WO2023281896A1 - 浮体 - Google Patents

浮体 Download PDF

Info

Publication number
WO2023281896A1
WO2023281896A1 PCT/JP2022/018012 JP2022018012W WO2023281896A1 WO 2023281896 A1 WO2023281896 A1 WO 2023281896A1 JP 2022018012 W JP2022018012 W JP 2022018012W WO 2023281896 A1 WO2023281896 A1 WO 2023281896A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
ammonia
floating body
compartment
damper
Prior art date
Application number
PCT/JP2022/018012
Other languages
English (en)
French (fr)
Inventor
大祐 山田
秀明 櫻井
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Priority to EP22837317.1A priority Critical patent/EP4368488A1/en
Priority to KR1020247000039A priority patent/KR20240016407A/ko
Priority to CN202280046687.5A priority patent/CN117580761A/zh
Publication of WO2023281896A1 publication Critical patent/WO2023281896A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B13/00Conduits for emptying or ballasting; Self-bailing equipment; Scuppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/02Ventilation; Air-conditioning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/02Ventilation; Air-conditioning
    • B63J2/06Ventilation; Air-conditioning of engine rooms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/02Ventilation; Air-conditioning
    • B63J2/08Ventilation; Air-conditioning of holds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/02Ventilation; Air-conditioning
    • B63J2/10Ventilating-shafts; Air-scoops

Definitions

  • Patent Document 1 a closed duct that communicates with the compartment is provided, water is sprayed in this duct, ammonia is absorbed by water in the duct, and a negative pressure is created in the compartment, thereby releasing ammonia to the outside of the compartment. leakage is prevented.
  • the floating body according to the present disclosure includes a floating body body, a compartment provided in the floating body body for housing ammonia-related equipment inside, and a duct connected to the compartment to communicate the inside of the compartment with the outside of the compartment.
  • an exhaust fan for discharging air inside the compartment to the outside of the compartment via the duct;
  • an absorbent supply line for supplying an absorbent capable of absorbing ammonia;
  • an ammonia removing unit capable of removing ammonia contained in the air discharged by the exhaust fan through a duct by being absorbed by the absorbing liquid supplied through the absorbing liquid supply line;
  • an absorbent discharge line for discharging the absorbent with ammonia absorbed into the water surrounding the floating body.
  • FIG. 1 is a side view of a floating body according to a first embodiment of the present disclosure
  • FIG. 1 is a diagram showing a schematic configuration of an ammonia removal system according to a first embodiment of the present disclosure
  • FIG. 1 is a block diagram showing a schematic configuration of a control device according to a first embodiment of the present disclosure
  • FIG. It is a functional block diagram of the said control apparatus.
  • 4 is a flowchart of ammonia removal processing in the first embodiment of the present disclosure
  • FIG. 3 is a diagram corresponding to FIG. 2 in the second embodiment of the present disclosure; It is a functional block diagram of the said control apparatus.
  • FIG. 3 is a diagram corresponding to FIG. 2 in the third embodiment of the present disclosure; It is a functional block diagram of the said control apparatus.
  • FIG. 4 is a flowchart of ammonia removal processing in an embodiment of the present disclosure
  • FIG. 3 is a diagram corresponding to FIG. 2 in the fourth embodiment of the present disclosure
  • FIG. 3 is a diagram corresponding to FIG. 2 in a first modified example of each embodiment of the present disclosure
  • FIG. 5 is an enlarged view of a scrubber in a second modified example of each embodiment of the present disclosure
  • FIG. 1 is a side view of a floating body according to the first embodiment of the present disclosure
  • FIG. Structure of floating body
  • the floating body 1 of this embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, a piping system 20, a compartment 30, an ammonia removal system 40, It has Note that the floating body 1 of the present embodiment will be described as an example of a vessel that can be navigated by a main engine or the like.
  • the ship type of the floating body 1 is not limited to a specific ship type. Examples of ship types of the floating body 1 include liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships.
  • the floating body body 2 has a pair of shipboard sides 5A and 5B and a ship bottom 6 that form its outer shell.
  • the shipboard sides 5A, 5B are provided with a pair of shipboard skins forming the starboard and port sides, respectively.
  • the ship's bottom 6 includes a ship's bottom shell plate that connects the sides 5A and 5B.
  • the pair of sides 5A and 5B and the ship bottom 6 form a U-shaped outer shell of the floating body 2 in a cross section perpendicular to the fore-aft direction FA.
  • the floating body body 2 further includes an upper deck 7 which is a through deck arranged in the uppermost layer.
  • the superstructure 4 is formed on this upper deck 7 .
  • a living quarter and the like are provided in the upper structure 4 .
  • a cargo space (not shown) for loading cargo is provided on the bow 3a side in the fore-aft direction FA from the superstructure 4. As shown in FIG.
  • the combustion device 8 is a device that generates thermal energy by burning fuel, and is provided inside the floating body main body 2 described above.
  • Examples of the combustion device 8 include an internal combustion engine used as a main engine for propelling the floating body 1, an internal combustion engine used for power generation equipment that supplies electricity to the ship, a boiler that generates steam as a working fluid, and the like.
  • the combustion device 8 of the present embodiment uses ammonia (hereinafter referred to as fuel ammonia) as fuel.
  • the ammonia tank 10 stores liquefied ammonia as fuel ammonia.
  • the ammonia tank 10 is installed on the upper deck 7 on the stern 3b side of the superstructure 4. As shown in FIG.
  • the arrangement of the ammonia tank 10 is an example, and is not limited to the upper deck 7 on the stern 3b side of the superstructure 4.
  • the piping system 20 connects the combustion device 8 and the ammonia tank 10 .
  • the compartment 30 is a compartment that houses ammonia-related equipment.
  • the compartment 30 in this embodiment is provided on the upper deck 7 on the bow 3 a side of the superstructure 4 .
  • the piping system 20 described above connects the combustion device 8 and the ammonia tank 10 via the section 30 .
  • the above ammonia-related equipment means equipment that handles ammonia in general, and examples thereof include ammonia fuel equipment that handles fuel ammonia and ammonia cargo equipment that handles ammonia as cargo.
  • compartment 30 containing ammonia-fueled equipment it may be compartment 30 containing ammonia cargo equipment.
  • the section 30 of the present embodiment is a fuel supply device room and houses ammonia fuel equipment that constitutes part of the piping system 20 .
  • Ammonia fuel equipment housed in the fuel supply device chamber includes, for example, a pump for pumping ammonia from the ammonia tank 10 to the combustion device 8, a heater for heating the ammonia sent to the combustion device 8, an electric valve, and the like. I can give an example.
  • the section 30 housing the ammonia fuel equipment is not limited to the ammonia fuel supply device room.
