WO2023282330A1 - 弾性波素子、弾性波フィルタ装置およびマルチプレクサ - Google Patents
弾性波素子、弾性波フィルタ装置およびマルチプレクサ Download PDFInfo
- Publication number
- WO2023282330A1 WO2023282330A1 PCT/JP2022/026984 JP2022026984W WO2023282330A1 WO 2023282330 A1 WO2023282330 A1 WO 2023282330A1 JP 2022026984 W JP2022026984 W JP 2022026984W WO 2023282330 A1 WO2023282330 A1 WO 2023282330A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- comb
- electrode fingers
- pitch
- pitches
- Prior art date
Links
- 239000011295 pitch Substances 0.000 claims abstract description 506
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 244000126211 Hericium coralloides Species 0.000 claims description 35
- 230000007423 decrease Effects 0.000 claims description 9
- 230000000052 comparative effect Effects 0.000 description 72
- 230000006866 deterioration Effects 0.000 description 49
- 238000010586 diagram Methods 0.000 description 47
- 238000003780 insertion Methods 0.000 description 26
- 230000037431 insertion Effects 0.000 description 26
- 239000010410 layer Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 15
- 238000010897 surface acoustic wave method Methods 0.000 description 12
- 239000000919 ceramic Substances 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052839 forsterite Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- -1 steatite Chemical compound 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/145—Driving means, e.g. electrodes, coils for networks using surface acoustic waves
- H03H9/14544—Transducers of particular shape or position
- H03H9/14576—Transducers whereby only the last fingers have different characteristics with respect to the other fingers, e.g. different shape, thickness or material, split finger
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/125—Driving means, e.g. electrodes, coils
- H03H9/135—Driving means, e.g. electrodes, coils for networks consisting of magnetostrictive materials
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02007—Details of bulk acoustic wave devices
- H03H9/02086—Means for compensation or elimination of undesirable effects
- H03H9/0211—Means for compensation or elimination of undesirable effects of reflections
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/46—Filters
- H03H9/54—Filters comprising resonators of piezoelectric or electrostrictive material
- H03H9/58—Multiple crystal filters
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/70—Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
- H03H9/703—Networks using bulk acoustic wave devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02574—Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
Definitions
- the present invention relates to an acoustic wave element, an acoustic wave filter device and a multiplexer.
- multi-band systems have been used to improve the data transmission speed of mobile phones.
- transmission and reception may be performed in a plurality of frequency bands
- a plurality of filter devices that pass high-frequency signals of different frequency bands are arranged in the front-end circuit of the mobile phone.
- the plurality of filter devices are required to be small, have high isolation from adjacent bands, and have low loss in the passband.
- Patent Document 1 discloses the configuration of a surface acoustic wave device that improves transmission characteristics. More specifically, the surface acoustic wave device has a circuit configuration including a plurality of surface acoustic wave resonators having IDT electrodes and reflectors.
- the center-to-center distance in the acoustic wave propagation direction between the electrode finger of the reflector closest to the IDT electrode and the electrode finger of the IDT electrode closest to the reflector is defined by the electrode finger pitch of the reflector electrode. It is 0.45 times or less of the wavelength. This configuration suppresses an increase in reflection loss on the lower frequency side than the resonance frequency of the elastic wave resonator.
- the present invention has been made to solve the above problems, and provides an acoustic wave element, an acoustic wave filter device, and a multiplexer capable of reducing ripples generated on the lower frequency side than the resonance frequency of the acoustic wave element. for the purpose.
- an acoustic wave device includes a piezoelectric substrate, an IDT electrode formed on the piezoelectric substrate and having a pair of comb-shaped electrodes, and the IDT electrode. and reflectors arranged adjacent to each other in an elastic wave propagation direction, wherein the comb-shaped electrode has a plurality of comb-shaped electrode fingers extending in a direction intersecting the elastic wave propagation direction, and the reflection
- the device has a plurality of reflective electrode fingers extending in a direction intersecting with the elastic wave propagation direction.
- the average value of all the pitches of the plurality of comb-teeth electrode fingers is smaller than the average value of all the pitches of the plurality of reflective electrode fingers.
- the total number of electrode fingers is N, and the comb-shaped electrode finger closest to the reflector among the plurality of comb-shaped electrode fingers is defined as a first end-side electrode finger, and the IDT electrode extends from the first end-side electrode finger.
- the electrode fingers in the direction toward the center are sequentially referred to as the n-th end electrode finger (n is a natural number), and the pitch between the n-th end electrode finger and the (n+1)th end electrode finger is the n-th end pitch.
- 1 ⁇ n ⁇ (0.233 ⁇ N) (Formula 1A) is smaller than the average value of all the pitches of the plurality of comb-teeth electrode fingers.
- an acoustic wave device includes a piezoelectric substrate, an IDT electrode formed on the piezoelectric substrate and having a pair of comb-shaped electrodes, and the IDT electrode. and reflectors arranged adjacent to each other in an elastic wave propagation direction, wherein the comb-shaped electrode has a plurality of comb-shaped electrode fingers extending in a direction intersecting the elastic wave propagation direction, and the reflection
- the device has a plurality of reflective electrode fingers extending in a direction intersecting with the elastic wave propagation direction.
- the average value of all the pitches of the plurality of comb-teeth electrode fingers is smaller than the average value of all the pitches of the plurality of reflective electrode fingers.
- the total number of electrode fingers is N, and the comb-shaped electrode finger closest to the reflector among the plurality of comb-shaped electrode fingers is defined as a first end-side electrode finger, and the IDT electrode extends from the first end-side electrode finger.
- the electrode fingers in the direction toward the center are sequentially designated as the n-th electrode finger (n is a natural number), and when N is an odd number, the (N/2-0.5)-th electrode finger is used, or when N is an even number.
- the (N/2)-th electrode finger is the first inner electrode finger
- the electrode fingers in the direction from the first inner electrode finger toward the reflector are the m-th inner electrode finger (m is a natural number).
- m is a natural number
- 1 ⁇ m ⁇ (0.167 ⁇ N) (formula 2A) is larger than the average value of all the pitches of the plurality of comb-teeth electrode fingers.
- an elastic wave filter device includes the above elastic wave element.
- a multiplexer includes a plurality of filters including the acoustic wave filter device described above, and one of an input terminal and an output terminal of each of the plurality of filters is a common terminal at least one of the plurality of filters, excluding the acoustic wave filter device, which is directly or indirectly connected to and has a passband higher than the frequency of the passband of the acoustic wave filter device.
- an acoustic wave device includes a piezoelectric substrate, an IDT electrode formed on the piezoelectric substrate and having a pair of comb-like electrodes, and a reflector arranged next to the comb-shaped electrode, the comb-shaped electrode having a plurality of comb-shaped electrode fingers extending in the first direction, and the reflector having a plurality of reflective electrode fingers extending in the first direction. and arranged adjacent to the IDT electrode in a second direction intersecting the first direction, and forming the IDT electrode and the reflector.
- the average value of all the pitches of the plurality of comb-toothed electrode fingers is smaller than the average value of all the pitches of the plurality of reflective electrode fingers.
- the total number of fingers is N
- the comb-shaped electrode finger closest to the reflector among the plurality of comb-shaped electrode fingers is defined as the first end electrode finger
- the center of the IDT electrode extends from the first end electrode finger.
- the electrode fingers in the direction of when 1 ⁇ n ⁇ (0.233 ⁇ N) (Formula 1A) is smaller than the average value of all the pitches of the plurality of comb-teeth electrode fingers.
- an acoustic wave device includes a piezoelectric substrate, an IDT electrode formed on the piezoelectric substrate and having a pair of comb-like electrodes, and a reflector arranged next to the comb-shaped electrode, the comb-shaped electrode having a plurality of comb-shaped electrode fingers extending in the first direction, and the reflector having a plurality of reflective electrode fingers extending in the first direction. and arranged adjacent to the IDT electrode in a second direction intersecting the first direction, and forming the IDT electrode and the reflector.
- the average value of all the pitches of the plurality of comb-toothed electrode fingers is smaller than the average value of all the pitches of the plurality of reflective electrode fingers.
- the total number of fingers is N, the comb-shaped electrode finger closest to the reflector among the plurality of comb-shaped electrode fingers is defined as the first end electrode finger, and the center of the IDT electrode extends from the first end electrode finger.
- the electrode finger in the direction toward the n-th end electrode finger (n is a natural number) in order, and if N is an odd number, the (N/2-0.5)-th end electrode finger, or if N is an even number
- the (N/2)-th electrode finger is defined as the first inner electrode finger
- the electrode fingers in the direction from the first inner electrode finger toward the reflector are sequentially defined as the m-th inner electrode finger (m is a natural number).
- the pitch between the m-th inner electrode finger and the (m-1)th inner electrode finger is the m-th inner pitch
- 1 ⁇ m ⁇ (0.167 ⁇ N) (formula 2A) is larger than the average value of all the pitches of the plurality of comb-teeth electrode fingers.
- the acoustic wave filter device According to the acoustic wave device, the acoustic wave filter device, and the multiplexer according to the present invention, it is possible to reduce the ripple generated on the lower frequency side than the resonance frequency of the acoustic wave device.
- FIG. 1A and 1B are a plan view and a cross-sectional view schematically showing an electrode configuration of an acoustic wave device according to Embodiment 1.
- FIG. FIG. 2A is a diagram showing an electrode configuration when the total number of comb-teeth electrode fingers of the IDT electrodes constituting the acoustic wave element is odd.
- FIG. 2B is a diagram showing an electrode configuration when the total number of comb-teeth electrode fingers of the IDT electrodes constituting the acoustic wave element is an even number.
- FIG. 3A is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1A and Example 1A (when the total number of comb-teeth electrode fingers is 61).
- FIG. 3B is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1B and Example 1B (when the total number of comb-teeth electrode fingers is 107).
- FIG. 3C is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1C and Example 1C (when the total number of comb-teeth electrode fingers is 201).
- FIG. 4A is a diagram showing the amount of deterioration due to ripples when the pitches of two comb-tooth electrode fingers smaller than the average pitch are changed (when the total number of comb-tooth electrode fingers is 61).
- FIG. 4B is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-teeth electrodes smaller than the average pitch are changed (when the total number of comb-teeth electrodes is 107).
- FIG. 4C is a diagram showing the amount of deterioration due to ripples when the positions of two comb-tooth electrode fingers smaller than the average pitch are changed (when the total number of comb-tooth electrode fingers is 201).
- FIG. 5A is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1A and Example 2A (when the total number of comb-teeth electrode fingers is 61).
- FIG. 5B is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1B and Example 2B (when the total number of comb-teeth electrode fingers is 107).
- FIG. 5C is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1C and Example 2C (when the total number of comb-teeth electrode fingers is 201).
- FIG. 6A is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers larger than the average pitch are changed (when the total number of comb-tooth electrode fingers is 61).
- FIG. 6B is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers larger than the average pitch are changed (when the total number of comb-tooth electrode fingers is 107).
- FIG. 6C is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers larger than the average pitch are changed (when the total number of comb-tooth electrode fingers is 201).
- FIG. 7 is a diagram showing insertion losses of acoustic wave devices of Comparative Example 2 and Examples 3, 4, and 5.
- FIG. 8 is a diagram showing insertion losses of acoustic wave devices of Comparative Examples 3 and 4.
- FIG. 9 is a diagram showing insertion losses of acoustic wave devices of Comparative Example 5 and Examples 6, 7, and 8.
- FIG. FIG. 10 is a diagram showing the insertion loss of acoustic wave devices of Comparative Example 6 and Example 9.
- FIG. 11 is a diagram showing an example of the pitch of comb-teeth electrode fingers.
- FIG. 12 is a diagram showing another example of the pitch of the comb-teeth electrode fingers of the IDT electrodes and the reflective electrode fingers of the reflector.
- 13 is a diagram showing a circuit configuration of an elastic wave filter device according to Embodiment 2.
- FIG. FIG. 14 is a diagram showing electrode parameters of elastic wave elements that constitute the elastic wave filter device according to the second embodiment.
- FIG. 15 is a graph comparing pass characteristics of the acoustic wave filter devices according to the second embodiment and the second comparative example.
- FIG. 16 is a circuit configuration diagram of a multiplexer and its peripheral circuits according to the third embodiment.
- FIG. 1 is a plan view and a cross-sectional view schematically showing the electrode configuration of an acoustic wave device 10 according to Embodiment 1.
- FIG. The acoustic wave device 10 shown in the figure is formed of a piezoelectric substrate 100, an electrode 110, and a protective film 113. IDT (InterDigital Transducer) electrodes 11 and reflectors 12 are formed by these components. And prepare.
- Acoustic wave device 10 according to the present embodiment is a surface acoustic wave (SAW) resonator composed of IDT electrode 11 , reflector 12 , and piezoelectric substrate 100 .
- SAW surface acoustic wave
- the acoustic wave device 10 shown in FIG. 1 is for explaining its typical structure, and the number and length of the electrode fingers constituting the electrodes are not limited to this.
- the electrode 110 constituting the IDT electrode 11 and the reflector 12 has a laminate structure of an adhesion layer 111 and a main electrode layer 112, as shown in the cross-sectional view of FIG.
- the adhesion layer 111 is a layer for improving adhesion between the piezoelectric substrate 100 and the main electrode layer 112, and is made of Ti, for example.
- the material of the main electrode layer 112 is, for example, Al containing 1% Cu.
- the protective film 113 is formed to cover electrode 110 .
- the protective film 113 is a layer for the purpose of protecting the main electrode layer 112 from the external environment, adjusting frequency temperature characteristics, and increasing moisture resistance. It is a membrane that
- the materials forming the adhesion layer 111, the main electrode layer 112, and the protective film 113 are not limited to the materials described above. Furthermore, the electrode 110 does not have to have the laminated structure described above.
- the electrode 110 may be composed of metals or alloys such as Ti, Al, Cu, Pt, Au, Ag, and Pd, for example, and may be composed of a plurality of laminates composed of the above metals or alloys. good too. Also, the protective film 113 may not be formed.
- the piezoelectric substrate 100 is, for example, a ⁇ ° Y-cut X-propagating LiNbO 3 piezoelectric single crystal or piezoelectric ceramic (cut along a plane normal to an axis rotated ⁇ ° from the Y-axis in the Z-axis direction with the X-axis as the central axis). Lithium niobate single crystal or ceramics, which allows surface acoustic waves to propagate in the X-axis direction).
- the piezoelectric substrate 100 may be a substrate having a piezoelectric layer at least partially, or may have a laminated structure having a piezoelectric layer.
- the piezoelectric substrate 100 includes, for example, a high acoustic velocity supporting substrate, a low acoustic velocity film, and a piezoelectric layer, and has a structure in which the high acoustic velocity supporting substrate, low acoustic velocity film, and piezoelectric layer are laminated in this order.
- the configurations of the high acoustic velocity supporting substrate, the low acoustic velocity film and the piezoelectric layer will be described below.
- the piezoelectric layer is, for example, a ⁇ ° Y-cut X-propagation LiNbO 3 piezoelectric single crystal or piezoelectric ceramics (niobium cut along a plane normal to an axis rotated ⁇ ° from the Y-axis in the Z-axis direction with the X-axis as the central axis). It consists of a lithium oxide single crystal or ceramics in which a surface acoustic wave propagates in the X-axis direction.
- the high acoustic velocity support substrate is a substrate that supports the low acoustic velocity film, the piezoelectric layer and the electrode 110 . Further, the high acoustic velocity support substrate is a substrate in which the sound velocity of the bulk wave in the high acoustic velocity support substrate is faster than the acoustic waves of the surface waves and the boundary waves propagating through the piezoelectric layer. And the low acoustic velocity film is confined in the laminated portion, and functions so as not to leak below the high acoustic velocity support substrate.
- the high acoustic velocity support substrate is, for example, a silicon substrate.
- the high sonic velocity support substrate includes (1) a piezoelectric material such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, or quartz, and (2) alumina, zirconia, cordage.
- a piezoelectric material such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, or quartz
- alumina, zirconia, cordage such as lite, mullite, steatite, or forsterite, (3) magnesia diamond, (4) materials containing the above materials as main components, and (5) materials containing mixtures of the above materials as main components , or
- the low sound velocity film is a film in which the sound velocity of the bulk wave in the low sound velocity film is lower than the sound velocity of the elastic wave propagating through the piezoelectric layer, and is arranged between the piezoelectric layer and the high sound velocity support substrate. .
- This structure and the nature of the elastic wave to concentrate its energy in a low-temperature medium suppresses leakage of the surface acoustic wave energy to the outside of the IDT electrode.
- the low sound velocity film is, for example, a film whose main component is silicon dioxide (SiO 2 ).
- the Q value of the acoustic wave resonator at the resonance frequency and the anti-resonance frequency can be significantly increased compared to the structure using the piezoelectric substrate 100 as a single layer. It becomes possible. That is, since a surface acoustic wave resonator with a high Q value can be constructed, it is possible to construct a filter with a small insertion loss using the surface acoustic wave resonator.
- the high acoustic velocity support substrate has a structure in which a support substrate and a high acoustic velocity film are laminated such that the acoustic velocity of a bulk wave propagating through the piezoelectric layer is higher than that of an elastic wave such as a surface wave or a boundary wave.
- the support substrate may be a piezoelectric material such as sapphire, lithium tantalate, lithium niobate, quartz crystal, etc.; Dielectrics such as various ceramics and glasses, semiconductors such as silicon and gallium nitride, and resin substrates can be used.
- the high acoustic velocity film can be made of various materials such as aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon oxynitride, DLC film or diamond, media mainly composed of the above materials, and media mainly composed of mixtures of the above materials. high acoustic velocity materials can be used.
- each layer exemplified in the above laminated structure of the piezoelectric substrate 100 is only examples, and are changed according to, for example, the characteristics to be emphasized among the required high-frequency propagation characteristics.
- the IDT electrode 11 has a pair of comb-shaped electrodes 11A and 11B facing each other.
- the comb-shaped electrode 11A includes a plurality of comb-shaped electrode fingers 11a arranged to extend in a direction intersecting the acoustic wave propagation direction, and a busbar electrode 11c connecting one ends of the plurality of comb-shaped electrode fingers 11a.
