WO2023282235A1 - 接合用金属ペースト、並びに接合体及びその製造方法 - Google Patents

接合用金属ペースト、並びに接合体及びその製造方法 Download PDF

Info

Publication number
WO2023282235A1
WO2023282235A1 PCT/JP2022/026625 JP2022026625W WO2023282235A1 WO 2023282235 A1 WO2023282235 A1 WO 2023282235A1 JP 2022026625 W JP2022026625 W JP 2022026625W WO 2023282235 A1 WO2023282235 A1 WO 2023282235A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
bonding
particles
copper particles
less
Prior art date
Application number
PCT/JP2022/026625
Other languages
English (en)
French (fr)
Inventor
偉夫 中子
芳則 江尻
俊明 田中
大 石川
美智子 名取
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to EP22837650.5A priority Critical patent/EP4368317A1/en
Priority to CN202280057605.7A priority patent/CN117916038A/zh
Priority to JP2023533124A priority patent/JPWO2023282235A1/ja
Priority to KR1020247003033A priority patent/KR20240032878A/ko
Publication of WO2023282235A1 publication Critical patent/WO2023282235A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer

Definitions

  • the present invention relates to a joining metal paste, a joined body, and a method for producing the same.
  • the conventionally used high-lead solder bonding layer has problems in connection reliability, and the thermal conductivity is also insufficient (30 Wm -1 K -1 ), so alternative materials are available. It has been demanded.
  • Patent Document 1 As one of alternative materials, a sintered silver layer formed by a sintering phenomenon of silver particles has been proposed (see Patent Document 1 below).
  • a sintered silver layer has a high thermal conductivity (>100 Wm ⁇ 1 K ⁇ 1 ) and is reported to have high connection reliability against power cycles, and is attracting attention (see Non-Patent Document 1 below).
  • a thermocompression bonding process with high pressure is essential to improve the denseness of the sintered silver layer.
  • the high material cost of silver also poses a problem.
  • a sintered copper layer using copper has been proposed as another alternative material. Copper is superior in mechanical strength to silver, and high-temperature reliability can be easily obtained without increasing the denseness of the sintered silver layer, and the material cost can be kept low.
  • a sintered copper layer obtained by reducing and sintering copper oxide particles has been proposed (see Patent Document 2 and Non-Patent Document 2 below).
  • the members such as the LED chip and the GaN on Si chip receive no pressure other than the weight of the member or the weight of the weight used to prevent tilting of the chip or reduce voids during bonding.
  • the members such as the LED chip and the GaN on Si chip receive no pressure other than the weight of the member or the weight of the weight used to prevent tilting of the chip or reduce voids during bonding.
  • it is necessary to reduce and sinter the copper oxide particles in a hydrogen atmosphere, and the hydrogen concentration exceeds 10%. If this is the case, there is a possibility that restrictions such as making the equipment to be used explosion-proof will occur.
  • the present invention provides a metal paste for bonding and a bonded body that can obtain a bonded body having sufficient bonding strength even when bonding is performed without pressure in an atmosphere that does not contain hydrogen or has a low hydrogen concentration. It aims at providing the manufacturing method of.
  • One aspect of the present invention includes metal particles, a dispersion medium, a reducing agent, and a reducing aid, wherein the metal particles contain copper particles, and the reducing aid has electron back-donating coordination wherein the coordinating compound is at least one selected from the group consisting of an organic phosphorus compound and an organic sulfur compound, and a polyol compound as a reducing agent is added to 100 parts by mass of the total mass of the copper particles. , 1.6 parts by mass or more and 10 parts by mass or less.
  • no pressure means that the copper paste for bonding is used only for the weight of the members to be bonded, or in addition to the weight, for preventing tip tilting or reducing voids. It means a state where only weight (pressure of 0.01 MPa or less in terms of pressure) is received.
  • the coordinating compound may have a lone electron pair and a vacant ⁇ electron orbital.
  • the coordinating compound may be at least one selected from the group consisting of an organophosphorus compound represented by the following formula (1) and an organophosphorus compound represented by the following formula (2).
  • R 1 , R 2 and R 3 each independently represent a monovalent organic group or —OR (R represents a monovalent organic group), and R 1 , R 2 and R 3 may form a ring.
  • R 4 , R 5 and R 6 each independently represent a monovalent organic group or —OR (R represents a monovalent organic group), and R 4 , R 5 and R 6 is -OR (R represents a monovalent organic group).
  • the content of the reducing aid may be 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the total mass of the copper particles.
  • the copper particles include sub-micro copper particles having a volume average particle diameter of 0.15 ⁇ m or more and 0.8 ⁇ m or less and micro copper particles having a volume average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less.
  • the sum of the amount and the content of the microcopper particles is 80% by mass or more based on the total mass of the metal particles, and the content of the submicrocopper particles is the mass of the submicrocopper particles and the mass of the microcopper particles. It may be 30% by mass or more and 90% by mass or less based on the total.
  • the microcopper particles may be flake-shaped.
  • Another aspect of the present invention is a step of preparing a laminate in which a first member, the metal paste for bonding according to the aspect of the present invention, and a second member are laminated in this order; and a sintering step of sintering the joining metal paste.
  • the sintering step may be a step of sintering the bonding metal paste under no-pressure conditions in an oxygen-free atmosphere.
  • At least one of the first member and the second member may be a semiconductor element.
  • Another aspect of the present invention is a method of baking the joining metal paste according to the above-described aspect of the present invention, which joins the first member, the second member, and the first member and the second member. and a joint.
  • a metal paste for bonding and a bonded body that can obtain a bonded body having sufficient bonding strength even when bonding is performed without pressure in an atmosphere that does not contain hydrogen or has a low hydrogen concentration. can provide a manufacturing method of
  • FIG. 2 is a schematic cross-sectional view showing an example of a joined body manufactured using the joining metal paste of the present embodiment
  • FIG. 2 is a schematic cross-sectional view showing an example of a joined body manufactured using the joining metal paste of the present embodiment
  • 4 is an SEM image showing a bonded cross section of a copper sintered body in a bonded body produced using the bonding metal paste obtained in Example 1.
  • FIG. 10 is an SEM image showing a bonded cross section of a copper sintered body in a bonded body produced using the bonding metal paste obtained in Comparative Example 7.
  • this embodiment the form for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail.
  • the present invention is not limited to the following embodiments.
  • the metal paste for bonding of the present embodiment contains metal particles, a dispersion medium, a reducing agent, and a reducing aid, the metal particles containing copper particles, and the reducing agent containing a polyol compound.
  • the reducing aid contains a coordinating compound having electron back-donating properties.
  • the coordinating compound is at least one selected from the group consisting of an organic phosphorus compound and an organic sulfur compound, and a polyol-based compound is used as a reducing agent. 1.6 parts by mass or more and 10 parts by mass or less can be contained with respect to parts. According to such a metal paste for bonding, even when the members are bonded without pressure in an atmosphere that does not contain hydrogen or has a low hydrogen concentration, the oxide film of the copper particles and the adherend is removed. As a result, it becomes easy to proceed with sintering (generate metal bonding) while maintaining the metal surface, and a bonded body having sufficient bonding strength can be obtained.
  • a copper complex in which a coordinating compound is back-donated tends to be stabilized in a low oxidation state.
  • Copper particles include submicrocopper particles and microcopper particles.
  • the copper particles refer to particles containing copper as a main component, for example, particles having a copper content of 80% by mass or more.
  • the content of copper in the copper particles may be 85% by mass or more, 90% by mass or more, 95% by mass or more, 99% by mass or more, or 100% by mass.
  • the sub-micro copper particles may be copper particles that are sinterable in the temperature range of 250°C or higher and 380°C or lower.
  • Examples of sub-micro copper particles include those containing copper particles having a particle size of 0.01 ⁇ m or more and 0.8 ⁇ m or less.
  • copper particles having a volume average particle size of 0.01 ⁇ m or more and 0.8 ⁇ m or less can be used. can be done.
  • the volume average particle diameter of the submicrocopper particles is 0.01 ⁇ m or more, effects such as suppression of the synthesis cost of the submicrocopper particles, good dispersibility, and suppression of the amount of the organic protective agent to be used are likely to be obtained.
  • the volume average particle size of the sub-microcopper particles is 0.8 ⁇ m or less, the effect of excellent sinterability of the sub-microcopper particles is likely to be obtained.
  • the volume average particle size of the sub-micro copper particles may be 0.6 ⁇ m or less, 0.5 ⁇ m or less, or 0.4 ⁇ m or less.
  • the volume average particle size of the sub-micro copper particles may be 0.02 ⁇ m or more, 0.05 ⁇ m or more, or 0.1 ⁇ m or more.
  • the volume average particle size of the sub-micro copper particles may be, for example, 0.01 ⁇ m or more and 0.5 ⁇ m or less, 0.12 ⁇ m or more and 0.8 ⁇ m or less, or 0.15 ⁇ m or more and 0.8 ⁇ m or less. , 0.15 ⁇ m or more and 0.6 ⁇ m or less, 0.2 ⁇ m or more and 0.5 ⁇ m or less, or 0.3 ⁇ m or more and 0.45 ⁇ m or less.
  • the volume average particle diameter means a 50% volume average particle diameter.
  • the copper particles as a raw material or the dry copper particles obtained by removing volatile components from the metal paste for bonding are dispersed in a dispersion medium using a dispersant, and the particle size is determined by the light scattering method. It can be determined by a method of measuring with a distribution measuring device (for example, Shimadzu nanoparticle size distribution measuring device (SALD-7500nano, manufactured by Shimadzu Corporation)).
  • SALD-7500nano Shimadzu nanoparticle size distribution measuring device
  • hexane, toluene, ⁇ -terpineol, 4-methyl-1,3-dioxolane-2-one, water, or the like can be used as the dispersion medium.
  • the content of the sub-micro copper particles may be 20% by mass or more, 30% by mass or more, 35% by mass or more, or 40% by mass, based on the total mass of the metal particles. % or more, may be 90% by mass or less, may be 85% by mass or less, may be 80% by mass or less, or may be 20% by mass or more and 90% by mass or less It may be 30% by mass or more and 90% by mass or less, 35% by mass or more and 85% by mass or less, or 40% by mass or more and 80% by mass or less. If the content of the sub-micro copper particles is within the above range, it becomes easy to ensure the bonding strength of the bonded body manufactured by sintering the bonding copper paste, and the bonding copper paste is used for bonding semiconductor elements. When used, semiconductor devices tend to exhibit good die shear strength and connection reliability.
  • the content of the sub-microcopper particles is preferably 20% by mass or more and 90% by mass or less based on the total mass of the copper particles. If the content of the sub-microcopper particles is 20% by mass or more, the space between the copper particles can be sufficiently filled when used in combination with microcopper particles such as flaky microcopper particles, and the copper paste for bonding It becomes easy to secure the bonding strength of the bonded body manufactured by sintering, and when the copper paste for bonding is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability. . If the content of the sub-micro copper particles is 90% by mass or less, the volume shrinkage when the bonding copper paste is sintered without pressure can be sufficiently suppressed.
  • the content of the sub-micro copper particles may be 30% by mass or more, 35% by mass or more, or 40% by mass, based on the total mass of the copper particles. % or more, may be 85% by mass or less, may be 83% by mass or less, may be 80% by mass or less, or may be 30% by mass or more and 85% by mass or less It may be 35% by mass or more and 85% by mass or less, or 40% by mass or more and 80% by mass or less.
  • the shape of the sub-micro copper particles is not particularly limited.
  • Examples of the shape of the sub-micro copper particles include spherical, massive, needle-like, flake-like, substantially spherical and aggregates thereof.
  • the shape of the sub-micro copper particles may be spherical, approximately spherical, or flaky. Alternatively, it may be substantially spherical.
  • the term "flake-like" includes flat plate-like shapes such as plate-like and scale-like shapes.
  • the sub-micro copper particles may have an aspect ratio of 5 or less, 4 or less, or 3 or less from the viewpoint of dispersibility, filling properties, and mixability with flaky microparticles. good.
  • aspect ratio refers to the long side (major diameter)/thickness of a particle.
  • the long side (major diameter) and thickness of the particles can be determined, for example, from SEM images of the particles.
  • the sub-microcopper particles may be treated with a surface treatment agent.
  • surface treatment agents include organic acids having 2 to 18 carbon atoms.
  • organic acids having 2 to 18 carbon atoms include acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, caprylic acid, methylheptanoic acid, ethylhexanoic acid, propylpentanoic acid, pelargonic acid, and methyloctane.
  • Acid ethylheptanoic acid, propylhexanoic acid, capric acid, methylnonanoic acid, ethyloctanoic acid, propylheptanoic acid, butylhexanoic acid, undecanoic acid, methyldecanoic acid, ethylnonanoic acid, propyloctanoic acid, butylheptanoic acid, lauric acid, methylundecane Acid, ethyldecanoic acid, propylnonanoic acid, butyloctanoic acid, pentylheptanoic acid, tridecanoic acid, methyldodecanoic acid, ethylundecanoic acid, propyldecanoic acid, butylnonanoic acid, pentyloctanoic acid, myristic acid, methyltridecanoic acid, ethyldodecanoic acid , propy
  • An organic acid may be used individually by 1 type, and may be used in combination of 2 or more type. By combining such an organic acid with the submicrocopper particles, there is a tendency to achieve both the dispersibility of the submicrocopper particles and the elimination of the organic acid during sintering.
  • the treatment amount of the surface treatment agent may be an amount that allows one to three molecular layers to adhere to the surfaces of the submicrocopper particles. This amount is determined by the number of molecular layers (n) attached to the surface of the submicrocopper particles, the specific surface area (A p ) of the submicrocopper particles (unit: m 2 /g), and the molecular weight (M s ) of the surface treatment agent ( unit g/mol), the minimum coating area (S S ) of the surface treatment agent (unit m 2 /piece), and Avogadro's number (N A ) (6.02 ⁇ 10 23 pieces).
  • the specific surface area of the submicrocopper particles can be calculated by measuring the dried submicrocopper particles by the BET specific surface area measurement method.
  • the minimum coverage area of the surface treatment agent is 2.05 ⁇ 10 ⁇ 19 m 2 /molecule when the surface treatment agent is linear saturated fatty acid.
  • calculation from a molecular model, or "Chemistry and Education” Katsuhiro Ueda, Sumio Inafuku, Iwao Mori, 40 (2), 1992, p114-117) It can be measured by the method described. An example of the method for quantifying the surface treatment agent is shown.
  • the surface treatment agent can be identified by a thermal desorption gas-gas chromatograph-mass spectrometer of dry powder obtained by removing the dispersion medium from the copper paste for bonding, thereby determining the carbon number and molecular weight of the surface treatment agent.
  • the carbon content ratio of the surface treatment agent can be analyzed by carbon content analysis. Examples of the carbon content analysis method include high-frequency induction heating furnace combustion/infrared absorption method.
  • the amount of the surface treatment agent can be calculated by the above formula from the carbon number, molecular weight and carbon content ratio of the identified surface treatment agent.
  • the treatment amount of the surface treatment agent may be 0.07% by mass or more, 0.1% by mass or more, or 0.1% by mass or more based on the mass of the sub-micro copper particles having the surface treatment agent. It may be 2% by mass or more, may be 2.1% by mass or less, may be 1.6% by mass or less, may be 1.1% by mass or less, and may be 0.07% by mass % or more and 2.1 mass % or less, 0.10 mass % or more and 1.6 mass % or less, or 0.2 mass % or more and 1.1 mass % or less.
  • sub-micro copper particles Commercially available ones can be used as the sub-micro copper particles.
  • Commercially available submicroparticles include, for example, CH-0200 (manufactured by Mitsui Kinzoku Mining Co., Ltd., volume average particle diameter 0.36 ⁇ m), CH-0200A-L1 (manufactured by Mitsui Kinzoku Mining Co., Ltd., volume average particle diameter 0 .21 ⁇ m), HT-14 (manufactured by Mitsui Kinzoku Co., Ltd., volume average particle size 0.41 ⁇ m), CT-500 (manufactured by Mitsui Kinzoku Co., Ltd., volume average particle size 0.72 ⁇ m), Tn-Cu100 (Taiyo Nikko volume-average particle size of 0.12 ⁇ m, manufactured by Sanso Co., Ltd.).
  • Sub-micro copper particles have good sinterability, reducing problems such as expensive synthesis cost, poor dispersibility, and low volume shrinkage after sintering, which are seen in bonding materials that mainly use copper nanoparticles. can do.
  • micro copper particles copper particles having a particle size of 2 ⁇ m or more and 50 ⁇ m or less can be used.
  • copper particles having a volume average particle size of 2 ⁇ m or more and 50 ⁇ m or less can be used. If the volume average particle diameter of the micro copper particles is within the above range, the volume shrinkage, the generation of voids, etc. when the copper paste for bonding is sintered without pressure can be sufficiently reduced, and the copper paste for bonding is not added. It becomes easy to ensure the bonding strength of the bonded body manufactured by sintering under pressure, and when the copper paste for bonding is used for bonding semiconductor elements, the semiconductor device tends to exhibit good die shear strength and connection reliability. be.
  • the volume average particle diameter of the micro copper particles may be 2 ⁇ m or more, 3 ⁇ m or more, 20 ⁇ m or less, or 15 ⁇ m or less. It may be 10 ⁇ m or less, 2 ⁇ m or more and 20 ⁇ m or less, 2 ⁇ m or more and 10 ⁇ m or less, 3 ⁇ m or more and 20 ⁇ m or less, or 3 ⁇ m or more and 10 ⁇ m or less.
  • the shape of the micro copper particles is preferably flaky.
  • the micro copper particles in the copper paste for bonding are oriented substantially parallel to the bonding surface, thereby suppressing volumetric shrinkage when the copper paste for bonding is sintered. This makes it easy to secure the bonding strength of the bonded body manufactured by sintering the bonding copper paste.
  • the semiconductor device tends to exhibit good die shear strength and connection reliability.
  • the flaky micro copper particles may have an aspect ratio of 4 or more, 6 or more, 10 or more, or 50 or more. good too.
  • the content of the micro copper particles may be 10% by mass or more and 90% by mass or less, may be 15% by mass or more and 65% by mass or less, or may be 20% by mass or more and 60% by mass, based on the total mass of the copper particles. % by mass or less. If the content of the micro copper particles is within the above range, it becomes easy to ensure the bonding strength of the bonded body manufactured by sintering the bonding copper paste, and the bonding copper paste is used for bonding semiconductor elements. When used, semiconductor devices tend to exhibit good die shear strength and connection reliability.
