 대한 연구가 활발히 진행되고 있다. 하지만, 고용량 소재인 실리콘계 화합물의 경우, 기존에 사용되는 흑연과 비교할 때, 용량이 큰 물질로 용량 특성 자체는 우수하나, 충전 과정에서 급격하게 부피가 팽창하여 도전 경로를 단절시켜 전지 특성을 저하되고, 이에 따라 초반부터 용량이 떨어진다. 또한 실리콘계 음극은 충전 및 방전 사이클 반복시 음극의 깊이 방향으로 리튬 이온의 균일한 충전이 이루어지지 않고, 표면에서 반응이 진행되어 표면 퇴화가 가속화됨에 따라 전지 사이클 측면에서 성능 개선이 필요하다.
이에, 실리콘계 화합물을 음극 활물질로서 사용할 때의 상기 문제점을 해소하기 위하여 구동 전위를 조절시키는 방안, 추가적으로 활물질층 상에 박막을 더 코팅하는 방법, 실리콘계 화합물의 입경을 조절하는 방법과 같은 부피 팽창 자체를 억제시키는 방안 혹은 도전 경로가 단절되는 것을 방지하기 위한 실리콘계 화합물의 부피팽창을 잡아줄 바인더의 개발 등 다양한 방안 등이 논의되고 있다. 또한 실리콘계 활물질층을 전리튬화 하는 방법을 통하여 초기 충전 및 방전시 사용되는 실리콘계 활물질 사용 비율을 제한하고, reservoir 역할을 부여하여, 실리콘계 음극의 수명 특성을 보완하는 연구 또한 진행되고 있다.
하지만 상기 방안들의 경우, 되려 전지의 성능을 저하시킬 수 있으므로, 적용에 한계가 있어, 여전히 실리콘계 화합물의 함량이 높은 음극 전지 제조의 상용화에는 한계가 있고, 실리콘계 활물질층에 포함되는 실리콘계 활물질 비율이 많아 질수록 음극 표면에 전리튬화가 집중되어 오히려 표면쪽의 실리콘계 활물질의 손상이 발생하고, 불균일한 전리튬화가 발생함에 따라 수명 특성 향상에 문제가 발생하고 있다.
따라서, 실리콘계 화합물을 활물질로 사용하는 경우에도 충전 및 방전 사이클 진행시 전극 표면 퇴화를 방지할 수 있으며, 특히 전리튬화시 균일도를 향상시켜 최적의 우수한 효과를 보일 수 있는 리튬 이차 전지에 대한 연구가 필요하다.
<선행기술문헌>
(특허문헌 1) 일본 공개특허공보 제2009-080971호
본 출원은 실리콘계 활물질을 사용하는 주된 취지인 용량 특성을 극대화할 수 있음과 동시에 기존의 문제점인 충전 및 방전 사이클 진행시 전극 표면 퇴화를 방지할 수 있고, 더욱이 전리튬화시 균일도를 향상시켜 용량 및 수명 특성을 모두 향상시킬 수 있는 방법의 연구 결과 전리튬화 비율을 특정 범위로 조절하면 상기 문제점을 해결할 수 있음을 확인하였다.
이에 따라 본 건은 식 1의 범위를 만족하는 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지에 관한 것이다.
본 명세서의 일 실시상태는 음극 집전체층; 상기 음극 집전체층의 일면 또는 양면에 구비된 제1 음극 활물질층; 및 상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 구비된 제2 음극 활물질층;을 포함하는 리튬 이차 전지용 음극으로, 상기 제1 음극 활물질층은 제1 음극 활물질을 포함하는 제1 음극 활물질층 조성물을 포함하며, 상기 제2 음극 활물질층은 제2 음극 활물질을 포함하는 제2 음극 활물질층 조성물을 포함하고, 상기 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상 포함하고, 상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상의 혼합물을 포함하며, 상기 실리콘계 활물질은 제2 음극 활물질 100 중량부 기준 1 중량부 이상 100 중량부 이하이고, 상기 제2 음극 활물질층은 하기 식 1을 만족하는 것인 리튬 이차 전지용 음극을 제공한다.
[식 1]
0.5 ≤B/A≤ 2
상기 식 1에 있어서,
A는 제2 음극 활물질층의 방전 용량이고,
B는 전리튬화(Pre-lithiation) 리튬의 용량을 의미한다.
또한, 본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층은 상기 음극 집전체층의 일부면 또는 전면에 형성될 수 있으며, 상기 제2 음극 활물질층은 상기 제1 음극 활물질층의 일부면 또는 전면에 형성에 형성될 수 있다.
또 다른 일 실시상태에 있어서, 음극 집전체층을 준비하는 단계; 상기 음극 집전체층의 일면 또는 양면에 제1 음극 활물질층 조성물을 도포하여, 제1 음극 활물질층을 형성하는 단계; 및 상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 제2 음극 활물질층 조성물을 도포하여, 제2 음극 활물질층을 형성하는 단계;를 포함하는 리튬 이차 전지용 음극의 제조 방법으로, 상기 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상 포함하고, 상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상의 혼합물을 포함하며, 상기 실리콘계 활물질은 제2 음극 활물질 100 중량부 기준 1 중량부 이상 100 중량부 이하이고, 상기 제2 음극 활물질층은 상기 식 1을 만족하는 것인 리튬 이차 전지용 음극의 제조 방법을 제공한다.
또한, 본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층은 상기 음극 집전체층의 일부면 또는 전면에 형성될 수 있으며, 상기 제2 음극 활물질층은 상기 제1 음극 활물질층의 일부면 또는 전면에 형성에 형성될 수 있다.
마지막으로, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 일 실시상태에 따른 리튬 이차 전지용 음극의 경우, 제1 음극 활물질층 및 제2 음극 활물질층으로 구성된 더블 레이어 활물질층을 갖는 것이다. 특히 제1 음극 활물질층에 포함되는 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상 포함하고, 제2 음극 활물질층에 포함되는 상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상의 혼합물을 포함한다.
본 출원에 따른 리튬 이차 전지용 음극은 상기와 같은 특정 조성 및 함량을 갖는 더블 레이어 활물질층을 갖는 것으로, 특히 제1 음극 활물질층이 SiOx (x=0)를 고함량 포함하여 고용량, 고밀도 및 급속 충전에 유리한 장점을 그대로 가질 수 있다. 더욱이 제2 음극 활물질층에 실리콘계 및 탄소계 활물질 등을 포함하여, 충전 및 방전 사이클 진행시 전극 표면 퇴화를 방지할 수 있으며, 전리튬화시의 균일도 또한 향상시킬 수 있다.
더욱이 본 출원에 따른 리튬 이차 전지용 음극은 상기 제2 음극 활물질층 조성물의 방전 용량에 맞추어 전리튬화 비율을 특정 범위로 조절한 것을 특징으로 한다. 즉, 본 출원에 따른 리튬 이차 전지용 음극은 실리콘계 활물질이 포함된 제2 활물질층의 방전 용량 대비 전리튬화로 부여하는 리튬의 용량을 상기 식 1의 범위로 조절하였다. 이에 따라 고용량 특징을 갖는 제1 음극 활물질층 조성물을 가짐과 동시에 수명 특성의 해결을 위하여 제2 음극 활물질층 조성물을 포함하며, 초기 충전 및 방전시의 실리콘계 활물질의 사용 비율을 제한하고 Reservoir 역할을 부여하여 용량 특성 및 수명 특성을 최적화하여 우수한 효과를 볼 수 있다.
결국 본 출원에 따른 리튬 이차 전지용 음극은 단층의 활물질로 Si 입자를 고함량 적용하는 전극의 장점을 취함과 동시에 이를 갖는 경우의 단점인 표면 퇴화 문제, 전리튬화시 균일도의 문제 및 수명 특성의 문제를 해결하기 위하여, 제1 음극 활물질층 및 제2 음극 활물질층을 특정 조성 및 특정 전리튬화 비율로 적용되는 더블 레이어로 구성한 것을 특징으로 한다.
도 1은 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다.
도 2는 본 출원의 실시예 및 비교예에 따른 RPT 용량 유지율을 나타내는 도이다.
도 3은 본 출원의 실시예 및 비교예에 따른 RPT 저항 증가율을 나타내는 도이다.
도 4는 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다.
도 5는 본 출원의 일 실시상태에 따른 웨트 온 드라이(Wet on dry) 공정을 나타낸 순서도이다.
도 6은 본 출원의 일 실시상태에 따른 웨트 온 웨트(Wet on wet) 공정을 나타낸 순서도이다.
<부호의 설명>
10: 제2 음극 활물질층
20: 제1 음극 활물질층
30: 음극 집전체층
본 발명을 설명하기에 앞서, 우선 몇몇 용어를 정의한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
본 명세서에 있어서, 'p 내지 q'는 'p 이상 q 이하'의 범위를 의미한다.
본 명세서에 있어서, "비표면적"은 BET법에 의해 측정한 것으로서, 구체적으로는 BEL Japan사의 BELSORP-mino II를 이용하여 액체 질소 온도 하(77K)에서의 질소가스 흡착량으로부터 산출된 것이다. 즉 본 출원에 있어서 BET 비표면적은 상기 측정 방법으로 측정된 비표면적을 의미할 수 있다.
본 명세서에 있어서, "Dn"은 입경 분포를 의미하며, 입경에 따른 입자 개수 누적 분포의 n% 지점에서의 입경을 의미한다. 즉, D50은 입경에 따른 입자 개수 누적 분포의 50% 지점에서의 입경(평균 입경, 중심 입경)이며, D90은 입경에 따른 입자 개수 누적 분포의 90% 지점에서의 입경을, D10은 입경에 따른 입자 개수 누적 분포의 10% 지점에서의 입경이다. 한편, 입경 분포는 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 구체적으로, 측정 대상 분말을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입경 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 입자 크기에 따른 회절패턴 차이를 측정하여 입경 분포를 산출한다.
본 명세서에 있어서, 중합체가 어떤 단량체를 단량체 단위로 포함한다는 의미는 그 단량체가 중합 반응에 참여하여 중합체 내에서 반복 단위로서 포함되는 것을 의미한다. 본 명세서에 있어서, 중합체가 단량체를 포함한다고 할 때, 이는 중합체가 단량체를 단량체 단위로 포함한다는 것과 동일하게 해석되는 것이다.
본 명세서에 있어서, '중합체'라 함은 '단독 중합체'라고 명시되지 않는 한 공중합체를 포함한 광의의 의미로 사용된 것으로 이해한다.
본 명세서에 있어서, 중량 평균 분자량(Mw) 및 수평균 분자량(Mn)은 분자량 측정용으로 시판되고 있는 다양한 중합도의 단분산 폴리스티렌 중합체(표준 시료)를 표준물질로 하고, 겔 투과 크로마토그래피(Gel Permeation Chromatography; GPC)에 의해 측정한 폴리스티렌 환산 분자량이다. 본 명세서에 있어서, 분자량이란 특별한 기재가 없는 한 중량 평균 분자량을 의미한다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 도면을 참고로 하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 이하의 설명에 한정되지 않는다.
본 명세서의 일 실시상태는 음극 집전체층; 상기 음극 집전체층의 일면 또는 양면에 구비된 제1 음극 활물질층; 및 상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 구비된 제2 음극 활물질층;을 포함하는 리튬 이차 전지용 음극으로, 상기 제1 음극 활물질층은 제1 음극 활물질을 포함하는 제1 음극 활물질층 조성물을 포함하며, 상기 제2 음극 활물질층은 제2 음극 활물질을 포함하는 제2 음극 활물질층 조성물을 포함하고, 상기 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상 포함하고, 상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상의 혼합물을 포함하며, 상기 실리콘계 활물질은 제2 음극 활물질 100 중량부 기준 1 중량부 이상 100 중량부 이하이고, 상기 제2 음극 활물질층은 하기 식 1을 만족하는 것인 리튬 이차 전지용 음극을 제공한다.
[식 1]
0.5 ≤B/A≤ 2
상기 식 1에 있어서,
A는 제2 음극 활물질층의 방전 용량이고,
B는 전리튬화(Pre-lithiation) 리튬의 용량을 의미한다.
본 출원에 따른 리튬 이차 전지용 음극은 제1 음극 활물질층에 포함되는제1 음극 활물질을 잘 사용하기 위해 Buffer layer의 역할을 갖는 제2 음극 활물질층을 사용하는 것으로, 제2 음극 활물질층이 상기 식 1의 범위를 만족하여, 제1 음극 활물질층을 손상시키지 않으면서 전리튬화가 진행될 수 있는 특징을 갖게 된다.
일 예시로서, 본 출원의 상기 제2 음극 활물질층은 버퍼층으로 작용할 수 있다. Si 활물질을 포함하는 전극은 SiO 또는 탄소계 활물질을 포함하는 전극과 비교할 때 우수한 용량 특성을 가지게 된다. 그러나 Si 활물질을 포함하는 전극은 충방전시 Li 이온과의 빠른 반응으로 인해 음극 활물질층 표면의 열화가 집중된다. 이는 리튬 이온이 음극 활물질층에 미리 포함되는 전리튬화 공정시에도 마찬가지로 발생한다. 전리튬화 공정에서 버퍼층은 Si계 전극과 리튬의 직접적인 접촉을 방지하고 표면 열화를 방지하기 위하여 사용된다. 따라서 본 발명의 제2 음극 활물질층이 전리튬화 공정에서의 버퍼층과 동일한 역할 및 효과를 나타낼 수 있는 특징을 갖는다.