  • the section 30 housing ammonia fuel equipment may be, for example, an ammonia fuel pressure regulation valve chamber, an ammonia fuel intake chamber (in other words, a bunker station), or the like.
  • FIG. 2 is a diagram showing a schematic configuration of an ammonia removal system according to the first embodiment of the present disclosure.
  • the ammonia removal system 40 of the present embodiment includes a duct 41, an exhaust fan 42, an absorbent supply line 43, a scrubber (ammonia removal section) 44, an absorbent discharge line 45, and a compartment.
  • An internal sensor 46 , a discharge line sensor 47 and a controller 48 are provided.
  • the duct 41 is connected to the compartment 30.
  • Duct 41 communicates the inside of section 30 with the outside of section 30 .
  • the duct 41 of this embodiment has a first end 41a connected to the compartment 30 and a second end 41b connected to the scrubber 44, the interior space of the compartment 30 and the interior of the scrubber 44. It communicates with space. That is, the duct 41 forms a flow path that guides the air in the compartment 30 that has flowed in from the first end 41a into the scrubber 44 from the second end 41b.
  • the duct 41 of this embodiment is configured so that air does not flow out from any part other than the first end 41a and the second end 41b.
  • the exhaust fan 42 exhausts the air inside the section 30 to the outside of the section 30 via the duct 41 .
  • the exhaust fan 42 of the present embodiment blows air from the first end 41a of the duct 41 toward the second end 41b, thereby discharging the air inside the section 30 to the scrubber 44 outside the section 30. .
  • the exhaust fan 42 is provided in the duct 41 .
  • the exhaust fan 42 of this embodiment is a variable speed fan capable of adjusting the air volume, and is controlled by a control device 48 which will be described later.
  • the exhaust fan 42 in the present embodiment is provided in the duct 41 near the first end 41a, the arrangement of the exhaust fan 42 is not limited to the arrangement described above.
  • the absorbent supply line 43 supplies an absorbent capable of absorbing ammonia.
  • the absorbent include seawater, fresh water, and seawater and fresh water treated to be acidic.
  • the absorbent supply line 43 has a pump 49 for pumping the absorbent.
  • the absorbent supply line 43 of the present embodiment supplies water around the floating body 2 (for example, seawater) as the absorbent.
  • the scrubber 44 is arranged outside the compartment 30 . In the present embodiment, the case of being arranged in the vicinity of the section 30 is shown.
  • the scrubber 44 is configured to be able to remove ammonia contained in the air discharged through the duct 41 by the exhaust fan 42 by absorbing it in the absorbent supplied through the absorbent supply line 43 . In other words, if the air in the compartment 30 contains vaporized ammonia, the scrubber 44 removes the ammonia from the ammonia-laden air sent through the duct 41 .
  • the scrubber 44 has a nozzle portion 50 for spraying the absorbing liquid.
  • the nozzle part 50 is arranged above the internal space of the scrubber 44 .
  • the absorbent sprayed from the nozzle portion 50 contacts the air supplied to the scrubber 44 through the duct 41 while moving downward due to its own weight. Due to this contact, the ammonia contained in the air is absorbed by the absorbent and stored in the lower portion of the scrubber 44 .
  • the second end portion 41b of the duct 41 described above is connected to the scrubber 44 below the nozzle portion 50.
  • the position of the second end portion 41b in the vertical direction may be below the liquid level of the absorbing liquid stored in the lower portion of the internal space.
  • the absorbing liquid discharge line 45 discharges the absorbing liquid, which has absorbed ammonia in the scrubber 44, into the surrounding water on which the floating body 2 floats.
  • the absorbent discharge line 45 in the present embodiment has a first end 45a connected to the scrubber 44, and a second end connected to the ship's bottom 6 and the sides 5A and 5B below the light draft of the floating body 2. 45b and .
  • a first end 45a of the absorbent discharge line 45 is connected to the lowest part of the scrubber 44 .
  • the internal pressure of the scrubber 44 in this embodiment is increased by blowing air from the exhaust fan 42 .
  • this pressure is used to release the absorbent that has absorbed the ammonia stored in the lower portion of the scrubber 44 into the water outside the floating body main body 2 through the absorbent discharge line 45.
  • what is discharged into the water outside the floating body body 2 via the absorbent discharge line 45 is not limited to the absorbent stored in the lower portion of the scrubber 44 .
  • the air in the scrubber 44 is also discharged into the water outside the floating body 2 through the absorbent discharge line 45 .
  • the scrubber 44 of this embodiment includes an atmospheric discharge line 57 and an opening/closing damper 58 .
  • the atmosphere release line 57 is connected to, for example, a vent pipe (not shown) provided in the floating body body 2, and is configured to allow the air that has flowed into the scrubber 44 through the duct 41 to be released to the atmosphere. .
  • the opening/closing damper 58 opens and closes the atmospheric release line 57 .
  • the opening/closing damper 58 of the scrubber 44 in the first embodiment is normally closed.
  • the opening/closing damper 58 can be opened, for example, when the ventilation exhaust fan 56, which will be described later, cannot be used due to maintenance or the like. In this way, the compartment 30 can be ventilated using the air discharge line 57 instead of the ventilation exhaust duct 54 when the ventilation exhaust fan 56 cannot be used.
  • the compartment sensor 46 detects ammonia contained in the air inside the compartment 30 (specifically, the concentration of ammonia).
  • the intrazone sensor 46 of the present embodiment outputs information on the detection result to the control device 48 .
  • the release line sensor 47 detects ammonia contained in the fluid flowing through the absorbent release line 45 (specifically, ammonia concentration).
  • the release line sensor 47 of the present embodiment outputs information on the detection result to the control device 48 in the same manner as the intra-section sensor 46 .
  • a display device such as a display for displaying the detection result of the intra-zone sensor 46 and the detection result of the release line sensor 47 may be provided.
  • a ventilation supply air duct 53 for ventilating the inside of the section 30 and a ventilation exhaust duct 54 are connected to the section 30 of the first embodiment described above.
  • a ventilation supply damper 55 is attached to the ventilation supply air duct 53
  • a ventilation exhaust fan 56 and a ventilation exhaust damper 59 are attached to the ventilation exhaust duct 54 .
  • Both the ventilation supply air duct 53 and the ventilation exhaust duct 54 communicate between the inside of the section 30 and the outside of the floating body 2 .
  • the ventilation supply air damper 55 adjusts the flow rate of the air flowing through the ventilation supply air duct 53 .
  • the ventilation supply air duct 53 in this embodiment is controlled by the control device 48 .
  • the ventilation exhaust fan 56 sends out the air in the compartment 30 through the ventilation exhaust duct 54 and the ventilation exhaust damper 59 .
  • the ventilation exhaust damper 59 adjusts the flow rate of the fluid (gas) flowing through the ventilation exhaust duct 54 .