- the comb-shaped electrode 11B includes a plurality of comb-shaped electrode fingers 11b arranged to extend in a direction intersecting the elastic wave propagation direction, and a bus bar electrode 11c connecting one ends of the plurality of comb-shaped electrode fingers 11b.
- the electrode fingers of the plurality of comb-teeth electrode fingers 11a and 11b are arranged alternately in the elastic wave propagation direction.
- the elastic wave propagation direction and the direction in which the comb-teeth electrode fingers 11a and 11b extend are perpendicular to each other.
- the direction in which the comb-teeth electrode fingers 11a and 11b extend is defined as the first direction d1
- the second direction d2 perpendicular to the first direction d1 on the piezoelectric substrate 100 is the same direction as the acoustic wave propagation direction.
- the reflector 12 is arranged adjacent to the IDT electrode 11 in the elastic wave propagation direction.
- the reflector 12 is composed of a plurality of reflective electrode fingers 12a arranged to extend in a direction intersecting with the elastic wave propagation direction, and a busbar electrode 12c connecting one ends of the plurality of reflective electrode fingers 12a.
- the reflective electrode fingers 12a extend in parallel as in the present embodiment, the elastic wave propagation direction and the extending direction of the reflective electrode fingers 12a are orthogonal to each other.
- the direction in which the reflective electrode fingers 12a extend is the same as the first direction d1 described above.
- the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b forming IDT electrode 11 is It is smaller than the average pitch.
- the pitch is the center-to-center distance in the elastic wave propagation direction between adjacent electrode fingers in each of the electrode fingers forming the IDT electrode 11 and the reflector 12 .
- the average value of all the pitches of the plurality of comb electrode fingers 11a and 11b is, for example, the distance between both ends of the plurality of comb electrode fingers 11a and 11b (the total number of the plurality of comb electrode fingers 11a and 11b - 1). It is obtained by dividing by .
- the average value of all the pitches of the plurality of reflective electrode fingers 12a can be obtained, for example, by dividing the distance between both ends of the plurality of reflective electrode fingers 12a by (total number of the plurality of reflective electrode fingers 12a - 1). . Twice the average value of all the pitches of the plurality of comb-tooth electrode fingers 11a and 11b corresponds to the IDT wavelength. Twice the average value of all the pitches of the plurality of reflective electrode fingers 12a corresponds to the reflector wavelength.
- the elastic wave device 10 of this embodiment has the following characteristic configuration.
- FIG. 2A is a diagram showing an electrode configuration when the total number of comb-teeth electrode fingers 11a and 11b of the IDT electrode 11 is an odd number.
- FIG. 2B is a diagram showing an electrode configuration when the total number of comb-teeth electrode fingers 11a and 11b of the IDT electrode 11 is even.
- the plurality of comb-teeth electrode fingers 11a and 11b forming the IDT electrode 11 are arranged symmetrically in the elastic wave propagation direction.
- N be the total number of the plurality of comb-teeth electrode fingers 11a and 11b shown in FIGS. 2A and 2B.
- the comb-teeth electrode finger closest to one of the reflectors 12 among the plurality of comb-teeth electrode fingers 11a and 11b is defined as the first end side electrode finger.
- the electrode fingers in the direction from the first end-side electrode finger toward the other reflector 12 are sequentially defined as n-th end-side electrode fingers (n is a natural number).
- the pitch between the n-th electrode finger and the (n+1)-th electrode finger is defined as the n-th end pitch.
- the position of the center of the (N/2+0.5)-th end-side electrode finger in the elastic wave propagation direction is the center of the IDT electrode.
- the total number N of the plurality of comb-teeth electrode fingers 11a and 11b is an even number, an intermediate electrode finger in the elastic wave propagation direction between the (N/2)th end-side electrode finger and the (N/2+1)th end-side electrode finger Let the position be the center of the IDT electrode.
- the elastic wave device 10 of the present embodiment is 1 ⁇ n ⁇ (0.233 ⁇ N) (Formula 1A) is smaller than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b. With this configuration, it is possible to reduce ripples that occur at frequencies lower than the resonance frequency of the acoustic wave element 10 . This point will be described later.
- the (N/2-0.5)-th end electrode finger is defined as the first inner electrode finger, or as shown in FIG.
- the (N/2)-th electrode finger is defined as the first inner electrode finger.
- the electrode fingers in the direction from the first inner electrode finger toward the reflector 12 are sequentially defined as the m-th inner electrode finger (m is a natural number).
- the pitch between the mth inner electrode finger and the (m-1)th inner electrode finger is defined as the mth inner pitch.
- the elastic wave device 10 of the present embodiment is 1 ⁇ m ⁇ (0.167 ⁇ N) (formula 2A) At least one m-th inner pitch that satisfies is larger than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b. With this configuration, it is possible to reduce ripples that occur at frequencies lower than the resonance frequency of the acoustic wave element 10 . This point will also be described later.
- the acoustic wave device 10 may have the configuration shown below.
- the IDT-reflector gap (IRGAP) shown in FIG. ).
- the average value of all the pitches of the plurality of comb-teeth electrode fingers may be smaller than the average value of all the pitches of the plurality of reflective electrode fingers.
- the IDT-reflector gap refers to the comb electrode finger 11a closest to the reflector 12 among the plurality of comb electrode fingers 11a and 11b and the reflective electrode finger 12a closest to the IDT electrode 11 among the plurality of reflective electrode fingers 12a. It is the distance (center-to-center distance) between the centers of the finger 12a in the elastic wave propagation direction.
- Examples 1A-1C will be described with reference to FIGS. 3A-3C and FIGS. 4A-4C.
- the pitch of two comb-tooth electrode fingers adjacent to each other at a predetermined position in the direction from the end of the IDT electrode 11 toward the center is the average of all the pitches of the plurality of comb-tooth electrode fingers 11a and 11b.
- the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b may be referred to as the average pitch.
- FIG. 3A is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1A and Example 1A (when the total number of comb-teeth electrode fingers is 61). The figure shows that the reflection loss increases toward the lower side of the vertical axis.
- the number of pairs of IDT electrodes 11 is 30, and the total number N of comb-teeth electrode fingers 11a and 11b is 61.
- Comparative Example 1A is an example in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b forming the IDT electrode 11 are all the same.
- Embodiment 1A is an example in which the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position in the direction from the end of the IDT electrode 11 toward the center is made smaller than the average pitch. Specifically, in Example 1A, the pitch of the two comb-teeth electrode fingers is set to 0.98 times the average pitch.
- the pitch of the two comb-teeth electrode fingers is the smallest among all the pitches formed by all of the comb-teeth electrode fingers 11a and 11b.
- the ripple that appears near the resonance frequency of the acoustic wave resonator becomes the ripple in the center of the passband when the acoustic wave resonator is used in the series arm. Since this ripple affects the withstand power and GDT, it is desirable that it be small. Therefore, in the present embodiment, evaluation is performed by paying attention to ripples close to the resonance frequency. The same applies hereinafter.
- FIG. 4A is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers smaller than the average pitch are changed (when the total number of comb-tooth electrode fingers is 61).
- the amount of deterioration due to ripples is the amount of loss when ripples are generated with reference to a state in which ripples are not generated.
- FIG. 4A shows an example in which the positions of the pitches of the two comb-teeth electrode fingers are changed in order. is changed from 1 to 30 in order.
- the pitch of the two comb-teeth electrode fingers is 0.98 times the average pitch.
- FIG. 4A shows the position of the n-th end pitch when viewed from one end of the IDT electrode 11 toward the center.
- the pitch has a similar structure. That is, the acoustic wave element 10 has two n-th end pitches, and the two n-th end pitches are line symmetrical with respect to the center line passing through the center of the IDT electrode 11 in the acoustic wave propagation direction. in position.
- FIG. 3B is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1B and Example 1B (when the total number of comb-teeth electrode fingers is 107). The figure shows that the reflection loss increases toward the lower side of the vertical axis.
- the number of pairs of IDT electrodes 11 is 53, and the total number N of comb-teeth electrode fingers 11a and 11b is 107.
- Comparative Example 1B is an example in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b forming the IDT electrode 11 are all the same.
- Example 1B is an example in which the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position in the direction from the end to the center of the IDT electrode 11 is smaller than the average pitch. Specifically, in Example 1B, the pitch of the two comb-teeth electrode fingers is set to 0.98 times the average pitch.
- ripples B1, B2, and B3 are generated on the lower frequency side than the resonance frequency fr of the acoustic wave element.
- Example 1B the generation of ripples B1, B2, and B3 is suppressed. In this way, by making the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position away from the end smaller than the average pitch, ripples generated on the lower frequency side than the resonance frequency fr of the acoustic wave element 10 can be reduced.
- the pitch of the two comb-teeth electrode fingers is the smallest among all the pitches formed by all of the comb-teeth electrode fingers 11a and 11b.
- FIG. 4B is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers smaller than the average pitch are changed (when the total number of comb-tooth electrode fingers is 107).
- FIG. 4B shows an example in which the positions of the pitches of the two comb-teeth electrode fingers are changed in order, and the n-th end pitch, which is the pitch between the n-th end-side electrode finger and the (n+1)-th end-side electrode finger, is shown. is changed from 1 to 53 in order.
- the pitch of the two comb-teeth electrode fingers is 0.98 times the average pitch.
- the n-th electrode finger has a relationship of n ⁇ (N/2 ⁇ m) so that it is not positioned closer to the center than the m-th inner electrode finger.
- FIG. 4B shows the position of the n-th end pitch when viewed from one end of the IDT electrode 11 toward the center.
- the pitch has a similar structure. That is, the acoustic wave element 10 has two n-th end pitches, and the two n-th end pitches are line symmetrical with respect to the center line passing through the center of the IDT electrode 11 in the acoustic wave propagation direction. in position.
- FIG. 3C is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1C and Example 1C (when the total number of comb-teeth electrode fingers is 201). The figure shows that the reflection loss increases toward the lower side of the vertical axis.
- the number of pairs of IDT electrodes 11 is 100, and the total number N of comb-teeth electrode fingers 11a and 11b is 201.
- Comparative Example 1C is an example in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b forming the IDT electrode 11 are all the same.
- Example 1C is an example in which the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position in the direction from the end of the IDT electrode 11 toward the center is smaller than the average pitch. Specifically, in Example 1C, the pitch of the two comb-teeth electrode fingers is set to 0.98 times the average pitch.
- the pitch of the two comb-teeth electrode fingers is the smallest among all the pitches formed by all of the comb-teeth electrode fingers 11a and 11b.
- FIG. 4C is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers smaller than the average pitch are changed (when the total number of comb-tooth electrode fingers is 201).
- FIG. 4C shows an example in which the positions of the pitches of the two comb-teeth electrode fingers are changed in order, and the n-th end pitch, which is the pitch between the n-th end electrode finger and the (n+1)th end-side electrode finger, is shown. is changed from 1 to 100 in order.
- the pitch of the two comb-teeth electrode fingers is 0.98 times the average pitch.
- the n-th electrode finger has a relationship of n ⁇ (N/2 ⁇ m) so that it is not positioned closer to the center than the m-th inner electrode finger.
- FIG. 4C shows the position of the n-th end pitch when viewed from one end of the IDT electrode 11 toward the center.
- the pitch has a similar structure. That is, the acoustic wave element 10 has two n-th end pitches, and the two n-th end pitches are line symmetrical with respect to the center line passing through the center of the IDT electrode 11 in the acoustic wave propagation direction. in position.
- Examples 2A to 2C will be described with reference to FIGS. 5A to 5C and FIGS. 6A to 6C.
- Examples 2A to 2C an example will be described in which the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position in the direction from the center to the end of the IDT electrode 11 is set larger than the average pitch.
- FIG. 5A is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1A and Example 2A (when the total number of comb-teeth electrode fingers is 61). The figure shows that the reflection loss increases toward the lower side of the vertical axis.
- the number of pairs of the IDT electrodes 11 is 30, and the total number N of the comb-teeth electrode fingers 11a and 11b is 61.
- Comparative Example 1A is an example in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b forming the IDT electrode 11 are all the same.
- Embodiment 2A is an example in which the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position in the direction from the center to the end of the IDT electrode 11 is made larger than the average pitch. Specifically, in Example 2, the pitch of the two comb-teeth electrode fingers is set to 1.02 times the average pitch.
- the pitch of the two comb-teeth electrode fingers is the largest among all the pitches formed by the plurality of comb-teeth electrode fingers 11a and 11b.
- FIG. 6A is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers larger than the average pitch are changed (when the total number of comb-tooth electrode fingers is 61).
- FIG. 6A shows an example in which the positions of the pitches of the two comb-teeth electrode fingers are changed in order, and the m-th inner pitch, which is the pitch between the m-th inner electrode finger and the (m ⁇ 1)th inner electrode finger, is shown.
- An example in which m is changed from 1 to 30 in order is shown.
- the pitch of the two comb-teeth electrode fingers is 1.02 times the average pitch.
- the m-th inner electrode finger has a relationship of m ⁇ (N/2-n-1) so that it is not located closer to the reflector 12 than the (n+1)-th electrode finger.
- FIG. 6A shows the position of the m-th inner pitch when viewed from the center of the IDT electrode 11 to one end side, but in this embodiment, the m-th inner pitch when viewed from the center to the other end side It has a similar configuration.
- the acoustic wave element 10 has two m-th inner pitches, and the two m-th inner pitches are located in line symmetry with respect to the center line passing through the center of the IDT electrode 11 in the acoustic wave propagation direction. be.
- FIG. 5B is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1B and Example 2B (when the total number of comb-teeth electrode fingers is 107). The figure shows that the reflection loss increases toward the lower side of the vertical axis. The number of pairs of the IDT electrodes 11 is 53, and the total number N of the comb-teeth electrode fingers 11a and 11b is 107. As shown in FIG.
- Comparative Example 1B is an example in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b forming the IDT electrode 11 are all the same.
- Example 2B is an example in which the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position in the direction from the center to the end of the IDT electrode 11 is made larger than the average pitch. Specifically, in Example 2, the pitch of the two comb-teeth electrode fingers is set to 1.02 times the average pitch.
- ripples B11, B22, and B33 are generated on the lower frequency side than the resonance frequency fr of the acoustic wave element.
- Example 2B the occurrence of ripples B11, B22, and B33 is suppressed. In this way, by making the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position apart from the center larger than the average pitch, ripples generated on the lower frequency side than the resonance frequency fr of the acoustic wave element 10 can be reduced.
- the pitch of the two comb-teeth electrode fingers is the largest among all the pitches formed by the plurality of comb-teeth electrode fingers 11a and 11b.
- FIG. 6B is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers larger than the average pitch are changed (when the total number of comb-tooth electrode fingers is 107).
- FIG. 6B shows an example in which the positions of the pitches of the two comb-teeth electrode fingers are changed in order, and the m-th inner pitch, which is the pitch between the m-th inner electrode finger and the (m ⁇ 1)th inner electrode finger, is shown.
- An example in which m is changed from 1 to 53 in order is shown.
- the pitch of the two comb-teeth electrode fingers is 1.02 times the average pitch.
- the m-th inner electrode finger has a relationship of m ⁇ (N/2-n-1) so that it is not located closer to the reflector 12 than the (n+1)-th electrode finger.
- FIG. 6B shows the position of the m-th inner pitch when viewed from the center of the IDT electrode 11 to one end side. It has the same configuration.
- the acoustic wave element 10 has two m-th inner pitches, and the two m-th inner pitches are located in line symmetry with respect to the center line passing through the center of the IDT electrode 11 in the acoustic wave propagation direction. be.
- FIG. 5C is a diagram showing the insertion loss of the acoustic wave devices of Comparative Example 1C and Example 2C (when the total number of comb-teeth electrode fingers is 201). The figure shows that the reflection loss increases toward the lower side of the vertical axis.
- the number of pairs of the IDT electrodes 11 is 100, and the total number N of the comb-teeth electrode fingers 11a and 11b is 201. As shown in FIG.
- Comparative Example 1C is an example in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b forming the IDT electrode 11 are all the same.
- Example 2C is an example in which the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position in the direction from the center to the end of the IDT electrode 11 is made larger than the average pitch. Specifically, in Example 2, the pitch of the two comb-teeth electrode fingers is set to 1.02 times the average pitch.
- ripples C11, C22, and C33 are generated on the lower frequency side than the resonance frequency fr of the acoustic wave element.
- Example 2C the generation of ripples C11, C22, and C33 is suppressed. In this way, by making the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position apart from the center larger than the average pitch, ripples generated on the lower frequency side than the resonance frequency fr of the acoustic wave element 10 can be reduced.
- the pitch of the two comb-teeth electrode fingers is the largest among all the pitches formed by the plurality of comb-teeth electrode fingers 11a and 11b.
- FIG. 6C is a diagram showing the amount of deterioration due to ripples when the positions of the pitches of two comb-tooth electrode fingers larger than the average pitch are changed (when the total number of comb-tooth electrode fingers is 201).
- FIG. 6C shows an example in which the positions of the pitches of the two comb-teeth electrode fingers are changed in order, and the m-th inner pitch, which is the pitch between the m-th inner electrode finger and the (m ⁇ 1)th inner electrode finger, is shown.
- An example in which m is changed from 1 to 100 in order is shown.
- the pitch of the two comb-teeth electrode fingers is 1.02 times the average pitch.
- the m-th inner electrode finger has a relationship of m ⁇ (N/2-n-1) so that it is not located closer to the reflector 12 than the (n+1)-th electrode finger.
- FIG. 6C shows the position of the m-th inner pitch when viewed from the center of the IDT electrode 11 to one end, but in this embodiment, the m-th inner pitch when viewed from the center to the other end is also It has the same configuration.
- the acoustic wave element 10 has two m-th inner pitches, and the two m-th inner pitches are located in line symmetry with respect to the center line passing through the center of the IDT electrode 11 in the acoustic wave propagation direction. be.
- FIG. 7 is a diagram showing insertion losses of acoustic wave devices of Comparative Example 2 and Examples 3, 4, and 5.
- FIG. 7 is a diagram showing insertion losses of acoustic wave devices of Comparative Example 2 and Examples 3, 4, and 5.
- the number of pairs of IDT electrodes 11 is 53, and the total number N of comb-teeth electrode fingers 11a and 11b is 107.