  • the microcopper particles may be treated with a surface treatment agent.
  • the surface treatment agent may be removed during bonding.
  • Examples of such surface treatment agents include aliphatic carboxylic acids such as dodecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, arachidic acid, linoleic acid, linoleic acid, and oleic acid; Aromatic carboxylic acids such as phenoxybenzoic acid; Aliphatic alcohols such as cetyl alcohol, stearyl alcohol, isobornylcyclohexanol, tetraethylene glycol; Aromatic alcohols such as p-phenylphenol; Octylamine, dodecylamine, stearylamine, etc.
  • aliphatic nitriles such as stearonitrile and decanenitrile
  • silane coupling agents such as alkylalkoxysilanes
  • polymer treating agents such as polyethylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, and silicone oligomers.
  • the surface treatment agents may be used singly or in combination of two or more.
  • the treatment amount of the surface treatment agent may be an amount equal to or greater than one molecular layer on the particle surface.
  • the treatment amount of such a surface treatment agent varies depending on the specific surface area of the microcopper particles, the molecular weight of the surface treatment agent, and the minimum coverage area of the surface treatment agent.
  • the treatment amount of the surface treatment agent may be 0.001% by mass or more and 2.0% by mass or less, or 0.4% by mass or more and 2.0% by mass, based on the mass of the micro copper particles having the surface treatment agent. % or less, or 0.5% by mass or more and 1.7% by mass or less.
  • the specific surface area of the micro-copper particles, the molecular weight of the surface-treating agent, and the minimum coating area of the surface-treating agent can be calculated in the same manner as for the sub-microcopper particles described above.
  • micro copper particles can be used.
  • flaky microparticles include MA-C025KFD (Mitsui Kinzoku Co., Ltd., volume average particle size 7.5 ⁇ m), 3L3N (Fukuda Metal Foil & Powder Co., Ltd., volume average particle size 6 ⁇ m). ), 2L3N (manufactured by Fukuda Metal Foil & Powder Co., Ltd., volume average particle size 9.9 ⁇ m), 4L3N (manufactured by Fukuda Metal Foil & Powder Co., Ltd., volume average particle diameter 3 ⁇ m), C3 (manufactured by Fukuda Metal Foil & Powder Co., Ltd. , volume average particle size 37 ⁇ m), and 1110F (manufactured by Mitsui Mining & Smelting Co., Ltd., volume average particle size 3.8 ⁇ m).
  • the bonding copper paste according to the present embodiment can contain sub-micro copper particles and micro-copper particles.
  • the volume shrinkage and sintering shrinkage due to drying of the dispersion medium are large, so the copper paste for bonding is easily peeled off from the adherend surface during sintering, and the semiconductor It is difficult to obtain sufficient die shear strength and connection reliability in bonding elements and the like.
  • the sintering temperature tends to be high, requiring a sintering step of 400° C. or higher.
  • the volume shrinkage when the copper paste for pressureless bonding is sintered is suppressed, and the bonded body can have sufficient bonding strength.
  • the copper paste for non-pressure bonding is used for bonding semiconductor elements, it is possible to obtain the effect that the semiconductor device exhibits good die shear strength and connection reliability.
  • the copper paste for bonding according to the present embodiment includes, as copper particles, sub-micro copper particles having a volume average particle diameter of 0.15 ⁇ m or more and 0.8 ⁇ m or less, and volume average particle diameters of 2 ⁇ m or more and 50 ⁇ m or less. and the total content of the sub-micro copper particles and the content of the micro-copper particles is 80% by mass or more based on the total mass of the metal particles, and the content of the sub-micro-copper particles may be 30% by mass or more and 90% by mass or less based on the total mass of the submicrocopper particles and the mass of the microcopper particles.
  • the metal paste for bonding of the present embodiment may contain, as the metal particles, metal particles containing a metal element other than copper (other metal particles).
  • Other metal particles may include, for example, particles of zinc, gold, palladium, silver, nickel, platinum, brass, manganese, tin, antimony, indium, aluminum, vanadium, and the like.
  • Other metal particles may have a volume average particle diameter of 0.01 ⁇ m or more and 10 ⁇ m or less, 0.01 ⁇ m or more and 5 ⁇ m or less, or 0.05 ⁇ m or more and 3 ⁇ m or less.
  • the copper paste for bonding contains other metal particles, it is possible to obtain a sintered body in which multiple kinds of metals are dissolved or dispersed, so that the mechanical properties such as yield stress and fatigue strength of the sintered body are improved. It is easy to improve the connection reliability. Moreover, by adding a plurality of kinds of metal particles, the sintered body of the bonding copper paste can have sufficient bonding strength to a specific adherend. When the bonding copper paste is used for bonding semiconductor elements, the die shear strength and connection reliability of the semiconductor device are likely to be improved.
  • the content may be less than 5% by mass based on the total mass of the metal particles from the viewpoint of obtaining sufficient bondability. % by mass or less. Other metal particles may not be included.
  • the shape of other metal particles is not particularly limited.
  • the content of inorganic particles other than metal particles may be 30% by mass or less, or 20% by mass or less, based on the total amount of the bonding metal paste. It may be 0% by mass.
  • the metal paste for bonding of this embodiment contains a polyol-based compound as a reducing agent.
  • the polyol-based compound may be a compound having multiple OH groups.
  • Polyol compounds include diethylene glycol, triethylene glycol, tetraethylene glycol, pentaethylene glycol, hexaethylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, polyethylene glycol, polyethylene glycol 200, polyethylene glycol 300 and polyethylene glycol 400.
  • the reducing agent can be used singly or in combination of two or more.
  • the reducing agent may have a 95% weight loss temperature of 280°C or higher, 300°C or higher, or 320°C or higher when measured by TG-DTA in a nitrogen atmosphere. A sufficient amount of such a reducing agent is likely to be secured in the system from the reduction of the copper particles to the sintering.
  • the reducing agent may have a 95% weight loss temperature of 420° C. or less, 400° C. or less, or 380° C. or less. Such a reducing agent is unlikely to remain after sintering, thereby allowing the sintered body to have properties such as a sufficient degree of sintering and resistance to corrosion, and sufficient bonding strength. Easier to maintain over the long term.
  • the bonding copper paste can contain a polyol-based compound that satisfies the above-described 95% weight loss temperature condition.
  • polyethylene glycol 200 322 ° C.
  • polyethylene glycol 300 380 ° C.
  • polyethylene glycol 400 410 ° C.
  • polypropylene glycol 300 (triol type): 337 ° C.
  • polypropylene glycol 400 (diol type): 343°C
  • polypropylene glycol 700 (diol type): 383°C
  • polypropylene glycol 4000 (triol type): 390°C.
  • the content of the reducing agent in the copper paste for bonding is 1.6 parts by mass or more and 1.8 parts by mass with respect to the total mass of 100 parts by mass of the copper particles.
  • parts or more may be 2.0 parts by mass or more, or 4.0 parts by mass or more, and from the viewpoint of suppressing a decrease in bonding strength due to excessive reducing aid, 10 parts by mass or less and 9.0 parts by mass or less , or 8.5 parts by mass or less.
  • the content of the reducing agent in the copper paste for bonding is 1.6 parts by mass or more and 10 parts by mass or less, 1.8 parts by mass or more and 9.0 parts by mass with respect to the total mass of 100 parts by mass of the copper particles. parts or less, 2.0 to 8.5 parts by mass, or 4.0 to 8.5 parts by mass.
  • the content of the reducing agent may be within the range described above with respect to the total mass of 100 parts by mass of the metal particles.
  • Other metal particles include particles of zinc, gold, palladium, silver, nickel, platinum, brass, manganese, tin, antimony, indium, aluminum, vanadium, and the like.
  • a coordinating compound capable of forming a copper complex can be used as the reducing aid, and examples thereof include a coordinating compound having electron back-donating properties.
  • a coordinating compound may be a compound having both a lone electron pair and a vacant pi-electron orbital. In such a compound, a lone pair of electrons can form a bond with a copper metal atom, and a vacant ⁇ -orbital and a d-orbital electron of copper can form a back-donation bond.
  • the coordinating compound at least one selected from the group consisting of organic phosphorus compounds and organic sulfur compounds can be used.
  • the organic phosphorus compound may be at least one selected from the group consisting of organic phosphorus compounds represented by the following general formula (1) and organic phosphorus compounds represented by the following general formula (2).
  • R 1 , R 2 and R 3 each independently represent a monovalent organic group or —OR (R represents a monovalent organic group), and R 1 , R 2 and R 3 may form a ring.
  • R 4 , R 5 and R 6 each independently represent a monovalent organic group or —OR (R represents a monovalent organic group), and R 4 , R 5 and R 6 is -OR (R represents a monovalent organic group).
  • Examples of the organic phosphorus compound represented by the general formula (1) include trimethylphosphine, tributylphosphine, triphenylphosphine, dimethylphenylphosphine, diethylphenylphosphine, diphenyl-methylphosphine, tri(1-naphthyl)phosphine (Tri-1 -naphthylphosphine), tris(4-trifluoromethylphenyl)phosphine, tris[3,5-bis(trifluoromethyl)phenyl]phosphine (Tris[3,5-bis(trifluoromethyl)phenyl]phosphine).
  • organic phosphorus compounds represented by the general formula (1) include triisopropyl phosphate, diisopropyl chlorophosphate, tributyl phosphate, di-tert-butyl phosphite, trimethyl phosphate, phosphorus Phosphate esters such as triethyl acid, tris(2-butoxyethyl) phosphate, tris(2-ethylhexyl) phosphate, tris(2-chloroethyl) phosphate, triphenyl phosphate and tripropyl phosphate.
  • organic phosphorus compound represented by the above general formula (1) in which R 1 , R 2 and R 3 form a ring 2,8,9-trimethyl-2,5,8,9-tetraaza- 1-phosphabicyclo[3.3.3]undecane (2,8,9-Trimethyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane), 2,8,9 -triisopropyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane (2,8,9-Triisopropyl-2,5,8,9-tetraaza-1-phosphabicyclo[ 3.3.3]undecane), 2,8,9-triisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane (2,8,9-Triisobutyl- 2,5,8,9-tetraaza-1-phosphobicyclo[3.3.3]undecane).
  • Examples of the organic phosphorus compound represented by the general formula (2) include triphenyl phosphite, tris(1,1,1,3,3,3-hexafluoro-2-propyl) phosphite, phosphorous acid Trimethyl, Triethyl Phosphite, Tripropyl Phosphite, Triisopropyl Phosphite, Tributyl Phosphite, Tris(2-Ethylhexyl) Phosphite, Tris(Trimethylsilyl) Phosphite, Trioctadecyl Phosphite ), dimethyl phenylphosphonite, 2-methoxy-2-oxo-1,3,2-dioxaphospholane, phenyldimethoxyphosphine, ethyl diphenylphosphite, butyl diphenylphosphite (diphenylbutoxyphosphine , Butyl Diphenylphosphinate), and phos
  • the organophosphorus compound may be an organophosphorus compound represented by the following general formula (3).
  • R 11 , R 12 , R 13 and R 14 each independently represent an organic group, R 11 and R 12 may form a ring, R 13 and R 14 and X represents a divalent organic group.
  • Examples of the organic phosphorus compound represented by the general formula (3) include 1,2-bis(dicyclohexylphosphino)ethane, ethylenebis(diphenylphosphine), 1,2-bis(dimethylphosphino)ethane, 1,2 -bis[2,5-dimethylphosphorano]ethane, 1,2-bis(2,5-diphenylphosphorano)ethane, 1,2-bis[2,5-diisopropylphosphorano]ethane, 1,2-bis (Di-tert-butylphosphinomethyl)benzene, 1,2-bis(diphenylphosphino)benzene, 1,3-bis(diphenylphosphino)propane, (oxydi-2,1-phenylene)bis(diphenylphosphine) , 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene.
  • Phosphate esters can be used.
  • organic phosphorus compounds include aromatic groups such as phenyl group and naphthyl group, ethyl group, propyl group, isopropyl group, butyl group, hexyl group, stearyl group, It may have an organic substituent such as an alkyl group such as a cyclohexyl group or a polyether group such as a polyethylene oxide group.
  • organic phosphorus compound is a phosphoric acid compound, all of the P—OH groups may be esterified from the viewpoint of aggregation resistance against ionic substances.
  • organic sulfur compounds examples include thioethers and 1,2-dithioketones.
  • the reducing aid can be used singly or in combination of two or more.
  • the content of the reducing aid in the copper paste for bonding is 0.5 parts by mass or more and 0.6 parts by mass with respect to the total mass of 100 parts by mass of the copper particles. It may be 0.7 parts by mass or more, or 0.8 parts by mass or more, and from the viewpoint of suppressing a decrease in bonding strength due to excessive reducing aid, 10 parts by mass or less, 9.0 parts by mass or less, or 7.7 parts by mass or less. From the above viewpoint, the content of the reducing aid in the copper paste for bonding is 0.5 parts by mass or more and 10 parts by mass or less, or 0.6 parts by mass or more and 10 parts by mass with respect to the total mass of 100 parts by mass of the copper particles.
  • the content may be 0.7 parts by mass or more and 9.0 parts by mass or less, or 0.8 parts by mass or more and 7.7 parts by mass or less.
  • the reducing aid is the organophosphorus compound represented by the above general formula (1) in which R 1 , R 2 and R 3 form a ring
  • the content of the reducing aid is 100% of the total mass of the copper particles. It may be 0.05 to 1 part by mass, 0.1 to 0.5 part by mass, or 0.1 to 0.4 part by mass.
  • the content of the reducing aid may be within the range described above with respect to the total mass of 100 parts by mass of the metal particles.
  • Other metal particles include particles of zinc, gold, palladium, silver, nickel, platinum, brass, manganese, tin, antimony, indium, aluminum, vanadium, and the like.
  • dispersion media examples include monohydric and polyhydric alcohols such as pentanol, hexanol, heptanol, octanol, decanol, dihydroterpineol, terpineol, and isobornylcyclohexanol (MTPH); ethylene glycol butyl ether, ethylene glycol phenyl ether, Diethylene glycol methyl ether, diethylene glycol ethyl ether, diethylene glycol butyl ether, diethylene glycol isobutyl ether, diethylene glycol hexyl ether, triethylene glycol methyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, triethylene glycol dimethyl ether , triethylene glycol butyl methyl ether, propylene glycol buty
  • Esters include acid amides such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide and N,N-dimethylformamide; aliphatic hydrocarbons such as cyclohexanone, octane, nonane, decane and undecane; benzene, toluene, xylene mercaptans having an alkyl group of 1 to 18 carbon atoms; mercaptans having a cycloalkyl group of 5 to 7 carbon atoms.
  • Mercaptans having an alkyl group of 1 to 18 carbon atoms include, for example, ethyl mercaptan, n-propyl mercaptan, i-propyl mercaptan, n-butyl mercaptan, i-butyl mercaptan, t-butyl mercaptan, pentyl mercaptan and hexyl mercaptan. and dodecyl mercaptan.
  • Mercaptans having a cycloalkyl group of 5 to 7 carbon atoms include, for example, cyclopentylmercaptan, cyclohexylmercaptan and cycloheptylmercaptan.
  • the dispersion medium may be a solvent having a boiling point of 200°C or higher from the viewpoint of printing life (plate life). Also, the boiling point of the solvent may be 400° C. or lower because it must be removed after sintering.
  • the dispersion medium can be used singly or in combination of two or more.
  • the metal paste for bonding may further contain additives such as a dispersant, a surface protective agent, a thickener, and a thixotropic agent, if necessary.
  • additives such as a dispersant, a surface protective agent, a thickener, and a thixotropic agent, if necessary.
  • the content of the additive that is nonvolatile or non-decomposable at a temperature of 200 ° C. or less is It may be 20% by mass or less, 5% by mass or less, or 1% by mass or less based on the total amount of the metal paste.
  • the metal paste for bonding of the present embodiment includes the above-described copper particles (e.g., submicrocopper particles and microcopper particles), a reducing agent, a reducing aid, a dispersion medium, and, if necessary, other metal particles and any It can be prepared by mixing additives. After mixing each component, a stirring treatment may be performed. The metal paste for bonding may be classified to adjust the maximum particle size of the dispersion.
  • the metal paste for bonding is prepared by mixing submicrocopper particles, an organic protective agent, and a dispersion medium in advance, performing dispersion treatment to prepare a dispersion of submicrocopper particles, and then mixing the remaining components. good too.
  • the dispersibility of the submicrocopper particles is improved, the mixing with the microcopper particles (for example, flaky microcopper particles) is improved, and the performance of the copper paste for bonding is further improved.
  • Aggregates may also be removed from the dispersion of submicrocopper particles by a classification operation.
  • the sub-micro copper particles and the organic protective agent may be sub-micro copper particles treated with an organic protective agent.
  • the stirring process can be performed using a stirrer.
  • the stirrer include Ishikawa stirrer, Silverson stirrer, cavitation stirrer, rotation/revolution stirrer, ultra-thin film high-speed rotary disperser, ultrasonic disperser, Raikai machine, twin-screw kneader, bead mill, ball mill, and three Examples include this roll mill, homomixer, planetary mixer, ultra-high pressure disperser, thin layer shear disperser, and disperser.
  • Dispersion treatment includes, for example, a thin layer shear disperser, disperser, bead mill, ultrasonic homogenizer, high shear mixer, narrow gap three-roll mill, wet ultra-atomizer, supersonic jet mill, and ultra-high pressure homogenizer. .
  • the classification operation can be performed using, for example, filtration, natural sedimentation, and centrifugation.
  • Filtration filters include, for example, water combs, metal meshes, metal filters, and nylon meshes.
  • the bonding copper paste may be adjusted to a viscosity suitable for the printing/coating method.
  • the viscosity of the bonding copper paste for example, the Casson viscosity at 25 ° C. may be 0.05 Pa s or more and 2.0 Pa s or less, or 0.06 Pa s or more and 1.0 Pa s or less. good too.
  • a method for manufacturing a joined body according to this embodiment includes a laminate preparation step of preparing a laminate in which a first member, the above-described bonding metal paste according to this embodiment, and a second member are laminated in this order. and a sintering step of sintering the joining metal paste in the laminate.
  • first member and the second member include IGBTs, diodes, Schottky barrier diodes, MOS-FETs, thyristors, logic, sensors, analog integrated circuits, LEDs, semiconductor lasers, semiconductor elements such as oscillators, and leads.
  • Frames ceramic substrates attached to metal plates (for example, DBC), substrates for mounting semiconductor elements such as LED packages, copper ribbons, metal blocks, power supply members such as terminals, heat sinks, water cooling plates, and the like.
  • the first member and the second member may have, on their joint surfaces, a metal layer that forms a metallic bond with the sintered body of the joining metal paste.
  • metals forming the metal layer include copper, nickel, silver, gold, palladium, platinum, lead, tin, and cobalt. These metals may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the metal layer may be an alloy containing the above metals. Metals used for the alloy include zinc, manganese, aluminum, beryllium, titanium, chromium, iron, molybdenum, etc., in addition to the above metals.
  • members having a metal layer include members having various metal platings, wires, chips having metal plating, heat spreaders, ceramic substrates to which metal plates are attached, lead frames having various metal platings, and leads made of various metals. frame, copper plate, and copper foil.