이에 따라 고용량 특징을 갖는 제1 음극 활물질층 조성물을 가짐과 동시에 수명 특성의 해결을 위하여 제2 음극 활물질층 조성물을 포함하며, 초기 충전 및 방전시의 실리콘계 활물질의 사용 비율을 제한하고 Reservoir 역할을 부여하여 용량 특성 및 수명 특성을 최적화하여 우수한 효과를 볼 수 있다.
도 1은 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다. 구체적으로, 음극 집전체층(30)의 일면에 제1 음극 활물질층(20) 및 제2 음극 활물질층(30)을 포함하는 리튬 이차 전지용 음극(100)을 확인할 수 있으며, 도 1은 제1 음극 활물질층이 일면에 형성된 것을 나타내나, 음극 집전체층의 양면에 포함할 수 있다. 전술한 바와 같이, 본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층은 상기 음극 집전체층의 전면에 형성될 수 있으며, 상기 제2 음극 활물질층은 상기 제1 음극 활물질층의 전면에 형성에 형성될 수 있다.
또한 도 4는 본 출원의 일 실시상태에 따른 리튬 이차 전지용 음극의 적층 구조를 나타낸 도이다. 구체적으로 도 4에 도시된 바와 같이, 음극 집전체층(30)의 양면에 제1 음극 활물질층(20) 및 제2 음극 활물질층(30)을 형성할 수 있다. 또한 10>20>30>20>10의 배열을 가질 수 있으며, 추가로 10>20>30>20, 10>20>30>10, 10>20>30>10>20 등과 같이 음극 집전체층의 한면만 제1 음극 활물질층 및 제2 음극 활물질층이 순차적으로 적층되면 반대쪽 면의 배열은 상관없이 적층될 수 있다. 바람직하게는 음극 집전체층의 양면은 동일한 조성을 갖는 것이 바람직하며 구체적으로 10>20>30>20>10의 구조를 가질 수 있다.
이하에서는 본 발명의 리튬 이차 전지용 음극에 대하여 보다 자세하게 설명한다.
본 출원의 일 실시상태에 있어서, 음극 집전체층; 상기 음극 집전체층의 일면 또는 양면에 구비된 제1 음극 활물질층; 및 상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 구비된 제2 음극 활물질층;을 포함하는 리튬 이차 전지용 음극을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층은 일반적으로 1㎛ 내지 100㎛의 두께를 가진다. 이러한 음극 집전체층은, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층의 두께는 1μm 이상 100μm 이하일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층의 두께는 10μm 이상 200μm 이하이며, 상기 제2 음극 활물질층의 두께는 10μm 이상 100μm 이하인 것인 리튬 이차 전지용 음극을 제공한다.
다만, 두께는 사용되는 음극의 종류 및 용도에 따라 다양하게 변형할 수 있으며 이에 한정되지 않는다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층 조성물의 무게 로딩양(a)은 상기 제2 음극 활물질층 조성물의 무게 로딩양(b)의 1.5배 이상을 만족하는 것인 리튬 이차 전지용 음극을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제1 음극 활물질층 조성물의 무게 로딩양(a)은 상기 제2 음극 활물질층 조성물의 무게 로딩양(b)의 1.5배 이상 10배 이하, 바람직하게는 2.2배 이상 6배 이하의 범위를 만족할 수 있다.
상기 무게 로딩양은 음극 활물질층을 형성하기 위한 조성물의 중량을 의미할 수 있으며, 구체적으로 조성물의 무게 로딩양은 상기 조성물을 포함하는 슬러리의 로딩양과 동일한 의미를 가질 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층 조성물의 무게 로딩양(a)은 2mg/cm2 이상 5mg/cm2 이하, 바람직하게는 2.2mg/cm2 이상 4mg/cm2 이하의 범위를 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질층 조성물의 무게 로딩양(b)은 0.5mg/cm2 이상 1.5mg/cm2 이하, 바람직하게는 0.8mg/cm2 이상 1.3mg/cm2 이하의 범위를 만족할 수 있다.
상기 제1 음극 활물질층 조성물 및 제2 음극 활물질층 조성물이 상기 식 1을 만족하는 것으로, 제1 음극 활물질층과 제2 음극 활물질층에 포함되는 활물질의 비율을 조절할 수 있다. 즉, 제1 음극 활물질층에 포함되는 제1 음극 활물질의 양을 조절하여 용량 특성을 최적화할 수 있음과 동시에, 제2 음극 활물질층에 포함되는 제2 음극 활물질의 양을 맞추어 조절하여 용량 특성을 저하시키지 않으며 음극의 표면 반응을 억제하여 수명 특성 강화의 특징을 가질 수 있게 된다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상 포함할 수 있다.
본 출원의 일 실시상태에 있어서 상기 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상, 바람직하게는 SiOx (x=0)를 97 중량부 이상, 더욱 바람직하게는 99 중량부 이상을 포함할 수 있고, 100 중량부 이하를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질은 특히 순수 실리콘(Si) 입자를 사용할 수 있다. 순수 실리콘(Si)을 제1 음극 활물질로 사용한다는 것은 상기와 같이 제1 음극 활물질을 전체 100 중량부를 기준으로 하였을 때, 다른 입자 또는 원소와 결합되지 않은 순수의 Si 입자(SiOx (x=0))를 상기 범위로 포함하는 것을 의미할 수 있다.
본 발명의 제1 음극 활물질층에 사용되고 있는 제1 음극 활물질은 리튬 원자를 전기화학적으로 흡수저장하고 방출하는 반응에서 매우 복잡한 결정변 화를 수반한다. 리튬 원자를 전기화학적으로 흡수저장하고 방출하는 반응이 진행됨에 따라 규소 입자의 조성과 결정구조는 Si(결정구조: Fd3m), LiSi(결정구조: I41/a), Li2Si(결정구조: C2/m), Li7Si2(Pbam), Li22Si5(F23) 등으로 변화한다. 또한, 복잡한 결정구조의 변화에 따라 규소 입자의 부피는 약 4배로 팽창한다. 따라서, 충방전 사이클을 반복하게 되면 규소 입자가 파괴되고, 리튬 원자와 규소 입자의 결합이 형성됨에 따라 규소 입자가 초기에 가지고 있던 리튬 원자의 삽입 사이트가 손상되어 사이클 수명이 현저하게 저하될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질은 SiOx (x=0)로 이루어질 수 있다.
본 출원에 따른 제1 음극 활물질층은 제1 음극 활물질을 포함하는 것으로 구체적으로 SiOx (x=0)를 95 중량부 이상 포함하는 순수 실리콘 입자를 포함한다. 순수 실리콘 입자를 고 함량 포함하는 경우 용량 특성이 우수하나, 이에 따른 표면 불균일 반응으로 인한 수명 저하 특성이 발생한다. 이에 따라 본 발명에 따른 제2 음극 활물질층을 특정 무게 로딩양으로 포함하여 상기의 문제를 해결하였다.
한편, 본원 발명의 상기 제1 음극 활물질의 평균 입경(D50)은 3㎛ 내지 10㎛일 수 있으며, 구체적으로 4㎛ 내지 8㎛일 수 있고, 보다 구체적으로 5㎛ 내지 7㎛일 수 있다. 상기 평균 입경이 상기 범위에 포함되는 경우, 입자의 비표면적이 적합한 범위로 포함하여, 음극 슬러리의 점도가 적정 범위로 형성 된다. 이에 따라, 음극 슬러리를 구성하는 입자들의 분산이 원활하게 된다. 또한, 제1 음극 활물질의 크기가 상기 하한값의 범위 이상의 값을 갖는 것으로, 음극 슬러리 내에서 도전재와 바인더로 이루어진 복합체에 의해 실리콘 입자, 도전재들의 접촉 면적이 우수하여, 도전 네트워크가 지속될 가능성이 높아져서 용량 유지율이 증가된다. 한편, 상기 평균 입경이 상기 범위를 만족하는 경우, 지나치게 큰 실리콘 입자들이 배제되어 음극의 표면이 매끄럽게 형성되며, 이에 따라 충방전 시 전류 밀도 불균일 현상을 방지할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질은 일반적으로 특징적인 BET 표면적을 갖는다. 제1 음극 활물질의 BET 표면적은 바람직하게는 0.01m2/g 내지 150.0 m2/g, 더욱 바람직하게는 0.1m2/g 내지 100.0 m2/g, 특히 바람직하게는 0.2m2/g 내지 80.0 m2/g, 가장 바람직하게는 0.2m2/g 내지 18.0 m2/g이다. BET 표면적은 (질소를 사용하여) DIN 66131에 따라 측정된다.
본 출원의 일 실시상태에 있어서, 제1 음극 활물질은 예컨대 결정 또는 비정질 형태로 존재할 수 있으며, 바람직하게는 다공성이 아니다. 실리콘 입자는 바람직하게는 구형 또는 파편형 입자이다. 대안으로서 그러나 덜 바람직하게는, 실리콘 입자는 또한 섬유 구조를 가지거나 또는 실리콘 포함 필름 또는 코팅의 형태로 존재할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질은 비구형 형태를 가질 수 있고 그 구형화도는 예를 들어 0.9 이하, 예를 들어 0.7 내지 0.9, 예를 들어 0.8 내지 0.9, 예를 들어 0.85 내지 0.9이다.
본 출원에 있어서, 상기 구형도(circularity)는 하기 식 A-1로 결정되며, A는 면적이고, P는 경계선이다.
[식 A-1]
4πA/P2
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질은 상기 제1 음극 활물질층 조성물 100 중량부 기준 60 중량부 이상인 것인 리튬 이차 전지용 음극을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제1 음극 활물질은 상기 제1 음극 활물질층 조성물 100 중량부 기준 60 중량부 이상, 바람직하게는 65 중량부 이상, 더욱 바람직하게는 70 중량부 이상을 포함할 수 있으며, 95 중량부 이하, 바람직하게는 90 중량부 이하, 더욱 바람직하게는 80 중량부 이하를 포함할 수 있다.
본 출원에 따른 제1 음극 활물질층 조성물은 용량이 현저히 높은 제1 음극 활물질을 상기 범위로 사용하여도 후술하는 제2 음극 활물질층을 함께 사용하여, 전체 음극의 용량 성능을 저하시키지 않으며 충전 및 방전에서의 표면 퇴화 문제, 전리튬화시 균일도의 문제 및 수명 특성의 문제를 해결하였다.
종래에는 음극 활물질로서 흑연계 화합물만을 사용하는 것이 일반적이었으나, 최근에는 고용량 전지에 대한 수요가 높아짐에 따라, 용량을 높이기 위하여 실리콘계 화합물을 혼합하여 사용하려는 시도가 늘어나고 있다. 다만, 실리콘계 화합물의 경우, 충/방전 과정에서 부피가 급격하게 팽창하여, 음극 활물질 층 내에 형성된 도전 경로를 훼손시켜 전지의 성능을 되려 저하시킨다는 한계가 존재한다.
따라서, 본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층 조성물은 제1 음극 도전재; 및 제1 음극 바인더로 이루어진 군에서 선택되는 1 이상을 더 포함할 수 있다.
이 때 제1 음극 활물질층 조성물에 포함되는 제1 음극 도전재 및 제1 음극 바인더는 당업계에 사용되는 것을 제한 없이 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 도전재는 당업계에서 일반적으로 사용될 수 있는 물질을 제한없이 사용할 수 있으며, 구체적으로 점형 도전재; 면형 도전재; 및 선형 도전재로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 음극에 도전성을 향상시키기 위해 사용될 수 있고, 화학적 변화를 유발하지 않으면서 도전성을 가진 것으로 점형 또는 구형을 갖는 도전재를 의미한다. 구체적으로 상기 점형 도전재는 천연 흑연, 인조 흑연, 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙, 도전성 섬유, 플루오로카본, 알루미늄 분말, 니켈 분말, 산화아연, 티탄산 칼륨, 산화 티탄 및 폴리페닐렌 유도체로 이루어진 군에서 선택된 적어도 1종일 수 있으며, 바람직하게는 높은 도전성을 구현하며, 분산성이 우수하다는 측면에서 카본 블랙을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 BET 비표면적이 40m2/g 이상 70m2/g 이하일 수 있으며, 바람직하게는 45m2/g 이상 65m2/g 이하, 더욱 바람직하게는 50m2/g 이상 60m2/g 이하일 수 있다.
본 출원의 일 실시상태에 있어어서, 상기 점형 도전재의 입경은 10nm 내지 100nm일 수 있으며, 바람직하게는 20nm 내지 90nm, 더욱 바람직하게는 20nm 내지 60nm일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 도전재는 면형 도전재를 포함할 수 있다.