- the aforementioned IDT-reflector gap is less than or equal to 0.45 times the reflector wavelength, and the IDT wavelength is smaller than the reflector wavelength.
- FIG. 7(a) is Comparative Example 2, in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b constituting the IDT electrode 11 are all the same.
- the ripple C is generated on the lower frequency side than the resonance frequency fr of the acoustic wave element.
- Example 4 in which the tenth inner pitch is 1.02p.
- 1.02p is a value when the average pitch of all the comb-teeth electrode fingers 11a and 11b of the IDT electrode 11 is 1p.
- the amount of ripple C generated can be reduced more than in Comparative Example 2 on the lower frequency side than the resonance frequency fr of the acoustic wave element 10 .
- FIG. 7(d) is Example 5, in which the tenth end pitch is 0.98p and the tenth inner pitch is 1.02p. These values of 0.98p and 1.02p are values when the average pitch of all the comb-teeth electrode fingers 11a and 11b of the IDT electrode 11 is 1p.
- the occurrence of ripples C can be suppressed more than Comparative Example 2, Example 3, and Example 4 on the lower frequency side than the resonance frequency fr of the acoustic wave element 10 .
- FIG. 8 is a diagram showing the insertion loss of acoustic wave devices of Comparative Examples 3 and 4.
- the number of pairs of IDT electrodes 11 is 53, and the total number N of comb-teeth electrode fingers 11a and 11b is 107. As shown in FIG.
- Comparative Example 3 is an example in which the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position apart from the end of the IDT electrode 11 is made larger than the average pitch.
- the ripple B is generated on the lower frequency side than the resonance frequency fr of the acoustic wave element, and the ripple C is increased.
- Comparative Example 4 is an example in which the pitch between two comb-teeth electrode fingers adjacent to each other at a predetermined position away from the center of the IDT electrode 11 is smaller than the average pitch.
- the ripple C increases on the lower frequency side than the resonance frequency fr of the acoustic wave element.
- the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position away from the end of the IDT electrode 11 is made smaller than the average pitch. By doing so, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency fr of the elastic wave element 10 .
- the pitch of two comb-teeth electrode fingers adjacent to each other at a predetermined position apart from the center of the IDT electrode 11 is made larger than the average pitch. By doing so, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency fr of the elastic wave element 10 .
- Examples 6, 7 and 8 will be described with reference to FIG. In Examples 6 to 8, examples in which the number of IDT electrodes 11 is smaller than that in Examples 3 to 5 will be described.
- FIG. 9 is a diagram showing the insertion loss of acoustic wave devices of Comparative Example 5 and Examples 6, 7, and 8.
- FIG. 9 is a diagram showing the insertion loss of acoustic wave devices of Comparative Example 5 and Examples 6, 7, and 8.
- the number of pairs of IDT electrodes 11 is 30, and the total number N of comb-teeth electrode fingers 11a and 11b is 61.
- the aforementioned IDT-reflector gap is less than or equal to 0.45 times the reflector wavelength, and the IDT wavelength is smaller than the reflector wavelength.
- FIG. 9(a) is Comparative Example 5, in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b constituting the IDT electrode 11 are all made the same.
- a ripple D is generated on the lower frequency side than the resonance frequency fr of the acoustic wave element.
- Example 8 in which the pitch on the tenth end side is set to 0.98p and the pitch on the eighth inner side is set to 1.02p. These values of 0.98p and 1.02p are values when the average pitch of all the comb-teeth electrode fingers 11a and 11b of the IDT electrode 11 is 1p.
- the occurrence of ripple D can be suppressed more than Comparative Example 5, Examples 6 and 7 on the lower frequency side than the resonance frequency fr of the acoustic wave element 10 .
- Example 9 A ninth embodiment will be described with reference to FIG. In Example 9, an example in which the number of IDT electrodes 11 is larger than that of Examples 3 to 5 will be described.
- FIG. 10 is a diagram showing the insertion loss of acoustic wave devices of Comparative Example 6 and Example 9.
- FIG. 10 is a diagram showing the insertion loss of acoustic wave devices of Comparative Example 6 and Example 9.
- the number of pairs of IDT electrodes 11 is 100, and the total number N of comb electrode fingers 11a and 11b is 201.
- the aforementioned IDT-reflector gap is less than or equal to 0.45 times the reflector wavelength, and the IDT wavelength is smaller than the reflector wavelength.
- FIG. 10(a) is Comparative Example 6, in which the pitches of the plurality of comb-teeth electrode fingers 11a and 11b constituting the IDT electrode 11 are all made the same.
- the ripple E occurs on the lower frequency side than the resonance frequency fr of the acoustic wave element.
- Examples 10, 11 and 12 are described with reference to FIG. Examples 10 to 12 describe examples in which one or more n-th end pitches are smaller than the average pitch.
- FIG. 11 is a diagram showing an example of the pitch of the comb-teeth electrode fingers 11a and 11b.
- Example 10 shows an example in which the pitch on the tenth end side is smaller than the average pitch. Specifically, the tenth end-side pitch is 0.98 times the average value (1.000) of the pitches remaining after removing the tenth end-side pitch from all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b. It has become.
- Example 11 shows an example in which the pitch on the ninth end, the pitch on the tenth end, and the pitch on the eleventh end are smaller than the average pitch.
- each of the ninth end-side pitch to the eleventh end-side pitch is the remainder of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b excluding the ninth-end-side pitch to the eleventh end-side pitch. It is 0.9933 times the average pitch value (1.000).
- Example 12 shows an example in which the pitch on the eighth end, the pitch on the ninth end, the pitch on the tenth end, the pitch on the eleventh end, and the pitch on the twelfth end are smaller than the average pitch.
- each of the eighth end-side pitch to the twelfth end-side pitch is the remainder of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b excluding the eighth-end-side pitch to the twelfth end-side pitch. It is 0.9960 times the average pitch value (1.000).
- the IDT electrode 11 has one or more n-th pitches arranged in order in the elastic wave propagation direction, and the n-th pitches have the following relationship (Equation 5): is configured to have
- n-th end pitch 1 - (distance shortened by adopting one or more n-th end pitches/number of n-th end pitches) (Formula 5)
- the distance shortened by adopting one or a plurality of n-th end pitches is based on the original distance between both ends of the plurality of comb-teeth electrode fingers 11a and 11b, and This distance is shortened when the pitch of a part of the fingers 11a and 11b is set to one or a plurality of n-th end side pitches.
- ripples generated at frequencies lower than the resonance frequency of the acoustic wave element 10 can be reduced.
- FIG. 12 is a diagram showing another example of the pitch of the comb electrode fingers 11a and 11b of the IDT electrode 11 and the reflective electrode fingers 12a of the reflector 12.
- FIG. 12 is a diagram showing another example of the pitch of the comb electrode fingers 11a and 11b of the IDT electrode 11 and the reflective electrode fingers 12a of the reflector 12.
- the horizontal axis of FIG. 12 indicates the number of comb-toothed electrode fingers 11a and 11b counted from the end of the IDT electrode 11, and the vertical axis indicates the pitch of the comb-toothed electrode fingers 11a and 11b.
- the vertical axis is the pitch when the average pitch is 1p.
- the plurality of comb-teeth electrode fingers 11a and 11b are arranged such that the adjacent pitch increases and decreases irregularly in the elastic wave propagation direction.
- the plurality of comb-teeth electrode fingers 11a and 11b are randomly arranged such that the pitch between adjacent comb-teeth electrode fingers 11a and 11b varies irregularly. Irregular change is meant to include random change, excluding constant state, proportional change and periodic change.
- adjacent pitches in the elastic wave propagation direction may increase and decrease irregularly.
- the plurality of m-th inner pitches may irregularly increase or decrease adjacent pitches in the elastic wave propagation direction.
- ripples generated at frequencies lower than the resonance frequency of the acoustic wave element 10 can be reduced.
- Embodiment 2 describes an elastic wave filter device using the elastic wave element 10 according to Embodiment 1.
- FIG. By configuring an acoustic wave filter device using the acoustic wave device 10 according to Embodiment 1, it is possible to suppress deterioration of the insertion loss in the passband.
- FIG. 13 is a diagram showing the circuit configuration of the acoustic wave filter device 1 according to Embodiment 2.
- FIG. 14 is a diagram showing electrode parameters of the acoustic wave element 10 forming the acoustic wave filter device 1.
- the crossing width in FIG. 14 is a region where the adjacent electrode fingers overlap each other in a direction perpendicular to the electrode finger extending direction when the electrode finger extending direction is defined as the electrode finger extending direction. is an intersecting region, and the dimension of the intersecting region along the extending direction of the electrode fingers is the intersecting width.
- the acoustic wave filter device 1 has a first input/output terminal 50 and a second input/output terminal 60, and a first input/output terminal 50 and a second input/output terminal 60.
- Series arm resonators S1, S2, S3 and S4 connected between with children P1, P2, P3 and P4.
- the acoustic wave device 10 of Embodiment 1 is used for each of the series arm resonators S1 to S4.
- FIG. 15 is a graph comparing pass characteristics of the acoustic wave filter devices according to the second embodiment and the second comparative example.
- the pitches of the plurality of comb-teeth electrode fingers forming the IDT electrodes of the acoustic wave element are all the same.
- the insertion loss of Embodiment 2 is smaller than that of Comparative Example 2. ing.
- deterioration of insertion loss in the passband can be suppressed.
- FIG. 16 is a circuit configuration diagram of multiplexer 5 and its peripheral circuit (antenna 4) according to the third embodiment.
- the multiplexer 5 shown in the figure includes an acoustic wave filter device 1 , a filter 3 , a common terminal 70 , and input/output terminals 81 and 82 .
- the input/output terminal 50 of the elastic wave filter device 1 is connected to the common terminal 70 , and the input/output terminal 60 of the elastic wave filter device 1 is connected to the input/output terminal 81 .
- the filter 3 is connected to the common terminal 70 and the input/output terminal 82 .
- the filter 3 is, for example, a ladder-type elastic wave filter having parallel arm resonators and series arm resonators, but may be an LC filter or the like, and its circuit configuration is not particularly limited.
- the passband of the acoustic wave filter device 1 is located on the lower frequency side than the passband of the filter 3 .
- the elastic wave filter device 1 and the filter 3 may not be directly connected to the common terminal 70 as shown in FIG. may be indirectly connected to the common terminal 70 via a switch element capable of selecting the .
- multiplexer 5 has a circuit configuration in which two filters are connected to common terminal 70, but the number of filters connected to common terminal 70 is not limited to two, and may be three or more. There may be. That is, the multiplexer according to the present invention includes a plurality of filters including the acoustic wave filter device 1, and one of the input terminal and the output terminal of each of the plurality of filters is directly or indirectly connected to a common terminal, At least one of the filters other than the elastic wave filter device 1 may have a passband higher than the frequency of the passband of the elastic wave filter device 1 .
- the elastic wave element 10 is an elastic wave element that propagates a high-frequency signal in a predetermined elastic wave propagation direction.
- An IDT electrode 11 having electrodes 11A and 11B, and a reflector 12 arranged adjacent to the IDT electrode 11 in the elastic wave propagation direction.
- the comb-shaped electrodes 11A and 11B have a plurality of comb-shaped electrode fingers 11a and 11b extending in a direction intersecting the elastic wave propagation direction.
- the reflector 12 has a plurality of reflective electrode fingers 12a extending in a direction intersecting the elastic wave propagation direction.
- each electrode finger constituting the IDT electrode 11 and the reflector 12 when the pitch is the center-to-center distance in the elastic wave propagation direction between adjacent electrode fingers, the average of all the pitches of the plurality of comb-teeth electrode fingers 11a The value is smaller than the average value of all the pitches of the plurality of reflective electrode fingers 12a.
- the total number of the plurality of comb-teeth electrode fingers 11a and 11b is N, and the comb-teeth electrode finger closest to the reflector 12 among the plurality of comb-teeth electrode fingers 11a and 11b is defined as the first end electrode finger.
- the electrode fingers in the direction from the electrode finger toward the center of the IDT electrode 11 are sequentially designated as the n-th electrode finger (n is a natural number), and the pitch between the n-th electrode finger and the (n+1)-th electrode finger is Assuming the pitch on the n-th end side, 1 ⁇ n ⁇ (0.233 ⁇ N) (Formula 1A) is smaller than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position away from the end of the IDT electrode 11 is the average value (average pitch).
- the position of the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b is defined within the range shown in the above (Equation 1A). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the (N/2-0.5)th electrode finger is used as the first inner electrode finger, or when N is an even number, the (N/2)th electrode finger is used as the first inner electrode finger , the electrode fingers in the direction from the first inner electrode finger toward the reflector 12 are designated as the m-th inner electrode finger (m is a natural number), and the pitch between the m-th inner electrode finger and the (m-1)th inner electrode finger is When the m-th inner pitch is used, 1 ⁇ m ⁇ (0.167 ⁇ N) (formula 2A) At least one m-th inner pitch that satisfies may be larger than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position away from the center of the IDT electrode 11 is the average value (average pitch).
- the position of the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b is defined within the range shown in the above (Equation 2A). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the elastic wave element 10 is an elastic wave element that propagates a high-frequency signal in a predetermined elastic wave propagation direction.
- An IDT electrode 11 having electrodes 11A and 11B, and a reflector 12 arranged adjacent to the IDT electrode 11 in the elastic wave propagation direction.
- the comb-shaped electrodes 11A and 11B have a plurality of comb-shaped electrode fingers 11a and 11b extending in a direction intersecting the elastic wave propagation direction.
- the reflector 12 has a plurality of reflective electrode fingers 12a extending in a direction intersecting the elastic wave propagation direction.
- each electrode finger constituting the IDT electrode 11 and the reflector 12 when the pitch is the center-to-center distance in the elastic wave propagation direction between adjacent electrode fingers, the pitch of all of the plurality of comb-teeth electrode fingers 11a and 11b is is smaller than the average value of all the pitches of the plurality of reflective electrode fingers 12a.
- the total number of the plurality of comb-teeth electrode fingers 11a and 11b is N, and the comb-teeth electrode finger closest to the reflector 12 among the plurality of comb-teeth electrode fingers 11a and 11b is defined as the first end electrode finger.
- the electrode fingers in the direction from the electrode finger toward the center of the IDT electrode 11 are sequentially designated as the n-th electrode finger (n is a natural number), and when N is an odd number, the (N/2-0.5)-th electrode finger. or when N is an even number, the (N/2)-th electrode finger is the first inner electrode finger, and the electrode fingers in the direction from the first inner electrode finger toward the reflector 12 are the m-th inner electrode.
- At least one m-th inner pitch that satisfies is larger than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position away from the center of the IDT electrode 11 is the average value (average pitch).
- the position of the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b is defined within the range shown in the above (Equation 2A). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- 1 ⁇ n ⁇ (0.233 ⁇ N) may be smaller than the average value of all pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position away from the end of the IDT electrode 11 is the average value (average pitch).
- the position of the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b is defined within the range shown in the above (Equation 1A). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the acoustic wave device 10 is 1 ⁇ n ⁇ (0.132 ⁇ N) (Formula 3B) and the at least one n-th pitch may be smaller than the average value of all the pitches of the plurality of comb electrode fingers 11a and 11b.
- the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position away from the end of the IDT electrode 11 is the average value (average pitch).
- the position of the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b is defined within the range shown in the above (Equation 3B). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the acoustic wave device 10 is 1 ⁇ n ⁇ (0.132 ⁇ N) (Formula 3B) and each of the plurality of n-th pitches may be smaller than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of a plurality of pairs of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position apart from the end of the IDT electrode 11 is the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b (average pitch ).
- the positions of the pitches of the multiple sets of comb-teeth electrode fingers 11a and 11b are defined within the range shown in the above (Equation 3B). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the acoustic wave device 10 is 2 ⁇ m ⁇ (0.104 ⁇ N) (Formula 4B) and the at least one m-th inner pitch may be larger than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position away from the center of the IDT electrode 11 is the average value (average pitch).
- the position of the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b is defined within the range shown in the above (Equation 4B). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the acoustic wave device 10 is 2 ⁇ m ⁇ (0.104 ⁇ N) (Formula 4B) and each of the plurality of m-th inner pitches may be larger than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of a plurality of pairs of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position distant from the center of the IDT electrode 11 is the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b (average pitch ).
- the positions of the pitches of the multiple sets of comb-teeth electrode fingers 11a and 11b are defined within the range shown in the above (Equation 4B). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the elastic wave element 10 has a plurality of n-th end pitches that satisfy Expression 1A, and the plurality of n-th end pitches are , may be located in line symmetry.
- the acoustic wave element 10 has a plurality of m-th inner pitches that satisfy Equation 2A, and the plurality of m-th inner pitches are aligned with respect to a center line passing through the center of the IDT electrode 11 in the acoustic wave propagation direction. It may be in a symmetrical position.
- the plurality of comb-teeth electrode fingers 11a and 11b may be arranged line-symmetrically with respect to a center line passing through the center of the IDT electrode 11 in the elastic wave propagation direction.
- the IDT electrode 11 can have a simple structure, and ripples generated on the lower frequency side than the resonance frequency of the acoustic wave element 10 can be reduced.
- the elastic wave element 10 has a plurality of n-th end pitches that satisfy Expression 1A, and the plurality of n-th end pitches are even if adjacent pitches in the elastic wave propagation direction irregularly increase or decrease. good.
- the acoustic wave element 10 may have a plurality of m-th inner pitches that satisfy Equation 2A, and adjacent pitches of the plurality of m-th inner pitches may increase and decrease irregularly in the elastic wave propagation direction.
- the center-to-center distance in the acoustic wave propagation direction between the reflective electrode finger 12a closest to the IDT electrode 11 and the comb-teeth electrode finger closest to the reflector 12 is 0.9 times the repetition pitch of the plurality of reflective electrode fingers 12a. It may be below.
- An elastic wave filter device 1 according to the present embodiment includes the elastic wave element 10 described above.
- the elastic wave filter device 1 including the elastic wave element 10 in which the ripple generated on the lower frequency side than the resonance frequency is reduced.
- the elastic wave filter device 1 further includes a first input/output terminal 50 and a second input/output terminal 60, and a node on a path connecting the first input/output terminal 50 and the second input/output terminal 60. and parallel arm resonators P1 to P4 connected to the ground, and the acoustic wave device 10 includes a series arm resonator connected between the first input/output terminal 50 and the second input/output terminal 60 It may be S1 to S4.