  • the laminate can be prepared, for example, by providing the bonding metal paste of the present embodiment on a necessary portion of the above-described second member, and then placing the above-described first member on the bonding metal paste. can.
  • the metal paste for bonding the body is applied without pressure, that is, only the weight of the first member, or the weight of the first member and the weight of the weight used to prevent tip tilt or reduce voids It can be sintered in the state of receiving
  • the weight of the weight may be 0.01 MPa or less when converted to pressure.
  • the direction in which the weight of the first member acts can also be said to be the direction in which gravity acts.
  • a metal weight having a size similar to that of the chip and a thickness of 20 mm or less can be used.
  • a SUS weight having a thickness of 5 mm or less can be used.
  • any method that allows the bonding copper paste to be deposited may be used.
  • Such methods include inkjet printing, super inkjet printing, screen printing, transfer printing, offset printing, jet printing method, dispenser, jet dispenser, needle dispenser, comma coater, slit coater, die coater, gravure coater, slit coat, letterpress printing.
  • intaglio printing, gravure printing, stencil printing, soft lithography, bar coating, applicator, particle deposition method, spray coater, spin coater, dip coater, electrodeposition coating and the like can be used.
  • the thickness of the joining metal paste may be 1 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, or 20 ⁇ m or more. Further, the thickness of the metal paste for bonding may be 3000 ⁇ m or less, 1000 ⁇ m or less, 500 ⁇ m or less, 300 ⁇ m or less, or 250 ⁇ m or less, It may be 200 ⁇ m or less, or 150 ⁇ m or less.
  • the applied metal paste for bonding may be dried as appropriate from the viewpoint of suppressing flow and generation of voids during sintering.
  • the gas atmosphere at the time of drying may be the atmosphere, an oxygen-free atmosphere such as nitrogen or rare gas, or a reducing atmosphere such as hydrogen or formic acid.
  • the drying method may be drying by standing at room temperature, drying by heating, or drying under reduced pressure.
  • heat drying or reduced pressure drying for example, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic A heating device, a heater heating device, a steam heating furnace, a hot plate press device, or the like can be used.
  • the drying temperature and time may be appropriately adjusted according to the type and amount of the dispersion medium used. As for the drying temperature and time, it is desirable to dry at 50° C. or more and 150° C. or less in the atmosphere or in an oxygen-free atmosphere.
  • Examples of methods for placing the first member on the metal paste for bonding include a chip mounter, a flip chip bonder, and a positioning jig made of carbon or ceramics.
  • the bonding copper paste can be sintered by heat-treating in an oxygen-free atmosphere under no pressure conditions.
  • the oxygen-free atmosphere may be an atmosphere containing no hydrogen or having a hydrogen concentration of 10% or less.
  • the oxygen-free atmosphere refers to an atmosphere having an oxygen concentration of 1% by volume or less, and the oxygen concentration may be 0.1% by volume or less, 0.01% by volume or less, or 0.001% by volume or less.
  • a heating device without a crimping mechanism can be used for heat treatment.
  • heating devices include hot plates, hot air dryers, hot air heating furnaces, nitrogen dryers, infrared dryers, infrared heating furnaces, far infrared heating furnaces, microwave heating devices, laser heating devices, electromagnetic heating devices, heater heating devices, steam heating furnaces, and the like.
  • the atmosphere that does not contain hydrogen includes non-oxidizing gases such as nitrogen, rare gases, heat-resistant organic gases, water vapor, and mixed gases thereof, or under vacuum.
  • the gas atmosphere during sintering may be a reducing atmosphere.
  • the reducing atmosphere include nitrogen containing formic acid gas, rare gas containing formic acid gas, and non-oxidizing gas containing 10% or less hydrogen.
  • the gas atmosphere during sintering may be forming gas (nitrogen containing hydrogen below the lower explosion limit (e.g., 5% or less or 3% or less)), low molecular weight alcohol (e.g., methanol, ethanol) vapor. .
  • the maximum temperature reached during the heat treatment may be 200° C. or higher and 450° C. or lower, or 250° C. or higher and 400° C. or lower, from the viewpoint of reducing thermal damage to the members to be joined and improving the yield. , 250° C. or higher and 350° C. or lower, or 250° C. or higher and 300° C. or lower.
  • the reaching maximum temperature holding time may be 1 minute or more and 60 minutes or less, 1 minute or more and less than 40 minutes, or 1 minute. It may be more than 30 minutes or less. In particular, when the maximum temperature reached is 250° C. or higher, sintering can be sufficiently advanced with a holding time of 60 minutes or less.
  • FIG. 1 is a schematic cross-sectional view showing an example of a joined body manufactured using a joining metal paste.
  • a joined body 100 of this embodiment includes a first member 1 having a first base portion 1a and a first metal layer 1b, and a second member 3 having a second base portion 3a and a second metal layer 3b. , and a sintered body 2 that joins the first member 1 and the second member 3 .
  • first member 1 and the second member 3 those mentioned above can be mentioned. Moreover, what was mentioned above is mentioned also about the 1st metal layer 1b and the 2nd metal layer 3b.
  • the sintered body 2 may be a sintered body of the bonding metal paste according to this embodiment.
  • the bonded body 100 can be obtained by the manufacturing method of the bonded body according to the present embodiment described above.
  • the die shear strength of the bonded body may be 10 MPa or more, 15 MPa or more, 20 MPa or more, or 30 MPa from the viewpoint of sufficiently bonding the first member and the second member. or more.
  • the die shear strength can be measured using a universal bond tester (4000 series, manufactured by DAGE) or the like.
  • the thermal conductivity of the sintered body may be 100 W / (m K) or more, or 120 W / (m K) or more, from the viewpoint of heat dissipation and connection reliability at high temperatures. , 150 W/(m ⁇ K) or more.
  • the thermal conductivity can be calculated from the thermal diffusivity, specific heat capacity, and density of the sintered body of the bonding metal paste.
  • the first member and the second member may be a semiconductor element.
  • Semiconductor devices include, for example, diodes, rectifiers, thyristors, MOS gate drivers, power switches, power MOSFETs, IGBTs, Schottky diodes, power modules composed of fast recovery diodes, transmitters, amplifiers, LED modules, and the like.
  • the bonded body becomes a semiconductor device.
  • the resulting semiconductor device can have sufficient die shear strength and connection reliability.
  • FIG. 2 is a schematic cross-sectional view showing an example of a semiconductor device manufactured using a bonding metal paste.
  • a semiconductor device 200 shown in FIG. 2 includes a semiconductor element 4 having a metal layer 4b and a base portion 4a, which is connected via a sintered body 2 of copper paste for bonding to a lead frame 5 having a metal layer 5b and a base portion 5a. and a mold resin 6 for molding them.
  • the semiconductor element 4 is connected via wires 7 to a lead frame 8 having a metal layer 8b and a base 8a.
  • Semiconductor devices include, for example, diodes, rectifiers, thyristors, MOS gate drivers, power switches, power MOSFETs, IGBTs, Schottky diodes, power modules composed of fast recovery diodes, transmitters, amplifiers, high-brightness LED modules, semiconductor lasers. Examples include modules, logic, and sensors.
  • the above semiconductor device can be manufactured in the same manner as the manufacturing method of the bonded body according to the present embodiment described above. That is, a semiconductor device manufacturing method uses a semiconductor element as at least one of a first member and a second member, and a laminate in which the first member, the bonding metal paste, and the second member are laminated in this order. and heating the laminate in an oxygen-free atmosphere without pressure to sinter the bonding metal paste.
  • the oxygen-free atmosphere may be an atmosphere containing no hydrogen or having a hydrogen concentration of 10% or less.
  • the joining metal paste may have the same composition as the joining metal paste according to this embodiment. Preparation of the laminate and sintering of the joining metal paste can also be performed in the same manner as the above-described laminate preparation step and sintering step.
  • the present disclosure can provide the inventions described in [1] to [10] below.
  • the coordinating compound is at least one selected from the group consisting of organic phosphorus compounds and organic sulfur compounds, and as a reducing agent, a polyol compound is added to 100 parts by weight of the total weight of the copper particles.
  • a metal paste for bonding containing from 10 parts by mass to 10 parts by mass.
  • the coordinating compound is at least one selected from the group consisting of an organic phosphorus compound represented by the following formula (1) and an organic phosphorus compound represented by the following formula (2).
  • R 1 , R 2 and R 3 each independently represent a monovalent organic group or —OR (R represents a monovalent organic group), and R 1 , R 2 and R 3 may form a ring.
  • R 4 , R 5 and R 6 each independently represent a monovalent organic group or —OR (R represents a monovalent organic group), and R 4 , R 5 and R 6 is -OR (R represents a monovalent organic group).
  • the content of the reducing agent is 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the total mass of the copper particles.
  • the copper particles include sub-micro copper particles having a volume average particle diameter of 0.15 ⁇ m or more and 0.8 ⁇ m or less and micro copper particles having a volume average particle diameter of 2 ⁇ m or more and 50 ⁇ m or less, and the sub-micro copper particles and the total content of the micro-copper particles is 80% by mass or more based on the total mass of the metal particles, and the content of the sub-micro-copper particles is the mass of the sub-micro-copper particles and the The metal paste for bonding according to any one of [1] to [4] above, which is 30% by mass or more and 90% by mass or less based on the total mass.
  • [6] The metal paste for bonding according to [5] above, wherein the micro copper particles are flake-shaped.
  • a bonded body comprising: a sintered body;
  • a metal paste was applied onto a copper plate (19 mm x 25 mm x 3 mm) by stencil printing using a metal mask with nine 3 mm x 3 mm square openings on a 200 ⁇ m thick stainless steel plate and a metal squeegee.
  • a silicon chip (3 mm ⁇ 3 mm in area, 400 ⁇ m in thickness, having a sputtered copper layer as a surface (bonding surface) to be adhered to the metal paste) was placed on the applied metal paste and lightly pressed with tweezers to obtain a laminate.
  • the laminate was heated in air at 90° C. for 60 minutes on a hot plate (EC HOT PLATE EC-1200N, manufactured by AS ONE Corporation).
  • the laminate is set in a fluxless reflow device (manufactured by Ayumi Industry Co., Ltd.), the pressure is reduced to 1 Pa to remove air, nitrogen gas is introduced and replaced, and nitrogen is flowed at normal pressure at 15 L / min. C. for 1 hour to obtain a joined body in which the copper plate and the silicon chip were joined with a copper sintered body. This joined body was cooled and taken out into the air when the temperature became 50° C. or less.
  • a fluxless reflow device manufactured by Ayumi Industry Co., Ltd.
  • the silicon chip of the resulting bonded body is pressed horizontally at a measurement speed of 500 ⁇ m/s and a measurement height of 100 ⁇ m to measure the die shear strength. bottom.
  • the die shear strength was defined as the average of the values obtained by measuring eight joined bodies.
  • the die shear strength of the joint obtained by joining the silicon chip and the copper substrate with lead solder was 20 MPa.
  • a polishing apparatus (Refine Polisher HV, manufactured by Refinetech) to which water-resistant abrasive paper (Carbomac Paper, manufactured by Refinetech) was attached was used to scrape up to the vicinity of the center of the joined body to expose a cross section.
  • This cross section was subjected to flat milling (Hitachi High-Technologies IM4000) using Ar ions.
  • a bonding cross section of the copper sintered body was observed with a scanning electron microscope (Schottky FE-SEM SU5000, manufactured by Hitachi High-Technologies Corporation).
  • Metallic pastes for bonding were prepared in amounts (parts by weight) shown in Tables 1 to 5 according to the following procedure.
  • the charging amount shown in the table is the ratio of each component when the total mass of the copper particles contained in the bonding metal paste is 100 parts by mass (100 parts by mass in total of the sub-micro copper particles and the micro copper particles). (Parts by mass).
  • lumps or pellets were pulverized using a planetary ball mill to obtain a fine powder before use.
  • Example A-1 99 g of dihydroterpineol (manufactured by Nippon Terpene Chemical Co., Ltd.) as a dispersion medium and CH-0200 (manufactured by Mitsui Kinzoku Co., Ltd., product name, laser scattering method 50% volume average particle size 0.36 ⁇ m) as sub-micro copper particles 1000 g Mixed. Then, using a planetary mixer (manufactured by Primix), the mixture was stirred for 30 minutes at 300 rpm.
  • a planetary mixer manufactured by Primix
  • the resulting mixture was subjected to dispersion treatment once using a disparizer (manufactured by Sintokogyo Co., Ltd.) under conditions of a gap of 50 ⁇ m and a rotation speed of 12000 rpm to obtain a 91% by mass dispersion.
  • a disparizer manufactured by Sintokogyo Co., Ltd.
  • TEG tetraethylene glycol
  • PEG300 polyethylene glycol 300
  • PEG400 polyethylene glycol 400
  • PEG400 polyethylene glycol 400
  • Example A-2 A bonding metal paste was obtained in the same manner as in Example A-1, except that triisopropyl phosphite (manufactured by Tokyo Chemical Industry Co., Ltd.) was used as the reducing aid instead of triphenylphosphine.
  • Example A-3 A bonding metal paste was obtained in the same manner as in Example A-1, except that triphenyl phosphite (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used as the reducing aid instead of triphenylphosphine.
  • Example A-4 to Example A-7 The ratios shown in Table 1 of the amounts of the copper particles, the dispersion medium and the reducing aid (the mass of the reducing aid is 1.23 parts by mass, 0.98 parts by mass, 0 Metal pastes for bonding were obtained in the same manner as in Example A-1, except that the content was changed to 0.95 parts by mass or 0.82 parts by mass).
  • Example A-8 to Example A-10 The amounts of the copper particles, the dispersion medium and the reducing agent charged are shown in Table 2. 31 parts by mass), and metal pastes for bonding were obtained in the same manner as in Example A-1.
  • Example A-11 to Example A-13 Metal pastes for bonding were obtained in the same manner as in Example A-1, except that the amounts of copper particles and reducing agent charged were changed to the ratios shown in Table 2.
  • Example A-14 Polypropylene glycol 300 (hereinafter abbreviated as PPG300) (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., triol type) and polypropylene glycol 700 (hereinafter abbreviated as PPG700) (FUJIFILM Wako Pure Chemical Industries, Ltd.)
  • PPG300 Polypropylene glycol 300
  • PPG700 polypropylene glycol 700
  • PPG700 FUJIFILM Wako Pure Chemical Industries, Ltd.
  • a metal paste for bonding was obtained in the same manner as in Example A-1, except that the amounts of the copper particles and the reducing agent charged were changed to the ratios shown in Table 2.
  • Example A-15 2,8,9-triisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane (manufactured by Sigma-Aldrich Chemistry) instead of triphenylphosphine as a reducing aid , and the amounts of the dispersion medium, reducing agent, and reducing aid charged were changed to the ratios shown in Table 3 (the mass of the reducing aid was 0.12 parts by mass with respect to the total mass of 100 parts by mass of the copper particles).
  • a bonding metal paste was obtained in the same manner as in Example A-1 except for the above.
  • Example A-16 2,8,9-triisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane (manufactured by Sigma-Aldrich Chemistry) instead of triphenylphosphine as a reducing aid , and the amounts of the dispersion medium, reducing agent, and reducing aid charged were changed to the ratios shown in Table 3 (the mass of the reducing aid was 0.30 parts by mass with respect to the total mass of 100 parts by mass of the copper particles).
  • a bonding metal paste was obtained in the same manner as in Example A-1 except for the above.
  • Example A-1 Comparative Example A-6
  • Table 4 the same procedure as in Example A-1 was performed except that triphenylphosphine was replaced with dimethylglutaric acid, nitrilotriacetic acid, ascorbic acid, triethanolamine, diethyl tartrate, or glycine. Then, metal pastes for bonding were obtained.
  • Example A-7 A bonding metal paste was obtained in the same manner as in Example A-1, except that no reducing aid was blended and the amount of dispersion medium charged was changed to the ratio shown in Table 4.
  • FIG. 3 is an SEM image showing a joint cross section of a copper sintered body in a joined body produced using the joining metal paste of Example 1
  • FIG. Fig. 10 is an SEM image showing a bonded cross section of a copper sintered body in a bonded body.
  • the copper particles are sintered together to form a network structure.
  • this network structure was also integrated with the surface of the adherend (copper substrate) in the lower part of the photograph, and it was determined that a bond was formed.
  • FIG. 3 is an SEM image showing a joint cross section of a copper sintered body in a joined body produced using the joining metal paste of Example 1
  • FIG. Fig. 10 is an SEM image showing a bonded cross section of a copper sintered body in a bonded body.
  • the copper particles are sintered together to form a network structure.
  • this network structure was also integrated with the surface of the adherend (copper substrate) in the lower part of the photograph, and it was determined that a bond was formed.
  • Example B-1 98.9 g of dihydroterpineol (manufactured by Nippon Terpene Chemical Co., Ltd.) as a dispersion medium, and 1000 g of CH-0200 (manufactured by Mitsui Kinzoku Co., Ltd., product name, laser scattering method 50% volume average particle size 0.36 ⁇ m) as sub-micro copper particles. were mixed and stirred for 30 minutes at 300 rpm using a planetary mixer (manufactured by Primix).
  • the resulting mixture was subjected to dispersion treatment once using a disparizer (manufactured by Sintokogyo Co., Ltd.) under conditions of a gap of 50 ⁇ m and a rotation speed of 12000 rpm to obtain a 91% by mass dispersion.
  • a disparizer manufactured by Sintokogyo Co., Ltd.
  • TEG tetraethylene glycol
  • PEG300 polyethylene glycol 300
  • PEG400 polyethylene glycol 400
  • PEG400 polyethylene glycol 400
  • Example B-2 Example B-1 except that the amounts of the dispersion medium and the reducing aid charged were changed to the ratios shown in Table 6 (the mass of the reducing aid was 0.98 parts by mass with respect to the total mass of the copper particles of 100 parts by mass). In the same manner as above, metal pastes for bonding were obtained.
  • Example B-3 Example B-1 except that the amounts of the dispersion medium and the reducing aid charged were changed to the ratios shown in Table 6 (the mass of the reducing aid was 1.64 parts by mass with respect to the total mass of the copper particles of 100 parts by mass). In the same manner as above, metal pastes for bonding were obtained.
  • Example B-4 Tris(2-butoxyethyl) phosphate (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.) was used as the reducing aid instead of triethyl phosphate, and the charging amount of the reducing aid was adjusted to the ratio shown in Table 6 (total mass of copper particles A bonding metal paste was obtained in the same manner as in Example B-1, except that the weight of the reducing aid was changed to 0.98 parts by weight with respect to 100 parts by weight.
  • Example B-1 A metal paste for bonding was obtained in the same manner as in Example B-1, except that no reducing aid was blended and the amount of dispersion medium charged was changed to the ratio shown in Table 6.
  • Reference Signs List 1 first member 1a first base 1b first metal layer 2 sintered body 3 second member 3a second base 3b second metal layer 4