상기 면형 도전재는 음극 내에서 실리콘 입자들 간의 면 접촉을 증가시켜 도전성을 개선하고, 동시에 부피 팽창에 따른 도전성 경로의 단절을 억제하는 역할을 할 수 있는 것으로 판상형 도전재 또는 벌크(bulk)형 도전재로 표현될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 판상형 흑연, 그래핀, 그래핀 옥사이드, 및 흑연 플레이크로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 바람직하게는 판상형 흑연일 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재의 평균 입경(D50)은 2㎛ 내지 7㎛일 수 있으며, 구체적으로 3㎛ 내지 6㎛일 수 있고, 보다 구체적으로 4㎛ 내지 5㎛일 수 있다. 상기 범위를 만족하는 경우, 충분한 입자 크기에 기하여, 음극 슬러리의 지나친 점도 상승을 야기하지 않으면서도 분산이 용이하다. 따라서, 동일한 장비와 시간을 사용하여 분산시킬 때 분산 효과가 뛰어나다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 D10이 0.5μm 이상 1.5μm 이하이고, D50이 2.5μm 이상 3.5μm 이하이며, D90이 7.0μm 이상 15.0μm 이하인 것인 음극 조성물을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 높은 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재로 고비표면적 면형 도전재; 또는 저비표면적 면형 도전재를 제한없이 사용할 수 있으나, 특히 본 출원에 따른 면형 도전재는 분산 영향을 전극 성능에서 어느 정도 영향을 받을 수 있어, 분산에 문제가 발생하지 않는 저비표면적 면형 도전재를 사용하는 것이 특히 바람직할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 5m2/g 이상일 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 BET 비표면적이 5m2/g 이상 500m2/g 이하일 수 있으며, 바람직하게는 5m2/g 이상 300m2/g 이하, 더욱 바람직하게는 5m2/g 이상 250m2/g 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 고비표면적 면형 도전재이며, BET 비표면적이 50m2/g 이상 500m2/g 이하, 바람직하게는 80m2/g 이상 300m2/g 이하, 더욱 바람직하게는 100m2/g 이상 300m2/g 이하의 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 면형 도전재는 저비표면적 면형 도전재이며, BET 비표면적이 5m2/g 이상 40m2/g 이하, 바람직하게는 5m2/g 이상 30m2/g 이하, 더욱 바람직하게는 5m2/g 이상 25m2/g 이하의 범위를 만족할 수 있다.
그 외 도전재로는 탄소나노튜브 등의 선형 도전재가 있을 수 있다. 탄소나노튜브는 번들형 탄소나노튜브일 수 있다. 상기 번들형 탄소나노튜브는 복수의 탄소나노튜브 단위체들을 포함할 수 있다. 구체적으로, 여기서 '번들형(bundle type)'이란, 달리 언급되지 않는 한, 복수 개의 탄소나노튜브 단위체가 탄소나노튜브 단위체 길이 방향의 축이 실질적으로 동일한 배향으로 나란하게 배열되거나 또는 뒤엉켜있는, 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다. 상기 탄소나노튜브 단위체는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2결합 구조를 갖는다. 이때 상기 흑연면이 말리는 각도 및 구조에 따라서 도체 또는 반도체의 특성을 나타낼 수 있다. 상기 번들형 탄소나노튜브는 인탱글형(entangled type) 탄소나노튜브에 비해 음극 제조 시 균일하게 분산될 수 있으며, 음극 내 도전성 네트워크를 원활하게 형성하여, 음극의 도전성이 개선될 수 있다.
본 출원의 일 실시상태에 있어서 상기 선형 도전재는 단일벽 카본나노튜브; 또는 다중벽 카본나노튜브를 사용할 수 있다.
상기 단일벽 카본나노튜브는 6각형으로 배열된 탄소원자들이 튜브 형태를 이 루고 있는 물질로, 특유의 나선성(chirality)에 따라 부도체, 전도체 또는 반도체 성질을 나타내며, 탄소 원자들이 강력한 공유결합으로 연결되어 있어 인장강도가 강철보다 대략 100배 이상 크고, 유연성과 탄성 등이 뛰어나며, 화학적으로도 안정한 특성을 가진다.
상기 단일벽 카본나노튜브의 평균직경은 0.5 nm 내지 15 nm이다. 본 발명의 일 구현예에 따르면, 상기 단일벽 카본나노튜브의 평균직경은 1 nm 내지 10 nm, 또는 1 nm 내지 5 nm, 또는 1 nm 내지 2 nm일 수 있다. 상기 단일벽 카본나노튜브의 평균직경이 이러한 범위를 만족하는 경우, 단일벽 카본나노튜브를 매우 적은 함량으로 포함시켜도 음극의 전기전도성을 유지할 수 있으며, 도전재 분산액 제조 시 바 람직한 점도와 고형분 도출이 가능하다. 상기 도전재 분산액 내에서 단일벽 카본나 노튜브들은 서로 뭉쳐서 인탱글된(entangled) 상태(응집체)로 존재할 수 있다. 이에, 상기 평균직경은 상기 도전재 분산액으로부터 추출된 임의의 인탱글된 상태의 단일벽 카본나노튜브 응집체의 직경을 SEM 또는 TEM으로 확인한 뒤, 상기 응집체의 직경을 상기 응집체를 구성하는 단일벽 카본나노튜브의 개수로 나누어 도출될 수 있다.
상기 단일벽 카본나노튜브의 BET 비표면적은 500 m2/g 내지 1,500 m2 /g, 또는 900 m2/g 내지 1,200 m2/g일 수 있으며, 구체적으로 250 m2/g 내지 330 m2/g일 수 있다. 상기 범위를 만족하는 경우, 바람직한 고형분을 가진 도전재 분산액이 도출되며, 음극 슬러리의 점도가 지나치게 상승하는 것이 방지된다. 상기 BET 비표면적은 질소 흡착 BET법을 통해 측정될 수 있다.
상기 단일벽 카본나노튜브의 종횡비는 50 내지 20,000일 수 있으며, 또는 상기 단일벽 카본나노튜브의 길이는 5 내지 100 ㎛, 또는 5 내지 50 ㎛일 수 있다. 상기 종횡비 또는 길이가 이러한 범위를 만족하는 경우, 비표면적이 높은 수준이므로, 음극 내에서 단일벽 카본나노튜브가 활물질 입자에 강한 인력으로 흡착될 수 있다. 이에 따라 음극 활물질의 부피 팽창에도 도전성 네트워크가 원활하게 유지될 수 있다. 상기 종횡비는 상기 단일벽 카본나노튜브 파우더를 SEM을 통해 관찰할 시, 종횡비가 큰 단일벽 카본나노튜브 15개와 종횡비가 작은 단일벽 카본나노튜브 15개의 종횡비의 평균을 구하여 확인할 수 있다.
상가 단일벽 카본나노튜브는 다중벽 탄소나노튜브나, 이중벽 탄소나노튜브와 비교하여서, 종횡비가 커서 길이가 길고, 부피가 크기 때문에 소량만 사용하여도 전기적 네트워크를 구축할 수 있다는 측면에서 유리하다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 도전재는 상기 제1 음극 활물질층 조성물 100 중량부 기준 10 중량부 이상 40 중량부 이하를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 음극 도전재는 상기 제1 음극 활물질층 조성물 100 중량부 기준 10 중량부 이상 40 중량부 이하, 바람직하게는 10 중량부 이상 30 중량부 이하, 더욱 바람직하게는 15 중량부 이상 25 중량부 이하를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 도전재는 점형 도전재; 면형 도전재; 및 선형 도전재를 포함하며, 상기 점형 도전재:면형 도전재:선형 도전재는 1:1:0.01 내지 1:1:1의 비율을 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재는 상기 제1 음극 도전재 100 중량부 기준 1 중량부 이상 60 중량부 이하, 바람직하게는 5 중량부 이상 50 중량부 이하, 더욱 바람직하게는 10 중량부 이상 50 중량부 이하의 범위를 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 면형 도전재는 상기 제1 음극 도전재 100 중량부 기준 1 중량부 이상 60 중량부 이하, 바람직하게는 5 중량부 이상 50 중량부 이하, 더욱 바람직하게는 10 중량부 이상 50 중량부 이하의 범위를 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 선형 도전재는 상기 제1 음극 도전재 100 중량부 기준 0.01 중량부 이상 10 중량부 이하, 바람직하게는 0.05 중량부 이상 8 중량부 이하, 더욱 바람직하게는 0.1 중량부 이상 5 중량부 이하의 범위를 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 도전재는 선형 도전재; 및 면형 도전재를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 도전재는 선형 도전재 및 면형 도전재를 포함하며, 상기 선형 도전재: 면형 도전재의 비율은 0.01:1 내지 0.1:1를 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 도전재는 점형 도전재 및 면형 도전재를 포함하며, 상기 제1 음극 도전재 100 중량부 기준 상기 점형 도전재 45 내지 60 중량부; 및 상기 면형 도전재 40 내지 55 중량부를 포함하는 것인 음극 조성물을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제1 음극 도전재는 점형 도전재 및 면형 도전재를 포함하며, 상기 제1 음극 도전재 100 중량부 기준 상기 점형 도전재 45 내지 60 중량부 바람직하게는 47 내지 58 중량부, 더욱 바람직하게는 50 내지 55 중량부를 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 음극 도전재는 점형 도전재 및 면형 도전재를 포함하며, 상기 제1 음극 도전재 100 중량부 기준 상기 면형 도전재 40 내지 55 중량부 바람직하게는 42 내지 53 중량부, 더욱 바람직하게는 45 내지 50 중량부를 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 점형 도전재: 면형 도전재의 비율은 1:1을 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 제1 음극 도전재가 상기 조성 및 비율을 만족함에 따라, 기존 리튬 이차 전지의 수명 특성에는 큰 영향을 미치지 않으며, 충전 및 방전이 가능한 포인트가 많아져 높은 C-rate에서 출력 특성이 우수한 특징을 갖게 된다.
본 출원에 따른 제1 음극 도전재의 경우 양극에 적용되는 도전재와는 전혀 별개의 구성을 갖는다. 즉 본 출원에 따른 제1 음극 도전재의 경우 충전 및 방전에 의해서 전극의 부피 팽창이 매우 큰 실리콘계 활물질들 사이의 접점을 잡아주는 역할을 하는 것으로, 양극 도전재는 압연될 때 완충 역할의 버퍼 역할을 하면서 일부 도전성을 부여하는 역할로, 본원 발명의 음극 도전재와는 그 구성 및 역할이 전혀 상이하다.
또한, 본 출원에 따른 제1 음극 도전재는 실리콘계 활물질에 적용되는 것으로, 흑연계 활물질에 적용되는 도전재와는 전혀 상이한 구성을 갖는다. 즉 흑연계 활물질을 갖는 전극에 사용되는 도전재는 단순히 활물질 대비 작은 입자를 갖기 때문에 출력 특성 향상과 일부의 도전성을 부여하는 특성을 갖는 것으로, 본원 발명과 같이 실리콘계 활물질과 함께 적용되는 제1 음극 도전재와는 구성 및 역할이 전혀 상이하다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
본 출원의 일 실시상태에 따른 제1 음극 바인더는 제1 음극 활물질의 부피 팽창 및 완화에 있어, 음극 구조의 뒤틀림, 구조 변형을 방지하기 위해 제1 음극 활물질 및 제1 음극 도전재를 잡아주는 역할을 하는 것으로, 상기 역할을 만족하면 일반적인 바인더 모두를 적용할 수 있으며, 구체적으로 수계 바인더를 사용할 수 있고 더욱 구체적으로는 PAM계 바인더를 사용할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 바인더는 상기 제1 음극 활물질층 조성물 100 중량부 기준 상기 제1 음극 바인더 30 중량부 이하, 바람직하게는 25 중량부 이하, 더욱 바람직하게는 20 중량부 이하를 포함할 수 있으며, 5 중량부 이상, 10 중량부 이상을 포함할 수 있다.
기존 탄소계 음극대비, 실리콘계를 음극에 사용하는 경우 수계 바인더가 상기 중량부로 적용되어 점형 도전재를 사용할 수 있고, 상기 특징에 따라 점형 도전재가 소수성을 가져 도전재/바인더와의 결합 강도가 우수해지는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상의 혼합물을 포함하며, 상기 실리콘계 활물질은 제2 음극 활물질 100 중량부 기준 1 중량부 이상 100 중량부 이하일 수 있다,
또 다른 일 실시상태에 있어서, 상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상 3종 이하의 혼합물을 포함하며, 상기 실리콘계 활물질은 제2 음극 활물질 100 중량부 기준 1 중량부 이상 100 중량부 이하일 수 있다.