- the elastic wave filter device 1 constitutes a ladder type elastic wave filter including the series arm resonators S1 to S4 and the parallel arm resonators P1 to P4, and the elastic wave element 10 is the series arm. Applies to resonators S1 to S4. As a result, it is possible to suppress an increase in insertion loss on the lower frequency side than the resonance frequencies of the series arm resonators S1 to S4 forming the passband of the acoustic wave filter device 1.
- the multiplexer 5 includes a plurality of filters including the elastic wave filter device 1 described above, and one of the input terminal and the output terminal of each of the plurality of filters is directly or indirectly connected to the common terminal 70. At least one of the plurality of filters connected and excluding the acoustic wave filter device 1 may have a passband higher than the frequency of the passband of the acoustic wave filter device 1 .
- the elastic wave filter device 1 since the attenuation amount of the attenuation band on the high frequency side of the pass band can be increased, the attenuation within the pass band of the filter having the pass band on the high frequency side of the pass band of the elastic wave filter device 1 Insertion loss can be reduced.
- the acoustic wave device 10 includes a piezoelectric substrate 100, an IDT electrode 11 formed on the piezoelectric substrate 100 and having a pair of comb-like electrodes 11A and 11B, and arranged next to the IDT electrode 11. and a reflector 12 .
- the comb-shaped electrodes 11A and 11B have a plurality of comb-shaped electrode fingers 11a and 11b extending in the first direction d1.
- the reflector 12 has a plurality of reflective electrode fingers 12a extending in the first direction d1, and is arranged adjacent to the IDT electrode 11 in a second direction d2 intersecting the first direction d1.
- each electrode finger constituting the IDT electrode 11 and the reflector 12 when the pitch is the center-to-center distance between adjacent electrode fingers in the second direction d2, the average of all the pitches of the plurality of comb-teeth electrode fingers 11a The value is smaller than the average value of all the pitches of the plurality of reflective electrode fingers 12a.
- the total number of the plurality of comb-teeth electrode fingers 11a and 11b is N, and the comb-teeth electrode finger closest to the reflector 12 among the plurality of comb-teeth electrode fingers 11a and 11b is defined as the first end electrode finger.
- the electrode fingers in the direction from the electrode finger toward the center of the IDT electrode 11 are sequentially designated as the n-th electrode finger (n is a natural number), and the pitch between the n-th electrode finger and the (n+1)-th electrode finger is Assuming the pitch on the n-th end side, 1 ⁇ n ⁇ (0.233 ⁇ N) (Formula 1A) is smaller than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position away from the end of the IDT electrode 11 is the average value (average pitch).
- the position of the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b is defined within the range shown in the above (Equation 1A). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the acoustic wave device 10 includes a piezoelectric substrate 100, an IDT electrode 11 formed on the piezoelectric substrate 100 and having a pair of comb-like electrodes 11A and 11B, and arranged next to the IDT electrode 11. and a reflector 12 .
- the comb-shaped electrodes 11A and 11B have a plurality of comb-shaped electrode fingers 11a and 11b extending in the first direction d1.
- the reflector 12 has a plurality of reflective electrode fingers 12a extending in the first direction d1, and is arranged adjacent to the IDT electrode 11 in a second direction d2 intersecting the first direction d1.
- each electrode finger constituting the IDT electrode 11 and the reflector 12 when the pitch is the center-to-center distance between adjacent electrode fingers in the second direction d2, the pitch of all of the plurality of comb-teeth electrode fingers 11a and 11b is is smaller than the average value of all the pitches of the plurality of reflective electrode fingers 12a.
- the total number of the plurality of comb-teeth electrode fingers 11a and 11b is N, and the comb-teeth electrode finger closest to the reflector 12 among the plurality of comb-teeth electrode fingers 11a and 11b is defined as the first end electrode finger.
- the electrode fingers in the direction from the electrode finger toward the center of the IDT electrode 11 are sequentially designated as the n-th electrode finger (n is a natural number), and when N is an odd number, the (N/2-0.5)-th electrode finger. or when N is an even number, the (N/2)-th electrode finger is the first inner electrode finger, and the electrode fingers in the direction from the first inner electrode finger toward the reflector 12 are the m-th inner electrode.
- At least one m-th inner pitch that satisfies is larger than the average value of all the pitches of the plurality of comb-teeth electrode fingers 11a and 11b.
- the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b adjacent to each other at a position away from the center of the IDT electrode 11 is the average value (average pitch).
- the position of the pitch of at least one pair of comb-teeth electrode fingers 11a and 11b is defined within the range shown in the above (Equation 2A). Since the elastic wave element 10 has this configuration, it is possible to reduce ripples generated on the lower frequency side than the resonance frequency of the elastic wave element 10 .
- the elastic wave device, the elastic wave filter device, and the multiplexer according to the embodiments of the present invention have been described above with reference to the embodiments and examples. It is not limited to the above embodiments and examples. Other embodiments realized by combining arbitrary components in the above-described embodiments and examples, and various modifications that can be made by those skilled in the art within the scope of the present invention without departing from the scope of the above-described embodiments.
- the present invention also includes various devices incorporating the obtained embodiments, the acoustic wave device, the acoustic wave filter device, and the multiplexer of the present invention.
- the elastic wave filter device 1 may further include circuit elements such as inductors and capacitors.
- the acoustic wave device may not be a surface acoustic wave resonator as in Embodiment 1, but may be an acoustic wave resonator using boundary acoustic waves.
- the present invention can be widely used in communication equipment such as mobile phones as a low-loss and small acoustic wave element, acoustic wave filter device, and multiplexer applicable to multi-band and multi-mode frequency standards.
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
弾性波素子(10)は、圧電性基板(100)と、複数の櫛歯電極指(11a、11b)を有するIDT電極(11)と、複数の反射電極指(12a)を有する反射器(12)と、を備える。複数の櫛歯電極指(11a)の全てのピッチの平均値は、複数の反射電極指(12a)の全てのピッチの平均値より小さい。複数の櫛歯電極指(11a、11b)の総数をN本とし、反射器(12)に最も近い櫛歯電極指を第1端側電極指とし、第1端側電極指からIDT電極(11)の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、1≦n≦(0.233×N)・・・(式1A)を満たす少なくとも1つの第n端側ピッチは、複数の櫛歯電極指(11a、11b)の全てのピッチの平均値よりも小さい。
Description
本発明は、弾性波素子、弾性波フィルタ装置およびマルチプレクサに関する。
近年、携帯電話のデータ伝送速度を向上させるために、マルチバンドシステムが用いられている。その際、複数の周波数帯域の送受信を行う場合があるため、携帯電話のフロントエンド回路には、異なる周波数帯域の高周波信号を通過させる複数のフィルタ装置が配置される。この場合、上記フロントエンド回路に許容される実装スペースには制約があるため、上記複数のフィルタ装置には、小型化、隣接バンドとの高アイソレーションおよび通過帯域の低損失性が要求される。
特許文献1には、伝送特性を改善する弾性表面波装置の構成が開示されている。より具体的には、上記弾性表面波装置は、IDT電極および反射器を有する複数の弾性表面波共振子を備えた回路構成を有している。上記回路構成では、IDT電極に最も近い反射器の電極指と、反射器に最も近いIDT電極の電極指との弾性波伝搬方向における中心間距離が、反射器電極の電極指ピッチで規定される波長の0.45倍以下となっている。この構成により、弾性波共振子の共振周波数よりも低周波側において反射損失が増加することを抑制している。
特許文献1に記載された弾性表面波共振子では、弾性波共振子の共振周波数よりも低周波側おいて反射損失が増加することを抑制できるが、低周波側の一部の帯域では反射損失を抑制できず、リップルが表れてしまうことがある。
本発明は、上記課題を解決するためになされたものであって、弾性波素子の共振周波数よりも低周波側にて発生するリップルを低減できる弾性波素子、弾性波フィルタ装置およびマルチプレクサを提供することを目的とする。
上記目的を達成するために、本発明の一態様に係る弾性波素子は、圧電性基板と、前記圧電性基板上に形成され、一対の櫛歯状電極を有するIDT電極と、前記IDT電極と弾性波伝搬方向に隣り合って配置された反射器と、を備え、前記櫛歯状電極は、前記弾性波伝搬方向に対して交差する方向に延びる複数の櫛歯電極指を有し、前記反射器は、前記弾性波伝搬方向に対して交差する方向に延びる複数の反射電極指を有し、前記IDT電極および前記反射器を構成するそれぞれの電極指において、隣り合う電極指同士の、前記弾性波伝搬方向における中心間距離をピッチとしたとき、前記複数の櫛歯電極指の全てのピッチの平均値は、前記複数の反射電極指の全てのピッチの平均値より小さく、前記複数の櫛歯電極指の総数をN本とし、前記複数の櫛歯電極指のうち前記反射器に最も近い前記櫛歯電極指を第1端側電極指とし、前記第1端側電極指から前記IDT電極の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、前記第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの前記第n端側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい。
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの前記第n端側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい。
上記目的を達成するために、本発明の一態様に係る弾性波素子は、圧電性基板と、前記圧電性基板上に形成され、一対の櫛歯状電極を有するIDT電極と、前記IDT電極と弾性波伝搬方向に隣り合って配置された反射器と、を備え、前記櫛歯状電極は、前記弾性波伝搬方向に対して交差する方向に延びる複数の櫛歯電極指を有し、前記反射器は、前記弾性波伝搬方向に対して交差する方向に延びる複数の反射電極指を有し、前記IDT電極および前記反射器を構成するそれぞれの電極指において、隣り合う電極指同士の、前記弾性波伝搬方向における中心間距離をピッチとしたとき、前記複数の櫛歯電極指の全てのピッチの平均値は、前記複数の反射電極指の全てのピッチの平均値より小さく、前記複数の櫛歯電極指の総数をN本とし、前記複数の櫛歯電極指のうち前記反射器に最も近い前記櫛歯電極指を第1端側電極指とし、前記第1端側電極指から前記IDT電極の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、Nが奇数の場合には第(N/2-0.5)端側電極指を、または、Nが偶数の場合には第(N/2)端側電極指を第1内側電極指とし、前記第1内側電極指から前記反射器に向かう方向の電極指を順に第m内側電極指(mは自然数)とし、前記第m内側電極指と第(m-1)内側電極指との間のピッチを第m内側ピッチとしたとき、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの前記第m内側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい。
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの前記第m内側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい。
上記目的を達成するために、本発明の一態様に係る弾性波フィルタ装置は、上記の弾性波素子を含む。
上記目的を達成するために、本発明の一態様に係るマルチプレクサは、上記の弾性波フィルタ装置を含む複数のフィルタを備え、前記複数のフィルタのそれぞれの入力端子および出力端子の一方は、共通端子に直接的または間接的に接続され、前記弾性波フィルタ装置を除く前記複数のフィルタの少なくとも1つは、前記弾性波フィルタ装置の通過帯域の周波数より高い通過帯域を有する。
上記目的を達成するために、本発明の一態様に係る弾性波素子は、圧電性基板と、前記圧電性基板上に形成され、一対の櫛歯状電極を有するIDT電極と、前記IDT電極の隣に配置された反射器と、を備え、前記櫛歯状電極は、第1方向に延びる複数の櫛歯電極指を有し、前記反射器は、前記第1方向に延びる複数の反射電極指を有し、前記第1方向に交差する第2方向において前記IDT電極と隣り合って配置され、前記IDT電極および前記反射器を構成するそれぞれの電極指において、隣り合う電極指同士の、前記第2方向における中心間距離をピッチとしたとき、前記複数の櫛歯電極指の全てのピッチの平均値は、前記複数の反射電極指の全てのピッチの平均値より小さく、前記複数の櫛歯電極指の総数をN本とし、前記複数の櫛歯電極指のうち前記反射器に最も近い前記櫛歯電極指を第1端側電極指とし、前記第1端側電極指から前記IDT電極の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、前記第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの前記第n端側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい。
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの前記第n端側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい。
上記目的を達成するために、本発明の一態様に係る弾性波素子は、圧電性基板と、前記圧電性基板上に形成され、一対の櫛歯状電極を有するIDT電極と、前記IDT電極の隣に配置された反射器と、を備え、前記櫛歯状電極は、第1方向に延びる複数の櫛歯電極指を有し、前記反射器は、前記第1方向に延びる複数の反射電極指を有し、前記第1方向に交差する第2方向において前記IDT電極と隣り合って配置され、前記IDT電極および前記反射器を構成するそれぞれの電極指において、隣り合う電極指同士の、前記第2方向における中心間距離をピッチとしたとき、前記複数の櫛歯電極指の全てのピッチの平均値は、前記複数の反射電極指の全てのピッチの平均値より小さく、前記複数の櫛歯電極指の総数をN本とし、前記複数の櫛歯電極指のうち前記反射器に最も近い前記櫛歯電極指を第1端側電極指とし、前記第1端側電極指から前記IDT電極の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、Nが奇数の場合には第(N/2-0.5)端側電極指を、または、Nが偶数の場合には第(N/2)端側電極指を第1内側電極指とし、前記第1内側電極指から前記反射器に向かう方向の電極指を順に第m内側電極指(mは自然数)とし、前記第m内側電極指と第(m-1)内側電極指との間のピッチを第m内側ピッチとしたとき、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの前記第m内側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい。