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)

Abstract

接合用金属ペーストは、金属粒子と、分散媒と、還元剤と、還元助剤と、を含み、金属粒子が、銅粒子を含有し、還元助剤が、電子逆供与性を有する配位性化合物を含み、当該配位性化合物が有機リン化合物及び有機硫黄化合物からなる群より選択される少なくとも一種であり、還元剤として、ポリオール系化合物を、銅粒子の全質量100質量部に対して、1.6質量部以上10質量部以下含有する。

Description

接合用金属ペースト、並びに接合体及びその製造方法
 本発明は、接合用金属ペースト、並びに接合体及びその製造方法に関する。
 半導体装置を製造する際、半導体素子とリードフレーム等(支持部材)とを接合する接合層を形成するため、様々な接合材が用いられている。例えば、150℃程度までの温度で動作させるパワー半導体、LSI等の接合には、接合層の形成に高鉛はんだが用いられてきた。近年、半導体素子の高容量化及び省スペース化が進み、半導体を175℃以上で高温動作させる要求が高まっている。このような半導体装置の動作安定性を確保するためには、接合層に接続信頼性及び高熱伝導特性が必要となる。しかし、175℃以上の温度域では、従来用いられてきた高鉛はんだの接合層では接続信頼性に課題が生じ、熱伝導率も不充分(30Wm-1-1)なため、代替材が求められている。
 代替材の一つとして、銀粒子の焼結現象により形成される焼結銀層が提案されている(下記特許文献1を参照)。焼結銀層は、熱伝導率が高く(>100Wm-1-1)、パワーサイクルに対する接続信頼性が高いことが報告されており注目されている(下記非特許文献1を参照)。しかし、接続信頼性を確保するには焼結銀層の緻密度向上のために高加圧を伴う熱圧着プロセスが必須であり、半導体素子チップの損傷、熱圧着工程のスループットの低下等の課題がある。更に、銀は材料コストが高いことも課題となっている。
 別の代替材として、銅を用いた焼結銅層が提案されている。銅は、銀に比べて機械的強度に優れており焼結銀層ほど緻密度を上げなくても高温信頼性が得られやすく、材料コストも低く抑えることができる。このような焼結銅層として、酸化銅粒子を還元・焼結して得られる焼結銅層が提案されている(下記特許文献2及び下記非特許文献2を参照)。
特許第4247800号 特許第5006081号
R. Khazaka, L. Mendizabal, D. Henry: J. ElecTron. Mater, 43(7), 2014,  2459-2466 T. Morita、 Y. Yasuda: Materials Transactions、 56(6)、 2015、  878-882
 LEDチップ及びGaN on Siチップ等の部材は、接合時に、部材の重さやチップの傾き防止又はボイド低減のために用いられる重りの重さ以外の圧力を受けないことが望ましい。しかしながら、このような無加圧条件で充分な接合強度を有する焼結銅を形成するためには、水素雰囲気中で酸化銅粒子を還元・焼結する必要があり、水素濃度が10%を超えると、使用設備を防爆対応にする等の制限が発生する可能性がある。
 そこで、本発明は、水素を含まない又は水素濃度が低い雰囲気中、無加圧で接合する場合であっても、充分な接合強度を有する接合体を得ることができる接合用金属ペースト及び接合体の製造方法を提供することを目的とする。
 本発明の一側面は、金属粒子と、分散媒と、還元剤と、還元助剤と、を含み、金属粒子が、銅粒子を含有し、還元助剤が、電子逆供与性を有する配位性化合物を含み、当該配位性化合物が有機リン化合物及び有機硫黄化合物からなる群より選択される少なくとも一種であり、還元剤として、ポリオール系化合物を、銅粒子の全質量100質量部に対して、1.6質量部以上10質量部以下含有する、接合用金属ペーストを提供する。
 上記の接合用金属ペーストによれば、部材同士を、水素を含まない又は水素濃度が低い雰囲気中、無加圧で接合する場合であっても、充分な接合強度を得ることができる。
 なお、本明細書において「無加圧」とは、接合用銅ペーストが、接合する部材の重さのみ、又はその重さに加え、チップの傾き防止又はボイド低減などのために用いられる重りの重さ(圧力換算で0.01MPa以下の圧力)のみを受けている状態を意味する。
 上記配位性化合物は、孤立電子対と空位のπ電子軌道とを有していてもよい。
 上記配位性化合物は、下記式(1)で表される有機リン化合物及び下記式(2)で表される有機リン化合物からなる群より選択される少なくとも一種であってもよい。
Figure JPOXMLDOC01-appb-C000003
[式(1)中、R、R及びRはそれぞれ独立に、1価の有機基又は-OR(Rは1価の有機基を示す)を示し、R、R及びRが環をなしていてもよい。]
Figure JPOXMLDOC01-appb-C000004
[式(2)中、R、R及びRはそれぞれ独立に、1価の有機基又は-OR(Rは1価の有機基を示す)を示し、R、R及びRのうちの1つ以上が-OR(Rは1価の有機基を示す)である。]
 上記還元助剤の含有量は、銅粒子の全質量100質量部に対して、0.5質量部以上10質量部以下であってもよい。
 上記銅粒子は、体積平均粒径が0.15μm以上0.8μm以下であるサブマイクロ銅粒子と、体積平均粒径が2μm以上50μm以下であるマイクロ銅粒子とを含み、サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計が、金属粒子の全質量を基準として、80質量%以上であり、サブマイクロ銅粒子の含有量が、サブマイクロ銅粒子の質量及びマイクロ銅粒子の質量の合計を基準として、30質量%以上90質量%以下であってもよい。
 上記マイクロ銅粒子は、フレーク状であってもよい。
 本発明の別の一側面は、第一の部材、上記の本発明の一側面に係る接合用金属ペースト、及び第二の部材がこの順に積層されている積層体を用意する工程と、積層体における接合用金属ペーストを焼結する焼結工程と、を備える、接合体の製造方法を提供する。
 上記の接合体の製造方法によれば、焼結工程が水素を含まない又は水素濃度が低い雰囲気中、無加圧で接合用金属ペーストを焼結する場合であっても充分な接合強度を有する接合体を得ることができる。
 上記焼結工程は、無酸素雰囲気中、無加圧の条件で接合用金属ペーストを焼結する工程であってもよい。
 上記第一の部材及び上記第二の部材の少なくとも一方が半導体素子であってもよい。
 本発明の別の一側面は、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する、上記の本発明の一側面に係る接合用金属ペーストの焼結体と、を備える、接合体を提供する。
 本発明によれば、水素を含まない又は水素濃度が低い雰囲気中、無加圧で接合する場合であっても、充分な接合強度を有する接合体を得ることができる接合用金属ペースト及び接合体の製造方法を提供することができる。
本実施形態の接合用金属ペーストを用いて製造される接合体の一例を示す模式断面図である。 本実施形態の接合用金属ペーストを用いて製造される接合体の一例を示す模式断面図である。 実施例1で得られた接合用金属ペーストを用いて作製された接合体における銅焼結体の接合断面を示すSEM像である。 比較例7で得られた接合用金属ペーストを用いて作製された接合体における銅焼結体の接合断面を示すSEM像である。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではない。
<接合用金属ペースト>
 本実施形態の接合用金属ペーストは、金属粒子と、分散媒と、還元剤と、還元助剤と、を含み、金属粒子が、銅粒子を含有し、還元剤が、ポリオール系化合物を含有し、還元助剤が、電子逆供与性を有する配位性化合物を含有する。
 本実施形態の接合用金属ペーストは、配位性化合物が有機リン化合物及び有機硫黄化合物からなる群より選択される少なくとも一種であり、還元剤として、ポリオール系化合物を、銅粒子の全質量100質量部に対して、1.6質量部以上10質量部以下含有することができる。このような接合用金属ペーストによれば、部材同士を、水素を含まない又は水素濃度が低い雰囲気中、無加圧で接合する場合であっても、銅粒子及び被着体の酸化被膜を除去して金属表面を維持しつつ焼結を進めること(金属結合を生じさせること)が容易となり、充分な接合強度を有する接合体を得ることができる。このような効果が得られる理由について本発明者らは以下のとおり推察する。配位性化合物が逆供与結合した銅錯体は、低酸化数の状態で安定化される傾向にあり、このことが、還元力の低いポリオール系化合物の存在下であっても、酸化状態の銅を金属銅に還元することができ、充分な接合強度を有する焼結体を形成することができた要因の一つと考えられる。
[銅粒子]
 銅粒子としては、サブマイクロ銅粒子及びマイクロ銅粒子が挙げられる。なお、銅粒子とは、銅を主成分として含有する粒子をいい、例えば、粒子中の銅の含有割合が、80質量%以上である粒子をいう。銅粒子における銅の含有割合は、85質量%以上、90質量%以上、95質量%以上、99質量%以上又は100質量%であってもよい。
(サブマイクロ銅粒子)
 サブマイクロ銅粒子は、250℃以上380℃以下の温度範囲で、焼結性を有する銅粒子であってもよい。サブマイクロ銅粒子としては、粒径が0.01μm以上0.8μm以下の銅粒子を含むものが挙げられ、例えば、体積平均粒径が、0.01μm以上0.8μm以下の銅粒子を用いることができる。サブマイクロ銅粒子の体積平均粒径が0.01μm以上であれば、サブマイクロ銅粒子の合成コストの抑制、良好な分散性、有機保護剤の使用量の抑制といった効果が得られやすくなる。サブマイクロ銅粒子の体積平均粒径が0.8μm以下であれば、サブマイクロ銅粒子の焼結性が優れるという効果が得られやすくなる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の体積平均粒径は、0.6μm以下であってもよく、0.5μm以下であってもよく、0.4μm以下であってもよい。また、サブマイクロ銅粒子の体積平均粒径は、0.02μm以上であってもよく、0.05μm以上であってもよく、0.1μm以上であってもよい。サブマイクロ銅粒子の体積平均粒径としては、例えば、0.01μm以上0.5μm以下であってもよく、0.12μm以上0.8μm以下であってもよく、0.15μm以上0.8μm以下であってもよく、0.15μm以上0.6μm以下であってもよく、0.2μm以上0.5μm以下であってもよく、0.3μm以上0.45μm以下であってもよい。
 なお、本明細書において体積平均粒径とは、50%体積平均粒径を意味する。銅粒子の体積平均粒径を求める場合、原料となる銅粒子、又は接合用金属ペーストから揮発成分を除去した乾燥銅粒子を、分散剤を用いて分散媒に分散させたものを光散乱法粒度分布測定装置(例えば、島津ナノ粒子径分布測定装置(SALD-7500nano、株式会社島津製作所製))で測定する方法等により求めることができる。光散乱法粒度分布測定装置を用いる場合、分散媒としては、ヘキサン、トルエン、α-ターピネオール、4-メチル-1,3-ジオキソラン-2-オン、水等を用いることができる。
 サブマイクロ銅粒子の含有量は、金属粒子の全質量を基準として、20質量%以上であってもよく、30質量%以上であってもよく、35質量%以上であってもよく、40質量%以上であってもよく、90質量%以下であってもよく、85質量%以下であってもよく、80質量%以下であってもよく、20質量%以上90質量%以下であってもよく、30質量%以上90質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。サブマイクロ銅粒子の含有量が上記範囲内であれば、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。
 サブマイクロ銅粒子の含有量は、銅粒子の全質量の合計を基準として、20質量%以上90質量%以下であることが好ましい。サブマイクロ銅粒子の上記含有量が20質量%以上であれば、フレーク状マイクロ銅粒子等のマイクロ銅粒子と併用したときに当該銅粒子の間を充分に充填することができ、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。サブマイクロ銅粒子の含有量が90質量%以下であれば、接合用銅ペーストを無加圧で焼結した時の体積収縮を充分に抑制できるため、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量は、銅粒子の全質量を基準として、30質量%以上であってもよく、35質量%以上であってもよく、40質量%以上であってもよく、85質量%以下であってもよく、83質量%以下であってもよく、80質量%以下であってもよく、30質量%以上85質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。
 サブマイクロ銅粒子の形状は、特に限定されるものではない。サブマイクロ銅粒子の形状としては、例えば、球状、塊状、針状、フレーク状、略球状及びこれらの凝集体が挙げられる。分散性及び充填性の観点から、サブマイクロ銅粒子の形状は、球状、略球状、フレーク状であってもよく、燃焼性、分散性、フレーク状マイクロ粒子との混合性等の観点から、球状又は略球状であってもよい。本明細書において、「フレーク状」とは、板状、鱗片状等の平板状の形状を包含する。
 サブマイクロ銅粒子は、分散性、充填性、及びフレーク状マイクロ粒子との混合性の観点から、アスペクト比が5以下であってもよく、4以下であってもよく、3以下であってもよい。本明細書において、「アスペクト比」とは、粒子の長辺(長径)/厚みを示す。粒子の長辺(長径)及び厚みの測定は、例えば、粒子のSEM像から求めることができる。
 サブマイクロ銅粒子は、表面処理剤で処理されていてもよい。表面処理剤としては、例えば、炭素数2~18の有機酸が挙げられる。炭素数2~18の有機酸としては、例えば、酢酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、カプリル酸、メチルヘプタン酸、エチルヘキサン酸、プロピルペンタン酸、ペラルゴン酸、メチルオクタン酸、エチルヘプタン酸、プロピルヘキサン酸、カプリン酸、メチルノナン酸、エチルオクタン酸、プロピルヘプタン酸、ブチルヘキサン酸、ウンデカン酸、メチルデカン酸、エチルノナン酸、プロピルオクタン酸、ブチルヘプタン酸、ラウリン酸、メチルウンデカン酸、エチルデカン酸、プロピルノナン酸、ブチルオクタン酸、ペンチルヘプタン酸、トリデカン酸、メチルドデカン酸、エチルウンデカン酸、プロピルデカン酸、ブチルノナン酸、ペンチルオクタン酸、ミリスチン酸、メチルトリデカン酸、エチルドデカン酸、プロピルウンデカン酸、ブチルデカン酸、ペンチルノナン酸、ヘキシルオクタン酸、ペンタデカン酸、メチルテトラデカン酸、エチルトリデカン酸、プロピルドデカン酸、ブチルウンデカン酸、ペンチルデカン酸、ヘキシルノナン酸、パルミチン酸、メチルペンタデカン酸、エチルテトラデカン酸、プロピルトリデカン酸、ブチルドデカン酸、ペンチルウンデカン酸、ヘキシルデカン酸、ヘプチルノナン酸、ヘプタデカン酸、オクタデカン酸、メチルシクロヘキサンカルボン酸、エチルシクロヘキサンカルボン酸、プロピルシクロヘキサンカルボン酸、ブチルシクロヘキサンカルボン酸、ペンチルシクロヘキサンカルボン酸、ヘキシルシクロヘキサンカルボン酸、ヘプチルシクロヘキサンカルボン酸、オクチルシクロヘキサンカルボン酸、ノニルシクロヘキサンカルボン酸等の飽和脂肪酸;オクテン酸、ノネン酸、メチルノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ミリストレイン酸、ペンタデセン酸、ヘキサデセン酸、パルミトレイン酸、サピエン酸、オレイン酸、バクセン酸、リノール酸、リノレイン酸、リノレン酸等の不飽和脂肪酸;テレフタル酸、ピロメリット酸、o-フェノキシ安息香酸、メチル安息香酸、エチル安息香酸、プロピル安息香酸、ブチル安息香酸、ペンチル安息香酸、ヘキシル安息香酸、ヘプチル安息香酸、オクチル安息香酸、ノニル安息香酸等の芳香族カルボン酸が挙げられる。有機酸は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。このような有機酸と上記サブマイクロ銅粒子とを組み合わせることで、サブマイクロ銅粒子の分散性と焼結時における有機酸の脱離性を両立できる傾向にある。
 表面処理剤の処理量は、サブマイクロ銅粒子の表面に一分子層~三分子層付着する量であってもよい。この量は、サブマイクロ銅粒子の表面に付着した分子層数(n)、サブマイクロ銅粒子の比表面積(A)(単位m2/g)と、表面処理剤の分子量(M)(単位g/mol)と、表面処理剤の最小被覆面積(S)(単位m/個)と、アボガドロ数(N)(6.02×1023個)から算出できる。具体的には、表面処理剤の処理量は、表面処理剤の処理量(質量%)={(n・A・M)/(S・N+n・A・M)}×100%の式に従って算出される。