또 다른 일 실시상태에 있어서, 상기 제2 음극 활물질은 탄소계 활물질, 및 실리콘계 활물질을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질은 실리콘계 활물질 및 탄소계 활물질을 포함하며, 상기 제2 음극 활물질 100 중량부 기준 상기 실리콘계 활물질 1 중량부 이상 95 중량부 이하를 포함하는 리튬 이차 전지용 음극을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질에 포함되는 실리콘계 활물질은 SiOx (0<x<2), SiC, 및 Si 합금으로 이루어진 군에서 선택되는 1 이상을 포함할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질에 포함되는 실리콘계 활물질은 SiOx (0<x<2), SiC, 및 Si 합금으로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제2 음극 활물질 100 중량부 기준 SiOx (0<x<2)를 1 중량부 이상 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제2 음극 활물질에 포함되는 실리콘계 활물질은 SiOx (0<x<2), SiC, 및 Si 합금으로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제2 음극 활물질 100 중량부 기준 SiOx (0<x<2)를 1 중량부 이상, 10 중량부 이상 포함할 수 있으며, 99 중량부 이하 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제2 음극 활물질에 포함되는 실리콘계 활물질은 SiOx (0<x<2)를 포함할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제2 음극 활물질에 포함되는 실리콘계 활물질은 SiC를 포함할 수 있다.
본 출원에 따른 리튬 이차 전지용 음극은 상기와 같이 제2 음극 활물질층에 상기의 제2 음극 활물질을 포함하는 것이다. 이에 따라 전술한 제1 음극 활물질을 포함하여 고용량, 고밀도의 특성을 유지함과 동시에, 상기 제2 음극 활물질은 버퍼층의 역할을 하는 것으로 충방전시의 표면 퇴화 문제, 전리튬화시 균일도의 문제 및 수명 특성의 문제를 해결할 수 있는 특징을 갖는다.
본 출원의 일 실시상태에 있어서, 상기 탄소계 활물질은 그 대표적인 예로 천연 흑연, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화성 탄소, 카본블랙, 카본나노튜브, 플러렌, 또는 활성탄 등이 대표적이며, 리튬 이차전지용 탄소재에 통상적으로 사용되는 것이라면 제한 없이 사용될 수 있으며, 구체적으로 구형 또는 점형의 형태로 가공하여 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 탄소계 활물질은 흑연을 포함하며, 상기 흑연은 인조흑연 및 천연흑연을 포함하고, 상기 인조흑연 및 천연흑연의 중량비가 5:5 내지 9.5:0.5인 것인 리튬 이차 전지용 음극을 제공한다.
본 발명의 일 구현예에 따른 인조 흑연은 1차 입자 형태일 수도 있고, 상기 1 차 입자 복수개가 응집된 2차 입자 형태일 수도 있다.
본 발명에서 사용되는 용어 "1차 입자(initial particle)"는 어떤 입자로부터 다른 종류의 입자가 형성될 때 원래의 입자를 의미하며, 복수의 1차 입자가 집합, 결합 또는 조립화하여 2차 입자를 형성할 수 있다.
본 발명에서 사용되는 용어 "2차 입자(secondary paricles)"는 개개의 1차 입자가 집합, 결합 또는 조립화하여 형성된, 물리적으로 분별할 수 있는 큰 입자를 의미한다.
상기 1차 입자의 인조 흑연은 니들 코크스(needle cokes), 모자익 코크 스(mosaic cokes) 및 콜타르 피치(coaltar pitch)로 이루어진 군으로부터 선택된 1 종 이상을 열처리하여 제조한 것일 수 있다.
상기 인조 흑연은 일반적으로 콜타르, 콜타르 피치(coal tar pitch) 및 석유 계 중질류 등의 원료를 2,500℃이상으로 탄화시켜 제조되며, 이러한 흑연화 이후에 분쇄 및 2차 입자 형성과 같은 입자도 조정을 거쳐 음극 활물질로서 사용될 수 있다. 인조 흑연의 경우 결정이 입자 내에서 랜덤하게 분포되어 있으며, 천연 흑연에 비해 구형화도가 낮고 다소 뾰족한 형상을 갖는다.
본 발명의 일 구현예에서 사용되는 인조 흑연은 상업적으로 많이 사용되고 있는 MCMB(mesophase carbon microbeads), MPCF(mesophase pitch-based carbon fiber), 블록 형태로 흑연화된 인조 흑연, 분체 형태로 흑연화된 인조 흑연 등이 있을 수 있다. 상기 인조 흑연의 구형도는 0.91 이하, 또는 0.6 내지 0.91, 또는 0.7 내지 0.9일 수 있다.
또한, 상기 인조 흑연은 5㎛ 내지 30㎛, 바람직하게는 10㎛ 내지 25㎛의 입경을 가질 수 있다.
구체적으로, 상기 인조 흑연 1차 입자의 D50은 6㎛ 내지 15㎛일 수 있으며, 또는 6㎛ 내지 10㎛일 수 있고, 또는 6㎛ 내지 9㎛일 수 있다. 상기 1차 입자의 D50이 이러한 범위를 만족하는 경우, 1차 입자가 높은 흑연화를 가질 정도 형성될 수 있으며, 음극 활물질 입자의 배향 지수가 적절하게 확보되어 급속 충전 성능이 개선될 수 있다.
상기 인조 흑연 2차 입자는 1차 입자가 조립화되어 형성될 수 있다. 즉, 상기 2차 입자는 상기 1차 입자가 조립화 공정을 통해 서로 응집되어 형성된 구조체일 수 있다. 상기 2차 입자는 상기 1차 입자들을 응집하게 해주는 탄소질 매트릭스를 포함할 수 있다. 상기 탄소질 매트릭스는 소프트카본 및 흑연 중 적어도 어느 하나를 포함할 수 있다. 상기 소프트카본은 피치가 열처리되어 형성된 것일 수 있다.
상기 탄소질 매트릭스는 상기 2차 입자 내에 8중량% 내지 16중량%로 포함될 수 있으며, 구체적으로 9중량% 내지 12중량%로 포함될 수 있다. 상기 범위는 통상 적인 인조흑연 2차 입자에 사용되는 탄소질 매트릭스의 함량보다 적은 수준이다. 이는, 2차 입자 내 1차 입자의 입도가 제어되어, 조립화에 필요한 탄소질 매트릭스의 함량이 소량이더라도 구조적으로 안정된 2차 입자가 제조될 수 있으며, 2차 입자를 구성하는 1차 입자의 양도 균일할 수 있다.
상기 인조 흑연 2차 입자의 표면에 탄소 코팅층을 포함하고, 상기 탄소 코팅 층은 비정질 탄소 및 결정질 탄소 중 적어도 어느 하나를 포함할 수 있다.
상기 결정질 탄소는 상기 음극 활물질의 도전성을 보다 향상시킬 수 있다. 상기 결정질 탄소는 플로렌, 및 그래핀으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다.
상기 비정질 탄소는 상기 피복층의 강도를 적절하게 유지시켜, 상기 천연흑 연의 팽창을 억제시킬 수 있다. 상기 비정질 탄소는 타르, 피치 및 기타 유기물로 이루어진 군에서 선택되는 적어도 어느 하나의 탄화물, 또는 탄화수소를 화학기상 증착법의 소스로 이용하여 형성된 탄소계 물질일 수 있다.
상기 기타 유기물의 탄화물은 수크로오스, 글루코오스, 갈락토오스, 프록토 오스, 락토오스, 마노스, 리보스, 알도헥소스 또는 케도헥소스의 탄화물 및 이들의 조합에서 선택되는 유기물의 탄화물일 수 있다.
상기 인조흑연 2차 입자의 D50은 10㎛ 내지 25㎛일 수 있으며, 구체적으로 12㎛ 내지 22㎛일 수 있고, 보다 구체적으로 13㎛ 내지 20㎛일 수 있다. 상기 범위를 만족하는 경우, 인조흑연 2차 입자가 슬러리 내에서 고르게 분산될 수 있으면서 전지의 충전 성능도 개선될 수 있다
상기 인조흑연 2차 입자의 탭밀도는 0.85g/cc 내지 1.30g/cc일 수 있으며, 구체적으로 0.90g/cc 내지 1.10g/cc일 수 있고, 보다 구체적으로 0.90g/cc 내지 1.07g/cc일 수 있다. 상기 범위를 만족하는 경우, 음극 내에서 인조 흑연 2차 입자의 패킹(packing)이 원활하게 이루어질 수 있으므로, 음극 접착력이 개선될 수 있음을 의미한다.
상기 천연 흑연은 일반적으로 가공되기 이전에는 판상의 응집체로 되어 있을수 있으며, 상기 판상의 입자는 전극 제조를 위한 활물질로 사용되기 위해서 입자 분쇄 및 재조립 과정 등의 후처리 가공을 통해 매끈한 표면을 갖는 구형 형태로 제 조될 수 있다.
본 발명의 일 구현예에서 사용되는 천연 흑연은 구형도가 0.91 초과 및 0.97 이하, 또는 0.93 내지 0.97, 또는 0.94 내지 0.96일 수 있다.
상기 천연 흑연은 5㎛ 내지 30㎛, 또는 10㎛ 내지 25㎛의 입경을 가질 수 있다.
본 발명의 일 구현예에 따르면, 상기 인조 흑연 및 천연 흑연의 중량비는 5:5 내지 9.5:0.5, 또는 5:5 내지 9.3:0.7, 또는 5:5 내지 9:1, 또는 6:4 내지 9:1일 수 있다. 상기 인조흑연 및 천연흑연의 중량비가 이러한 범위를 만족하는 경우에 보다 우수한 출력을 나타낼 수 있고, 수명 및 급속충전 성능에서 유리할 수 있다.
본 출원의 일 실시상태에 있어서, 전술한 음극 도전재로 사용되는 면형 도전재는 일반적으로 음극 활물질로 사용되는 탄소계 활물질과 상이한 구조 및 역할을 갖는다. 구체적으로, 음극 활물질로 사용되는 탄소계 활물질은 인조 흑연 또는 천연 흑연일 수 있으며, 리튬 이온의 저장 및 방출을 용이하게 하기 위하여 구형 또는 점형의 형태로 가공하여 사용하는 물질을 의미한다.
반면, 음극 도전재로 사용되는 면형 도전재는 면 또는 판상의 형태를 갖는 물질로, 판상형 흑연으로 표현될 수 있다. 즉, 음극 활물질층 내에서 도전성 경로를 유지하기 위하여 포함되는 물질로 리튬의 저장 및 방출의 역할이 아닌 음극 활물질층 내부에서 면형태로 도전성 경로를 확보하기 위한 물질을 의미한다.
즉, 본 출원에 있어서, 판상형 흑연이 도전재로 사용되었다는 것은 면형 또는 판상형으로 가공되어 리튬을 저장 또는 방출의 역할이 아닌 도전성 경로를 확보하는 물질로 사용되었다는 것을 의미한다. 이 때, 함께 포함되는 음극 활물질은 리튬 저장 및 방출에 대한 용량 특성이 높으며, 양극으로부터 전달되는 모든 리튬 이온을 저장 및 방출할 수 있는 역할을 하게 된다.
반면, 본 출원에 있어서, 탄소계 활물질이 활물질로 사용되었다는 것은 점형 또는 구형으로 가공되어 리튬을 저장 또는 방출의 역할을 하는 물질로 사용되었다는 것을 의미한다.
즉, 본 출원의 일 실시상태에 있어서, 탄소계 활물질인 인조 흑연 또는 천연 흑연은 BET 비표면적이 0.1m2/g 이상 4.5 m2/g 이하의 범위를 만족할 수 있다. 또한 면형 도전재인 판상형 흑연은 면 형태로 BET 비표면적이 5m2/g 이상일 수 있다.
상기 금속계 활물질은 그 대표적인 예로 Al, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti, Sb, Ga, Mn, Fe, Co, Ni, Cu, Sr 및 Ba 등으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 금속 원소를 함유하는 화합물일 수 있다. 이들 금속 화합물은 단체, 합금, 산화물(TiO2, SnO2 등), 질화물, 황화물, 붕화물, 리튬과의 합금 등 어떤 형태로도 사용할 수 있지만, 단체, 합금, 산화물, 리튬과의 합금은 고용량화될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질은 제2 음극 활물질층 조성물 100 중량부 기준 60 중량부 이상 포함하는 것인 리튬 이차 전지용 음극을 제공한다.
또 다른 일 실시상태에 있어서, 상기 제2 음극 활물질은 상기 제2 음극 활물질층 조성물 100 중량부 기준 60 중량부 이상일 수 있으며, 100 중량부 이하, 99 중량부 이하를 만족할 수 있다.
본 출원에 따른 제2 음극 활물질층 조성물은 용량 특성이 제1 음극 활물질보다 낮으나, 충방전에 따른 입자 깨짐이 덜한 제2 음극 활물질을 상기 범위로 사용하는 것으로 음극의 용량 성능을 저하시키지 않으며 음극의 표면 반응을 억제하여 수명 특성 강화의 특징을 가질 수 있게 된다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질층 조성물은 제2 음극 도전재; 및 제2 음극 바인더로 이루어진 군에서 선택되는 1 이상을 더 포함하는 것인 리튬 이차 전지용 음극을 제공한다.
이 때, 상기 제2 음극 도전재 및 제2 음극 바인더에 대한 내용은 전술한 제1 음극 도전재 및 제1 음극 바인더의 내용과 동일한 내용이 적용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질층은 하기 식 1을 만족하는 것인 리튬 이차 전지용 음극을 제공한다.
[식 1]
0.5 ≤B/A≤ 2
상기 식 1에 있어서,
A는 제2 음극 활물질층의 방전 용량이고,
B는 전리튬화(Pre-lithiation) 리튬의 용량을 의미한다.
본 출원의 일 실시상태에 있어서, 상기 식 1은 0.5 ≤ B/A ≤ 2의 범위를 만족하며, 바람직하게는 0.7 ≤ B/A ≤ 1.8, 더욱 바람직하게는 0.9 ≤ B/A ≤ 1.6의 비율을 만족할 수 있다. 또한 상기 상한 및 하한의 값은 조합하여 적용 가능하다. 구체적으로, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 및 2.0에서 다양한 조합의 값이 사용될 수 있다. 일 예로, 0.6 ≤ B/A ≤ 1.9, 0.8 ≤ B/A ≤ 1.7, 1.0 ≤ B/A ≤ 1.5, 1.1 ≤ B/A ≤ 1.4, 1.2 ≤ B/A ≤ 1.3 일 수 있다.
본 출원에 따른 리튬 이차 전지용 음극의 경우 2층의 음극 활물질층을 갖는다. 특히 본 출원에 따른 음극은 초기 충전 및 방전시의 실리콘계 활물질의 사용 비율을 제한하여, 전극 표면 퇴화를 방지하고, 또한 Reservoir 역할을 부여하기 위해 전리튬화 공정을 거친다. 이 때 제2 음극 활물질층 조성물에 포함되는 실리콘의 방전 용량 기준 상기 식 1의 전리튬화 비율을 만족하여 용량 특성 및 수명 특성을 최적화하여 우수한 효과를 갖는 것을 특징으로 한다.