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの前記第m内側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい。
本発明に係る弾性波素子、弾性波フィルタ装置およびマルチプレクサによれば、弾性波素子の共振周波数よりも低周波側にて発生するリップルを低減することが可能となる。
以下、本発明の実施の形態について図表を用いて詳細に説明する。なお、以下で説明する実施例は、いずれも包括的または具体的な例を示すものである。以下の実施例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。
(実施の形態1)
[1.1 弾性波素子の構成]
本実施の形態に係る弾性波素子10の構成について説明する。
[1.1 弾性波素子の構成]
本実施の形態に係る弾性波素子10の構成について説明する。
図1は、実施の形態1に係る弾性波素子10の電極構成を模式的に表す平面図および断面図である。同図に示された弾性波素子10は、圧電性基板100と、電極110と、保護膜113とで形成され、これらの構成要素で構成されたIDT(InterDigital Transducer)電極11と、反射器12と、を備える。本実施の形態に係る弾性波素子10は、IDT電極11、反射器12、および圧電性基板100で構成された弾性表面波(SAW:Surface Acoustic Wave)共振子である。
なお、図1に示された弾性波素子10は、その典型的な構造を説明するためのものであって、電極を構成する電極指の本数や長さなどは、これに限定されない。
IDT電極11および反射器12を構成する電極110は、図1の断面図に示すように、密着層111と主電極層112との積層構造となっている。
密着層111は、圧電性基板100と主電極層112との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。
主電極層112は、材料として、例えば、Cuを1%含有したAlが用いられる。
保護膜113は、電極110を覆うように形成されている。保護膜113は、主電極層112を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素(SiO2)を主成分とする膜である。
なお、密着層111、主電極層112および保護膜113を構成する材料は、上述した材料に限定されない。さらに、電極110は、上記積層構造でなくてもよい。電極110は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護膜113は、形成されていなくてもよい。
圧電性基板100は、例えば、θ°YカットX伝搬LiNbO3圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸からZ軸方向にθ°回転した軸を法線とする面で切断したニオブ酸リチウム単結晶またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。
なお、圧電性基板100は、少なくとも一部に圧電体層を有する基板であってもよく、圧電体層を有する積層構造であってもよい。圧電性基板100は、例えば、高音速支持基板と、低音速膜と、圧電体層とを備え、高音速支持基板、低音速膜および圧電体層がこの順で積層された構造を有していてもよい。以下、高音速支持基板、低音速膜および圧電体層の構成について説明する。
圧電体層は、例えば、θ°YカットX伝搬LiNbO3圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸からZ軸方向にθ°回転した軸を法線とする面で切断したニオブ酸リチウム単結晶またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。
高音速支持基板は、低音速膜、圧電体層ならびに電極110を支持する基板である。高音速支持基板は、さらに、圧電体層を伝搬する表面波や境界波の弾性波よりも、高音速支持基板中のバルク波の音速が高速となる基板であり、弾性表面波を圧電体層および低音速膜が積層されている部分に閉じ込め、高音速支持基板より下方に漏れないように機能する。高音速支持基板は、例えば、シリコン基板である。なお、高音速支持基板は、(1)窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、または水晶等の圧電体、(2)アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、またはフォルステライト等の各種セラミック、(3)マグネシアダイヤモンド、(4)上記各材料を主成分とする材料、ならびに、(5)上記各材料の混合物を主成分とする材料、のいずれかで構成されていてもよい。
低音速膜は、圧電体層を伝搬する弾性波の音速よりも、低音速膜中のバルク波の音速が低速となる膜であり、圧電体層と高音速支持基板との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜は、例えば、二酸化ケイ素(SiO2)を主成分とする膜である。
圧電性基板100の上記積層構造によれば、圧電性基板100を単層で使用している構造と比較して、共振周波数および反共振周波数における弾性波共振子のQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振子を構成し得るので、当該弾性表面波共振子を用いて、挿入損失が小さいフィルタを構成することが可能となる。
なお、高音速支持基板は、支持基板と、圧電体層を伝搬する表面波や境界波の弾性波よりも伝搬するバルク波の音速が高速となる高音速膜とが積層された構造を有していてもよい。この場合、支持基板は、サファイア、リチウムタンタレート、リチウムニオベイト、水晶等の圧電体、アルミナ、マグネシア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、ガラス等の誘電体またはシリコン、窒化ガリウム等の半導体及び樹脂基板等を用いることができる。また、高音速膜は、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、DLC膜またはダイヤモンド、上記材料を主成分とする媒質、上記材料の混合物を主成分とする媒質等、様々な高音速材料を用いることができる。
なお、圧電性基板100の上記積層構造において例示した各層の材料などは一例であり、例えば、要求される高周波伝搬特性のうち重視すべき特性に応じて変更されるものである。
図1の平面図に示すように、IDT電極11は、互いに対向する一対の櫛歯状電極11Aおよび11Bを有している。櫛歯状電極11Aは、弾性波伝搬方向と交差する方向に延びるように配置された複数の櫛歯電極指11aと、複数の櫛歯電極指11aのそれぞれの一端同士を接続するバスバー電極11cとで構成されている。櫛歯状電極11Bは、弾性波伝搬方向と交差する方向に延びるように配置された複数の櫛歯電極指11bと、複数の櫛歯電極指11bのそれぞれの一端同士を接続するバスバー電極11cとで構成されている。複数の櫛歯電極指11a、11bの各々の電極指は、弾性波伝搬方向に交互に並ぶよう配置される。本実施形態の様に、各櫛歯電極指11a、11bが平行に延びている場合、弾性波伝搬方向と櫛歯電極指11a、11bが延びる方向は直交する。言い換えると、櫛歯電極指11a、11bが延びる方向を第1方向d1とした場合、圧電性基板100上において第1方向d1に直交する第2方向d2は、弾性波伝搬方向と同じ方向である。
反射器12は、IDT電極11と上記弾性波伝搬方向に隣り合って配置されている。反射器12は、上記弾性波伝搬方向と交差する方向に延びるように配置された複数の反射電極指12aと、複数の反射電極指12aの一端同士を接続するバスバー電極12cとで構成されている。本実施形態の様に、各反射電極指12aが平行に延びている場合、弾性波伝搬方向と反射電極指12aが延びる方向は直交する。反射電極指12aが延びる方向は、上記の第1方向d1と同じである。
本実施の形態の弾性波素子10では、IDT電極11を構成する複数の櫛歯電極指11a、11bの全てのピッチの平均値が、反射器12を構成する複数の反射電極指12aの全てのピッチの平均値より小さくなっている。
なお、ピッチとは、IDT電極11および反射器12を構成するそれぞれの電極指において、隣り合う電極指同士の、弾性波伝搬方向における中心間距離である。複数の櫛歯電極指11a、11bの全てのピッチの平均値は、例えば、複数の櫛歯電極指11a、11bの両端の距離を、(複数の櫛歯電極指11a、11bの総数-1)で除算することで求められる。また、複数の反射電極指12aの全てのピッチの平均値は、例えば、複数の反射電極指12aの両端の距離を、(複数の反射電極指12aの総数-1)で除算することで求められる。複数の櫛歯電極指11a、11bの全てのピッチの平均値の2倍が、IDT波長に該当する。複数の反射電極指12aの全てのピッチの平均値の2倍が、反射器波長に該当する。
さらに、本実施の形態の弾性波素子10は、以下に示す特徴的な構成を有している。
図2Aは、IDT電極11の櫛歯電極指11a、11bの総数が奇数である場合の電極構成を示す図である。図2Bは、IDT電極11の櫛歯電極指11a、11bの総数が偶数である場合の電極構成を示す図である。
例えば、IDT電極11を構成する複数の櫛歯電極指11a、11bは、弾性波伝搬方向において左右対称に配置されている。
ここで、図2Aおよび図2Bに示す複数の櫛歯電極指11a、11bの総数をN本とする。また、複数の櫛歯電極指11a、11bのうち一方の反射器12に最も近い櫛歯電極指を第1端側電極指と定義する。第1端側電極指から他方の反射器12に向かう方向の電極指を順に第n端側電極指(nは自然数)と定義する。そして、第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチと定義する。また、複数の櫛歯電極指11a、11bの総数Nが奇数である場合は、第(N/2+0.5)端側電極指の、弾性波伝搬方向における中心の位置をIDT電極の中央とする。複数の櫛歯電極指11a、11bの総数Nが偶数である場合は、第(N/2)端側電極指と第(N/2+1)端側電極指との、弾性波伝搬方向における中間の位置をIDT電極の中央とする。
上記定義の下、本実施の形態の弾性波素子10は、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの第n端側ピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さいという構成を有している。この構成によれば、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することが可能である。この点については後述する。
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの第n端側ピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さいという構成を有している。この構成によれば、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することが可能である。この点については後述する。
また、図2Aに示すように、総数Nが奇数の場合には第(N/2-0.5)端側電極指を第1内側電極指と定義し、または、図2Bに示すように、総数Nが偶数の場合には第(N/2)端側電極指を第1内側電極指と定義する。第1内側電極指から反射器12に向かう方向の電極指を順に第m内側電極指(mは自然数)と定義する。そして、第m内側電極指と第(m-1)内側電極指との間のピッチを第m内側ピッチと定義する。
上記定義の下、本実施の形態の弾性波素子10は、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの第m内側ピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きいという構成を有している。この構成によれば、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することが可能である。この点についても後述する。
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの第m内側ピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きいという構成を有している。この構成によれば、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することが可能である。この点についても後述する。
また、この弾性波素子10は、以下に示す構成を有していてもよい。
例えば、弾性波素子10では、図1に示すIDT-反射器ギャップ(IRGAP)が、複数の反射電極指の全てのピッチの平均値の0.9倍以下(反射器波長の0.45倍以下)になっていてもよい。また、複数の櫛歯電極指の全てのピッチの平均値が、複数の反射電極指の全てのピッチの平均値よりも小さくてもよい。なお、IDT-反射器ギャップとは、複数の櫛歯電極指11aおよび11bのうち反射器12に最近接する櫛歯電極指11aと、複数の反射電極指12aのうちIDT電極11に最近接する反射電極指12aとの、弾性波伝搬方向における中心同士の距離(中心間距離)である。
これらの構成によれば、弾性波素子10の共振周波数よりも低周波側における反射損失をさらに低減することができる。
以下、本実施の形態に係る弾性波素子10の上記構成および効果について、比較例および実施例を対比させながら説明する。
[1.2 実施例1A、1B、1Cおよび実施例2A、2B、2C]
まず、実施例1A~1Cについて、図3A~図3Cおよび図4A~図4Cを参照しながら説明する。実施例1A~1Cでは、IDT電極11の端から中央に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さくした例について説明する。以下において、複数の櫛歯電極指11a、11bの全てのピッチの平均値を、平均ピッチと呼ぶ場合がある。
まず、実施例1A~1Cについて、図3A~図3Cおよび図4A~図4Cを参照しながら説明する。実施例1A~1Cでは、IDT電極11の端から中央に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さくした例について説明する。以下において、複数の櫛歯電極指11a、11bの全てのピッチの平均値を、平均ピッチと呼ぶ場合がある。
[実施例1A]
図3Aは、比較例1Aおよび実施例1Aの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が61本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。
図3Aは、比較例1Aおよび実施例1Aの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が61本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。
比較例1Aおよび実施例1Aのそれぞれにおいて、IDT電極11の対数は30であり、櫛歯電極指11a、11bの総数Nは61本である。
比較例1Aは、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。
実施例1Aは、IDT電極11の端から中央に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、平均ピッチよりも小さくした例である。具体的には実施例1Aでは、上記の2本の櫛歯電極指のピッチを平均ピッチの0.98倍としている。
図3Aに示すように、比較例1Aでは、弾性波素子の共振周波数frよりも低周波側で、リップルA1、A2が発生している。それに対し実施例1Aでは、各リップルA1、A2の発生が抑制されている。このように、端から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも小さくすることで、弾性波素子10の共振周波数frよりも低周波側に発生するリップルを低減することが可能となる。
なお、上記の2本の櫛歯電極指のピッチは、全ての櫛歯電極指11a、11bで構成される全てのピッチの中で最も小さいことが望ましい。
弾性波共振子の共振周波数の近くに現れるリップルは、当該弾性波共振子を直列腕に使用した時、通過帯域の中央のリップルとなる。このリップルは耐電力やGDTに影響を与えるので小さいことが望ましい。よって、本実施の形態では、共振周波数に近いリップルに着目して評価することとする。以下同様である。
図4Aは、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を変えた場合のリップルによる劣化量を示す図である(櫛歯電極指の総数が61本の場合)。なお、リップルによる劣化量とは、リップルが発生していない状態を基準としてリップルが発生したときの損失量である。
図4Aには、上記の2本の櫛歯電極指のピッチの位置を順に変えた例として、第n端側電極指と第(n+1)端側電極指とのピッチである第n端側ピッチのnを、順に1から30に変えた例が示されている。上記の2本の櫛歯電極指のピッチは、平均ピッチの0.98倍である。同図における横軸のn=0は、2本の櫛歯電極指のピッチを変えていない場合を示している。なお、第n端側電極指は、前述した第m内側電極指よりも中央側に位置しないように、n<(N/2-m)という関係を有している。
図4Aには、IDT電極11の一方の端から中央側を見た第n端側ピッチの位置について示されているが、本実施例では、他方の端から中央側を見た第n端側ピッチも同様の構成になっている。つまり、弾性波素子10は、2つの第n端側ピッチを有し、2つの第n端側ピッチは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称となる位置にある。
図4Aに示すように、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を変えることで、各リップルA1、A2による劣化量が変化する。したがって、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を所定の範囲に設定することで、各リップルA1、A2による劣化量を低減することが可能となる。
例えば、第n端側ピッチのnを1≦n≦14の範囲にすることで、各リップルA1、A2による劣化量を比較例1Aであるモニタ(n=0)よりも改善することができる。この第n端側ピッチのnの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、14/61=0.233となる。したがって、弾性波素子10では、平均ピッチよりも小さい第n端側ピッチの位置を、以下の(式1A)に示す範囲にすることで、各リップルA1、A2による劣化量をモニタ(n=0)よりも改善することができる。
1≦n≦(0.233×N)・・・(式1A)
[実施例1B]
図3Bは、比較例1Bおよび実施例1Bの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が107本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。
図3Bは、比較例1Bおよび実施例1Bの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が107本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。
比較例1Bおよび実施例1Bのそれぞれにおいて、IDT電極11の対数は53であり、櫛歯電極指11a、11bの総数Nは107本である。
比較例1Bは、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。
実施例1Bは、IDT電極11の端から中央に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、平均ピッチよりも小さくした例である。具体的には実施例1Bでは、上記の2本の櫛歯電極指のピッチを平均ピッチの0.98倍としている。
図3Bに示すように、比較例1Bでは、弾性波素子の共振周波数frよりも低周波側で、リップルB1、B2、B3が発生している。それに対し実施例1Bでは、各リップルB1、B2、B3の発生が抑制されている。このように、端から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも小さくすることで、弾性波素子10の共振周波数frよりも低周波側に発生するリップルを低減することが可能となる。
なお、上記の2本の櫛歯電極指のピッチは、全ての櫛歯電極指11a、11bで構成される全てのピッチの中で最も小さいことが望ましい。
図4Bは、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を変えた場合のリップルによる劣化量を示す図である(櫛歯電極指の総数が107本の場合)。
図4Bには、上記の2本の櫛歯電極指のピッチの位置を順に変えた例として、第n端側電極指と第(n+1)端側電極指とのピッチである第n端側ピッチのnを、順に1から53に変えた例が示されている。上記の2本の櫛歯電極指のピッチは、平均ピッチの0.98倍である。同図における横軸のn=0は、2本の櫛歯電極指のピッチを変えていない場合を示している。なお、第n端側電極指は、前述した第m内側電極指よりも中央側に位置しないように、n<(N/2-m)という関係を有している。
図4Bには、IDT電極11の一方の端から中央側を見た第n端側ピッチの位置について示されているが、本実施例では、他方の端から中央側を見た第n端側ピッチも同様の構成になっている。つまり、弾性波素子10は、2つの第n端側ピッチを有し、2つの第n端側ピッチは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称となる位置にある。
図4Bに示すように、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を変えることで、各リップルB1、B2、B3による劣化量が変化する。したがって、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を所定の範囲に設定することで、各リップルB1、B2、B3による劣化量を低減することが可能となる。
例えば、第n端側ピッチのnを1≦n≦27の範囲にすることで、各リップルB1、B2、B3による劣化量を比較例1Bであるモニタ(n=0)よりも改善することができる。この第n端側ピッチのnの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、27/107=0.255となる。したがって、弾性波素子10では、平均ピッチよりも小さい第n端側ピッチの位置を、以下の(式1B)に示す範囲にすることで、各リップルB1、B2、B3による劣化量をモニタ(n=0)よりも改善することができる。
1≦n≦(0.255×N)・・・(式1B)
また、例えば、第n端側ピッチのnを1≦n≦14の範囲にすることで、各リップルB1、B2、B3による劣化量をモニタ(n=0)よりもさらに改善することができる。この第n端側ピッチのnの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、14/107=0.132となる。したがって、弾性波素子10では、平均ピッチよりも小さい第n端側ピッチの位置を、以下の(式3B)に示す範囲にすることで、各リップルB1、B2、B3による劣化量をモニタ(n=0)よりもさらに改善することができる。
1≦n≦(0.132×N)・・・(式3B)
[実施例1C]
図3Cは、比較例1Cおよび実施例1Cの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が201本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。
図3Cは、比較例1Cおよび実施例1Cの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が201本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。
比較例1Cおよび実施例1Cのそれぞれにおいて、IDT電極11の対数は100であり、櫛歯電極指11a、11bの総数Nは201本である。
比較例1Cは、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。
実施例1Cは、IDT電極11の端から中央に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、平均ピッチよりも小さくした例である。具体的には実施例1Cでは、上記の2本の櫛歯電極指のピッチを平均ピッチの0.98倍としている。