 サブマイクロ銅粒子の比表面積は、乾燥させたサブマイクロ銅粒子をBET比表面積測定法で測定することで算出できる。表面処理剤の最小被覆面積は、表面処理剤が直鎖飽和脂肪酸の場合、2.05×10-19/1分子である。それ以外の表面処理剤の場合には、例えば、分子モデルからの計算、又は「化学と教育」(上江田捷博、稲福純夫、森巌、40(2),1992,p114-117)に記載の方法で測定できる。表面処理剤の定量方法の一例を示す。表面処理剤は、接合用銅ペーストから分散媒を除去した乾燥粉の熱脱離ガス・ガスクロマトグラフ質量分析計により同定でき、これにより表面処理剤の炭素数及び分子量を決定できる。表面処理剤の炭素分割合は、炭素分分析により分析できる。炭素分分析法としては、例えば、高周波誘導加熱炉燃焼/赤外線吸収法が挙げられる。同定された表面処理剤の炭素数、分子量及び炭素分割合から上記式により表面処理剤量を算出できる。
 表面処理剤の上記処理量は、表面処理剤を有するサブマイクロ銅粒子の質量を基準として、0.07質量%以上であってもよく、0.1質量%以上であってもよく、0.2質量%以上であってもよく、2.1質量%以下であってもよく、1.6質量%以下であってもよく、1,1質量%以下であってもよく、0.07質量%以上2.1質量%以下であってもよく、0.10質量%以上1.6質量%以下であってもよく、0.2質量%以上1.1質量%以下であってもよい。
 サブマイクロ銅粒子としては、市販されているものを用いることができる。市販されているサブマイクロ粒子としては、例えば、CH-0200(三井金属鉱業株式会社製、体積平均粒径0.36μm)、CH-0200A-L1(三井金属鉱業株式会社製、体積平均粒径0.21μm)、HT-14(三井金属鉱業株式会社製、体積平均粒径0.41μm)、CT-500(三井金属鉱業株式会社製、体積平均粒径0.72μm)、Tn-Cu100(太陽日酸社製、体積平均粒径0.12μm)が挙げられる。
 サブマイクロ銅粒子は良好な焼結性を有するため、銅ナノ粒子を主に用いた接合材にみられる高価な合成コスト、良好でない分散性、焼結後の体積収縮の低下等の課題を低減することができる。
(マイクロ銅粒子)
 マイクロ銅粒子としては、粒径が2μm以上50μm以下の銅粒子を用いることができ、例えば、体積平均粒径が2μm以上50μm以下の銅粒子を用いることができる。マイクロ銅粒子の体積平均粒径が上記範囲内であれば、接合用銅ペーストを無加圧で焼結した際の体積収縮、ボイドの発生等を充分に低減でき、接合用銅ペーストを無加圧で焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏するという観点から、マイクロ銅粒子の体積平均粒径は、2μm以上であってもよく、3μm以上であってもよく、20μm以下であってもよく、15μm以下であってもよく、10μm以下であってもよく、2μm以上20μm以下であってもよく、2μm以上10μm以下であってもよく、3μm以上20μm以下であってもよく、3μm以上10μm以下であってもよい。
 マイクロ銅粒子の形状は、フレーク状が好ましい。フレーク状のマイクロ銅粒子を用いることで、接合用銅ペースト内のマイクロ銅粒子が、接合面に対して略平行に配向することにより、接合用銅ペーストを焼結させたときの体積収縮を抑制でき、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。より一層上記効果を奏するという観点から、フレーク状のマイクロ銅粒子としては、アスペクト比が4以上であってもよく、6以上であってもよく、10以上であってよく、50以上であってもよい。
 マイクロ銅粒子の含有量は、銅粒子の全質量を基準として、10質量%以上90質量%以下であってもよく、15質量%以上65質量%以下であってもよく、20質量%以上60質量%以下であってもよい。マイクロ銅粒子の含有量が、上記範囲内であれば、接合用銅ペーストを焼結させて製造される接合体の接合強度を確保することが容易となり、接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示す傾向にある。
 マイクロ銅粒子において、表面処理剤の処理の有無は特に限定されるものではないが、分散安定性及び耐酸化性の観点から、マイクロ銅粒子は表面処理剤で処理されていてもよい。表面処理剤は、接合時に除去されるものであってもよい。このような表面処理剤としては、例えば、ドデカン酸、パルミチン酸、ヘプタデカン酸、ステアリン酸、アラキジン酸、リノール酸、リノレイン酸、オレイン酸等の脂肪族カルボン酸;テレフタル酸、ピロメリット酸、o-フェノキシ安息香酸等の芳香族カルボン酸;セチルアルコール、ステアリルアルコール、イソボルニルシクロヘキサノール、テトラエチレングリコール等の脂肪族アルコール;p-フェニルフェノール等の芳香族アルコール;オクチルアミン、ドデシルアミン、ステアリルアミン等のアルキルアミン;ステアロニトリル、デカンニトリル等の脂肪族ニトリル;アルキルアルコキシシラン等のシランカップリング剤;ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、シリコーンオリゴマー等の高分子処理剤等が挙げられる。表面処理剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 表面処理剤の処理量は、粒子表面に一分子層以上の量であってもよい。このような表面処理剤の処理量は、マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積により変化する。表面処理剤の処理量は、表面処理剤を有するマイクロ銅粒子の質量を基準として、0.001質量%以上2.0質量%以下であってもよく、0.4質量%以上2.0質量%以下であってもよく、0.5質量%以上1.7質量%以下であってもよい。マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積については、上述したサブマイクロ銅粒子の場合と同様の方法により算出することができる。
 マイクロ銅粒子は、市販されているものを用いることができる。市販されているフレーク状のマイクロ粒子としては、例えば、MA-C025KFD(三井金属鉱業株式会社製、体積平均粒径7.5μm)、3L3N(福田金属箔粉工業株式会社製、体積平均粒径6μm)、2L3N(福田金属箔粉工業株式会社製、体積平均粒径9.9μm)、4L3N(福田金属箔粉工業株式会社製、体積平均粒径3μm)、C3(福田金属箔粉工業株式会社製、体積平均粒径37μm)、1110F(三井金属鉱業株式会社製、体積平均粒径3.8μm)が挙げられる。
 本実施形態に係る接合用銅ペーストは、サブマイクロ銅粒子とマイクロ銅粒子とを含むことができる。上記サブマイクロ銅粒子のみから接合用銅ペーストを調製する場合、分散媒の乾燥に伴う体積収縮及び焼結収縮が大きいため、接合用銅ペーストの焼結時に被着面より剥離しやすくなり、半導体素子等の接合においては充分なダイシェア強度及び接続信頼性が得られにくい。上記マイクロ銅粒子のみから接合用銅ペーストを調製する場合、焼結温度が高温化し、400℃以上の焼結工程を必要とする傾向にある。サブマイクロ銅粒子とマイクロ銅粒子とを併用することで、無加圧接合用銅ペーストを焼結させたときの体積収縮が抑制され、接合体は充分な接合強度を有することができる。無加圧接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置が良好なダイシェア強度及び接続信頼性を示すという効果が得られる。
 上記の観点から、本実施形態に係る接合用銅ペーストは、銅粒子として、体積平均粒径が0.15μm以上0.8μm以下であるサブマイクロ銅粒子と、体積平均粒径が2μm以上50μm以下であるマイクロ銅粒子とを含み、サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計が、金属粒子の全質量を基準として、80質量%以上であり、サブマイクロ銅粒子の含有量が、サブマイクロ銅粒子の質量及びマイクロ銅粒子の質量の合計を基準として、30質量%以上90質量%以下であってもよい。
(銅粒子以外の金属粒子)
 本実施形態の接合用金属ペーストは、金属粒子として、銅以外の金属元素を含む金属粒子(その他の金属粒子)を含んでいてもよい。その他の金属粒子は、例えば、亜鉛、金、パラジウム、銀、ニッケル、白金、真鍮、マンガン、スズ、アンチモン、インジウム、アルミニウム、バナジウム等の粒子を含んでいてもよい。その他の金属粒子は、体積平均粒径が0.01μm以上10μm以下であってもよく、0.01μm以上5μm以下であってもよく、0.05μm以上3μm以下であってもよい。
 接合用銅ペーストがその他の金属粒子を含む場合、複数種の金属が固溶又は分散した焼結体を得ることができるため、焼結体の降伏応力、疲労強度等の機械的な特性が改善され、接続信頼性が向上しやすい。また、複数種の金属粒子を添加することで、接合用銅ペーストの焼結体は、特定の被着体に対して充分な接合強度を有することができる。接合用銅ペーストを半導体素子の接合に用いる場合は半導体装置のダイシェア強度及び接続信頼性が向上しやすい。
 接合用銅ペーストがその他の金属粒子を含んでいる場合、その含有量は、充分な接合性を得るという観点から、金属粒子の全質量を基準として、5質量%未満であってもよく、3質量%以下であってもよい。その他の金属粒子は、含まれなくてもよい。その他の金属粒子の形状は、特に限定されるものではない。
 本実施形態の接合用金属ペーストは、金属粒子以外の無機粒子の含有量が、接合用金属ペースト全量を基準として、30質量%以下であってもよく、20質量%以下であってもよく、0質量%であってもよい。
[還元剤]
 本実施形態の接合用金属ペーストは、還元剤として、ポリオール系化合物を含有する。ポリオール系化合物は、OH基を複数有する化合物であってもよい。
 ポリオール系化合物としては、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ペンタエチレングリコール、ヘキサエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール、ポリエチレングリコール、ポリエチレングリコール200、ポリエチレングリコール300、ポリエチレングリコール400、ポリプロピレングリコール、ポリプロピレングリコール200、ポリプロピレングリコール300、ポリプロピレングリコール400、ポリプロピレングリコール700、ポリプロピレングリコール4000、ポリエチレングリコールモノオレエート、ポリエチレングリコールモノステアレート、ポリエチレングリコールモノラウレート、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンポリオキシプロピレングリコールなどが挙げられる。
 還元剤は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 還元剤は、窒素雰囲気中でTG-DTA測定したときの95%重量損失温度が280℃以上であってもよく、300℃以上であってもよく、320℃以上であってもよい。このような還元剤は、銅粒子の還元から焼結までの間、系中に充分量確保されやすい。還元剤は、上記95%重量損失温度が420℃以下、400℃以下、又は380℃以下であってもよい。このような還元剤は焼結後に残りにくく、これにより、焼結体が、例えば、充分な焼結度を有する、及び腐食を起こしにくくなる等の特性を有することができ、充分な接合強度を長期にわたって維持しやすくなる。
 接合用銅ペーストは、接合強度の長期安定性の観点から、上述した95%重量損失温度の条件を満たすポリオール系化合物を含むことができる。
 上述したポリオール系化合物の95%重量損失温度として、例えば、ポリエチレングリコール200:322℃、ポリエチレングリコール300:380℃、ポリエチレングリコール400:410℃、ポリプロピレングリコール300(トリオール型):337℃、ポリプロピレングリコール400(ジオール型):343℃、ポリプロピレングリコール700(ジオール型):383℃、ポリプロピレングリコール4000(トリオール型):390℃が挙げられる。
 接合用銅ペーストにおける還元剤の含有量は、焼結不良を抑制し、接合強度を確保する観点から、銅粒子の全質量100質量部に対して、1.6質量部以上、1.8質量部以上、2.0質量部以上、又は4.0質量部以上であってもよく、過剰の還元助剤による接合強度の低下を抑制する観点から、10質量部以下、9.0質量部以下、又は8.5質量部以下であってもよい。上記の観点から、接合用銅ペーストにおける還元剤の含有量は、銅粒子の全質量100質量部に対して、1.6質量部以上10質量部以下、1.8質量部以上9.0質量部以下、2.0質量部以上8.5質量部以下、又は4.0質量部以上8.5質量部以下であってもよい。
 また、接合用銅ペーストが、銅粒子と、その他の金属粒子とを含む場合、還元剤の含有量は、金属粒子の全質量100質量部に対して、上述した範囲であってもよい。その他の金属粒子としては、亜鉛、金、パラジウム、銀、ニッケル、白金、真鍮、マンガン、スズ、アンチモン、インジウム、アルミニウム、バナジウム等の粒子が挙げられる。
[還元助剤]
 還元助剤としては、銅錯体を形成できる配位性化合物を用いることができ、例えば、電子逆供与性を有する配位性化合物が挙げられる。配位性化合物は、孤立電子対と空位のπ電子軌道を共に有する化合物であってもよい。このような化合物であれば、孤立電子対により銅金属原子と結合を形成し、さらに空位π軌道と、銅のd軌道電子とが逆供与結合を形成することができる。
 配位性化合物としては、有機リン化合物及び有機硫黄化合物からなる群より選択される少なくとも一種を用いることができる。
 有機リン化合物は、下記一般式(1)で表される有機リン化合物及び下記一般式(2)で表される有機リン化合物からなる群より選択される少なくとも一種であってもよい。
Figure JPOXMLDOC01-appb-C000005
[式(1)中、R、R及びRはそれぞれ独立に、1価の有機基又は-OR(Rは1価の有機基を示す)を示し、R、R及びRが環をなしていてもよい。]
Figure JPOXMLDOC01-appb-C000006
[式(2)中、R、R及びRはそれぞれ独立に、1価の有機基又は-OR(Rは1価の有機基を示す)を示し、R、R及びRのうちの1つ以上が-OR(Rは1価の有機基を示す)である。]
 上記一般式(1)で表される有機リン化合物としては、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジメチルフェニルホスフィン、ジエチルフェニルホスフィン、ジフェニル-メチルホスフィン、トリ(1-ナフチル)ホスフィン(Tri-1-naphthylphosphine)、トリス(4-トリフルオロメチルフェニル)ホスフィン、トリス[3,5-ビス(トリフルオロメチル)フェニル]ホスフィン(Tris[3,5-bis(trifluoromethyl)phenyl]phosphine)が挙げられる。
 また、上記一般式(1)で表される有機リン化合物としては、トリイソプロピルホスファート、クロロリン酸ジイソプロピル(Diisopropyl chlorophosphate)、リン酸トリブチル、ジ-tert-ブチル亜リン酸エステル、リン酸トリメチル、リン酸トリエチル、リン酸トリス(2-ブトキシエチル)、トリス(2-エチルヘキシル)ホスファート、トリス(2-クロロエチル)ホスファート、トリフェニルホスファート、トリプロピルホスファート等のリン酸エステルが挙げられる。
 更に、R、R及びRが環をなしている上記一般式(1)で表される有機リン化合物としては、2,8,9-トリメチル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン(2,8,9-Trimethyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane)、2,8,9-トリイソプロピル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン(2,8,9-Triisopropyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane)、2,8,9-トリイソブチル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン(2,8,9-Triisobutyl-2,5,8,9-tetraaza-1-phosphabicyclo[3.3.3]undecane)が挙げられる。