Si의 수명 성능 구현을 위한 최대 충전 심도는 보통 ~100mV 수준으로 이 이하의 범위에서는 LixSiy의 crystalline phase가 형성된다. 이 때, x/y값의 범위가 3.75이상일 경우 crystalline phase가 생성된다. 따라서 상기 식 1의 범위를 초과하는 경우 제1 음극 활물질층의 제1 음극 활물질까지 Li가 깊숙히 충전된채로 cycle이 진행되어 Si 입자 부피가 커지고 Pulverization이 일어나는 효과가 더욱 커 Fading이 빨리 일어나게된다. 또한 상기 식 1의 범위 미만인 경우 전리튬화로 인한 효과인 수명 특성 증가를 기대하기 어렵다.
결국 본 출원에 따른 리튬 이차 전지용 음극은 제1 음극 활물질층의 buffer layer 역할로 제2 음극 활물질층을 코팅하여 double layer 구조를 갖는 것으로, 특히 전리튬화 진행시 제1 음극 활물질층까지 전리튬화 되는 것을 최소화 시키면서도, 수명 특성의 극대화를 상기 식 1의 범위를 만족함에 따라 달성하였다는 것을 특징으로 한다.
본 출원의 일 실시상태에 있어서, 상기 리튬 이차 전지용 음극은 전리튬화될 수 있다.
본 출원에 따른 리튬 이차 전지용 음극은 더블 레이어로 구성되며 특히 특정 로딩양을 갖는 제2 음극 활물질층이 전리튬화시 버퍼층 역할을 하여, 사이클 충전 및 방전시 전극 깊이 방향으로 균일한 lithiaiton이 일어날 수 있도록 도움을 주는 역할 또한 가지게 된다.
본 출원의 일 실시상태에 있어서, 음극 집전체층을 준비하는 단계; 상기 음극 집전체층의 일면 또는 양면에 제1 음극 활물질층 조성물을 도포하여, 제1 음극 활물질층을 형성하는 단계; 및 상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 제2 음극 활물질층 조성물을 도포하여, 제2 음극 활물질층을 형성하는 단계;를 포함하는 리튬 이차 전지용 음극의 제조 방법으로, 상기 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상 포함하고, 상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상의 혼합물을 포함하며, 상기 실리콘계 활물질은 제2 음극 활물질 100 중량부 기준 1 중량부 이상 99 중량부 이하이고, 상기 제2 음극 활물질층은 상기 식 1을 만족하는 것인 리튬 이차 전지용 음극의 제조 방법을 제공한다.
상기 음극의 제조 방법에 있어서, 각 단계에 포함되는 조성 및 함량은 전술한 내용이 적용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층의 일면 또는 양면에 제1 음극 활물질층 조성물을 도포하여, 제1 음극 활물질층을 형성하는 단계를 제공한다.
즉, 상기 단계는 음극 집전체층 상에 활물질층을 형성하는 단계로 더블 레이어(Double layer)구조 중 음극 집전체층과 접하는 면(하층부)에 활물질층을 형성하는 단계를 의미할 수 있다.
본 출원의 일 실시상태에 있어서, 제1 음극 활물질층 조성물을 도포하는 것은 제1 음극 활물질층 조성물; 및 음극 슬러리 용매를 포함하는 제1 음극 슬러리를 도포 및 건조하는 단계를 포함한다.
이 때 제1 음극 슬러리의 고형분 함량은 10% 내지 40%의 범위를 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층을 형성하는 단계는 상기 제1 음극 슬러리를 믹싱하는 단계; 및 상기 믹싱된 제1 음극 슬러리를 상기 음극 집전체층의 일면 또는 양면에 코팅하는 단계를 포함할 수 있으며, 상기 코팅은 당업계에 일반적으로 사용되는 코팅 방법이 사용될 수 있다.
또한, 전술한 제1 음극 활물질층 조성물의 무게 로딩양은 상기 제1 음극 슬러리의 무게 로딩양과 동일한 의미로 사용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 제2 음극 활물질층 조성물을 도포하여, 제2 음극 활물질을 형성하는 단계를 제공한다.
즉, 상기 단계는 상기 제1 음극 활물질층 상에 제2 음극 활물질층을 형성하는 단계로 더블 레이어(Double layer)구조 중 음극 집전체층과 떨어진 면(상층부)에 활물질층을 형성하는 단계를 의미할 수 있다.
본 출원의 일 실시상태에 있어서, 제2 음극 활물질층 조성물을 도포하는 것은 제2 음극 활물질층 조성물; 및 음극 슬러리 용매를 포함하는 제2 음극 슬러리를 도포 및 건조하는 단계를 포함한다.
이 때 제2 음극 슬러리의 고형분 함량은 10% 내지 40%의 범위를 만족할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제2 음극 활물질층을 형성하는 단계는 상기 제2 음극 슬러리를 믹싱하는 단계; 및 상기 믹싱된 제2 음극 슬러리를 상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 코팅하는 단계;를 포함하는 것인 리튬 이차 전지용 음극의 제조 방법을 제공한다.
상기 코팅은 당업계에 일반적으로 사용되는 코팅 방법이 사용될 수 있다.
또한, 전술한 제2 음극 활물질층 조성물의 무게 로딩양은 상기 제2 음극 슬러리의 무게 로딩양과 동일한 의미로 사용될 수 있다.
상기 제2 음극 활물질층을 형성하는 단계는 상기 제1 음극 활물질층을 형성하는 단계의 설명이 동일하게 적용될 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층 상에 상기 제2 음극 활물질층을 형성하는 단계는 웨트 온 드라이(wet on dry) 공정; 또는 웨트 온 웨트(wet on wet) 공정;을 포함하는 것인 리튬 이차 전지용 음극의 제조 방법을 제공한다.
본 출원의 일 실시상태에 있어서, 웨트 온 드라이 공정은 제1 음극 활물질층 조성물을 도포 후, 부분적 또는 완전 건조(dry)하고, 그 상부에 제2 음극 활물질층 조성물을 도포하는 공정을 의미할 수 있다.
도 5는 본 출원의 일 실시상태에 따른 웨트 온 드라이(Wet on dry) 공정을 나타낸 순서도이다. 구체적으로 웨트 온 드라이 공정에서, 제1 음극 슬러리 혼합물(제1 음극 활물질, 제1 음극 도전제, 제1 음극 바인더, 제1 용매)을 준비하고 음극 집전체층에 도포한다. 이후 제1 음극 슬러리 혼합물을 건조하여 제1 음극 활물질층을 형성한다. 이후 제2 음극 슬러리 혼합물을 준비하여 상기 제1 음극 활물질층에 도포하고 건조하여 제2 음극 활물질층을 형성한다. 이 후 각 층을 롤링 및 압착하여 본 출원에 따른 리튬 이차 전지용 음극을 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 웨트 온 웨트 공정은 제1 음극 활물질층 조성물을 도포 후, 건조하지 않고 그 상부에 제2 음극 활물질층 조성물을 도포하는 공정을 의미한다.
도 6은 본 출원의 일 실시상태에 따른 웨트 온 웨트(Wet on wet) 공정을 나타낸 순서도이다. 구체적으로 웨트 온 웨트 공정에서, 제1 음극 슬러리 혼합물을 준비하고 음극 집전체층에 도포하고, 이와 동시에 제2 음극 슬러리 혼합물을 준비한 후, 상기 제1 음극 슬러리 혼합물에 도포하고, 제1 및 제2 음극 슬러리 혼합물을 건조한다. 이 후 각 층을 롤링 및 압착하여 본 출원에 따른 리튬 이차 전지용 음극을 형성할 수 있다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층에 상기 제2 음극 활물질층을 형성하는 단계는 웨트 온 드라이(wet on dry) 공정을 포함하며, 상기 웨트 온 드라이 공정은 제1 음극 활물질층 조성물을 도포하는 단계; 상기 도포된 제1 음극 활물질층 조성물을 부분적 건조 또는 전면 건조시켜 제1 음극 활물질층을 형성하는 단계; 및 상기 제2 음극 활물질층 조성물을 상기 제1 음극 활물질층에 도포하는 단계;를 포함하는 것인 리튬 이차 전지용 음극의 제조 방법을 제공한다.
본 출원의 일 실시상태에 있어서, 상기 제1 음극 활물질층에 상기 제2 음극 활물질층을 형성하는 단계는 웨트 온 웨트(wet on wet) 공정을 포함하며, 상기 웨트 온 웨트 공정은 제1 음극 활물질층 조성물을 도포하는 단계; 및 상기 제1 음극 활물질층 조성물을 미건조 상태로 상기 제2 음극 활물질층 조성물을 상기 제1 음극 활물질층 조성물에 도포하는 단계;를 포함하는 것인 리튬 이차 전지용 음극의 제조 방법을 제공한다.
특히 웨트 온 드라이(wet on dry) 공정은 제1 음극 활물질층 조성물을 도포 후, 부분적 또는 완전 건조(dry) 한 후, 그 상부에 제2 음극 활물질층 조성물을 도포하는 것으로, 상기와 같은 공정을 통하여, 제1 음극 활물질층 및 제2 음극 활물질층은 명확한 경계를 가질 수 있다. 이에 따라 제1 음극 활물질층 및 제2 음극 활물질층에 포함되는 조성이 섞이지 않으며 더블레이어로 구성될 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 음극 슬러리 용매는 제1 음극 활물질층 조성물 및 제2 음극 활물질층 조성물을 용해할 수 있으면, 제한없이 사용할 수 있으며, 구체적으로 물 또는 NMP를 사용할 수 있다.
전술한 웨트 온 웨트 공정의 결과로, 제1 음극 활물질층과 제2 음극 활물질층이 혼합된 접합 영역이 형성될 수 있다. 이 때 웨트 온 웨트 공정이 일어나기 위해서는 제1 음극 활물질층 조성물의 점도가 제2 음극 활물질층 조성물의 점도보다 낮아야 접합 영역과 공정에서 상호 혼합이 일어날 수 있다.
또한, 제1 음극 활물질층이 건조된 후(웨트 온 드라이 공정), 제2 음극 활물질층이 형성됨으로써 두 층의 계면이 명확하게 나뉘어 형성된다.
반면, 제1 음극 활물질층 조성물이 완전히 건조되지 않은 상태에서 제2 음극 활물질층이 도포되는 것으로(제1 음극 활물질층 조성물과 제2 음극 활물질층 조성물이 동시에 도포) 두 층의 계면에서 혼합이 일어나 접합 영역이 형성된다.
본 출원의 일 실시상태에 있어서, 상기 음극 집전체층 상에 제1 음극 활물질층 및 제2 음극 활물질층이 형성된 음극을 전리튬화(pre-lithiation)하는 단계를 포함하며, 상기 음극을 전리튬화하는 단계는 리튬 전해 도금 공정; 리튬 금속 전사 공정; 리튬 금속 증착 공정; 또는 안정화 리튬 메탈 파우더(SLMP) 코팅 공정을 포함하는 것인 리튬 이차 전지용 음극의 제조 방법을 제공한다.
상기와 같이 제2 음극 활물질층이 전술한 제2 음극 활물질을 포함하는 것으로 실리콘계 활물질 및 탄소계 활물질의 혼합 조성으로 구비되어, 급속 충전의 장점을 그대로 가져갈 수 있으며, 특히 제2 음극 활물질의 경우 혼합 조성을 가져 비가역이 크기 때문에 음극을 미리 충전하는 전리튬화 공정 시에도 유리하게 효과를 볼 수 있다. 단순히 제1 음극 활물질층만을 적용한 경우에 비하여, 제2 음극 활물질에 상기 조성을 갖는 제2 음극 활물질을 가져, 음극 전극 상단부에 균일한 전리튬화 공정이 가능하며 이에 따라 수명이 향상될 수 있는 특징을 갖게 된다.
본 출원의 일 실시상태에 있어서, 상기 제1 및 제2 음극 활물질층의 공극률은 10% 이상 60% 이하의 범위를 만족할 수 있다.
또 다른 일 실시상태에 있어서, 상기 제1 및 제2 음극 활물질층의 공극률은 10% 이상 60% 이하, 바람직하게는 20% 이상 50% 이하, 더욱 바람직하게는 30% 이상 45% 이하의 범위를 만족할 수 있다.
상기 공극률은 제1 및 제2 음극 활물질층에 포함되는 활물질; 도전재; 및 바인더의 조성 및 함량에 따라 변동되는 것으로, 이에 따라 전극에 있어 전기 전도도 및 저항이 적절한 범위를 갖는 것을 특징으로 한다.
본 출원의 일 실시상태에 있어서, 양극; 본 출원에 따른 리튬 이차 전지용 음극; 상기 양극과 상기 음극 사이에 구비된 분리막; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
본 명세서의 일 실시상태에 따른 이차 전지는 특히 상술한 리튬 이차 전지용 음극을 포함할 수 있다. 구체적으로, 상기 이차 전지는 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명은 생략한다.
상기 양극은 양극 집전체층 및 상기 양극 집전체층 상에 형성되며, 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있다.
상기 양극에 있어서, 양극 집전체층은 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 양극 집전체층은 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.
상기 양극 활물질층은 앞서 설명한 양극 활물질과 함께, 양극 도전재 및 양극 바인더를 포함할 수 있다.
이때, 상기 양극 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
또, 상기 양극 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해질 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 일 실시상태는 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
<제조예>
<음극의 제조>
실시예 1: 음극의 제조
제1 음극 활물질층 제조
실리콘계 활물질로서 Si(평균 입경(D50): 5㎛), 제1 도전재, 제2 도전재, 제3 도전재 및 바인더로서 폴리아크릴아마이드를 70:9.8:10:0.2:10의 중량비로 제1 음극 활물질층 조성물을 준비하였다. 음극 슬러리 형성용 용매로서 증류수에 첨가하여 제1 음극 슬러리를 제조하였다 (고형분 농도 25중량%).
상기 제1 도전재는 카본블랙C (비표면적: 58m2/g, 직경: 37nm)이며, 상기 제2 도전재는 판상의 흑연 (비표면적: 17m2/g, 평균 입경(D50): 3.5um)이고, 제3 도전재는 카본나노튜브이다.