  • the ventilation supply air duct 53 of the present embodiment is located on the opposite side of the lower part of the section 30 with respect to the position of the first end 41a of the duct 41 connected to the ceiling of the section 30 (in other words, vertically symmetrical). position). Thereby, the air in the section 30 can be efficiently discharged from the section 30 through the duct 41 .
  • a ventilation exhaust damper (not shown) that opens and closes the ventilation exhaust duct 54 is provided to operate the ventilation exhaust fan. Along with the stop of 56, the ventilation exhaust duct 54 may be closed.
  • Controller 48 controls ammonia removal system 40 . More specifically, the control device 48 determines whether or not ammonia leakage has occurred based on the detection result of the intra-zone sensor 46 . The control device 48 operates the exhaust fan 42 when it is determined by this determination that ammonia leakage has occurred. On the other hand, the control device 48 stops the exhaust fan 42 when it is determined that no ammonia leakage has occurred. Furthermore, when it is determined that ammonia leakage has occurred in the compartment 30 based on the detection result of the compartment sensor 46, the control device 48 operates the exhaust fan 42 and detects the discharge line sensor 47. Based on the result, the air volume of the exhaust fan 42 is adjusted.
  • control device 48 of the present embodiment stops the pump 49 and stops the supply of the absorbent through the absorbent supply line 43.
  • the pump 49 is driven to supply the absorbent to the scrubber 44 through the absorbent supply line 43 .
  • FIG. 3 is a block diagram showing a schematic configuration of a control device according to the first embodiment of the present disclosure
  • the control device 48 is a computer having a CPU 61 (Central Processing Unit), ROM 62 (Read Only Memory), RAM 63 (Random Access Memory), HDD 64 (Hard Disk Drive), and signal transmission/reception module 65 .
  • the signal transmission/reception module 65 receives detection signals from the intra-section sensor 46 and the emission line sensor 47 .
  • the signal transmission/reception module 65 also transmits control signals for controlling the exhaust fan 42, the pump 49, and the like.
  • FIG. 4 is a functional block diagram of the control device.
  • the CPU 61 of the control device 48 executes programs stored in advance in the HDD 64, ROM 62, etc. to control the signal receiving unit 71, the exhaust fan control unit 72, the pump control unit 73, the ventilation exhaust damper control unit 75, and the ventilation air supply.
  • Each functional configuration of a damper control unit 76, a ventilation exhaust fan control unit 77, and a command signal output unit 78 is realized.
  • the signal receiver 71 receives detection signals from the intra-section sensor 46 and the emission line sensor 47 via the signal transmission/reception module 65 .
  • the exhaust fan controller 72 controls the operation, stop, and air volume of the exhaust fan 42 based on the detection signal of the intra-zone sensor 46 and the detection signal of the discharge line sensor 47 received by the signal receiver 71 .
  • the pump control unit 73 controls the operation and stop of the pump 49 based on detection signals from one or both of the intra-compartment sensor 46 and the discharge line sensor 47 . It should be noted that the pump 49 may be stopped manually by the operator.
  • the ventilation supply air damper control section 76 controls the opening degree of the ventilation supply air damper 55 based on the detection signal of the intra-section sensor 46 . Specifically, when it is determined that ammonia leakage has occurred in the section 30, the ventilation supply air damper control unit 76 controls the ventilation supply air damper 55 so that the inside of the section 30 is maintained at a negative pressure. to control the opening of the The ventilation exhaust fan control unit 77 controls the operation and stop of the ventilation exhaust fan 56 based on the detection signal of the intra-zone sensor 46 .
  • the ventilation exhaust damper control unit 75 controls the opening degree (for example, opening/closing) of the ventilation exhaust damper 59 based on the detection signal of the intra-zone sensor 46 .
  • the command signal output unit 78 controls the exhaust fan control unit 72 , the pump control unit 73 , the ventilation exhaust damper control unit 75 , the ventilation supply air damper control unit 76 , and the ventilation exhaust fan control unit 77 to control the exhaust air.
  • a command signal is output to each of the fan 42 , the pump 49 , the ventilation supply air damper 55 and the ventilation exhaust fan 56 .
  • FIG. 5 is a flowchart of ammonia removal processing in the first embodiment of the present disclosure.
  • the operation of the control device 48 when removing the ammonia in the compartment 30 of the floating body 1 will be described with reference to the flow chart of FIG.
  • the exhaust fan control unit 72 and the pump control unit 73 of the control device 48 determine whether or not the ammonia concentration in the compartment 30 is equal to or higher than a predetermined first threshold based on the detection result of the compartment sensor 46 (step S01). If it is determined that the ammonia concentration in the section 30 is not equal to or higher than the first threshold value, there is no ammonia leakage in the section 30, so the exhaust fan 42 and the pump 49 are stopped (step S05).
  • the exhaust fan control unit 72 starts operating the exhaust fan 42 because ammonia is leaking in the section 30. Then, the pump control unit 73 starts operating the pump 49 (step S02). As a result, the air and the absorbent in the section 30 are supplied to the scrubber 44, respectively, and the ammonia in the air is absorbed by the absorbent.
  • the ventilation exhaust fan 56 is stopped, the ventilation exhaust damper 59 is closed, and the section 30 has a predetermined The opening degree of the ventilation supply air damper 55 is adjusted so that the negative pressure is maintained.
  • the exhaust fan control unit 72 of the control device 48 determines whether or not the ammonia concentration of the absorbent flowing through the absorbent discharge line 45 is equal to or higher than the second threshold based on the detection result of the discharge line sensor 47 (step S03 ). In this determination, it is determined whether or not the ammonia concentration of the absorbing liquid discharged to the outside of the floating body body 2 through the absorbing liquid discharge line 45 satisfies, for example, regulations regarding sea discharge. As a result of this determination, when it is determined that the ammonia concentration of the absorbent flowing through the absorbent discharge line 45 is not equal to or higher than the second threshold value, the process returns to step S01 (return).
  • the air volume of the exhaust fan 42 is reduced by a predetermined amount, and the process returns to step S03. That is, the air volume of the exhaust fan 42 is decreased until the concentration of ammonia in the absorbent flowing through the absorbent discharge line 45 becomes less than a predetermined value.
  • the floating body 1 of the first embodiment includes a floating body body 2, a compartment 30 that is provided in the floating body body 2 and accommodates ammonia-related equipment inside, and a compartment 30 that is connected to the compartment 30 and the compartment 30 outside.