図3Cに示すように、比較例1Cでは、弾性波素子の共振周波数frよりも低周波側で、リップルC1、C2、C3が発生している。それに対し実施例1Cでは、各リップルC1、C2、C3の発生が抑制されている。このように、端から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも小さくすることで、弾性波素子10の共振周波数frよりも低周波側に発生するリップルを低減することが可能となる。
なお、上記の2本の櫛歯電極指のピッチは、全ての櫛歯電極指11a、11bで構成される全てのピッチの中で最も小さいことが望ましい。
図4Cは、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を変えた場合のリップルによる劣化量を示す図である(櫛歯電極指の総数が201本の場合)。
図4Cには、上記の2本の櫛歯電極指のピッチの位置を順に変えた例として、第n端側電極指と第(n+1)端側電極指とのピッチである第n端側ピッチのnを、順に1から100に変えた例が示されている。上記の2本の櫛歯電極指のピッチは、平均ピッチの0.98倍である。同図における横軸のn=0は、2本の櫛歯電極指のピッチを変えていない場合を示している。なお、第n端側電極指は、前述した第m内側電極指よりも中央側に位置しないように、n<(N/2-m)という関係を有している。
図4Cには、IDT電極11の一方の端から中央側を見た第n端側ピッチの位置について示されているが、本実施例では、他方の端から中央側を見た第n端側ピッチも同様の構成になっている。つまり、弾性波素子10は、2つの第n端側ピッチを有し、2つの第n端側ピッチは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称となる位置にある。
図4Cに示すように、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を変えることで、各リップルC1、C2、C3による劣化量が変化する。したがって、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を所定の範囲に設定することで、各リップルC1、C2、C3による劣化量を低減することが可能となる。
例えば、第n端側ピッチのnを1≦n≦55の範囲にすることで、各リップルC1、C2、C3による劣化量を比較例1Cであるモニタ(n=0)よりも改善することができる。この第n端側ピッチのnの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、55/201=0.275となる。したがって、弾性波素子10では、平均ピッチよりも小さい第n端側ピッチの位置を、以下の(式1C)に示す範囲にすることで、各リップルC1、C2、C3による劣化量をモニタ(n=0)よりも改善することができる。
1≦n≦(0.275×N)・・・(式1C)
また、例えば、第n端側ピッチのnを1≦n≦30の範囲にすることで、各リップルC1、C2、C3による劣化量をモニタ(n=0)よりもさらに改善することができる。この第n端側ピッチのnの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、30/201=0.150となる。したがって、弾性波素子10では、平均ピッチよりも小さい第n端側ピッチの位置を、以下の(式3C)に示す範囲にすることで、各リップルC1、C2、C3による劣化量をモニタ(n=0)よりもさらに改善することができる。
1≦n≦(0.150×N)・・・(式3C)
なお、実施例1A~1Cの(式1A)、(式1B)、(式1C)、(式3B)、(式3C)における第n端側ピッチのnの下限値は、櫛歯電極指の総数が異なっても同じなので、総数Nを使って表さずに、下限値を1のままにした。
次に、実施例2A~2Cについて、図5A~図5Cおよび図6A~図6Cを参照しながら説明する。実施例2A~2Cでは、IDT電極11の中央から端に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、平均ピッチよりも大きくした例について説明する。
[実施例2A]
図5Aは、比較例1Aおよび実施例2Aの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が61本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。なお、IDT電極11の対数は30であり、櫛歯電極指11a、11bの総数Nは61本である。
図5Aは、比較例1Aおよび実施例2Aの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が61本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。なお、IDT電極11の対数は30であり、櫛歯電極指11a、11bの総数Nは61本である。
比較例1Aは、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。
実施例2Aは、IDT電極11の中央から端に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、平均ピッチよりも大きくした例である。具体的には実施例2では、上記の2本の櫛歯電極指のピッチを平均ピッチの1.02倍としている。
図5Aに示すように、比較例1Aでは、弾性波素子の共振周波数frよりも低周波側で、リップルA11、A22が発生している。それに対し実施例2Aでは、各リップルA11、A22の発生が抑制されている。このように、中央から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも大きくすることで、弾性波素子10の共振周波数frよりも低周波側に発生するリップルを低減することが可能となる。
なお、上記の2本の櫛歯電極指のピッチは、複数の櫛歯電極指11a、11bで構成される全てのピッチの中で最も大きいことが望ましい。
図6Aは、平均ピッチよりも大きい2本の櫛歯電極指のピッチの位置を変えた場合のリップルによる劣化量を示す図である(櫛歯電極指の総数が61本の場合)。
図6Aには、上記の2本の櫛歯電極指のピッチの位置を順に変えた例として、第m内側電極指と第(m-1)内側電極指とのピッチである第m内側ピッチのmを、順に1から30に変えた例が示されている。上記の2本の櫛歯電極指のピッチは、平均ピッチの1.02倍である。同図における横軸のm=0は、2本の櫛歯電極指のピッチを変えていない場合を示している。なお、第m内側電極指は、前述した第(n+1)端側電極指よりも反射器12側に位置しないように、m<(N/2-n-1)という関係を有している。
図6Aには、IDT電極11の中央から一方の端側を見た第m内側ピッチの位置について示されているが、本実施例では、中央から他方の端側を見た第m内側ピッチも同様の構成になっている。つまり、弾性波素子10は、2つの第m内側ピッチを有し、2つの第m内側ピッチは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称となる位置にある。
図6Aに示すように、平均ピッチよりも大きい2本の櫛歯電極指のピッチの位置を変えることで、各リップルA11、A22による劣化量が変化する。したがって、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を所定の範囲に設定することで、各リップルA11、A22による劣化量を低減することが可能となる。
例えば、第m内側ピッチのmを1≦m≦10の範囲にすることで、各リップルA11、A22による劣化量を比較例1Aであるモニタ(m=0)よりも改善することができる。この第m内側ピッチのmの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、10/61=0.167となる。したがって、弾性波素子10では、平均ピッチよりも大きい第m内側ピッチの位置を、以下の(式2A)に示す範囲にすることで、各リップルA11、A22による劣化量をモニタ(m=0)よりも改善することができる。
1≦m≦(0.167×N)・・・(式2A)
また、例えば、第m内側ピッチのmを2≦m≦7の範囲とすることで、各リップルA11、A22による劣化量をモニタ(m=0)よりもさらに改善することができる。この第m内側ピッチのmの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、7/61=0.117となる。したがって、弾性波素子10では、平均ピッチよりも大きい第m内側ピッチの位置を、以下の(式4A)に示す範囲にすることで、各リップルA11、A22による劣化量をモニタ(m=0)よりもさらに改善することができる。
2≦m≦(0.117×N)・・・(式4A)
[実施例2B]
図5Bは、比較例1Bおよび実施例2Bの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が107本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。なお、IDT電極11の対数は53であり、櫛歯電極指11a、11bの総数Nは107本である。
図5Bは、比較例1Bおよび実施例2Bの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が107本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。なお、IDT電極11の対数は53であり、櫛歯電極指11a、11bの総数Nは107本である。
比較例1Bは、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。
実施例2Bは、IDT電極11の中央から端に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、平均ピッチよりも大きくした例である。具体的には実施例2では、上記の2本の櫛歯電極指のピッチを平均ピッチの1.02倍としている。
図5Bに示すように、比較例1Bでは、弾性波素子の共振周波数frよりも低周波側で、リップルB11、B22、B33が発生している。それに対し実施例2Bでは、各リップルB11、B22、B33の発生が抑制されている。このように、中央から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも大きくすることで、弾性波素子10の共振周波数frよりも低周波側に発生するリップルを低減することが可能となる。
なお、上記の2本の櫛歯電極指のピッチは、複数の櫛歯電極指11a、11bで構成される全てのピッチの中で最も大きいことが望ましい。
図6Bは、平均ピッチよりも大きい2本の櫛歯電極指のピッチの位置を変えた場合のリップルによる劣化量を示す図である(櫛歯電極指の総数が107本の場合)。
図6Bには、上記の2本の櫛歯電極指のピッチの位置を順に変えた例として、第m内側電極指と第(m-1)内側電極指とのピッチである第m内側ピッチのmを、順に1から53に変えた例が示されている。上記の2本の櫛歯電極指のピッチは、平均ピッチの1.02倍である。同図における横軸のm=0は、2本の櫛歯電極指のピッチを変えていない場合を示している。なお、第m内側電極指は、前述した第(n+1)端側電極指よりも反射器12側に位置しないように、m<(N/2-n-1)という関係を有している。
図6Bには、IDT電極11の中央から一方の端側を見た第m内側ピッチの位置について示されているが、本実施例では、中央から他方の端側を見た第m内側ピッチも同様の構成になっている。つまり、弾性波素子10は、2つの第m内側ピッチを有し、2つの第m内側ピッチは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称となる位置にある。
図6Bに示すように、平均ピッチよりも大きい2本の櫛歯電極指のピッチの位置を変えることで、各リップルB11、B22、B33による劣化量が変化する。したがって、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を所定の範囲に設定することで、各リップルB11、B22、B33による劣化量を低減することが可能となる。
例えば、第m内側ピッチのmを1≦m≦18の範囲にすることで、各リップルB11、B22、B33による劣化量を比較例1Bであるモニタ(m=0)よりも改善することができる。この第m内側ピッチのmの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、18/107=0.170となる。したがって、弾性波素子10では、平均ピッチよりも大きい第m内側ピッチの位置を、以下の(式2B)に示す範囲にすることで、各リップルB11、B22、B33による劣化量をモニタ(m=0)よりも改善することができる。
1≦m≦(0.170×N)・・・(式2B)
また、例えば、第m内側ピッチのmを2≦m≦11の範囲とすることで、各リップルB11、B22、B33による劣化量をモニタ(m=0)よりもさらに改善することができる。この第m内側ピッチのmの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、11/107=0.104となる。したがって、弾性波素子10では、平均ピッチよりも大きい第m内側ピッチの位置を、以下の(式4B)に示す範囲にすることで、各リップルB11、B22、B33による劣化量をモニタ(m=0)よりもさらに改善することができる。
2≦m≦(0.104×N)・・・(式4B)
[実施例2C]
図5Cは、比較例1Cおよび実施例2Cの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が201本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。なお、IDT電極11の対数は100であり、櫛歯電極指11a、11bの総数Nは201本である。
図5Cは、比較例1Cおよび実施例2Cの弾性波素子の挿入損失を示す図である(櫛歯電極指の総数が201本の場合)。同図には、縦軸の下側に向かうほど反射損失が大きくなることが示されている。なお、IDT電極11の対数は100であり、櫛歯電極指11a、11bの総数Nは201本である。
比較例1Cは、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。
実施例2Cは、IDT電極11の中央から端に向かう方向の所定の位置で隣り合う2本の櫛歯電極指のピッチを、平均ピッチよりも大きくした例である。具体的には実施例2では、上記の2本の櫛歯電極指のピッチを平均ピッチの1.02倍としている。
図5Cに示すように、比較例1Cでは、弾性波素子の共振周波数frよりも低周波側で、リップルC11、C22、C33が発生している。それに対し実施例2Cでは、各リップルC11、C22、C33の発生が抑制されている。このように、中央から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも大きくすることで、弾性波素子10の共振周波数frよりも低周波側に発生するリップルを低減することが可能となる。
なお、上記の2本の櫛歯電極指のピッチは、複数の櫛歯電極指11a、11bで構成される全てのピッチの中で最も大きいことが望ましい。
図6Cは、平均ピッチよりも大きい2本の櫛歯電極指のピッチの位置を変えた場合のリップルによる劣化量を示す図である(櫛歯電極指の総数が201本の場合)。
図6Cには、上記の2本の櫛歯電極指のピッチの位置を順に変えた例として、第m内側電極指と第(m-1)内側電極指とのピッチである第m内側ピッチのmを、順に1から100に変えた例が示されている。上記の2本の櫛歯電極指のピッチは、平均ピッチの1.02倍である。同図における横軸のm=0は、2本の櫛歯電極指のピッチを変えていない場合を示している。なお、第m内側電極指は、前述した第(n+1)端側電極指よりも反射器12側に位置しないように、m<(N/2-n-1)という関係を有している。
図6Cには、IDT電極11の中央から一方の端側を見た第m内側ピッチの位置について示されているが、本実施例では、中央から他方の端側を見た第m内側ピッチも同様の構成になっている。つまり、弾性波素子10は、2つの第m内側ピッチを有し、2つの第m内側ピッチは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称となる位置にある。
図6Cに示すように、平均ピッチよりも大きい2本の櫛歯電極指のピッチの位置を変えることで、各リップルC11、C22、C33による劣化量が変化する。したがって、平均ピッチよりも小さい2本の櫛歯電極指のピッチの位置を所定の範囲に設定することで、各リップルC11、C22、C33による劣化量を低減することが可能となる。
例えば、第m内側ピッチのmを1≦m≦35の範囲にすることで、各リップルC11、C22、C33による劣化量を比較例1Cであるモニタ(m=0)よりも改善することができる。この第m内側ピッチのmの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、35/201=0.175となる。したがって、弾性波素子10では、平均ピッチよりも大きい第m内側ピッチの位置を、以下の(式2C)に示す範囲にすることで、各リップルC11、C22、C33による劣化量をモニタ(m=0)よりも改善することができる。
1≦m≦(0.175×N)・・・(式2C)
また、例えば、第m内側ピッチのmを2≦m≦21の範囲とすることで、各リップルC11、C22、C33による劣化量をモニタ(m=0)よりもさらに改善することができる。この第m内側ピッチのmの上限値を、複数の櫛歯電極指11a、11bの総数Nを使って表すと、21/201=0.105となる。したがって、弾性波素子10では、平均ピッチよりも大きい第m内側ピッチの位置を、以下の(式4C)に示す範囲にすることで、各リップルC11、C22、C33による劣化量をモニタ(m=0)よりもさらに改善することができる。
2≦m≦(0.105×N)・・・(式4C)
なお、実施例2A~2Cの(式2A)、(式2B)、(式2C)における第m内側ピッチのmの下限値は、櫛歯電極指の総数が異なっても同じなので、総数Nを使って表さずに、下限値を1のままにした。実施例2A~2Cの(式4A)、(式4B)、(式4C)における第m内側ピッチのmの下限値は、櫛歯電極指の総数が異なっても同じなので、総数Nを使って表さずに、下限値を2のままにした。
[1.3 実施例3、4および5]
実施例3、4および5について、図7および図8を参照しながら説明する。
実施例3、4および5について、図7および図8を参照しながら説明する。
図7は、比較例2および実施例3、4、5の弾性波素子の挿入損失を示す図である。
比較例2および実施例3~5のそれぞれにおいて、IDT電極11の対数は53であり、櫛歯電極指11a、11bの総数Nは107本である。前述したIDT-反射器ギャップは、反射器波長の0.45倍以下であり、IDT波長は、反射器波長よりも小さくなっている。
図7の(a)は、比較例2であり、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。比較例2では、弾性波素子の共振周波数frよりも低周波側にて、リップルCが発生している。
図7の(b)は、実施例3であり、第10端側ピッチを0.98pとした例である。第n端側ピッチのn=10は、総数N=107なので、(式1B)の条件を満たしている。なお、0.98pは、IDT電極11の全ての櫛歯電極指11a、11bの平均ピッチを1pとしたときの値である。実施例3では、弾性波素子10の共振周波数frよりも低周波側にて、比較例2よりもリップルCの発生量を低減できている。
図7の(c)は、実施例4であり、第10内側ピッチを1.02pとした例である。第m内側ピッチのm=10は、総数N=107なので、(式2B)の条件を満たしている。なお、1.02pは、IDT電極11の全ての櫛歯電極指11a、11bの平均ピッチを1pとしたときの値である。実施例4では、弾性波素子10の共振周波数frよりも低周波側にて、比較例2よりもリップルCの発生量を低減できている。
図7の(d)は、実施例5であり、第10端側ピッチを0.98pとし、かつ、第10内側ピッチを1.02pとした例である。これらの0.98pおよび1.02pは、IDT電極11の全ての櫛歯電極指11a、11bの平均ピッチを1pとしたときの値である。実施例5では、弾性波素子10の共振周波数frよりも低周波側にて、比較例2、実施例3および4よりもリップルCの発生を抑制できている。
図8は、比較例3および4の弾性波素子の挿入損失を示す図である。各弾性波素子において、IDT電極11の対数は53であり、櫛歯電極指11a、11bの総数Nは107本である。
図8の(a)は、比較例3であり、第10端側ピッチを1.02pとした例である。つまり、比較例3は、IDT電極11の端から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも大きくした例である。比較例3では、弾性波素子の共振周波数frよりも低周波側にて、リップルBが発生し、リップルCが増大している。
図8の(b)は、比較例4であり、第10内側ピッチを0.98pとした例である。つまり、比較例4は、IDT電極11の中央から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも小さくした例である。比較例4では、弾性波素子の共振周波数frよりも低周波側にて、リップルCが増大している。
すなわち、図7の(a)の比較例2に示すように、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにすると、弾性波素子の共振周波数frよりも低周波側にて、リップルCが発生する。
図8の(a)の比較例3に示すように、IDT電極11の端から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも大きくすると、弾性波素子10の共振周波数frよりも低周波側にて発生するリップルが悪化する。図8の(b)の比較例4に示すように、IDT電極11の中央から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも小さくすると、弾性波素子10の共振周波数frよりも低周波側にて発生するリップルが悪化する。
図7の(b)および(d)の実施例3、5に示すように、IDT電極11の端から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも小さくすることで、弾性波素子10の共振周波数frよりも低周波側にて発生するリップルを低減することができる。図7の(c)および(d)の実施例4、5に示すように、IDT電極11の中央から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも大きくすることで、弾性波素子10の共振周波数frよりも低周波側にて発生するリップルを低減することができる。
[1.4 実施例6、7および8]
実施例6、7および8について、図9を参照しながら説明する。実施例6~8では、実施例3~5よりもIDT電極11の対数が少ない例について説明する。
実施例6、7および8について、図9を参照しながら説明する。実施例6~8では、実施例3~5よりもIDT電極11の対数が少ない例について説明する。
図9は、比較例5および実施例6、7、8の弾性波素子の挿入損失を示す図である。
比較例5および実施例6~8のそれぞれにおいて、IDT電極11の対数は30であり、櫛歯電極指11a、11bの総数Nは61本である。前述したIDT-反射器ギャップは、反射器波長の0.45倍以下であり、IDT波長は、反射器波長よりも小さくなっている。
図9の(a)は、比較例5であり、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。比較例5では、弾性波素子の共振周波数frよりも低周波側にて、リップルDが発生している。
図9の(b)は、実施例6であり、第10端側ピッチを0.98pとした例である。第n端側ピッチのn=10は、総数N=61なので、(式1A)の条件を満たしている。0.98pは、IDT電極11の全ての櫛歯電極指11a、11bの平均ピッチを1pとしたときの値である。実施例6では、弾性波素子10の共振周波数frよりも低周波側にて、比較例5よりもリップルDの発生量を低減できている。
図9の(c)は、実施例7であり、第8内側ピッチを1.02pとした例である。第m内側ピッチのm=8は、総数N=61なので、(式2A)の条件を満たしている。1.02pは、IDT電極11の全ての櫛歯電極指11a、11bの平均ピッチを1pとしたときの値である。実施例7では、弾性波素子10の共振周波数frよりも低周波側にて、比較例5よりもリップルDの発生量を低減できている。
図9の(d)は、実施例8であり、第10端側ピッチを0.98pとし、かつ、第8内側ピッチを1.02pとした例である。これらの0.98pおよび1.02pは、IDT電極11の全ての櫛歯電極指11a、11bの平均ピッチを1pとしたときの値である。実施例8では、弾性波素子10の共振周波数frよりも低周波側にて、比較例5、実施例6および7よりもリップルDの発生を抑制できている。