믹싱 방법으로는 상기 제1 도전재, 제2 도전재와 제3 도전재, 바인더와 물을 homo 믹서를 이용하여 2500rpm, 30min 분산시켜 준 후 활물질을 첨가한 후 2500rpm, 30min을 분산시켜 슬러리를 제작하였다.
음극 집전체로서 구리 집전체(두께: 8㎛)의 양면에 상기 제1 음극 슬러리를 2.75mg/cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 제1 음극 활물질층(두께: 33㎛)을 형성하였다.
제2 음극 활물질층 제조
실리콘계 활물질로서 SiO(평균 입경(D50): 3.5㎛), 제1 도전재, 제2 도전재, 및 바인더로서 폴리아크릴아마이드를 70:19.8:0.2:10의 중량비로 제2 음극 활물질층 조성물을 준비하였다. 음극 슬러리 형성용 용매로서 증류수에 첨가하여 제2 음극 슬러리를 제조하였다 (고형분 농도 25중량%).
상기 제1 도전재는 판상의 흑연 (비표면적: 17m2/g, 평균 입경(D50): 3.5um)이며, 상기 제2 도전재는 카본나노튜브이다.
믹싱 방법으로는 상기 제1 도전재와 제2 도전재, 바인더와 물을 homo 믹서를 이용하여 2500rpm, 30min 분산시켜 준 후 활물질을 첨가한 후 2500rpm, 30min을 분산시켜 슬러리를 제작하였다.
상기 제1 음극 활물질층에 상기 제2 음극 슬러리를 1mg/cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 제2 음극 활물질층(두께: 15㎛)을 형성하였다.
이 후, 상기 제2 음극 활물질층 상부에 리튬 금속을 전사하여 전리튬화 진행하였다.
상기 실시예 1의 식 1의 값 및 전리튬화 dosage는 하기 표 1과 같았으며, 하기 표 1의 식 1 및 전리튬화 dosage를 변경한 것을 제외하고, 실시예 2, 실시예 3 및 비교예 1 내지 3의 음극을 제작하였다.
식 1
(0.5 ≤ B/A ≤ 2)
전리튬화 dosage (%)
실시예 1 0.9 9.27
실시예 2 1.6 16.48
실시예 3 2 20.6
비교예 1 2.5 25.75
비교예 2 0.3 3.1
비교예 3 0 0
참고로, 실시예 및 비교예의 전리튬화 dosage는 하기 식 A'과 같이 계산할 수 있다.
[식 A']
Pre-lithiation lithium 용량/ 음극 충전 용량(제1 음극 활물질층+제2 음극 활물질층)
또한 실시예 및 비교예의 상기 식 1의 범위를 만족하는 정도의 lithiation이 되었는지 여부는 하기와 같은 방식으로 확인할 수 있다.
1) 음극에 Pre-lithiation을 진행하여 coin half cell을 조합하여 lithiation을 진행한다. 2) 0.1C CC/CV 5mV, 0,005C cut off, delithiation: 0.1C 1.0V CC로 충/방전하여, (Pristine의 충전 용량-Prelithiation 전극 충전용량)=Lithiation 진행한 Lithium 용량과 같은지 비교한다. 3) (Pristine의 충전용량- prelithiation 전극 충전용량)/Pristine의 충전 용량 * 100= Lithiation dosage(%)로 계산하여 전리튬화 진행했을 때의 lithium loss 양을 체크한다.
실시예 4: 음극의 제조
제1 음극 활물질층 제조
상기 실시예 1과 동일하게 제1 음극 활물질층을 제조하였다.
제2 음극 활물질층 제조
상기 실시예 1에 있어서, 실리콘계 활물질로서 SiO(평균 입경(D50): 3.5㎛), 탄소계 활물질로서 인조흑연, 제1 도전재, 제2 도전재, 및 바인더로서 폴리아크릴아마이드를 30:50:5:5:10의 중량비로 음극 슬러리 형성용 용매로서 증류수에 첨가하여 제2 음극 슬러리를 제조(고형분 농도 25중량%)한 것을 제외하고 상기 실시예 1의 제조와 동일하게 제조하였다.
상기 제1 도전재는 카본블랙C (비표면적: 58m2/g, 직경: 37nm)이며, 상기 제2 도전재는 판상의 흑연 (비표면적: 17m2/g, 평균 입경(D50): 3.5um)이었다.
이 후, 상기 제2 음극 활물질층 상부에 리튬 금속을 전사하여 전리튬화 진행하였다. 이 때 식 1은 1.8를 만족하였으며, 전리튬화 dosage는 19.1%를 만족하였다.
실시예 5: 음극의 제조
상기 실시예 1의 제2 음극 활물질층 제조에 있어, 실리콘계 활물질로서 SiC(평균 입경(D50): 3.5㎛), 제1 도전재, 제2 도전재, 및 바인더로서 폴리아크릴아마이드를 70:19.8:0.2:10의 중량비로 제2 음극 활물질층 조성물을 준비하고, 음극 슬러리 형성용 용매로서 증류수에 첨가하여 제2 음극 슬러리를 제조한 것을 제외하고 상기 실시예 1과 동일한 조건으로 음극을 제조하였다 (고형분 농도 25중량%). 이 때 식 1은 1.6를 만족하였으며, 전리튬화 dosage는 16.48 %를 만족하였다.
실시예 6: 음극의 제조
제1 음극 활물질층 제조
상기 실시예 1과 동일하게 제1 음극 활물질층을 제조하였다.
제2 음극 활물질층 제조
상기 실시예 1에서 실리콘계 활물질로서 SiO(평균 입경(D50): 3.5㎛), 인조 흑연, 제1 도전재, 제2 도전재, 및 바인더로서 폴리아크릴아마이드를 50:20:10:10:10의 중량비로 제2 음극 활물질층 조성물을 준비하였다. 음극 슬러리 형성용 용매로서 증류수에 첨가하여 제2 음극 슬러리를 제조(고형분 농도 25중량%)한 것을 제외하고 상기 실시예 1의 제조와 동일하게 제조하였다.
상기 제1 도전재는 판상의 흑연 (비표면적: 17m2/g, 평균 입경(D50): 3.5um)이며, 상기 제2 도전재는 카본나노튜브이다.
이 후, 상기 제2 음극 활물질층 상부에 리튬 금속을 전사하여 전리튬화 진행하였다. 이 때 식 1은 1.5를 만족하였으며, 전리튬화 dosage는 15.74 %를 만족하였다.
비교예 4: 음극의 제조
실리콘계 활물질로서 Si(평균 입경(D50): 5㎛), 제1 도전재, 및 바인더로서 폴리아크릴아마이드를 70:20:10의 중량비로 활물질층 조성물을 제조하였다. 음극 슬러리 형성용 용매로서 증류수에 첨가하여 음극 슬러리를 제조하였다 (고형분 농도 25중량%).
상기 제1 도전재는 카본블랙C (비표면적: 58m2/g, 직경: 37nm)를 사용한다.
믹싱 방법으로는 상기 제1 도전재와 바인더와 물을 homo 믹서를 이용하여 2500rpm, 30min 분산시켜 준 후 활물질을 첨가한 후 2500rpm, 30min을 분산시켜 슬러리를 제작하였다.
음극 집전체로서 구리 집전체(두께: 8㎛)의 양면에 상기 음극 슬러리를 85mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 음극 활물질층(두께: 33㎛)을 형성하였다.
이 후, 상기 음극 활물질층 상부에 리튬 금속을 전사하여 전리튬화 진행하였다. 이 때 식 1은 1.6를 만족하였으며, 전리튬화 dosage는 17.28%를 만족하였다.
비교예 5: 음극의 제조
상기 실시예 1에 있어서, 제1 음극 활물질층과 제2 음극 활물질층의 적층 순서를 변경한 것을 제외하고, 상기 실시예 1과 동일하게 음극을 제조하였다. 이 때 식 1은 1.6를 만족하였으며, 전리튬화 dosage는 17.28 %를 만족하였다.
비교예 6: 음극의 제조
Si(평균 입경(D50): 5㎛), SiO(평균 입경(D50): 3.5㎛), 제1 도전재, 제2 도전재, 제3 도전재, 바인더로서 폴리아크릴아마이드를 52.5:17.5:9.8:10:0.2:10의 중량비로 활물질층 조성물을 제조하였다. 음극 슬러리 형성용 용매로서 증류수에 첨가하여 음극 슬러리를 제조하였다 (고형분 농도 25중량%).
상기 제1 도전재는 카본블랙C (비표면적: 58m2/g, 직경: 37nm)이며, 상기 제2 도전재는 판상의 흑연 (비표면적: 17m2/g, 평균 입경(D50): 3.5um)이고, 제3 도전재는 카본나노튜브이다.
믹싱 방법으로는 상기 제1 도전재, 제2 도전재 및 제3 도전재와 바인더와 물을 homo 믹서를 이용하여 2500rpm, 30min 분산시켜 준 후 활물질을 첨가한 후 2500rpm, 30min을 분산시켜 슬러리를 제작하였다.
음극 집전체로서 구리 집전체(두께: 8㎛)의 양면에 상기 음극 슬러리를 85mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 음극 활물질층(두께: 33㎛)을 형성하였다.
이 후, 상기 음극 활물질층 상부에 리튬 금속을 전사하여 전리튬화 진행하였다. 이 때 식 1은 1.6를 만족하였으며, 전리튬화 dosage는 14.8%를 만족하였다.
<이차전지의 제조>
양극 활물질로서 LiNi0.6Co0.2Mn0.2O2(평균 입경(D50): 15㎛), 도전재로서 카본블랙 (제품명: Super C65, 제조사: Timcal), 바인더로서 폴리비닐리덴플루오라이드(PVdF)를 97:1.5:1.5의 중량비로 양극 슬러리 형성용 용매로서 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 슬러리를 제조하였다(고형분 농도 78중량%).
양극 집전체로서 알루미늄 집전체(두께: 12㎛)의 양면에 상기 양극 슬러리를 537mg/25cm2의 로딩량으로 코팅하고, 압연(roll press)하고, 130℃의 진공 오븐에서 10시간 동안 건조하여 양극 활물질층(두께: 65㎛)을 형성하여, 양극을 제조하였다 (양극의 두께: 77㎛, 공극률 26%).
상기 양극과 상기 실시예 및 비교예의 음극 사이에 폴리에틸렌 분리막을 개재하고 전해질을 주입하여 리튬 이차 전지를 제조하였다.
상기 전해질은 플루오로에틸렌 카보네이트(FEC), 디에틸 카보네이트(DMC)를 30:70의 부피비로 혼합한 유기 용매에 비닐렌 카보네이트를 전해질 전체 중량을 기준으로 3중량%로 첨가하고, 리튬염으로서 LiPF6을 1M 농도로 첨가한 것이었다.
실험예 1: 수명 특성 평가
상기 실시예 1 내지 실시예 6, 및 비교예 1 내지 비교예 6에서 제조한 음극을 포함하는 이차전지에 대해 전기화학 충방전기를 이용하여 수명 평가를 진행하였고 용량 유지율을 평가하였다. 이차전지를 4.2-3.0V 1C/0.5C로 In-situ 사이클(cycle) 테스트를 진행하였고, 테스트시 50사이클(cycle) 마다 0.33C/0.33C 충/방전(4.2-3.0V)하여 용량 유지율을 측정하였다. 하기 표 2에서는 RPT용량 유지율을 표기하였다.
용량 유지율(%) = {(N번째 사이클에서의 방전 용량)/(첫 번째 사이클에서의 방전 용량)} Х 100
도 2는 실시예 및 비교예에 따른 RPT용량 유지율 그래프를 나타낸 도이다.
실험예 2: 저항 증가율 측정 평가
상기 실험예 1에서 테스트시 50사이클(cycle) 마다 0.33C/0.33C 충/방전(4.2-3.0V)하여 용량 유지율을 측정한 후, SOC50에서 2.5C pulse로 방전하여 전항을 측정하여 저항 증가율을 비교 분석하였다.
도 3은 실시예 및 비교예에 따른 RPT 저항 증가율 그래프를 나타낸 것이다. 구체적으로 실시예 및 비교예에 따른 RPT(In-situ 연속사이클 test 중 50cycle 마다 0.33C/0.33C, 4.2-3.0V 충/방전 후 SOC50에서 방전 방향으로 2.5C pulse로 측정) 저항 증가율 그래프를 의미한다.
또한, 상기 수명 특성 평가 및 상기 저항 증가율 측정 평가에 대하여, 각각 200cycle에서의 데이터를 계산하였으며 그 결과는 하기 표 2와 같았다.
실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5 비교예 6
용량 유지율 평가(%, @200cycle 88.2 93.56 94.2 89.56 87.5 87.5 84.8 83.8 85.4 84.1 82 85
저항 증가율(%, @200cycle 17.2 16.5 12.5 16.5 17.8 17.7 25.8 21.8 17 21.8 31 22.2
본 출원에 따른 리튬 이차 전지용 음극은 실리콘계 활물질이 포함된 제2 활물질층의 방전 용량 대비 전리튬화로 부여하는 리튬의 용량을 상기 식 1의 범위로 조절하였다. 상기 표 2에서 확인할 수 있듯, 고용량 특징을 갖는 제1 음극 활물질층 조성물을 가짐과 동시에 수명 특성의 해결을 위하여 제2 음극 활물질층 조성물을 포함하며, 초기 충전 및 방전시의 실리콘계 활물질의 사용 비율을 제한하고 Reservoir 역할을 부여하여 용량 특성 및 수명 특성을 최적화하여 우수한 효과를 볼 수 있음을 확인할 수 있었다.상기 비교예 1 및 비교예 2는 본 출원에 따른 식 1의 범위를 초과 또는 미만의 경우에 해당하는 것이며, 상기 비교예 3은 전리튬화를 진행하지 않은 경우에 해당한다. 또한 상기 비교예 4는 식 1의 범위는 만족하나, Pure Si 100%를 갖는 single layer 음극에 해당하는 경우이고, 상기 비교예 5는 식 1의 범위는 만족하나, 실시예 1과는 달리 1층 및 2층의 순서를 변경한 경우이며, 상기 비교예 6은 식 1의 범위는 만족하나, Si와 SiO의 혼합 활물질층을 single layer로 갖는 경우에 해당한다.
전술한 표 2에서 확인할 수 있듯, 상기 비교예 1 내지 6의 경우 실시예 1 내지 6에 비하여 용량 유지율이 떨어지며, 저항 증가율 또한 높음을 확인할 수 있다.
즉, 본원 발명은 수명 특성 및 용량 특성 개선을 위하여 제1 및 제2 음극 활물질층을 사용하는 Double layer를 갖는 음극을 특징으로 하며, 더욱이 수명 특성 극대화를 위하여 전리튬화 비율을 최적화 한 것을 특징으로 함을 상기 실시예 및 비교예 자료를 통하여 확인할 수 있었다.