  • an exhaust fan 42 for discharging the air inside the section 30 to the outside of the section 30 via the duct 41; an absorbent supply line 43 for supplying an absorbent capable of absorbing ammonia; and a scrubber 44 that can remove ammonia contained in the air discharged by the exhaust fan 42 through the duct 41 by absorbing it with the absorbent supplied by the absorbent supply line 43, and at least the scrubber 44 and an absorbing liquid discharge line 45 for discharging the absorbing liquid in which the ammonia is absorbed in the floating body main body 2 into the surrounding water on which the floating body body 2 floats.
  • the air containing ammonia that has leaked into the compartment 30 and vaporized can be introduced into the scrubber 44 via the duct 41 to remove the ammonia.
  • the absorbent that has absorbed ammonia in the scrubber 44 is discharged into the water through the absorbent discharge line 45, the ammonia contained in the absorbent is re-vaporized and discharged into the atmosphere and comes into contact with the operator. can be suppressed.
  • the absorbent that has absorbed ammonia does not remain inside the floating body body 2, contact between the absorbent that has absorbed ammonia and the operator can be suppressed. Therefore, it is possible to prevent the worker from coming into contact with ammonia without causing the equipment in the section 30 to be flooded.
  • the floating body 1 of the first embodiment further includes an intra-zone sensor 46 capable of detecting ammonia contained in the air inside the compartment 30 . This makes it possible to detect ammonia leakage in the compartment 30 based on the detection result of the compartment sensor 46 . Therefore, it is possible to operate the exhaust fan 42 to remove the ammonia only when the ammonia leaks in the section 30, thereby saving energy.
  • the floating body 1 of the first embodiment further includes a release line sensor 47 capable of detecting ammonia contained in the fluid flowing through the absorbent release line 45 .
  • a release line sensor 47 capable of detecting ammonia contained in the fluid flowing through the absorbent release line 45 .
  • the exhaust fan 42 of the floating body 1 of the first embodiment is a variable speed fan capable of adjusting the air volume.
  • the absorbent discharge line 45 can be removed by reducing the air volume of the exhaust fan 42 according to the ammonia concentration. Ammonia concentration in the flowing fluid can be reduced.
  • the floating body 1 of the first embodiment determines whether ammonia leakage has occurred based on the detection result of the compartment sensor 46, and when it is determined that ammonia leakage has occurred, the exhaust fan 42 is turned on. It has a control device 48 for activating it. By doing so, the ammonia that has leaked into the compartment 30 can be automatically removed by the control device 48 .
  • control device 48 of the first embodiment operates the exhaust fan 42 when it is determined that the ammonia leakage has occurred, and based on the detection result of the release line sensor 47, the air volume of the exhaust fan 42 are regulating. By doing so, the control device 48 can automatically prevent the concentration of ammonia contained in the fluid flowing through the absorbent discharge line 45 from exceeding the regulation value.
  • the control device 48 of the first embodiment further includes a ventilation exhaust fan 56 and a ventilation exhaust damper 59 that discharge the air inside the compartment 30 to the outside of the floating body 2 .
  • a ventilation exhaust fan 56 and a ventilation exhaust damper 59 that discharge the air inside the compartment 30 to the outside of the floating body 2 .
  • FIG. 6 is a diagram corresponding to FIG. 2 in the second embodiment of the present disclosure.
  • the floating body 1 of the second embodiment includes a floating body body 2 , an upper structure 4 , a combustion device 8 , an ammonia tank 10 , a piping system 20 , a section 30 and an ammonia removal system 240 .
  • the ammonia removal system 240 includes a duct 41, an exhaust fan 242, an absorbent supply line 43, a scrubber (ammonia removal section) 44, an absorbent discharge line 45, and an intra-zone sensor 46. , a discharge line sensor 47 , a circulation duct 81 , a duct damper 82 , a circulation duct damper 83 and a controller 248 .
  • the exhaust fan 242 exhausts the air inside the section 30 to the outside of the section 30 through the duct 41 .
  • the exhaust fan 242 is provided on the side of the duct 41 closer to the first end 41a.
  • the exhaust fan 242 of the present embodiment is a constant-speed rotation fan that maintains a constant flow rate during steady operation.
  • a control device 248 controls switching between activation and deactivation of the exhaust fan 242 .
  • the circulation duct 81 is branched and connected to the duct 41 that communicates the section 30 and the scrubber 44 .
  • the circulation duct 81 forms a flow path for returning the air flowing through the duct 41 to the compartment 30 .
  • a circulation duct 81 branches off from the duct 41 between the exhaust fan 242 and the scrubber 44 .
  • the duct damper 82 is provided in the duct 41.
  • the duct damper 82 can adjust the flow rate of air flowing through the duct 41 .
  • the duct damper 82 is arranged closer to the scrubber 44 than the branch point P ⁇ b>1 of the circulation duct 81 .
  • the duct damper 82 of this embodiment is controlled by the controller 248 .
  • the circulation duct damper 83 is provided in the circulation duct 81.
  • the circulation duct damper 83 can adjust the flow rate of air flowing through the circulation duct 81 .
  • the circulation duct damper 83 of this embodiment is controlled by the controller 248 .
  • Controller 248 controls ammonia removal system 240 . More specifically, the control device 248 determines whether ammonia leakage has occurred based on the detection result of the intra-zone sensor 46 . When the control device 248 determines that no ammonia leakage has occurred, the control device 248 stops the exhaust fan 242 without operating it. The exhaust fan 242 may be operated all the time. In this case, when it is determined that no ammonia leakage occurs, the duct damper 82 is closed and the circulation duct damper 83 is opened. can be set to
  • control device 248 activates the exhaust fan 242 and the pump 49 when it is determined that ammonia leakage has occurred. Furthermore, the control device 248 controls the duct damper 82 and the circulation duct damper 83 based on the detection result of the discharge line sensor 47 . More specifically, based on the detection result of the discharge line sensor 47, the control device 248 controls the flow rate of the air flowing through the duct 41 and the flow rate of the air flowing through the circulation duct 81 by the duct damper 82 and the circulation duct damper 83. to adjust the In other words, a portion of the air pumped by exhaust fan 242 is returned to compartment 30 to regulate the flow of air into scrubber 44 . Since the hardware configuration of the control device 248 of the second embodiment is the same as that of the first embodiment, detailed description will be omitted.
  • FIG. 7 is a functional block diagram of the control device.
  • the CPU 61 of the control device 248 executes programs stored in the HDD 64, ROM 62, etc. in advance to control the signal receiving unit 71, the exhaust fan control unit 272, the pump control unit 73, the ventilation exhaust damper control unit 75, and the ventilation air supply.
  • Each functional configuration of a damper control unit 76, a ventilation exhaust fan control unit 77, a command signal output unit 278, a duct damper control unit 79, and a circulation duct damper control unit 80 is realized.
  • the signal receiving unit 71, the pump control unit 73, the ventilation exhaust damper control unit 75, the ventilation supply air damper control unit 76, and the ventilation exhaust fan control unit 77 are the same as the control device 48 of the first embodiment described above. It is the same.