 上記一般式(2)で表される有機リン化合物としては、亜リン酸トリフェニル、亜リン酸トリス(1,1,1,3,3,3-ヘキサフルオロ-2-プロピル)、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリプロピル、亜リン酸トリイソプロピル、亜リン酸トリブチル、亜リン酸トリス(2-エチルヘキシル)、亜リン酸トリス(トリメチルシリル)、亜リン酸トリステアリル(Trioctadecyl Phosphite)、フェニル亜ホスホン酸ジメチル(Dimethyl Phenylphosphonite)、2-メトキシ-2-オキソ-1,3,2-ジオキサホスホラン、フェニルジメトキシホスフィン、ジフェニル亜ホスフィン酸エチル、ジフェニル亜ホスフィン酸ブチル(ジフェニルブトキシホスフィン、Butyl Diphenylphosphinite)、ジフェニルホスフィン酸フェネチルエステル(Diphenyl-phosphinic Acid Phenethyl Ester)などの亜リン酸エステルが挙げられる。
 有機リン化合物は、下記一般式(3)で表される有機リン化合物であってもよい。
Figure JPOXMLDOC01-appb-C000007
[式(3)中、R11、R12、R13、及びR14はそれぞれ独立に、有機基を示し、R11及びR12が環をなしていてもよく、R13及びR14が環をなしていてもよく、Xは、2価の有機基を示す。]
 上記一般式(3)で表される有機リン化合物としては、1,2-ビス(ジシクロヘキシルホスフィノ)エタン、エチレンビス(ジフェニルホスフィン)、1,2-ビス(ジメチルホスフィノ)エタン、1,2-ビス[2,5-ジメチルホスホラノ]エタン、1,2-ビス(2,5-ジフェニルホスホラノ)エタン、1,2-ビス[2,5-ジイソプロピルホスホラノ]エタン、1,2-ビス(ジ-tert-ブチルホスフィノメチル)ベンゼン、1,2-ビス(ジフェニルホスフィノ)ベンゼン、1,3-ビス(ジフェニルホスフィノ)プロパン、(オキシジ-2,1-フェニレン)ビス(ジフェニルホスフィン)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテンが挙げられる。
 有機分散媒との親和性、及びイオン性不純物抑制の観点から、有機リン化合物として、トリアルキルホスファイト及びトリアリールホスファイト等の(RO-)P(式中、Rは、1価の有機基を示す)で表される亜リン酸エステル、トリアルキルホスフィン及びトリアリールホスフィン等の(R-)P(式中、Rは、1価の有機基を示す)で表される有機リン化合物、又は、リン酸トリアルキル及びリン酸トリアリール等の(RO-)P=O(式中、Rは、1価の有機基基を示す)で表されるリン酸エステルを用いることができる。
 また、有機リン化合物は、有機溶剤、有機保護粒子との親和性の観点から、フェニル基、ナフチル基等の芳香族基、エチル基、プロピル基、イソプロピル基、ブチル基、ヘキシル基、ステアリル基、シクロへキシル基等のアルキル基、ポリエチレンオキシド基等のポリエーテル基などの有機置換基を有していてもよい。更に、有機リン化合物が、リン酸系化合物である場合、イオン性の物質に対する耐凝集性の観点から、P-OH基の全てがエステル化されていてもよい。
 有機硫黄化合物としては、チオエーテル、1,2-ジチオケトンが挙げられる。
 還元助剤は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 接合用銅ペーストにおける還元助剤の含有量は、焼結不良を抑制し、接合強度を確保する観点から、銅粒子の全質量100質量部に対して、0.5質量部以上、0.6質量部以上、0.7質量部以上、又は0.8質量部以上であってもよく、過剰の還元助剤による接合強度の低下を抑制する観点から、10質量部以下、9.0質量部以下、又は7.7質量部以下であってもよい。上記の観点から、接合用銅ペーストにおける還元助剤の含有量は、銅粒子の全質量100質量部に対して、0.5質量部以上10質量部以下、0.6質量部以上10質量部以下、0.7質量部以上9.0質量部以下、又は0.8質量部以上7.7質量部以下であってもよい。還元助剤が、R、R及びRが環をなしている上記一般式(1)で表される有機リン化合物である場合、還元助剤の含有量は、銅粒子の全質量100質量部に対して、0.05質量部以上1質量部以下、0.1質量部以上0.5質量部以下、又は0.1質量部以上0.4質量部以下であってもよい。
 また、接合用銅ペーストが、銅粒子と、その他の金属粒子とを含む場合、還元助剤の含有量は、金属粒子の全質量100質量部に対して、上述した範囲であってもよい。その他の金属粒子としては、亜鉛、金、パラジウム、銀、ニッケル、白金、真鍮、マンガン、スズ、アンチモン、インジウム、アルミニウム、バナジウム等の粒子が挙げられる。
[分散媒]
 分散媒としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、ジヒドロターピネオール、ターピネオール、イソボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類;エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類;エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)、乳酸エチル、乳酸ブチル、γ-ブチロラクトン、炭酸プロピレン等のエステル類;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の酸アミド;シクロヘキサノン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;炭素数1~18のアルキル基を有するメルカプタン類;炭素数5~7のシクロアルキル基を有するメルカプタン類が挙げられる。炭素数1~18のアルキル基を有するメルカプタン類としては、例えば、エチルメルカプタン、n-プロピルメルカプタン、i-プロピルメルカプタン、n-ブチルメルカプタン、i-ブチルメルカプタン、t-ブチルメルカプタン、ペンチルメルカプタン、ヘキシルメルカプタン及びドデシルメルカプタンが挙げられる。炭素数5~7のシクロアルキル基を有するメルカプタン類としては、例えば、シクロペンチルメルカプタン、シクロヘキシルメルカプタン及びシクロヘプチルメルカプタンが挙げられる。
 分散媒は、印刷時ライフ(版上ライフ)の観点から、200℃以上の沸点を有する溶媒であってもよい。また、溶媒の沸点は、焼結後に除去されている必要性から、400℃以下であってもよい。
 分散媒は、1種を単独で、又は2種以上を組み合わせて用いることができる。
[添加剤]
 接合用金属ペーストには、必要に応じて分散剤、表面保護剤、増粘剤、チキソ性付与剤等の添加剤を更に含んでもよい。
 接合用金属ペーストが添加剤を含む場合、接合用金属ペーストの焼結性の低下を抑制する観点から、200℃以下の温度で不揮発性又は非分解性である添加剤の含有量が、接合用金属ペースト全量を基準として、20質量%以下であってもよく、5質量%以下であってもよく、1質量%以下であってもよい。
<接合用金属ペーストの調製方法>
 本実施形態の接合用金属ペーストは、上述の銅粒子(例えば、サブマイクロ銅粒子及びマイクロ銅粒子)、還元剤、還元助剤、分散媒、並びに、必要に応じてその他の金属粒子及び任意の添加剤を混合して調製することができる。各成分の混合後に、撹拌処理を行ってもよい。接合用金属ペーストは、分級操作により分散液の最大粒径を調整してもよい。
 接合用金属ペーストは、サブマイクロ銅粒子、有機保護剤、分散媒をあらかじめ混合して、分散処理を行ってサブマイクロ銅粒子の分散液を調製し、更に残りの成分を混合して調製してもよい。このような手順とすることで、サブマイクロ銅粒子の分散性が向上してマイクロ銅粒子(例えば、フレーク状マイクロ銅粒子)との混合性が良くなり、接合用銅ペーストの性能がより向上させることができる。また、分級操作によって、サブマイクロ銅粒子の分散液から凝集物を除去してもよい。サブマイクロ銅粒子及び有機保護剤は、有機保護剤で処理されたサブマイクロ銅粒子であってもよい。
 撹拌処理は、撹拌機を用いて行うことができる。撹拌機としては、例えば、石川式攪拌機、シルバーソン攪拌機、キャビテーション攪拌機、自転公転型攪拌装置、超薄膜高速回転式分散機、超音波分散機、ライカイ機、二軸混練機、ビーズミル、ボールミル、三本ロールミル、ホモミキサー、プラネタリーミキサー、超高圧型分散機、薄層せん断分散機、ディスパライザーが挙げられる。
 分散処理としては、例えば、薄層せん断分散機、ディスパライザー、ビーズミル、超音波ホモジナイザー、ハイシアミキサー、狭ギャップ三本ロールミル、湿式超微粒化装置、超音速式ジェットミル、超高圧ホモジナイザーが挙げられる。
 分級操作は、例えば、ろ過、自然沈降、遠心分離を用いて行うことができる。ろ過用のフィルタとしては、例えば、水櫛、金属メッシュ、メタルフィルター、ナイロンメッシュが挙げられる。
 接合用銅ペーストは、印刷・塗布手法に適した粘度に調整してもよい。接合用銅ペーストの粘度としては、例えば、25℃におけるCasson粘度が0.05Pa・s以上2.0Pa・s以下であってもよく、0.06Pa・s以上1.0Pa・s以下であってもよい。
<接合体の製造方法>
 本実施形態に係る接合体の製造方法は、第一の部材、上述した本実施形態に係る接合用金属ペースト、及び第二の部材がこの順に積層されている積層体を用意する積層体準備工程と、積層体における接合用金属ペーストを焼結する焼結工程と、を備える。
(積層体準備工程)
 第一の部材及び第二の部材としては、例えば、IGBT、ダイオード、ショットキーバリヤダイオード、MOS-FET、サイリスタ、ロジック、センサー、アナログ集積回路、LED、半導体レーザー、発信器等の半導体素子、リードフレーム、金属板貼付セラミックス基板(例えばDBC)、LEDパッケージ等の半導体素子搭載用基材、銅リボン、金属ブロック、端子等の給電用部材、放熱板、水冷板等が挙げられる。
 第一の部材及び第二の部材は、接合面に、接合用金属ペーストの焼結体と金属結合を形成する金属層を有していてもよい。金属層を構成する金属としては、例えば、銅、ニッケル、銀、金、パラジウム、白金、鉛、錫、コバルト等が挙げられる。これらの金属は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、金属層は、上記金属を含む合金であってもよい。合金に用いられる金属としては、上記金属の他に、亜鉛、マンガン、アルミニウム、ベリリウム、チタン、クロム、鉄、モリブデン等が挙げられる。金属層を有する部材としては、例えば、各種金属メッキを有する部材、ワイヤ、金属メッキを有するチップ、ヒートスプレッダ、金属板が貼り付けられたセラミックス基板、各種金属メッキを有するリードフレーム又は各種金属からなるリードフレーム、銅板、銅箔が挙げられる。
 積層体は、例えば、上述した第二の部材の必要な部分に本実施形態の接合用金属ペーストを設け、次いで接合用金属ペースト上に上述した第一の部材を配置することにより用意することができる。この場合、第一の部材、該第一の部材の重さが働く方向側に、上記接合用金属ペースト、及び第二の部材がこの順に積層された積層体を用意することができ、この積層体の接合用金属ペーストを、無加圧、すなわち、第一の部材の重さのみ、又は第一の部材の重さと、チップの傾き防止又はボイド低減などのために用いられる重りの重さのみを受けた状態で焼結することができる。重りの重さは、圧力に換算したときに0.01MPa以下であってもよい。なお、第一の部材の重さが働く方向とは、重力が働く方向ということもできる。
 重りとしては、チップのサイズと同程度の大きさを有し、20mm以下の厚さの金属製重りが挙げられる。金属製重りとしては、5mm以下の厚さのSUS製重りなどを用いることができる。
 本実施形態の接合用金属ペーストを、第二の部材の必要な部分に設ける方法としては、接合用銅ペーストを堆積させられる方法であればよい。このような方法としては、インクジェット印刷、スーパーインクジェット印刷、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、バーコート、アプリケータ、粒子堆積法、スプレーコータ、スピンコータ、ディップコータ、電着塗装等を用いることができる。
 接合用金属ペーストの厚みは、1μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよい。また、接合用金属ペーストの厚みは、3000μm以下であってもよく、1000μm以下であってもよく、500μm以下であってもよく、300μm以下であってもよく、250μm以下であってもよく、200μm以下であってもよく、150μm以下であってもよい。
 塗布された接合用金属ペーストは、焼結時の流動及びボイドの発生を抑制する観点から、適宜乾燥させてもよい。乾燥時のガス雰囲気は大気中であってもよく、窒素、希ガス等の無酸素雰囲気中であってもよく、水素、ギ酸等の還元雰囲気中であってもよい。乾燥方法は、常温放置による乾燥であってもよく、加熱乾燥であってもよく、減圧乾燥であってもよい。
 加熱乾燥又は減圧乾燥には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整してもよい。乾燥の温度及び時間としては、大気中あるいは無酸素雰囲気中で、50℃以上150℃以下で乾燥することが望ましい。
 接合用金属ペースト上に第一の部材を配置する方法としては、例えば、チップマウンター、フリップチップボンダー、カーボン製又はセラミックス製の位置決め冶具が挙げられる。
(焼結工程)
 焼結工程では、無酸素雰囲気中、無加圧の条件で加熱処理することで接合用銅ペーストの焼結を行うことができる。無酸素雰囲気は、水素を含まない又は水素濃度が10%以下の雰囲気であってもよい。なお、無酸素雰囲気とは、酸素濃度が1体積%以下の雰囲気を指し、酸素濃度は、0.1体積%以下、0.01体積%以下又は0.001体積%以下であってもよい。
 加熱処理には、圧着機構を有しない加熱装置を用いることができる。加熱装置としては、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等、が挙げられる。
 水素を含まない雰囲気としては、窒素、希ガス、耐熱有機ガス、水蒸気、これらの混合ガス等の非酸化性ガス中、又は真空下が挙げられる。
 焼結時のガス雰囲気は、還元雰囲気であってもよい。還元雰囲気としては、例えば、ギ酸ガスを含む窒素中、ギ酸ガスを含む希ガス中、10%以下の水素を含む非酸化性ガス中等が挙げられる。また、焼結時のガス雰囲気は、フォーミングガス(爆発下限以下(例えば、5%以下又は3%以下)の水素を含む窒素)、低分子量アルコール(例えば、メタノール、エタノール)蒸気であってもよい。
 加熱処理時の到達最高温度は、接合する部材への熱ダメージの低減及び歩留まりを向上させるという観点から、200℃以上450℃以下であってもよく、250℃以上400℃以下であってもよく、250℃以上350℃以下であってもよく、250℃以上300℃以下であってもよい。
 到達最高温度保持時間は、分散媒を全て揮発させ、また、歩留まりを向上させるという観点から、1分間以上60分間以下であってもよく、1分間以上40分間未満であってもよく、1分間以上30分間未満であってもよい。特に、到達最高温度が250℃以上であると、60分間以下の保持時間で焼結を充分に進行させやすくなる。
<接合体及び半導体装置>
 以下、図面を参照しながら好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は、図示の比率に限られるものではない。
 図1は、接合用金属ペーストを用いて製造される接合体の一例を示す模式断面図である。本実施形態の接合体100は、第一の基部1a及び第一の金属層1bを有する第一の部材1と、第二の基部3a及び第二の金属層3bを有する第二の部材3と、第一の部材1と第二の部材3とを接合する焼結体2と、を備える。
 第一の部材1及び第二の部材3としては、上述したものが挙げられる。また、第一の金属層1b及び第二の金属層3bについても、上述したものが挙げられる。
 焼結体2は、本実施形態に係る接合用金属ペーストの焼結体であってもよい。この場合、接合体100は、上述した本実施形態に係る接合体の製造方法によって得ることができる。
 接合体のダイシェア強度は、第一の部材及び第二の部材を充分に接合するという観点から、10MPa以上であってもよく、15MPa以上であってもよく、20MPa以上であってもよく、30MPa以上であってもよい。ダイシェア強度は、万能型ボンドテスタ(4000シリーズ、DAGE社製)等を用いて測定することができる。
 焼結体の熱伝導率は、放熱性及び高温化での接続信頼性という観点から、100W/(m・K)以上であってもよく、120W/(m・K)以上であってもよく、150W/(m・K)以上であってもよい。熱伝導率は、接合用金属ペーストの焼結体の熱拡散率、比熱容量、及び密度から算出することができる。
 上記接合体において、第一の部材及び第二の部材の少なくとも一方は、半導体素子であってもよい。半導体素子としては、例えば、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、LEDモジュール等が挙げられる。このような場合、上記接合体は半導体装置となる。得られる半導体装置は充分なダイシェア強度及び接続信頼性を有することができる。