Claims (11)

  1. 음극 집전체층; 상기 음극 집전체층의 일면 또는 양면에 구비된 제1 음극 활물질층; 및 상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 구비된 제2 음극 활물질층;을 포함하는 리튬 이차 전지용 음극으로,
    상기 제1 음극 활물질층은 제1 음극 활물질을 포함하는 제1 음극 활물질층 조성물을 포함하며, 상기 제2 음극 활물질층은 제2 음극 활물질을 포함하는 제2 음극 활물질층 조성물을 포함하고,
    상기 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상 포함하고,
    상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상의 혼합물을 포함하며,
    상기 실리콘계 활물질은 제2 음극 활물질 100 중량부 기준 1 중량부 이상 100 중량부 이하이고,
    상기 제2 음극 활물질층은 하기 식 1을 만족하는 것인 리튬 이차 전지용 음극:
    [식 1]
    0.5 ≤B/A≤ 2
    상기 식 1에 있어서,
    A는 제2 음극 활물질층의 방전 용량이고,
    B는 전리튬화(Pre-lithiation) 리튬의 용량을 의미한다.
  2. 청구항 1에 있어서,
    상기 실리콘계 활물질은 SiOx (0<x<2), SiC, 및 Si 합금으로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 리튬 이차 전지용 음극.
  3. 청구항 1에 있어서,
    상기 실리콘계 활물질은 SiOx (0<x<2)를 포함하는 것인 리튬 이차 전지용 음극.
  4. 청구항 1에 있어서,
    상기 제1 음극 활물질은 상기 제1 음극 활물질층 조성물 100 중량부 기준 60 중량부 이상인 리튬 이차 전지용 음극.
  5. 청구항 1에 있어서,
    상기 제1 음극 활물질층의 두께는 10μm 이상 200μm 이하이며,
    상기 제2 음극 활물질층의 두께는 10μm 이상 100μm 이하인 것인 리튬 이차 전지용 음극.
  6. 청구항 1에 있어서,
    상기 제1 음극 활물질층 조성물의 무게 로딩양(a)은 상기 제2 음극 활물질층 조성물의 무게 로딩양(b)의 1.5배 이상을 만족하는 것인 리튬 이차 전지용 음극.
  7. 청구항 1에 있어서,
    상기 제1 음극 활물질층 조성물은 제1 음극 도전재; 및 제1 음극 바인더로 이루어진 군에서 선택되는 1 이상을 더 포함하고,
    상기 제2 음극 활물질층 조성물은 제2 음극 도전재; 및 제2 음극 바인더로 이루어진 군에서 선택되는 1 이상을 더 포함하는 것인 리튬 이차 전지용 음극.
  8. 청구항 7에 있어서,
    상기 제1 음극 도전재 및 상기 제2 음극 도전재는 점형 도전재; 선형 도전재; 및 면형 도전재로 이루어진 군에서 선택되는 1 이상을 포함하는 것인 리튬 이차 전지용 음극.
  9. 음극 집전체층을 준비하는 단계;
    상기 음극 집전체층의 일면 또는 양면에 제1 음극 활물질층 조성물을 도포하여, 제1 음극 활물질층을 형성하는 단계; 및
    상기 제1 음극 활물질층의 상기 음극 집전체층과 접하는 면의 반대면에 제2 음극 활물질층 조성물을 도포하여, 제2 음극 활물질층을 형성하는 단계;를 포함하는 리튬 이차 전지용 음극의 제조 방법으로,
    상기 제1 음극 활물질은 SiOx (x=0) 및 SiOx (0<x<2)로 이루어진 군에서 선택되는 1 이상을 포함하며, 상기 제1 음극 활물질 100 중량부 기준 상기 SiOx (x=0)를 95 중량부 이상 포함하고,
    상기 제2 음극 활물질은 탄소계 활물질, 실리콘계 활물질, 리튬과 합금이 가능한 금속계 활물질 및 리튬 함유 질화물로 이루어진 군으로부터 선택된 1종 이상의 혼합물을 포함하며,
    상기 실리콘계 활물질은 제2 음극 활물질 100 중량부 기준 1 중량부 이상 100 중량부 이하이고,
    상기 제2 음극 활물질층은 하기 식 1을 만족하는 것인 리튬 이차 전지용 음극의 제조 방법:
    [식 1]
    0.5 ≤B/A≤ 2
    상기 식 1에 있어서,
    A는 제2 음극 활물질층의 방전 용량이고,
    B는 전리튬화(Pre-lithiation) 리튬의 용량을 의미한다.
  10. 청구항 9에 있어서,
    상기 음극 집전체 상에 제1 음극 활물질층 및 제2 음극 활물질층이 형성된 음극을 전리튬화(pre-lithiation)하는 단계를 포함하며,
    상기 음극을 전리튬화하는 단계는 리튬 전해 도금 공정; 리튬 금속 전사 공정; 리튬 금속 증착 공정; 또는 안정화 리튬 메탈 파우더(SLMP) 코팅 공정을 포함하는 것인 리튬 이차 전지용 음극의 제조 방법.
  11. 양극;
    청구항 1 내지 8 중 어느 한 항에 따른 리튬 이차 전지용 음극;
    상기 양극과 상기 음극 사이에 구비된 분리막; 및
    전해질;을 포함하는 리튬 이차 전지.
PCT/KR2022/009908 2021-07-09 2022-07-08 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지 WO2023282683A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280008118.1A CN116745933A (zh) 2021-07-09 2022-07-08 锂二次电池用负极、锂二次电极用负极的制备方法以及包含负极的锂二次电池
EP22838035.8A EP4243123A1 (en) 2021-07-09 2022-07-08 Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
JP2023537372A JP2024500141A (ja) 2021-07-09 2022-07-08 リチウム二次電池用負極、リチウム二次電池用負極の製造方法、および負極を含むリチウム二次電池