  • the exhaust fan controller 272 controls the operation and stop of the exhaust fan 242 based on the detection signal of the intra-zone sensor 46 and the detection signal of the release line sensor 47 received by the signal receiver 71 .
  • the duct damper control section 79 controls the opening degree of the duct damper 82 based on the detection result of the discharge line sensor 47 .
  • the circulation duct damper controller 80 controls the opening of the circulation duct damper 83 according to one or both of the opening of the duct damper 82 by the duct damper controller 79 and the detection result of the discharge line sensor 47 .
  • the circulation duct damper control unit 80 controls the opening degree of the circulation duct damper 83 so that the flow rate of the air flowing through the duct 41 corresponds to the opening degree of the duct damper 82 .
  • the command signal output unit 278 includes the exhaust fan control unit 272, the pump control unit 73, the ventilation exhaust damper control unit 75, the ventilation supply air damper control unit 76, the ventilation exhaust fan control unit 77, and the ventilation exhaust damper control unit 75. , the duct damper control unit 79, and the circulation duct damper control unit 80, the exhaust fan 42, the pump 49, the ventilation supply air damper 55, the ventilation exhaust fan 56, the duct damper 82, and the circulation duct damper 83, respectively. output a command signal to
  • step S04 of the above-described first embodiment the opening degrees of the duct damper 82 and the circulation duct damper 83 are changed so that the air flows into the scrubber 44 via the duct 41. Since the only difference is in adjusting the flow rate of air, detailed description is omitted.
  • the air containing ammonia leaked into the compartment 30 and vaporized is introduced into the scrubber 44 via the duct 41 to remove the ammonia. can be removed.
  • the absorbent that has absorbed ammonia in the scrubber 44 is discharged into the water through the absorbent discharge line 45, the ammonia contained in the absorbent is re-vaporized and discharged into the atmosphere and comes into contact with the operator. can be suppressed.
  • the absorbent that has absorbed ammonia does not remain inside the floating body body 2, contact between the absorbent that has absorbed ammonia and the operator can be suppressed. Therefore, it is possible to prevent the worker from coming into contact with ammonia without causing the equipment in the section 30 to be flooded.
  • the floating body 1 of the second embodiment further includes a circulation duct 81 that is branched and connected to the duct 41 and returns the air flowing through the duct 41 to the compartment 30, and a circulation duct 81 that is provided in the duct 41 and adjusts the flow rate of the air flowing through the duct 41. and a circulation duct damper 83 provided in the circulation duct 81 and capable of adjusting the flow rate of the air flowing through the circulation duct 81.
  • the exhaust fan 242 is a constant-speed fan that maintains a constant flow rate. With this configuration, even if the air volume of the exhaust fan 242 cannot be adjusted, the flow rate of the air flowing into the scrubber 44 from the duct 41 can be changed.
  • the concentration of ammonia contained in the fluid flowing through the absorbent discharge line 45 is high, the flow rate of air returned to the section 30 by the circulation duct 81 is increased, and the flow rate of air introduced into the scrubber 44 is reduced. can do.
  • the concentration of ammonia in the fluid discharged through the absorbent discharge line 45 can be prevented from exceeding the regulation value.
  • the floating body 1 of the second embodiment further includes a control device 248 that controls the duct damper 82 and the circulation duct damper 83 based on the detection results of the intra-section sensor 46 and the discharge line sensor 47 .
  • the control device 248 controls the duct damper 82 and the circulation duct damper 83 based on the detection result of the discharge line sensor 47 when it is determined that ammonia leakage has occurred based on the detection result of the intra-zone sensor 46 .
  • the flow rate of the air flowing through the duct 41 and the flow rate of the air flowing through the circulation duct 81 the flow rate of the air flowing into the scrubber 44 is adjusted. By doing so, even if the exhaust fan 242 is a constant-speed fan, the control device 248 automatically prevents the concentration of ammonia contained in the fluid flowing through the absorbent discharge line 45 from exceeding the regulation value. becomes possible.
  • FIG. 8 is a diagram corresponding to FIG. 2 in the third embodiment of the present disclosure.
  • the floating body 1 of the third embodiment includes a floating body body 2 , an upper structure 4 , a combustion device 8 , an ammonia tank 10 , a piping system 20 , a compartment 30 and an ammonia removal system 340 .
  • a ventilation supply air duct 53 for ventilating the inside of the section 30 is connected to the section 30 as in the first embodiment, and the ventilation supply air damper 55 is provided in the ventilation supply air duct 53. ing.
  • the ammonia removal system 340 includes a duct 41, an exhaust fan 42, an absorbent supply line 43, a scrubber (ammonia removal section) 44, an absorbent discharge line 45, and an intra-zone sensor 46. , a discharge line sensor 47 , a ventilation exhaust duct 354 , a duct damper 82 , an exhaust duct damper 85 and a controller 348 .
  • the duct 41 has the same configuration as the duct 41 of the first embodiment, and has a first end 41 a connected to the section 30 and a second end 41 b connected to the scrubber 44 .
  • the duct 41 communicates the internal space of the compartment 30 and the internal space of the scrubber 44 .
  • the exhaust fan 42 has the same configuration as the exhaust fan 42 of the first embodiment.
  • the exhaust fan 42 is a variable speed fan whose air volume can be adjusted by the controller 348 .
  • the exhaust fan 42 is arranged near the first end 41 a of the duct 41 , which is closer to the section 30 , and exhausts the air inside the section 30 to the outside of the section 30 via the duct 41 .
  • the ventilation exhaust duct 354 is branched and connected to the duct 41 .
  • the ventilation exhaust duct 354 communicates between the flow path in the duct 41 and the outside of the floating body 2 , and is configured to be able to discharge the air flowing through the duct 41 to the outside of the floating body 2 .
  • the ventilation exhaust duct 354 constitutes a channel for ventilating the inside of the section 30 together with the ventilation supply air duct 53 and the duct 41 .
  • the duct damper 82 has the same configuration as the duct damper 82 of the second embodiment, is provided in the duct 41, and is capable of adjusting the flow rate of the air flowing through the duct 41.
  • the duct damper 82 in this third embodiment is arranged closer to the scrubber 44 than the branch point P2 between the duct 41 and the ventilation exhaust duct 354 . This duct damper 82 is controlled by the controller 348 .
  • the exhaust duct damper 85 is provided in the ventilation exhaust duct 354 and is capable of adjusting the flow rate of the air flowing through the ventilation exhaust duct 354 .
  • This exhaust duct damper 85 is controlled by the controller 348 .
  • Controller 348 controls ammonia removal system 340 .
  • the control device 348 determines whether or not ammonia leakage has occurred based on the detection result of the intra-zone sensor 46 .