 図2は、接合用金属ペーストを用いて製造される半導体装置の一例を示す模式断面図である。図2に示す半導体装置200は、金属層5b及び基部5aを有するリードフレーム5上に、接合用銅ペーストの焼結体2を介して接続された、金属層4b及び基部4aを有する半導体素子4と、これらをモールドするモールドレジン6とを備える。半導体素子4は、ワイヤ7を介して金属層8b及び基部8aを有するリードフレーム8に接続されている。
 半導体装置としては、例えば、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、高輝度LEDモジュール、半導体レーザーモジュール、ロジック、センサー等が挙げられる。
 上記半導体装置は、上述した本実施形態に係る接合体の製造方法と同様にして製造することができる。すなわち、半導体装置の製造方法は、第一の部材及び第二の部材の少なくとも一方に半導体素子を用い、第一の部材、接合用金属ペースト、及び第二の部材がこの順に積層された積層体を用意し、積層体に対して、無酸素雰囲気中、無加圧で積層体を加熱することにより、接合用金属ペーストを焼結する工程を備えてもよい。無酸素雰囲気は、水素を含まない又は水素濃度が10%以下の雰囲気であってもよい。
 接合用金属ペーストは、本実施形態に係る接合用金属ペーストと同様の組成を有していてもよい。積層体の用意及び接合用金属ペーストの焼結についても、上述した積層体準備工程及び焼結工程と同様に行うことができる。
 本開示は、下記[1]~[10]に記載の発明を提供することができる。
[1] 金属粒子と、分散媒と、還元剤と、還元助剤と、を含み、金属粒子が、銅粒子を含有し、還元助剤が、電子逆供与性を有する配位性化合物を含み、当該配位性化合物が有機リン化合物及び有機硫黄化合物からなる群より選択される少なくとも一種であり、還元剤として、ポリオール系化合物を、銅粒子の全質量100質量部に対して、1.6質量部以上10質量部以下含有する、接合用金属ペースト。
[2] 配位性化合物が、孤立電子対と空位のπ電子軌道とを有する、上記[1]に記載の接合用金属ペースト。
[3] 配位性化合物が、下記式(1)で表される有機リン化合物及び下記式(2)で表される有機リン化合物からなる群より選択される少なくとも一種である、上記[1]に記載の接合用金属ペースト。
Figure JPOXMLDOC01-appb-C000008
[式(1)中、R、R及びRはそれぞれ独立に、1価の有機基又は-OR(Rは1価の有機基を示す)を示し、R、R及びRが環をなしていてもよい。]
Figure JPOXMLDOC01-appb-C000009
[式(2)中、R、R及びRはそれぞれ独立に、1価の有機基又は-OR(Rは1価の有機基を示す)を示し、R、R及びRのうちの1つ以上が-OR(Rは1価の有機基を示す)である。]
[4] 還元助剤の含有量が、銅粒子の全質量100質量部に対して、0.5質量部以上10質量部以下である、上記[1]~[3]のいずれかに記載の接合用金属ペースト。
[5] 銅粒子が、体積平均粒径が0.15μm以上0.8μm以下であるサブマイクロ銅粒子と、体積平均粒径が2μm以上50μm以下であるマイクロ銅粒子とを含み、サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計が、金属粒子の全質量を基準として、80質量%以上であり、サブマイクロ銅粒子の含有量が、サブマイクロ銅粒子の質量及びマイクロ銅粒子の質量の合計を基準として、30質量%以上90質量%以下である、上記[1]~[4]のいずれかに記載の接合用金属ペースト。
[6] マイクロ銅粒子が、フレーク状である、上記[5]に記載の接合用金属ペースト。
[7] 第一の部材、上記[1]~[6]のいずれかに記載の接合用金属ペースト、及び第二の部材がこの順に積層されている積層体を用意する工程と、積層体における接合用金属ペーストを焼結する焼結工程と、を備える、接合体の製造方法。
[8] 焼結工程が、無酸素雰囲気中、無加圧の条件で前記接合用金属ペーストを焼結する、上記[7]に記載の接合体の製造方法。
[9] 第一の部材及び第二の部材の少なくとも一方が半導体素子である、上記[7]又は[8]に記載の接合体の製造方法。
[10] 第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する、上記[1]~[6]のいずれか一項に記載の接合用金属ペーストの焼結体と、を備える、接合体。
 以下、実施例により本発明を更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
 各実施例及び比較例における各特性の測定は以下の方法で実施した。
(1)ダイシェア強度
 金属ペーストで接合したシリコンチップと銅基板との間のダイシェア強度により、接合体の接合強度を評価した。
 厚さ200μmのステンレス板に3mm×3mm正方形の開口が9個設けられたメタルマスク及びメタルスキージを用いたステンシル印刷により、銅板(19mm×25mm×3mm)上に金属ペーストを塗布した。シリコンチップ(面積3mm×3mm、厚み400μm、金属ペーストとの被着面(接合面)として銅スパッタ層を有する)を、塗布した金属ペースト上に載せ、ピンセットで軽く押さえ、積層体を得た。積層体をホットプレート(アズワン株式会社製、EC HOTPLATE EC-1200N)にて大気中、90℃で60分加熱した。積層体をフラックスレスリフロー装置(アユミ工業株式会社製)にセットし、1Paまで減圧して空気を取り除いた後、窒素ガスを導入・置換し、常圧で窒素を15L/minで流しながら、300℃、1時間加熱して銅板とシリコンチップとを銅焼結体で接合した接合体を得た。この接合体を冷却し、50℃以下になったところで空気中に取り出した。
 得られた接合体のシリコンチップを、1kNのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード500μm/s、測定高さ100μmで水平方向に押し、ダイシェア強度を測定した。8個の接合体を測定した値の平均値をダイシェア強度とした。
 なお、シリコンチップと銅基板とを鉛はんだにより接合した接合体のダイシェア強度は、20MPaであった。
(2)焼結銅の接合断面
 上記の「(1)ダイシェア強度」で作製した接合体を、カップ内にサンプルクリップ(Samplklip I、Buehler製)で固定し、周囲にエポキシ注形樹脂(エポマウント、リファインテック製)を接合体全体が埋まるまで流し込み、真空デシケータ内に静置して1分間減圧して脱泡した。その後、室温で10時間静置し、エポキシ注形樹脂を硬化し、サンプルを調製した。リファインソーエクセル(リファインテック製)を用いて、サンプルをシリコンチップ近傍で切断した。耐水研磨紙(カーボマックペーパー、リファインテック製)をつけた研磨装置(Refine Polisher HV、リファインテック製)で接合体の中央付近まで削り断面を出した。この断面をArイオンによるフラットミリング加工(日立ハイテクノロジーズIM4000)を行った。走査型電子顕微鏡(ショットキーFE-SEM SU5000、日立ハイテクノロジーズ製)により、銅焼結体の接合断面を観察した。
[接合用金属ペーストの調製]
 表1~5に示す仕込み量(質量部)の接合用金属ペーストを下記に示す手順でそれぞれ調製した。なお、表中に示される仕込み量は、接合用金属ペーストに含まれる銅粒子の全質量を100質量部(サブマイクロ銅粒子及びマイクロ銅粒子の合計100質量部)としたときの各成分の割合(質量部)である。また、還元助剤について、塊状又はペレット状であるものは、遊星ボールミルを用いて粉砕し、微粉末にしてから使用した。
(実施例A-1)
 分散媒としてジヒドロターピネオール(日本テルペン化学株式会社製)99gと、サブマイクロ銅粒子としてCH-0200(三井金属社製、製品名、レーザー散乱法50%体積平均粒径0.36μm)1000gとを混合し、プラネタリーミキサー(プライミックス社製)を用いて、回転数300rpmで30分間撹拌した。得られた混合物を、ディスパライザー(新東工業社製)を用いて、ギャップ50μm、回転数12000rpmの条件で1回分散処理して91質量%分散液を得た。
 分散媒の残りとしてジヒドロターピネオール(日本テルペン化学株式会社製)を0.169gと、還元剤としてテトラエチレングリコール(以下TEGと略す)(富士フイルム和光純薬株式会社製)0.240gと、ポリオール系化合物として、ポリエチレングリコール300(以下PEG300と略す)(富士フイルム和光純薬株式会社製)0.300g及びポリエチレングリコール400(以下PEG400と略す)(富士フイルム和光純薬株式会社製)0.300gと、還元助剤としてトリフェニルホスフィン(富士フイルム和光純薬株式会社製)0.173gと、上記で得られた91質量%分散液を13.538gと、マイクロ銅粒子として2L3N(福田金属箔粉工業株式会社製、製品名、レーザー散乱法50%体積平均粒径9.9μm)5.280gとを混合し、自公転ミキサー(シンキー製、あわとり練太郎 ARE-310)にて2000rpm、減圧下、3分間、撹拌して接合用金属ペーストを得た。
(実施例A-2)
 還元助剤をトリフェニルホスフィンに代えて亜リン酸トリイソプロピル(東京化成工業株式会社製)に変更した以外は実施例A-1と同様にして、接合用金属ペーストを得た。
(実施例A-3)
 還元助剤をトリフェニルホスフィンに代えて亜リン酸トリフェニル(富士フィルム和光純薬株式会社製)に変更した以外は実施例A-1と同様にして、接合用金属ペーストを得た。
(実施例A-4~実施例A-7)
 銅粒子、分散媒及び還元助剤の仕込み量を表1に示す割合(銅粒子の全質量100質量部に対して、還元助剤の質量が1.23質量部、0.98質量部、0.95質量部又は0.82質量部)に変更した以外は実施例A-1と同様にして、接合用金属ペーストをそれぞれ得た。
(実施例A-8~実施例A-10)
 銅粒子、分散媒及び還元剤の仕込み量を表2に示す割合(銅粒子の全質量100質量部に対して、還元助剤の質量が4.77質量部、3.26質量部又は2.31質量部)に変更した以外は実施例A-1と同様にして、接合用金属ペーストをそれぞれ得た。
(実施例A-11~実施例A-13)
 銅粒子、還元剤の仕込み量を表2に示す割合に変更した以外は実施例A-1と同様にして、接合用金属ペーストをそれぞれ得た。
(実施例A-14)
 還元剤をTEG、PEG300及びPEG400に代えてポリプロピレングリコール300(以下PPG300と略す)(富士フイルム和光純薬株式会社製、トリオール型)及びポリプロピレングリコール700(以下PPG700と略す)(富士フイルム和光純薬株式会社製、ジオール型)とし、銅粒子及び還元剤の仕込み量を表2に示す割合に変更した以外は実施例A-1と同様にして、接合用金属ペーストをそれぞれ得た。
(実施例A-15)
 還元助剤をトリフェニルホスフィンに代えて2,8,9-トリイソブチル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン(Sigma-Aldrich Chemistry社製)に変更し、分散媒、還元剤及び還元助剤の仕込み量を表3に示す割合(銅粒子の全質量100質量部に対して、還元助剤の質量が0.12質量部)に変更した以外は実施例A-1と同様にして、接合用金属ペーストを得た。
(実施例A-16)
 還元助剤をトリフェニルホスフィンに代えて2,8,9-トリイソブチル-2,5,8,9-テトラアザ-1-ホスファビシクロ[3.3.3]ウンデカン(Sigma-Aldrich Chemistry社製)に変更し、分散媒、還元剤及び還元助剤の仕込み量を表3に示す割合(銅粒子の全質量100質量部に対して、還元助剤の質量が0.30質量部)に変更した以外は実施例A-1と同様にして、接合用金属ペーストを得た。
(比較例A-1~比較例A-6)
 表4に示すように、還元助剤をトリフェニルホスフィンに代えて、ジメチルグルタル酸、ニトリロ三酢酸、アスコルビン酸、トリエタノールアミン、酒石酸ジエチル、又はグリシンとした以外は実施例A-1と同様にして、接合用金属ペーストをそれぞれ得た。
(比較例A-7)
 還元助剤を配合せず、分散媒の仕込み量を表4に示す割合に変更した以外は実施例A-1と同様にして、接合用金属ペーストを得た。
(比較例A-8~比較例A-10)
 銅粒子、分散媒及び還元剤の仕込み量を表5に示す割合(銅粒子の全質量100質量部に対して、還元助剤の質量が1.23質量部、0.98質量部、0.95質量部又は0.82質量部)に変更した以外は実施例A-1と同様にして、接合用金属ペーストをそれぞれ得た。
[接合用金属ペーストの評価]
 実施例及び比較例で得られた接合用金属ペーストを用いて、(1)ダイシェア強度に記載の方法に従って接合体を作製し、接合強度の評価を行った。結果を表中に示す。
 作製された接合体について、(2)焼結銅の接合断面に記載の方法に従って、銅焼結体の接合断面を観察した。図3は実施例1の接合用金属ペーストを用いて作製された接合体における銅焼結体の接合断面を示すSEM像であり、図4は比較例7の接合用金属ペーストを用いて作製された接合体における銅焼結体の接合断面を示すSEM像である。図3に示されるように、実施例1の接合用金属ペーストを用いて得られる接合体では、銅粒子が互いに焼結してネットワーク上の構造を形成している。また、このネットワーク構造は写真下部の被着体(銅基板)表面とも一体化しており、接合が形成されていると判断した。一方、図4の(a)に示されるように、比較例7の接合用金属ペーストを用いて得られる接合体では、原料粒子の形状がそのまま残り、粒子間が焼結しておらず、ネットワーク構造も形成されていない。そのため、図4の(b)に示されるように、チップ側の界面においては接合が形成されていない箇所が見られた。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
(実施例B-1)
 分散媒としてジヒドロターピネオール(日本テルペン化学株式会社製)98.9gと、サブマイクロ銅粒子としてCH-0200(三井金属社製、製品名、レーザー散乱法50%体積平均粒径0.36μm)1000gとを混合し、プラネタリーミキサー(プライミックス社製)を用いて、回転数300rpmで30分間撹拌した。得られた混合物を、ディスパライザー(新東工業社製)を用いて、ギャップ50μm、回転数12000rpmの条件で1回分散処理して91質量%分散液を得た。
 分散媒の残りとしてジヒドロターピネオール(日本テルペン化学株式会社製)を0.16g、還元剤としてテトラエチレングリコール(以下TEGと略す)(富士フイルム和光純薬株式会社製)0.12gと、ポリオール系化合物として、ポリエチレングリコール300(以下PEG300と略す)(富士フイルム和光純薬株式会社製)0.18g及びポリエチレングリコール400(以下PEG400と略す)(富士フイルム和光純薬株式会社製)0.12gと、還元助剤としてリン酸トリエチル(富士フイルム和光純薬株式会社製)を0.05gと、上記で得られた91質量%分散液を6.38gと、マイクロ銅粒子として、2L3N(福田金属箔粉工業株式会社製、製品名、レーザー散乱法50%体積平均粒径9.9μm)2.73g及びC3(福田金属箔粉工業株式会社製、製品名、レーザー散乱法50%体積平均粒径37μm)0.26gとを混合し、自公転ミキサー(シンキー製、あわとり練太郎 ARE-310)にて2000rpm、減圧下、3分間、撹拌して接合用金属ペーストを得た。
(実施例B-2)
 分散媒及び還元助剤の仕込み量を表6に示す割合(銅粒子の全質量100質量部に対して、還元助剤の質量が0.98質量部)に変更した以外は実施例B-1と同様にして、接合用金属ペーストをそれぞれ得た。
(実施例B-3)
 分散媒及び還元助剤の仕込み量を表6に示す割合(銅粒子の全質量100質量部に対して、還元助剤の質量が1.64質量部)に変更した以外は実施例B-1と同様にして、接合用金属ペーストをそれぞれ得た。
(実施例B-4)
 還元助剤をリン酸トリエチルに代えてリン酸トリス(2-ブトキシエチル)(富士フイルム和光純薬株式会社製)を用い、還元助剤の仕込み量を表6に示す割合(銅粒子の全質量100質量部に対して、還元助剤の質量が0.98質量部)に変更した以外は実施例B-1と同様にして、接合用金属ペーストを得た。
(比較例B-1)
 還元助剤を配合せず、分散媒の仕込み量を表6に示す割合に変更した以外は実施例B-1と同様にして、接合用金属ペーストを得た。
Figure JPOXMLDOC01-appb-T000015
1…第一の部材、1a…第一の基部、1b…第一の金属層、2…焼結体、3…第二の部材、3a…第二の基部、3b…第二の金属層、4…半導体素子、4a…半導体素子の基部、4b…半導体素子の金属層、5…リードフレーム、5a…基部、5b…金属層、6…モールドレジン、7…ワイヤ、8…リードフレーム、8a…基部、8b…金属層、100…接合体、200…半導体装置。