図9の(b)および(d)の実施例6、8に示すように、IDT電極11の対数が30の場合であっても、IDT電極11の端から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも小さくすることで、弾性波素子10の共振周波数frよりも低周波側にて発生するリップルを低減することができる。図9の(c)および(d)の実施例7、8に示すように、IDT電極11の対数が30の場合であっても、IDT電極11の中央から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも大きくすることで、弾性波素子10の共振周波数frよりも低周波側にて発生するリップルを低減することができる。
[1.5 実施例9]
実施例9について、図10を参照しながら説明する。実施例9では、実施例3~5よりもIDT電極11の対数が多い例について説明する。
実施例9について、図10を参照しながら説明する。実施例9では、実施例3~5よりもIDT電極11の対数が多い例について説明する。
図10は、比較例6および実施例9の弾性波素子の挿入損失を示す図である。
比較例6および実施例9のそれぞれにおいて、IDT電極11の対数は100であり、櫛歯電極指11a、11bの総数Nは201本である。前述したIDT-反射器ギャップは、反射器波長の0.45倍以下であり、IDT波長は、反射器波長よりも小さくなっている。
図10の(a)は、比較例6であり、IDT電極11を構成する複数の櫛歯電極指11a、11bのピッチを全て同じにした例である。比較例6では、弾性波素子の共振周波数frよりも低周波側にて、リップルEが発生している。
図10の(b)は、実施例9であり、第8端側ピッチを0.97pとした例である。第n端側ピッチのn=8は、総数N=201なので、(式1C)の条件を満たしている。0.97pは、IDT電極11の全ての櫛歯電極指11a、11bの平均ピッチを1pとしたときの値である。実施例9では、弾性波素子10の共振周波数frよりも低周波側にて、比較例6よりもリップルEの発生量を低減できている。
図10の(b)の実施例9に示すように、IDT電極11の対数が100の場合であっても、IDT電極11の端から離れた所定の位置で隣り合う2本の櫛歯電極指のピッチを平均ピッチよりも小さくすることで、弾性波素子10の共振周波数frよりも低周波側にて発生するリップルを低減することができる。
[1.6 実施例10、11および12]
実施例10、11および12について、図11を参照しながら説明する。実施例10~12では、1または複数の第n端側ピッチが平均ピッチよりも小さくなっている例について説明する。
実施例10、11および12について、図11を参照しながら説明する。実施例10~12では、1または複数の第n端側ピッチが平均ピッチよりも小さくなっている例について説明する。
図11は、櫛歯電極指11a、11bのピッチの一例を示す図である。
実施例10には、第10端側ピッチが、平均ピッチよりも小さくなっている例が示されている。具体的には、第10端側ピッチが、複数の櫛歯電極指11a、11bの全てのピッチから第10端側ピッチを除いた残りのピッチの平均値(1.000)の0.98倍になっている。
実施例11には、第9端側ピッチ、第10端側ピッチおよび第11端側ピッチが、平均ピッチよりも小さくなっている例が示されている。具体的には、第9端側ピッチ~第11端側ピッチのそれぞれが、複数の櫛歯電極指11a、11bの全てのピッチから第9端側ピッチ~第11端側ピッチを除いた残りのピッチの平均値(1.000)の0.9933倍になっている。
実施例12には、第8端側ピッチ、第9端側ピッチ、第10端側、第11端側ピッチおよび第12端側ピッチが、平均ピッチよりも小さくなっている例が示されている。具体的には、第8端側ピッチ~第12端側ピッチのそれぞれが、複数の櫛歯電極指11a、11bの全てのピッチから第8端側ピッチ~第12端側ピッチを除いた残りのピッチの平均値(1.000)の0.9960倍になっている。
つまり、実施の形態10~12では、IDT電極11が、弾性波伝搬方向に順に並ぶ1または複数の第n端側ピッチを有し、第n端側ピッチが、以下の(式5)の関係を有するように構成されている。
第n端側ピッチ=1-(1または複数の第n端側ピッチを採用することで短くなる距離/第n端側ピッチの数)・・・(式5)
(式5)において、1または複数の第n端側ピッチを採用することで短くなる距離とは、元の複数の櫛歯電極指11a、11bの両端の距離を基準とし、複数の櫛歯電極指11a、11bの一部のピッチを1または複数の第n端側ピッチとした場合に、短くなる距離である。
例えば、実施例10の場合、第10端側ピッチは、1-(0.02/1)=0.98により算出される。実施例11の場合、第9端側ピッチ~第11端側ピッチのそれぞれは、1-(0.02/3)=0.9933により算出される。実施例12の場合、第8端側ピッチ~第12端側ピッチのそれぞれは、1-(0.02/5)=0.9960により算出される。
このような櫛歯電極指11a、11bのピッチを有する弾性波素子10においても、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
[1.7 実施例13]
実施例13について、図12を参照しながら説明する。実施例13では、隣り合う櫛歯電極指11a、11bのピッチが、ランダムに変わるように構成されている例について説明する。
実施例13について、図12を参照しながら説明する。実施例13では、隣り合う櫛歯電極指11a、11bのピッチが、ランダムに変わるように構成されている例について説明する。
図12は、IDT電極11の櫛歯電極指11a、11bおよび反射器12の反射電極指12aのピッチの他の一例を示す図である。
図12の横軸には、IDT電極11の端から数えた櫛歯電極指11a、11bの本数が示され、縦軸には、櫛歯電極指11a、11bのピッチが示されている。なお、縦軸は、平均ピッチを1pとしたときのピッチである。
図12に示すように、複数の櫛歯電極指11a、11bは、弾性波伝搬方向において隣り合うピッチが不規則に増減するように配列されている。つまり、複数の櫛歯電極指11a、11bは、隣り合う櫛歯電極指11a、11bのピッチが不規則な変化となるように、ランダム状に配置されている。不規則な変化とは、一定の状態、比例的な変化および周期的な変化を含まず、ランダムな変化を含む意味である。
例えば、複数の第n端側ピッチは、弾性波伝搬方向において隣り合うピッチが不規則に増減していてもよい。例えば複数の第m内側ピッチは、弾性波伝搬方向において隣り合うピッチが不規則に増減していてもよい。
このような櫛歯電極指11a、11bのピッチを有する弾性波素子10においても、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
(実施の形態2)
実施の形態2では、実施の形態1に係る弾性波素子10を用いた弾性波フィルタ装置について説明する。実施の形態1に係る弾性波素子10を用いて、弾性波フィルタ装置を構成することにより、通過帯域内の挿入損失が劣化することを抑制できる。
実施の形態2では、実施の形態1に係る弾性波素子10を用いた弾性波フィルタ装置について説明する。実施の形態1に係る弾性波素子10を用いて、弾性波フィルタ装置を構成することにより、通過帯域内の挿入損失が劣化することを抑制できる。
図13は、実施の形態2に係る弾性波フィルタ装置1の回路構成を示す図である。図14は、弾性波フィルタ装置1を構成する弾性波素子10の電極パラメータを示す図である。なお、図14における交叉幅とは、複数の電極指が延びる方向を電極指延伸方向としたときに、前記電極指延伸方向に垂直な方向において、隣り合う前記電極指同士が重なりあっている領域が、交叉領域であり、前記交叉領域の前記電極指延伸方向に沿う寸法が交叉幅である。
図13および図14に示すように、弾性波フィルタ装置1は、第1の入出力端子50および第2の入出力端子60と、第1の入出力端子50と第2の入出力端子60との間に接続された直列腕共振子S1、S2、S3およびS4と、第1の入出力端子50と第2の入出力端子60とを結ぶ経路上のノードおよびグランドに接続された並列腕共振子P1、P2、P3およびP4と、備えている。実施の形態1の弾性波素子10は、直列腕共振子S1~S4のそれぞれに用いられている。
図15は、実施の形態2および比較例2に係る弾性波フィルタ装置の通過特性を比較したグラフである。なお、比較例2の弾性波フィルタ装置では、弾性波素子のIDT電極を構成する複数の櫛歯電極指のピッチが全て同じである。
図15の(a)および(b)に示すように、比較例2の通過特性と実施の形態2の通過特性とを見比べると、実施の形態2のほうが比較例2よりも挿入損失が小さくなっている。このように、本実施の形態の弾性波フィルタ装置1では、通過帯域において挿入損失が劣化することを抑制できる。
(実施の形態3)
図16は、実施の形態3に係るマルチプレクサ5およびその周辺回路(アンテナ4)の回路構成図である。同図に示されたマルチプレクサ5は、弾性波フィルタ装置1と、フィルタ3と、共通端子70と、入出力端子81および82と、を備える。
図16は、実施の形態3に係るマルチプレクサ5およびその周辺回路(アンテナ4)の回路構成図である。同図に示されたマルチプレクサ5は、弾性波フィルタ装置1と、フィルタ3と、共通端子70と、入出力端子81および82と、を備える。
弾性波フィルタ装置1は、弾性波フィルタ装置1の入出力端子50が共通端子70に接続され、弾性波フィルタ装置1の入出力端子60が入出力端子81に接続されている。
フィルタ3は、共通端子70および入出力端子82に接続されている。フィルタ3は、例えば、並列腕共振子および直列腕共振子を有するラダー型の弾性波フィルタであるが、LCフィルタなどであってもよく、その回路構成は特に限定されない。
ここで、弾性波フィルタ装置1の通過帯域は、フィルタ3の通過帯域よりも低周波側に位置する。
なお、弾性波フィルタ装置1とフィルタ3とは、図16に示すように共通端子70に直接接続されていなくてもよく、例えば、インピーダンス整合回路、移相器、サーキュレータ、または、2以上のフィルタを選択可能なスイッチ素子、を介して共通端子70に間接的に接続されていてもよい。
また、本実施の形態では、マルチプレクサ5として、2つのフィルタが共通端子70に接続された回路構成としたが、共通端子70に接続されるフィルタの数は2つに限定されず、3以上であってもよい。つまり、本発明に係るマルチプレクサは、弾性波フィルタ装置1を含む複数のフィルタを備え、当該複数のフィルタのそれぞれの入力端子および出力端子の一方は、共通端子に直接的または間接的に接続され、弾性波フィルタ装置1を除く複数のフィルタの少なくとも1つは、弾性波フィルタ装置1の通過帯域の周波数より高い通過帯域を有していてもよい。
(まとめ)
本実施の形態に係る弾性波素子10は、高周波信号を所定の弾性波伝搬方向に伝搬させる弾性波素子であって、圧電性基板100と、圧電性基板100上に形成され、一対の櫛歯状電極11A、11Bを有するIDT電極11と、IDT電極11と弾性波伝搬方向に隣り合って配置された反射器12と、を備える。櫛歯状電極11A、11Bは、弾性波伝搬方向に対して交差する方向に延びる複数の櫛歯電極指11a、11bを有する。反射器12は、弾性波伝搬方向に対して交差する方向に延びる複数の反射電極指12aを有する。IDT電極11および反射器12を構成するそれぞれの電極指において、隣り合う電極指同士の、弾性波伝搬方向における中心間距離をピッチとしたとき、複数の櫛歯電極指11aの全てのピッチの平均値は、複数の反射電極指12aの全てのピッチの平均値より小さい。複数の櫛歯電極指11a、11bの総数をN本とし、複数の櫛歯電極指11a、11bのうち反射器12に最も近い櫛歯電極指を第1端側電極指とし、第1端側電極指からIDT電極11の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの第n端側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さい。
本実施の形態に係る弾性波素子10は、高周波信号を所定の弾性波伝搬方向に伝搬させる弾性波素子であって、圧電性基板100と、圧電性基板100上に形成され、一対の櫛歯状電極11A、11Bを有するIDT電極11と、IDT電極11と弾性波伝搬方向に隣り合って配置された反射器12と、を備える。櫛歯状電極11A、11Bは、弾性波伝搬方向に対して交差する方向に延びる複数の櫛歯電極指11a、11bを有する。反射器12は、弾性波伝搬方向に対して交差する方向に延びる複数の反射電極指12aを有する。IDT電極11および反射器12を構成するそれぞれの電極指において、隣り合う電極指同士の、弾性波伝搬方向における中心間距離をピッチとしたとき、複数の櫛歯電極指11aの全てのピッチの平均値は、複数の反射電極指12aの全てのピッチの平均値より小さい。複数の櫛歯電極指11a、11bの総数をN本とし、複数の櫛歯電極指11a、11bのうち反射器12に最も近い櫛歯電極指を第1端側電極指とし、第1端側電極指からIDT電極11の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの第n端側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さい。
これによれば、IDT電極11の端から離れた位置で隣り合う少なくとも1組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも小さくなる。少なくも1組の櫛歯電極指11a、11bのピッチの位置は、上記の(式1A)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、Nが奇数の場合には第(N/2-0.5)端側電極指を、または、Nが偶数の場合には第(N/2)端側電極指を第1内側電極指とし、第1内側電極指から反射器12に向かう方向の電極指を順に第m内側電極指(mは自然数)とし、第m内側電極指と第(m-1)内側電極指とのピッチを第m内側ピッチとしたとき、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの第m内側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きくてもよい。
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの第m内側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きくてもよい。
これによれば、IDT電極11の中央から離れた位置で隣り合う少なくとも1組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも大きくなる。少なくとも1組の櫛歯電極指11a、11bのピッチの位置は、上記の(式2A)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
本実施の形態に係る弾性波素子10は、高周波信号を所定の弾性波伝搬方向に伝搬させる弾性波素子であって、圧電性基板100と、圧電性基板100上に形成され、一対の櫛歯状電極11A、11Bを有するIDT電極11と、IDT電極11と弾性波伝搬方向に隣り合って配置された反射器12と、を備える。櫛歯状電極11A、11Bは、弾性波伝搬方向に対して交差する方向に延びる複数の櫛歯電極指11a、11bを有する。反射器12は、弾性波伝搬方向に対して交差する方向に延びる複数の反射電極指12aを有する。IDT電極11および反射器12を構成するそれぞれの電極指において、隣り合う電極指同士の、弾性波伝搬方向における中心間距離をピッチとしたとき、複数の櫛歯電極指11a、11bの全てのピッチの平均値は、複数の反射電極指12aの全てのピッチの平均値より小さい。複数の櫛歯電極指11a、11bの総数をN本とし、複数の櫛歯電極指11a、11bのうち反射器12に最も近い櫛歯電極指を第1端側電極指とし、第1端側電極指からIDT電極11の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、Nが奇数の場合には第(N/2-0.5)端側電極指を、または、Nが偶数の場合には第(N/2)端側電極指を第1内側電極指とし、第1内側電極指から反射器12に向かう方向の電極指を順に第m内側電極指(mは自然数)とし、第m内側電極指と第(m-1)内側電極指との間のピッチを第m内側ピッチとしたとき、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの第m内側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きい。
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの第m内側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きい。
これによれば、IDT電極11の中央から離れた位置で隣り合う少なくとも1組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも大きくなる。少なくとも1組の櫛歯電極指11a、11bのピッチの位置は、上記の(式2A)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、第n端側電極指と第(n+1)端側電極指とのピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの第n端側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さくてもよい。
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの第n端側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さくてもよい。
これによれば、IDT電極11の端から離れた位置で隣り合う少なくとも1組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも小さくなる。少なくとも1組の櫛歯電極指11a、11bのピッチの位置は、上記の(式1A)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、弾性波素子10は、
1≦n≦(0.132×N)・・・(式3B)
を満たす少なくとも1つの第n端側ピッチを有し、少なくとも1つの第n端側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さくてもよい。
1≦n≦(0.132×N)・・・(式3B)
を満たす少なくとも1つの第n端側ピッチを有し、少なくとも1つの第n端側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さくてもよい。
これによれば、IDT電極11の端から離れた位置で隣り合う少なくとも1組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも小さくなる。少なくとも1組の櫛歯電極指11a、11bのピッチの位置は、上記の(式3B)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、弾性波素子10は、
1≦n≦(0.132×N)・・・(式3B)
を満たす複数の第n端側ピッチを有し、複数の第n端側ピッチのそれぞれは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さくてもよい。
1≦n≦(0.132×N)・・・(式3B)
を満たす複数の第n端側ピッチを有し、複数の第n端側ピッチのそれぞれは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さくてもよい。
これによれば、IDT電極11の端から離れた位置で隣り合う複数組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも小さくなる。複数組の櫛歯電極指11a、11bのピッチの位置は、上記の(式3B)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、弾性波素子10は、
2≦m≦(0.104×N)・・・(式4B)
を満たす少なくとも1つの第m内側ピッチを有し、少なくとも1つの第m内側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きくてもよい。
2≦m≦(0.104×N)・・・(式4B)
を満たす少なくとも1つの第m内側ピッチを有し、少なくとも1つの第m内側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きくてもよい。
これによれば、IDT電極11の中央から離れた位置で隣り合う少なくとも1組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも大きくなる。少なくとも1組の櫛歯電極指11a、11bのピッチの位置は、上記の(式4B)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、弾性波素子10は、
2≦m≦(0.104×N)・・・(式4B)
を満たす複数の第m内側ピッチを有し、複数の第m内側ピッチのそれぞれは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きくてもよい。
2≦m≦(0.104×N)・・・(式4B)
を満たす複数の第m内側ピッチを有し、複数の第m内側ピッチのそれぞれは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きくてもよい。
これによれば、IDT電極11の中央から離れた位置で隣り合う複数組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも大きくなる。複数組の櫛歯電極指11a、11bのピッチの位置は、上記の(式4B)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、弾性波素子10は、式1Aを満たす、複数の第n端側ピッチを有し、複数の第n端側ピッチは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称となる位置にあってもよい。
この構成によれば、複数の第n端側ピッチを簡易な構造にして、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、弾性波素子10は、式2Aを満たす、複数の第m内側ピッチを有し、複数の第m内側ピッチは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称となる位置にあってもよい。
この構成によれば、複数の第m内側ピッチを簡易な構造にして、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、複数の櫛歯電極指11a、11bは、弾性波伝搬方向におけるIDT電極11の中央を通る中心線に対して、線対称に配置されていてもよい。
この構成によれば、IDT電極11を簡易な構造にして、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、弾性波素子10は、式1Aを満たす、複数の第n端側ピッチを有し、複数の第n端側ピッチは、弾性波伝搬方向において隣り合うピッチが不規則に増減していてもよい。
このように、複数の第n端側ピッチのうち隣り合うピッチが不規則に増減していることで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、弾性波素子10は、式2Aを満たす、複数の第m内側ピッチを有し、複数の第m内側ピッチは、弾性波伝搬方向において隣り合うピッチが不規則に増減していてもよい。
このように、複数の第m内側ピッチのうち隣り合うピッチが不規則に増減していることで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
また、IDT電極11に最も近い反射電極指12aと、反射器12に最も近い櫛歯電極指との弾性波伝搬方向における中心間距離は、複数の反射電極指12aの繰り返しピッチの0.9倍以下であってもよい。
この構成によれば、弾性波素子10の共振周波数よりも低周波側における反射損失をさらに低減することができる。
本実施の形態に係る弾性波フィルタ装置1は、上記弾性波素子10を含む。
これによれば、共振周波数よりも低周波側にて発生するリップルを低減した弾性波素子10を備える弾性波フィルタ装置1を提供することができる。
また、弾性波フィルタ装置1は、さらに、第1の入出力端子50および第2の入出力端子60と、第1の入出力端子50と第2の入出力端子60とを結ぶ経路上のノードおよびグランドに接続された並列腕共振子P1~P4と、を備え、弾性波素子10は、第1の入出力端子50と第2の入出力端子60との間に接続された直列腕共振子S1~S4であってもよい。