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20210090580 2021-07-09
KR10-2021-0090580 2021-07-09
KR20210189600 2021-12-28
KR10-2021-0189600 2021-12-28
KR10-2022-0066756 2022-05-31
KR20220066756 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023282683A1 true WO2023282683A1 (ko) 2023-01-12

Family

ID=84801978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/009908 WO2023282683A1 (ko) 2021-07-09 2022-07-08 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지

Country Status (5)

Country Link
US (1) US20230021692A1 (ko)
EP (1) EP4243123A1 (ko)
JP (1) JP2024500141A (ko)
KR (1) KR102698878B1 (ko)
WO (1) WO2023282683A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080971A (ja) 2007-09-25 2009-04-16 Tokyo Univ Of Science リチウムイオン電池用負極
CN104347842A (zh) * 2013-07-23 2015-02-11 华为技术有限公司 一种锂离子二次电池复合负极片及其制备方法和锂离子二次电池
KR20170084894A (ko) * 2016-01-13 2017-07-21 연세대학교 산학협력단 리튬이차전지용 음극활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지
US20180316054A1 (en) * 2015-11-10 2018-11-01 Murata Manufacturing Co., Ltd. Negative electrode active material, negative electrode for secondary battery, and lithium ion secondary battery
KR20190065817A (ko) * 2017-12-04 2019-06-12 삼성에스디아이 주식회사 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
KR20190115706A (ko) * 2018-04-03 2019-10-14 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20210090580A (ko) 2020-06-30 2021-07-20 베이징 바이두 넷컴 사이언스 앤 테크놀로지 코., 엘티디. 경로 계획 모델 생성 방법, 장치, 기기 및 저장 매체
KR20220066756A (ko) 2020-11-16 2022-05-24 주식회사 위풋테크놀로지 양말 속지 삽입 보조 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029075A (ja) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池
DE102016208250A1 (de) * 2015-05-19 2016-11-24 Semiconductor Energy Laboratory Co., Ltd. Elektrode, Energiespeichervorrichtung und elektronische Vorrichtung
JP6962032B2 (ja) 2017-02-28 2021-11-05 株式会社豊田自動織機 リチウム負極複合体の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009080971A (ja) 2007-09-25 2009-04-16 Tokyo Univ Of Science リチウムイオン電池用負極
CN104347842A (zh) * 2013-07-23 2015-02-11 华为技术有限公司 一种锂离子二次电池复合负极片及其制备方法和锂离子二次电池
US20180316054A1 (en) * 2015-11-10 2018-11-01 Murata Manufacturing Co., Ltd. Negative electrode active material, negative electrode for secondary battery, and lithium ion secondary battery
KR20170084894A (ko) * 2016-01-13 2017-07-21 연세대학교 산학협력단 리튬이차전지용 음극활물질, 그의 제조방법 및 그를 포함하는 리튬이차전지
KR20190065817A (ko) * 2017-12-04 2019-06-12 삼성에스디아이 주식회사 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
KR20190115706A (ko) * 2018-04-03 2019-10-14 주식회사 엘지화학 리튬 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR20210090580A (ko) 2020-06-30 2021-07-20 베이징 바이두 넷컴 사이언스 앤 테크놀로지 코., 엘티디. 경로 계획 모델 생성 방법, 장치, 기기 및 저장 매체
KR20220066756A (ko) 2020-11-16 2022-05-24 주식회사 위풋테크놀로지 양말 속지 삽입 보조 장치

Also Published As

Publication number Publication date
EP4243123A1 (en) 2023-09-13
JP2024500141A (ja) 2024-01-04
KR20230010171A (ko) 2023-01-18
KR102698878B1 (ko) 2024-08-27
US20230021692A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2023282684A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2018221827A1 (ko) 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지
WO2017095151A1 (ko) 이차전지용 양극 및 이를 포함하는 이차전지
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2023113464A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023059015A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 음극 조성물의 제조 방법
WO2023113330A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023282683A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2021034097A1 (ko) 이차전지 및 이의 제조방법
WO2024085709A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2024014863A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2023153603A1 (en) Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery, and lithium secondary battery comprising negative electrode
WO2024144187A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2024123161A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024049233A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023068601A1 (ko) 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지 및 리튬 이차 전지용 음극의 제조 방법
WO2024063554A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극, 음극을 포함하는 리튬 이차 전지
WO2024049235A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024049239A1 (ko) 음극 활물질, 음극 활물질의 제조 방법, 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2024215064A1 (ko) 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2023120966A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지
WO2023018187A1 (en) Negative electrode active material, negative electrode including same, secondary battery including same and method for preparing negative electrode active material
WO2024054019A1 (ko) 음극 조성물, 이를 포함하는 리튬 이차 전지용 음극 및 음극을 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22838035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317039625

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280008118.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023537372

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022838035

Country of ref document: EP

Effective date: 20230607

NENP Non-entry into the national phase

Ref country code: DE