Claims (10)

  1.  金属粒子と、分散媒と、還元剤と、還元助剤と、を含み、
     前記金属粒子が、銅粒子を含有し、
     前記還元助剤が、電子逆供与性を有する配位性化合物を含み、当該配位性化合物が有機リン化合物及び有機硫黄化合物からなる群より選択される少なくとも一種であり、
     前記還元剤として、ポリオール系化合物を、前記銅粒子の全質量100質量部に対して、1.6質量部以上10質量部以下含有する、接合用金属ペースト。
  2.  前記配位性化合物が、孤立電子対と空位のπ電子軌道とを有する、請求項1に記載の接合用金属ペースト。
  3.  前記配位性化合物が、下記式(1)で表される有機リン化合物及び下記式(2)で表される有機リン化合物からなる群より選択される少なくとも一種である、請求項1に記載の接合用金属ペースト。
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R、R及びRはそれぞれ独立に、1価の有機基又は-OR(Rは1価の有機基を示す)を示し、R、R及びRが環をなしていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式(2)中、R、R及びRはそれぞれ独立に、1価の有機基又は-OR(Rは1価の有機基を示す)を示し、R、R及びRのうちの1つ以上が-OR(Rは1価の有機基を示す)である。]
  4.  前記還元助剤の含有量が、前記銅粒子の全質量100質量部に対して、0.5質量部以上10質量部以下である、請求項1に記載の接合用金属ペースト。
  5.  前記銅粒子が、体積平均粒径が0.15μm以上0.8μm以下であるサブマイクロ銅粒子と、体積平均粒径が2μm以上50μm以下であるマイクロ銅粒子とを含み、
     前記サブマイクロ銅粒子の含有量及び前記マイクロ銅粒子の含有量の合計が、前記金属粒子の全質量を基準として、80質量%以上であり、
     前記サブマイクロ銅粒子の含有量が、前記サブマイクロ銅粒子の質量及び前記マイクロ銅粒子の質量の合計を基準として、30質量%以上90質量%以下である、請求項1に記載の接合用金属ペースト。
  6.  前記マイクロ銅粒子が、フレーク状である、請求項5に記載の接合用金属ペースト。
  7.  第一の部材、請求項1~6のいずれか一項に記載の接合用金属ペースト、及び第二の部材がこの順に積層されている積層体を用意する工程と、
     前記積層体における前記接合用金属ペーストを焼結する焼結工程と、
    を備える、接合体の製造方法。
  8.  前記焼結工程が、無酸素雰囲気中、無加圧の条件で前記接合用金属ペーストを焼結する、請求項7に記載の接合体の製造方法。
  9.  前記第一の部材及び前記第二の部材の少なくとも一方が半導体素子である、請求項7に記載の接合体の製造方法。
  10.  第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する、請求項1~6のいずれか一項に記載の接合用金属ペーストの焼結体と、を備える、接合体。
PCT/JP2022/026625 2021-07-06 2022-07-04 接合用金属ペースト、並びに接合体及びその製造方法 WO2023282235A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22837650.5A EP4368317A1 (en) 2021-07-06 2022-07-04 Metal paste for joining, joint, and manufacturing method therefor
CN202280057605.7A CN117916038A (zh) 2021-07-06 2022-07-04 接合用金属膏、以及接合体及其制造方法
JP2023533124A JPWO2023282235A1 (ja) 2021-07-06 2022-07-04
KR1020247003033A KR20240032878A (ko) 2021-07-06 2022-07-04 접합용 금속 페이스트, 및 접합체 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-112199 2021-07-06
JP2021112199 2021-07-06

Publications (1)

Publication Number Publication Date
WO2023282235A1 true WO2023282235A1 (ja) 2023-01-12

Family

ID=84800624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026625 WO2023282235A1 (ja) 2021-07-06 2022-07-04 接合用金属ペースト、並びに接合体及びその製造方法

Country Status (6)

Country Link
EP (1) EP4368317A1 (ja)
JP (1) JPWO2023282235A1 (ja)
KR (1) KR20240032878A (ja)
CN (1) CN117916038A (ja)
TW (1) TW202320937A (ja)
WO (1) WO2023282235A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247800B2 (ja) 2006-11-29 2009-04-02 ニホンハンダ株式会社 可塑性を有する焼結性金属粒子組成物、その製造方法、接合剤および接合方法
JP2011252194A (ja) * 2010-06-01 2011-12-15 Murata Mfg Co Ltd 金属粉末とその製造方法および金属粉末を用いた導電性ペーストとそれを用いた積層セラミック電子部品
JP5006081B2 (ja) 2007-03-28 2012-08-22 株式会社日立製作所 半導体装置、その製造方法、複合金属体及びその製造方法
JP2013115004A (ja) * 2011-11-30 2013-06-10 Nippon Parkerizing Co Ltd 水系銅ペースト材料及び導電層の形成方法
JP2020020015A (ja) * 2018-08-02 2020-02-06 日立化成株式会社 接合用金属ペースト、接合体及び接合体の製造方法
WO2020032161A1 (ja) * 2018-08-08 2020-02-13 三井金属鉱業株式会社 接合用組成物、並びに導電体の接合構造及びその製造方法
JP2021048396A (ja) * 2015-09-07 2021-03-25 昭和電工マテリアルズ株式会社 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506081B1 (ja) 1970-12-09 1975-03-11

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4247800B2 (ja) 2006-11-29 2009-04-02 ニホンハンダ株式会社 可塑性を有する焼結性金属粒子組成物、その製造方法、接合剤および接合方法
JP5006081B2 (ja) 2007-03-28 2012-08-22 株式会社日立製作所 半導体装置、その製造方法、複合金属体及びその製造方法
JP2011252194A (ja) * 2010-06-01 2011-12-15 Murata Mfg Co Ltd 金属粉末とその製造方法および金属粉末を用いた導電性ペーストとそれを用いた積層セラミック電子部品
JP2013115004A (ja) * 2011-11-30 2013-06-10 Nippon Parkerizing Co Ltd 水系銅ペースト材料及び導電層の形成方法
JP2021048396A (ja) * 2015-09-07 2021-03-25 昭和電工マテリアルズ株式会社 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
JP2020020015A (ja) * 2018-08-02 2020-02-06 日立化成株式会社 接合用金属ペースト、接合体及び接合体の製造方法
WO2020032161A1 (ja) * 2018-08-08 2020-02-13 三井金属鉱業株式会社 接合用組成物、並びに導電体の接合構造及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KATSUHIRO UEDASUMIO INAFUKUIWAO MORI, CHEMISTRY AND EDUCATION, vol. 40, no. 2, 1992, pages 114 - 117
R. KHAZAKAL. MENDIZABALD. HENRY, J., vol. 43, no. 7, 2014, pages 2459 - 2466
T. MORITAY YASUDA, MATERIALS TRANSACTIONS, vol. 56, no. 6, 2015, pages 878 - 882

Also Published As

Publication number Publication date
EP4368317A1 (en) 2024-05-15
CN117916038A (zh) 2024-04-19
TW202320937A (zh) 2023-06-01
KR20240032878A (ko) 2024-03-12
JPWO2023282235A1 (ja) 2023-01-12

Similar Documents

Publication Publication Date Title
JP7359267B2 (ja) 接合用銅ペースト、接合体の製造方法及び半導体装置の製造方法
TWI743112B (zh) 接合用銅糊、接合體、半導體裝置及其製造方法
TWI694558B (zh) 接合體及半導體裝置
JP7279639B2 (ja) 接合体の製造方法及び接合材
JP6782416B2 (ja) 接合用銅ペースト、接合体及びその製造方法、並びに半導体装置及びその製造方法
JP6907540B2 (ja) 接合用銅ペースト、焼結体、接合体、半導体装置及びそれらの製造方法
WO2021066026A1 (ja) 接合用銅ペースト、接合体の製造方法及び接合体
WO2021064826A1 (ja) 接合用銅ペースト、接合体の製造方法及び接合体
WO2023282235A1 (ja) 接合用金属ペースト、並びに接合体及びその製造方法
JP7107355B2 (ja) 無加圧接合用銅ペースト、接合体、及び半導体装置
WO2023282229A1 (ja) 接合用金属ペースト、並びに接合体及びその製造方法
JP7468358B2 (ja) 接合体及び半導体装置の製造方法、並びに接合用銅ペースト
JP2022088924A (ja) 接合用金属ペースト、接合体、半導体装置、及び接合体の製造方法
JP2021057466A (ja) 接合体の製造方法及び接合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533124

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247003033

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022837650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022837650

Country of ref document: EP

Effective date: 20240206

WWE Wipo information: entry into national phase

Ref document number: 202280057605.7

Country of ref document: CN