  • the control device 348 sets the air volume of the exhaust fan 42 as the air volume for ventilation. Furthermore, the control device 348 closes the duct damper 82 and opens the exhaust duct damper 85 .
  • control device 348 When it is determined that ammonia leakage has occurred, the control device 348 activates the pump 49, opens the duct damper 82, and opens the exhaust duct damper 85. Furthermore, the control device 348 of this third embodiment adjusts the flow rate of the air flowing into the scrubber 44 by adjusting the air volume of the exhaust fan 342 based on the detection result of the discharge line sensor 47 . Since the hardware configuration of the control device 348 of the third embodiment is the same as that of the first embodiment, detailed description thereof will be omitted.
  • FIG. 9 is a functional block diagram of the control device.
  • the CPU 61 of the control device 348 executes programs stored in advance in the HDD 64, ROM 62, etc. to control the signal receiving unit 71, the exhaust fan control unit 372, the pump control unit 73, the ventilation supply air damper control unit 76, and the command signal output.
  • Each functional configuration of the unit 378, the duct damper control unit 79, and the exhaust duct damper control unit 86 is realized.
  • the signal receiving unit 71, the pump control unit 73, and the ventilation supply damper control unit 76 have the same configuration as the control device 48 of the above-described first embodiment.
  • the exhaust fan controller 372 controls the air volume of the exhaust fan 42 based on the detection signal of the intra-zone sensor 46 and the detection signal of the release line sensor 47 received by the signal receiver 71 . For example, when it is determined that no ammonia leakage has occurred in the section 30 based on the detection result of the section sensor 46, the exhaust fan control unit 372 controls the air volume for normal ventilation in the section 30 (hereinafter referred to as The exhaust fan 42 is operated by the ventilation air volume). On the other hand, when it is determined that ammonia leakage has occurred in the section 30, the exhaust fan control unit 372 exhausts the air in the section 30 at an air volume for sending it to the scrubber 44 (hereinafter referred to as a removal air volume). The fan 42 is activated.
  • the duct damper control unit 79 controls the opening degree of the duct damper 82 based on the detection result of the intra-section sensor 46 . Specifically, the duct damper control unit 79 opens the duct damper 82 (for example, fully open) when it is determined that ammonia has leaked into the compartment 30 based on the detection result of the compartment sensor 46. do. On the other hand, if it is determined that there is no ammonia leakage in the section 30, the duct damper 82 is closed (for example, fully closed).
  • the exhaust duct damper control unit 86 controls the opening degree of the exhaust duct damper 85 based on the detection result of the intra-section sensor 46 . Specifically, the exhaust duct damper control unit 86 fully closes the exhaust duct damper 85 when it is determined that ammonia has leaked into the compartment 30 based on the detection result of the compartment sensor 46. . On the other hand, if it is determined that there is no ammonia leakage in the section 30, the exhaust duct damper 85 is opened (for example, fully opened).
  • the command signal output unit 378 includes the signal receiving unit 71, the exhaust fan control unit 372, the pump control unit 73, the ventilation supply air damper control unit 76, the command signal output unit 378, the duct damper control unit 79, and the exhaust duct damper control unit 86.
  • Command signals are output to each of the exhaust fan 42, the pump 49, the ventilation supply air damper 55, the duct damper 82, and the exhaust duct damper 85 in order to realize each control by .
  • FIG. 10 is a flowchart of ammonia removal processing in an embodiment of the present disclosure. Next, the operation of the control device 348 when removing ammonia from the compartment 30 of the floating body 1 will be described with reference to the flowchart of FIG.
  • the exhaust fan control unit 72, the pump control unit 73, the duct damper control unit 79, and the exhaust duct damper control unit 86 of the control device 348 control the ammonia concentration in the compartment 30 based on the detection result of the compartment sensor 46. is greater than or equal to the first threshold value (step S01). If it is determined that the ammonia concentration in the section 30 is not equal to or higher than the first threshold value, there is no ammonia leakage in the section 30, so the duct damper control section 79 closes the duct damper 82, and the exhaust duct damper control section 86 opens the exhaust duct damper 85 (step S13).
  • the exhaust fan control unit 72 operates the exhaust fan 42 with the ventilation air volume, and the pump control unit 73 stops the pump 49 (step S14).
  • the ventilation supply air damper control unit 76 opens the ventilation supply air damper 55 . Thereby, the inside of the compartment 30 is ventilated. After that, the process returns to step S01.
  • step S01 when it is determined in step S01 that the ammonia concentration in the section 30 is equal to or higher than the predetermined first threshold value, ammonia is leaking in the section 30, so the duct damper control unit 79 causes the duct damper 82 is opened, and the exhaust duct damper control unit 86 closes the exhaust duct damper 85 (step S11). Further, the exhaust fan control unit 72 operates the exhaust fan 42 with the removed air volume, and the pump control unit 73 operates the pump 49 (step S12). At this time, the ventilation supply air damper control section 76 adjusts the opening degree of the ventilation supply air damper 55 to maintain the inside of the section 30 at a predetermined negative pressure. This forces the air in compartment 30 into scrubber 44 .
  • the exhaust fan control unit 72 of the control device 348 determines, based on the detection result of the release line sensor 47, that the ammonia concentration of the absorbent flowing through the absorbent release line 45 reaches the second threshold value, as in the first embodiment described above. It is determined whether or not the above is satisfied (step S03). In this determination, it is determined whether or not the ammonia concentration of the absorbing liquid discharged to the outside of the floating body body 2 through the absorbing liquid discharge line 45 satisfies, for example, regulations regarding sea discharge. As a result of this determination, when it is determined that the ammonia concentration of the absorbent flowing through the absorbent discharge line 45 is not equal to or higher than the second threshold value, the process returns to step S01.
  • the air volume of the exhaust fan 42 is reduced by a predetermined amount, and the process returns to step S03. That is, the air volume of the exhaust fan 42 is decreased until the concentration of ammonia in the absorbent flowing through the absorbent discharge line 45 becomes less than a predetermined value.
  • the air containing ammonia leaked into the compartment 30 and vaporized is introduced into the scrubber 44 via the duct 41 to remove the ammonia. can be removed.
  • the absorbent that has absorbed ammonia in the scrubber 44 is discharged into the water through the absorbent discharge line 45, the ammonia contained in the absorbent is re-vaporized and discharged into the atmosphere and comes into contact with the operator. can be suppressed.
  • the absorbent that has absorbed ammonia does not remain inside the floating body body 2, contact between the absorbent that has absorbed ammonia and the operator can be suppressed. Therefore, it is possible to prevent the worker from coming into contact with ammonia without causing the equipment in the section 30 to be flooded.