上記構成によれば、弾性波フィルタ装置1は、直列腕共振子S1~S4および並列腕共振子P1~P4で構成されたラダー型の弾性波フィルタを構成し、上記弾性波素子10が直列腕共振子S1~S4に適用される。これにより、弾性波フィルタ装置1の通過帯域を構成する直列腕共振子S1~S4の共振周波数よりも低周波側にて、挿入損失が増加することを抑制できる。
本実施の形態に係るマルチプレクサ5は、上記の弾性波フィルタ装置1を含む複数のフィルタを備え、複数のフィルタのそれぞれの入力端子および出力端子の一方は、共通端子70に直接的または間接的に接続され、弾性波フィルタ装置1を除く複数のフィルタの少なくとも1つは、弾性波フィルタ装置1の通過帯域の周波数より高い通過帯域を有していてもよい。
これにより、弾性波フィルタ装置1では、通過帯域よりも高周波側の減衰帯域の減衰量を大きくできるので、弾性波フィルタ装置1の通過帯域よりも高周波側の通過帯域を有するフィルタの通過帯域内の挿入損失を低減できる。
本実施の形態に係る弾性波素子10は、圧電性基板100と、圧電性基板100上に形成され、一対の櫛歯状電極11A、11Bを有するIDT電極11と、IDT電極11の隣に配置された反射器12と、を備える。櫛歯状電極11A、11Bは、第1方向d1に延びる複数の櫛歯電極指11a、11bを有する。反射器12は、第1方向d1に延びる複数の反射電極指12aを有し、第1方向d1に交差する第2方向d2においてIDT電極11と隣り合って配置されている。IDT電極11および反射器12を構成するそれぞれの電極指において、隣り合う電極指同士の、第2方向d2における中心間距離をピッチとしたとき、複数の櫛歯電極指11aの全てのピッチの平均値は、複数の反射電極指12aの全てのピッチの平均値より小さい。複数の櫛歯電極指11a、11bの総数をN本とし、複数の櫛歯電極指11a、11bのうち反射器12に最も近い櫛歯電極指を第1端側電極指とし、第1端側電極指からIDT電極11の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの第n端側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さい。
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの第n端側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも小さい。
これによれば、IDT電極11の端から離れた位置で隣り合う少なくとも1組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも小さくなる。少なくも1組の櫛歯電極指11a、11bのピッチの位置は、上記の(式1A)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
本実施の形態に係る弾性波素子10は、圧電性基板100と、圧電性基板100上に形成され、一対の櫛歯状電極11A、11Bを有するIDT電極11と、IDT電極11の隣に配置された反射器12と、を備える。櫛歯状電極11A、11Bは、第1方向d1に延びる複数の櫛歯電極指11a、11bを有する。反射器12は、第1方向d1に延びる複数の反射電極指12aを有し、第1方向d1に交差する第2方向d2においてIDT電極11と隣り合って配置されている。IDT電極11および反射器12を構成するそれぞれの電極指において、隣り合う電極指同士の、第2方向d2における中心間距離をピッチとしたとき、複数の櫛歯電極指11a、11bの全てのピッチの平均値は、複数の反射電極指12aの全てのピッチの平均値より小さい。複数の櫛歯電極指11a、11bの総数をN本とし、複数の櫛歯電極指11a、11bのうち反射器12に最も近い櫛歯電極指を第1端側電極指とし、第1端側電極指からIDT電極11の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、Nが奇数の場合には第(N/2-0.5)端側電極指を、または、Nが偶数の場合には第(N/2)端側電極指を第1内側電極指とし、第1内側電極指から反射器12に向かう方向の電極指を順に第m内側電極指(mは自然数)とし、第m内側電極指と第(m-1)内側電極指との間のピッチを第m内側ピッチとしたとき、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの第m内側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きい。
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの第m内側ピッチは、複数の櫛歯電極指11a、11bの全てのピッチの平均値よりも大きい。
これによれば、IDT電極11の中央から離れた位置で隣り合う少なくとも1組の櫛歯電極指11a、11bのピッチが、複数の櫛歯電極指11a、11bの全てのピッチの平均値(平均ピッチ)よりも大きくなる。少なくとも1組の櫛歯電極指11a、11bのピッチの位置は、上記の(式2A)に示す範囲で規定される。弾性波素子10がこの構成を有することで、弾性波素子10の共振周波数よりも低周波側にて発生するリップルを低減することができる。
(その他の実施の形態など)
以上、本発明の実施の形態に係る弾性波素子、弾性波フィルタ装置およびマルチプレクサについて、実施の形態および実施例を挙げて説明したが、本発明の弾性波素子、弾性波フィルタ装置およびマルチプレクサは、上記実施の形態および実施例に限定されるものではない。上記実施の形態および実施例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる実施例や、本発明の弾性波素子、弾性波フィルタ装置およびマルチプレクサを内蔵した各種機器も本発明に含まれる。
以上、本発明の実施の形態に係る弾性波素子、弾性波フィルタ装置およびマルチプレクサについて、実施の形態および実施例を挙げて説明したが、本発明の弾性波素子、弾性波フィルタ装置およびマルチプレクサは、上記実施の形態および実施例に限定されるものではない。上記実施の形態および実施例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる実施例や、本発明の弾性波素子、弾性波フィルタ装置およびマルチプレクサを内蔵した各種機器も本発明に含まれる。
例えば、本発明に係る弾性波フィルタ装置1は、さらに、インダクタおよびキャパシタなどの回路素子を備えてもよい。
また、本発明に係る弾性波素子は、実施の形態1のような弾性表面波共振子でなくてもよく、弾性境界波を利用した弾性波共振子であってもよい。
本発明は、マルチバンド化およびマルチモード化された周波数規格に適用できる低損失かつ小型の弾性波素子、弾性波フィルタ装置およびマルチプレクサとして、携帯電話などの通信機器に広く利用できる。
1 弾性波フィルタ装置
3 フィルタ
4 アンテナ
5 マルチプレクサ
10 弾性波素子
11 IDT電極
11A、11B 櫛歯状電極
11a、11b 櫛歯電極指
11c バスバー電極
12 反射器
12a 反射電極指
12c バスバー電極
50、60、81、82 入出力端子
70 共通端子
100 圧電性基板
110 電極
111 密着層
112 主電極層
113 保護膜
d1 第1方向
d2 第2方向
P1、P2、P3、P4 並列腕共振子
S1、S2、S3、S4 直列腕共振子
3 フィルタ
4 アンテナ
5 マルチプレクサ
10 弾性波素子
11 IDT電極
11A、11B 櫛歯状電極
11a、11b 櫛歯電極指
11c バスバー電極
12 反射器
12a 反射電極指
12c バスバー電極
50、60、81、82 入出力端子
70 共通端子
100 圧電性基板
110 電極
111 密着層
112 主電極層
113 保護膜
d1 第1方向
d2 第2方向
P1、P2、P3、P4 並列腕共振子
S1、S2、S3、S4 直列腕共振子
Claims (19)
- 圧電性基板と、
前記圧電性基板上に形成され、一対の櫛歯状電極を有するIDT電極と、
前記IDT電極と弾性波伝搬方向に隣り合って配置された反射器と、
を備え、
前記櫛歯状電極は、前記弾性波伝搬方向に対して交差する方向に延びる複数の櫛歯電極指を有し、
前記反射器は、前記弾性波伝搬方向に対して交差する方向に延びる複数の反射電極指を有し、
前記IDT電極および前記反射器を構成するそれぞれの電極指において、隣り合う電極指同士の、前記弾性波伝搬方向における中心間距離をピッチとしたとき、
前記複数の櫛歯電極指の全てのピッチの平均値は、前記複数の反射電極指の全てのピッチの平均値より小さく、
前記複数の櫛歯電極指の総数をN本とし、
前記複数の櫛歯電極指のうち前記反射器に最も近い前記櫛歯電極指を第1端側電極指とし、
前記第1端側電極指から前記IDT電極の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、
前記第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの前記第n端側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい
弾性波素子。 - Nが奇数の場合には第(N/2-0.5)端側電極指を、または、Nが偶数の場合には第(N/2)端側電極指を第1内側電極指とし、
前記第1内側電極指から前記反射器に向かう方向の電極指を順に第m内側電極指(mは自然数)とし、
前記第m内側電極指と第(m-1)内側電極指との間のピッチを第m内側ピッチとしたとき、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの前記第m内側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい
請求項1に記載の弾性波素子。 - 圧電性基板と、
前記圧電性基板上に形成され、一対の櫛歯状電極を有するIDT電極と、
前記IDT電極と弾性波伝搬方向に隣り合って配置された反射器と、
を備え、
前記櫛歯状電極は、前記弾性波伝搬方向に対して交差する方向に延びる複数の櫛歯電極指を有し、
前記反射器は、前記弾性波伝搬方向に対して交差する方向に延びる複数の反射電極指を有し、
前記IDT電極および前記反射器を構成するそれぞれの電極指において、隣り合う電極指同士の、前記弾性波伝搬方向における中心間距離をピッチとしたとき、
前記複数の櫛歯電極指の全てのピッチの平均値は、前記複数の反射電極指の全てのピッチの平均値より小さく、
前記複数の櫛歯電極指の総数をN本とし、
前記複数の櫛歯電極指のうち前記反射器に最も近い前記櫛歯電極指を第1端側電極指とし、
前記第1端側電極指から前記IDT電極の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、
Nが奇数の場合には第(N/2-0.5)端側電極指を、または、Nが偶数の場合には第(N/2)端側電極指を第1内側電極指とし、
前記第1内側電極指から前記反射器に向かう方向の電極指を順に第m内側電極指(mは自然数)とし、
前記第m内側電極指と第(m-1)内側電極指との間のピッチを第m内側ピッチとしたとき、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの前記第m内側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい
弾性波素子。 - 前記第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの前記第n端側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい
請求項3に記載の弾性波素子。 - 前記弾性波素子は、
1≦n≦(0.132×N)・・・(式3B)
を満たす少なくとも1つの前記第n端側ピッチを有し、
少なくとも1つの前記第n端側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい
請求項1、2および4のいずれか1項に記載の弾性波素子。 - 前記弾性波素子は、
1≦n≦(0.132×N)・・・(式3B)
を満たす複数の前記第n端側ピッチを有し、
複数の前記第n端側ピッチのそれぞれは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい
請求項1、2および4のいずれか1項に記載の弾性波素子。 - 前記弾性波素子は、
2≦m≦(0.104×N)・・・(式4B)
を満たす少なくとも1つの前記第m内側ピッチを有し、
少なくとも1つの前記第m内側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい
請求項2~4のいずれか1項に記載の弾性波素子。 - 前記弾性波素子は、
2≦m≦(0.104×N)・・・(式4B)
を満たす複数の前記第m内側ピッチを有し、
複数の前記第m内側ピッチのそれぞれは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい
請求項2~4のいずれか1項に記載の弾性波素子。 - 前記弾性波素子は、前記式1Aを満たす、複数の前記第n端側ピッチを有し、
複数の前記第n端側ピッチは、前記弾性波伝搬方向における前記IDT電極の中央を通る中心線に対して、線対称となる位置にある
請求項1、2、4および5のいずれか1項に記載の弾性波素子。 - 前記弾性波素子は、前記式2Aを満たす、複数の前記第m内側ピッチを有し、
複数の前記第m内側ピッチは、前記弾性波伝搬方向における前記IDT電極の中央を通る中心線に対して、線対称となる位置にある
請求項2~4および7のいずれか1項に記載の弾性波素子。 - 前記複数の櫛歯電極指は、前記弾性波伝搬方向における前記IDT電極の中央を通る中心線に対して、線対称に配置されている
請求項1~10のいずれか1項に記載の弾性波素子。 - 前記弾性波素子は、前記式1Aを満たす、複数の前記第n端側ピッチを有し、
複数の前記第n端側ピッチは、前記弾性波伝搬方向において隣り合うピッチが不規則に増減している
請求項1、2、4および5のいずれか1項に記載の弾性波素子。 - 前記弾性波素子は、前記式2Aを満たす、複数の前記第m内側ピッチを有し、
複数の前記第m内側ピッチは、前記弾性波伝搬方向において隣り合うピッチが不規則に増減している
請求項2~4および7のいずれか1項に記載の弾性波素子。 - 前記IDT電極に最も近い前記反射電極指と、前記反射器に最も近い前記櫛歯電極指との前記弾性波伝搬方向における中心間距離は、前記複数の反射電極指の繰り返しピッチの0.9倍以下である
請求項1~13のいずれか1項に記載の弾性波素子。 - 請求項1~14のいずれか1項に記載の弾性波素子を含む
弾性波フィルタ装置。 - 前記弾性波フィルタ装置は、さらに、
第1の入出力端子および第2の入出力端子と、
前記第1の入出力端子と前記第2の入出力端子とを結ぶ経路上のノードおよびグランドに接続された並列腕共振子と、を備え、
前記弾性波素子は、前記第1の入出力端子と前記第2の入出力端子との間に接続された直列腕共振子である
請求項15に記載の弾性波フィルタ装置。 - 請求項16に記載の弾性波フィルタ装置を含む複数のフィルタを備え、
前記複数のフィルタのそれぞれの入力端子および出力端子の一方は、共通端子に直接的または間接的に接続され、
前記弾性波フィルタ装置を除く前記複数のフィルタの少なくとも1つは、前記弾性波フィルタ装置の通過帯域の周波数より高い通過帯域を有する
マルチプレクサ。 - 圧電性基板と、
前記圧電性基板上に形成され、一対の櫛歯状電極を有するIDT電極と、
前記IDT電極の隣に配置された反射器と、
を備え、
前記櫛歯状電極は、第1方向に延びる複数の櫛歯電極指を有し、
前記反射器は、前記第1方向に延びる複数の反射電極指を有し、前記第1方向に交差する第2方向において前記IDT電極と隣り合って配置され、
前記IDT電極および前記反射器を構成するそれぞれの電極指において、隣り合う電極指同士の、前記第2方向における中心間距離をピッチとしたとき、
前記複数の櫛歯電極指の全てのピッチの平均値は、前記複数の反射電極指の全てのピッチの平均値より小さく、
前記複数の櫛歯電極指の総数をN本とし、
前記複数の櫛歯電極指のうち前記反射器に最も近い前記櫛歯電極指を第1端側電極指とし、
前記第1端側電極指から前記IDT電極の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、
前記第n端側電極指と第(n+1)端側電極指との間のピッチを第n端側ピッチとしたとき、
1≦n≦(0.233×N)・・・(式1A)
を満たす少なくとも1つの前記第n端側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも小さい
弾性波素子。 - 圧電性基板と、
前記圧電性基板上に形成され、一対の櫛歯状電極を有するIDT電極と、
前記IDT電極の隣に配置された反射器と、
を備え、
前記櫛歯状電極は、第1方向に延びる複数の櫛歯電極指を有し、
前記反射器は、前記第1方向に延びる複数の反射電極指を有し、前記第1方向に交差する第2方向において前記IDT電極と隣り合って配置され、
前記IDT電極および前記反射器を構成するそれぞれの電極指において、隣り合う電極指同士の、前記第2方向における中心間距離をピッチとしたとき、
前記複数の櫛歯電極指の全てのピッチの平均値は、前記複数の反射電極指の全てのピッチの平均値より小さく、
前記複数の櫛歯電極指の総数をN本とし、
前記複数の櫛歯電極指のうち前記反射器に最も近い前記櫛歯電極指を第1端側電極指とし、
前記第1端側電極指から前記IDT電極の中央に向かう方向の電極指を順に第n端側電極指(nは自然数)とし、
Nが奇数の場合には第(N/2-0.5)端側電極指を、または、Nが偶数の場合には第(N/2)端側電極指を第1内側電極指とし、
前記第1内側電極指から前記反射器に向かう方向の電極指を順に第m内側電極指(mは自然数)とし、
前記第m内側電極指と第(m-1)内側電極指との間のピッチを第m内側ピッチとしたとき、
1≦m≦(0.167×N)・・・(式2A)
を満たす少なくとも1つの前記第m内側ピッチは、前記複数の櫛歯電極指の全てのピッチの平均値よりも大きい
弾性波素子。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/399,791 US20240235524A9 (en) | 2021-07-08 | 2023-12-29 | Acoustic wave element, acoustic wave filter device, and multiplexer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021113671 | 2021-07-08 | ||
JP2021-113671 | 2021-07-08 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/399,791 Continuation US20240235524A9 (en) | 2021-07-08 | 2023-12-29 | Acoustic wave element, acoustic wave filter device, and multiplexer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023282330A1 true WO2023282330A1 (ja) | 2023-01-12 |
Family
ID=84800814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/026984 WO2023282330A1 (ja) | 2021-07-08 | 2022-07-07 | 弾性波素子、弾性波フィルタ装置およびマルチプレクサ |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240235524A9 (ja) |
WO (1) | WO2023282330A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008252678A (ja) * | 2007-03-30 | 2008-10-16 | Tdk Corp | 縦結合共振子型弾性表面波フィルタ |
JP2015073207A (ja) * | 2013-10-03 | 2015-04-16 | スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 | 弾性波共振器 |
WO2018012367A1 (ja) * | 2016-07-13 | 2018-01-18 | 京セラ株式会社 | 受信フィルタ、分波器および通信装置 |
WO2019198594A1 (ja) * | 2018-04-11 | 2019-10-17 | 京セラ株式会社 | 弾性波素子、弾性波フィルタ、分波器および通信装置 |
-
2022
- 2022-07-07 WO PCT/JP2022/026984 patent/WO2023282330A1/ja active Application Filing
-
2023
- 2023-12-29 US US18/399,791 patent/US20240235524A9/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008252678A (ja) * | 2007-03-30 | 2008-10-16 | Tdk Corp | 縦結合共振子型弾性表面波フィルタ |
JP2015073207A (ja) * | 2013-10-03 | 2015-04-16 | スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 | 弾性波共振器 |
WO2018012367A1 (ja) * | 2016-07-13 | 2018-01-18 | 京セラ株式会社 | 受信フィルタ、分波器および通信装置 |
WO2019198594A1 (ja) * | 2018-04-11 | 2019-10-17 | 京セラ株式会社 | 弾性波素子、弾性波フィルタ、分波器および通信装置 |
Also Published As
Publication number | Publication date |
---|---|
US20240235524A9 (en) | 2024-07-11 |
US20240137003A1 (en) | 2024-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018168836A1 (ja) | 弾性波素子、弾性波フィルタ装置およびマルチプレクサ | |
JP6870684B2 (ja) | マルチプレクサ | |
JP6801797B2 (ja) | 弾性波フィルタ | |
WO2021002321A1 (ja) | 弾性波フィルタおよびマルチプレクサ | |
JP6760480B2 (ja) | エクストラクタ | |
US11863159B2 (en) | Acoustic wave filter | |
JPWO2020036100A1 (ja) | 弾性波フィルタ | |
KR102431434B1 (ko) | 필터 장치 및 멀티플렉서 | |
WO2022158470A1 (ja) | 弾性波フィルタおよびマルチプレクサ | |
JP2017195580A (ja) | 弾性波フィルタ装置 | |
CN113519121B (zh) | 弹性波滤波器装置以及多工器 | |
WO2023074373A1 (ja) | 弾性波共振子、弾性波フィルタ装置およびマルチプレクサ | |
WO2018117060A1 (ja) | 弾性波共振器、フィルタ装置およびマルチプレクサ | |
JP2024036840A (ja) | 弾性波フィルタおよびマルチプレクサ | |
WO2023282330A1 (ja) | 弾性波素子、弾性波フィルタ装置およびマルチプレクサ | |
WO2023282328A1 (ja) | 弾性波素子、弾性波フィルタ装置およびマルチプレクサ | |
WO2023054301A1 (ja) | 弾性波フィルタ装置およびマルチプレクサ | |
WO2018117059A1 (ja) | 弾性波共振器、フィルタ装置およびマルチプレクサ | |
JP2023044392A (ja) | 弾性波素子、弾性波フィルタ装置およびマルチプレクサ | |
WO2019009271A1 (ja) | マルチプレクサ | |
WO2022181578A1 (ja) | 弾性波フィルタ | |
US11863161B2 (en) | Acoustic wave filter | |
WO2023090238A1 (ja) | マルチプレクサ | |
WO2023068206A1 (ja) | マルチプレクサ | |
JP2024104398A (ja) | マルチプレクサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22837744 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22837744 Country of ref document: EP Kind code of ref document: A1 |