  • the floating body 1 of the third embodiment includes a ventilation exhaust duct 354, a duct damper 82, and an exhaust duct damper 85. By doing so, it is possible to switch between a channel that communicates between the inside of the compartment 30 and the outside and a channel that communicates between the inside of the compartment 30 and the inside of the scrubber 44 . Since the exhaust fan 42 is provided in the shared part of these two flow paths that are used by switching, one exhaust fan 42 is used to ventilate the inside of the section 30 and send the air in the section 30 to the scrubber 44. can be Therefore, the number of parts can be reduced compared to the case where a fan for ventilation and a fan for removing ammonia are provided separately.
  • FIG. 11 is a diagram corresponding to FIG. 2 in the fourth embodiment of the present disclosure.
  • the ammonia removal system 40 of the fourth embodiment includes a duct 41, an exhaust fan 42, an absorbent supply line 43, a scrubber 44, an absorbent discharge line 45, and an intra-compartment sensor 46. , discharge line sensor 47 and controller 448 .
  • a ventilation air supply duct 53 for ventilating the inside of the section 30 is connected to the section 30 .
  • a ventilation supply damper 55 is attached to the ventilation supply air duct 53 .
  • the control device 448 has the same configuration as the control device 48 of the first embodiment described above in that the ammonia contained in the air within the compartment 30 is removed by the scrubber 44 .
  • the controller 448 controls the opening/closing of the opening/closing damper 58 based on the detection result of the intra-section sensor 46 . That is, the control device 448 opens the opening/closing damper 58 to allow the air in the section 30 to be discharged to the outside of the floating body 2 through the duct 41, the scrubber 44, and the atmospheric release line 57, and closes the opening/closing damper 58. , the air in the section 30 is caused to flow into the scrubber 44 to remove ammonia and is discharged from the absorbent discharge line 45 .
  • FIG. 12 is a functional block diagram of the control device.
  • the CPU 61 of the control device 48 executes programs stored in the HDD 64, ROM 62, etc. in advance to control the signal receiving section 71, the exhaust fan control section 72, the pump control section 73, the ventilation supply air damper control section 76, and the command signal output.
  • Each functional configuration of the unit 478 and the open/close damper control unit 87 is realized.
  • the opening/closing damper control section 87 controls the opening/closing of the opening/closing damper 58 based on the detection signal of the intra-section sensor 46 . Specifically, the opening/closing damper controller 87 closes the opening/closing damper 58 when it is determined that ammonia has leaked into the compartment 30 based on the detection signal of the compartment sensor 46 . On the other hand, the opening/closing damper control section 87 opens the opening/closing damper 58 when it is determined that no ammonia leakage occurs in the section 30 .
  • the command signal output unit 478 controls the exhaust fan 42, the pump 49, and the ventilation air supply in order to realize each control by the exhaust fan control unit 72, the pump control unit 73, the ventilation air supply damper control unit 76, and the open/close damper control unit 87.
  • a command signal is output to each of the damper 55 and the open/close damper 58 .
  • FIG. 13 is a flowchart of ammonia removal processing in the first embodiment of the present disclosure.
  • step S11 in the flowchart shown in FIG. 10 of the third embodiment is replaced with step S21, and step S13 is replaced with step S23.
  • the exhaust fan control unit 72, the pump control unit 73, the duct damper control unit 79, and the open/close damper control unit 87 of the control device 448 determine that the concentration of ammonia in the compartment 30 reaches a predetermined value based on the detection result of the intra-zone sensor 46. It is determined whether or not it is greater than or equal to the first threshold (step S01). If it is determined that the ammonia concentration in the section 30 is not equal to or higher than the first threshold, there is no ammonia leakage in the section 30, so the opening/closing damper control section 87 opens the opening/closing damper 58 (step S23).
  • the exhaust fan control unit 72 operates the exhaust fan 42 with the ventilation air volume, and the pump control unit 73 stops the pump 49 (step S14).
  • the ventilation supply air damper control unit 76 opens the ventilation supply air damper 55 .
  • the inside of the section 30 is ventilated via the ventilation supply air duct 53 , the duct 41 , the scrubber 44 and the atmosphere discharge line 57 .
  • the pump control unit 73 may continue the operation of the pump 49 without stopping it.
  • step S01 when it is determined in step S01 that the concentration of ammonia in the section 30 is equal to or higher than the predetermined first threshold value, ammonia is leaking in the section 30. is closed (step S21). Further, the exhaust fan control unit 72 operates the exhaust fan 42 with the removed air volume, and the pump control unit 73 operates the pump 49 (step S12). At this time, the ventilation supply air damper control section 76 adjusts the opening degree of the ventilation supply air damper 55 to maintain the inside of the section 30 at a predetermined negative pressure. This forces air in the compartment 30 into the scrubber 44 but not out to the atmosphere via the atmospheric discharge line 57 . In addition, since it is the same as that of 1st embodiment mentioned above about step S03 and step S04, description is abbreviate
  • the air containing ammonia leaked into the compartment 30 and vaporized is introduced into the scrubber 44 via the duct 41 to remove the ammonia. can be removed.
  • the absorbent that has absorbed ammonia in the scrubber 44 is discharged into the water through the absorbent discharge line 45, the ammonia contained in the absorbent is re-vaporized and discharged into the atmosphere and comes into contact with the operator. can be suppressed.
  • the absorbent that has absorbed ammonia does not remain inside the floating body body 2, contact between the absorbent that has absorbed ammonia and the operator can be suppressed. Therefore, it is possible to prevent the worker from coming into contact with ammonia without causing the equipment in the section 30 to be flooded.
  • the controller 448 of the fourth embodiment controls opening and closing of the opening and closing damper 58 .
  • the controller 448 of the fourth embodiment controls opening and closing of the opening and closing damper 58 .
  • an exhaust duct for ventilation can be omitted. Therefore, the number of parts can be reduced as compared with the case where a fan for ventilation and a fan for removing ammonia are separately provided, or a ventilation exhaust duct is provided.
  • the compartment 30 can be ventilated and the air in the compartment 30 can be sent to the scrubber 44 to remove ammonia.
  • ammonia leaks it is possible to prevent air containing ammonia from coming into contact with the operator.
  • FIG. 14 is a diagram corresponding to FIG. 2 in the first modified example of the embodiment of the present disclosure.
  • the ammonia removal system 40 in this first modification includes a duct 41, an exhaust fan 42, an absorbent supply line 43, a scrubber 44, an absorbent discharge line 45, and an intra-compartment sensor 46. , discharge line sensor 47 , controller 48 and heat exchanger 88 .
  • the heat exchanger 88 heat-exchanges the absorbent flowing in the absorbent supply line 43 with an external heat medium to heat or cool the absorbent.
  • the heat exchanger 88 of the present modification exchanges heat between a heat medium such as heating water for heating the fuel ammonia and the absorbing liquid to effectively utilize the cold heat of the fuel ammonia. lowering the temperature.
  • the heat exchanger 88 may be used to heat the absorption liquid. Therefore, according to the first modified example, the absorption rate of ammonia by the absorbent can be improved, so that the energy consumed by the pump 49 can be reduced.
  • FIG. 15 is an enlarged view of a scrubber in a second modified example of each embodiment of the present disclosure.
  • the scrubber 244 in this second variant is located outside the compartment 30, similar to the scrubber 44 described above.
  • the scrubber 244 is configured to absorb and remove ammonia contained in the air discharged from the section 30 through the duct 41 in the absorbing liquid supplied through the absorbing liquid supply line 43 .
  • the scrubber 244 includes a scrubber casing 91 , a liquid reservoir 92 , a nozzle section 50 and an internal absorbent supply line 93 .
  • the scrubber casing 91 defines an interior space 95 of the scrubber 244 .
  • the liquid storage part 92 is configured to be able to store the absorption liquid in at least part of the internal space 95 .
  • the liquid storage part 92 of the second modified example forms a storage space for storing the absorbent together with the scrubber casing 91 .
  • the liquid storage part 92 is capable of overflowing the absorbent liquid from its upper part, and the overflowed absorbent liquid is discharged to the outside of the scrubber casing 91 through the absorbent discharge line 45 .
  • a duct 41 is connected below the liquid surface of the liquid storage section 92, and the air sent through the duct 41 is released into the absorbent liquid stored in the liquid storage section 92 and rises upward as air bubbles. head to The air reaching the liquid surface of the liquid storage part 92 is discharged into the internal space 95 from the liquid surface.
  • the internal absorption liquid supply line 93 supplies the absorption liquid to the nozzle section 50 and the liquid storage section 92 .
  • the internal absorbent supply line 93 has a main line 93A that supplies the absorbent to the nozzle portion 50 and a branch line 93B that branches off from the main line 93A and reaches the reservoir 92 .
  • the nozzle part 50 is provided above the internal space 95 and sprays the absorbent.
  • the absorbent sprayed from the nozzle portion 50 contacts the air supplied to the internal space 95 through the liquid storage portion 92 while moving downward due to its own weight. Due to this contact, the ammonia contained in the air is absorbed by the absorbent, reaches the lower part of the internal space 95, and is discharged from the absorbent discharge line 45 together with the overflowed absorbent.
  • a dilution water line 96 is provided.
  • This dilution water line 96 can send dilution water (for example, seawater or fresh water) by a dilution water pump (not shown) to join the absorbent discharge line 45 .
  • This dilution water pump (not shown) is a variable flow type pump, and is controlled by, for example, the control devices 48, 248, 348, 448, and the flow rate of the dilution water according to the detection result of the discharge line sensor 47. are merged into the absorbent discharge line 45 .
  • the flow rate of the dilution water can be controlled according to the discharged ammonia concentration discharged from the absorbent discharge line 45 .
  • the discharged ammonia concentration can be obtained from the flow rate of the dilution water and the ammonia concentration detected by the ammonia sensor.
  • the dilution water line 96 in the second modified example may be provided as appropriate or may be omitted. With this configuration of the dilution water line 96, the need for the pump 49 to have a flow rate for dilution is eliminated, so the pump 49 can be made smaller.
  • the dilution water pump (not shown) in the second modification is not limited to the variable flow rate type, and may be of a type capable of supplying a constant flow rate at the maximum flow rate, for example.
  • the release line sensor 47 provided in the absorbent release line 45 was described as an example of the ammonia sensor. An internal space sensor 97 may be used.
  • the scrubber 244 in the second modified example has the liquid storage section 92 inside the scrubber casing 91
  • the liquid storage section 92 may be arranged outside the scrubber casing 91 .
  • the overflow pipe of the liquid storage section 92 may be connected to the scrubber casing 91, and the gas phase of the liquid storage section 92 and the gas phase of the scrubber casing 91 may be communicated by piping or the like.
  • the air sent through the duct 41 can always be brought into contact with the absorbent, so the air from which the ammonia has not been sufficiently removed is discharged from the absorbent discharge line 45. can be suppressed.
  • the absorbent discharge line 45 is provided with the discharge line sensor 47 and the flow rate of the air flowing through the duct 41 is adjusted based on the detection result of the discharge line sensor 47 has been described.
  • the ammonia concentration of the fluid discharged from the absorbent discharge line 45 is designed to be sufficiently low in advance, the ammonia concentration of the fluid discharged from the absorbent discharge line 45 may exceed the regulation value.
  • the emission line sensor 47 may be omitted and control based on the detection result of the emission line sensor 47 may not be performed. Further, even when the discharge line sensor 47 is provided, the detection result of the discharge line sensor 47 may be used only for confirming whether or not the scrubber 44 is removing ammonia.
  • controllers 48, 248, 348, and 448 automatically remove ammonia with the scrubber 44 when ammonia leaks within the section 30.
  • control devices 48, 248, 348, 448 are omitted, and the operator, for example, visually checks the detection result of the intra-section sensor 46 on the display device and operates the exhaust fans 42, 242. Ammonia in compartment 30 may be removed.
  • the dedicated pump 49 is provided for supplying the absorbent to the scrubber 44 via the absorbent supply line 43 .
  • the pump 49 that supplies the absorption liquid may also be used as another seawater or freshwater pump provided in the floating body body 2 .
  • the pump 49 is operated when it is determined that ammonia leakage has occurred and is otherwise stopped, it may be operated constantly.
  • the case of using exhaust heat from the combustion device 8 has been described, but thermal energy supplied from a heat source other than the combustion device 8 may be used.
  • the case where each of the exhaust fan control units 77 is provided has been described, these configurations may be omitted as appropriate.
  • the case where a computer device is used as the control device 48, 248, 348, 448 has been described as an example.
  • the functional configuration of the control devices 48, 248, 348, 448 is realized by hardware such as a relay circuit, or the functional configuration of the control devices 48, 248, 348, 448 is realized by combining hardware and software. You may
  • the floating body 1 includes a floating body body 2, a compartment 30 provided in the floating body body 2 and housing ammonia-related equipment therein, and a compartment 30 connected to the compartment 30.
  • a duct 41 for communicating the inside and the outside of the compartment 30, an exhaust fan 42, 242 for discharging the air inside the compartment 30 to the outside of the compartment 30 via the duct 41, and an absorber capable of absorbing ammonia.
  • an absorbent supply line 43 for supplying a liquid, and an absorbent supply line 43 for removing ammonia contained in the air discharged by the exhaust fans 42 and 242 through the duct 41 .
  • the ammonia removal unit 44 that can be removed by being absorbed by the absorption liquid supplied by the above, the absorption liquid that has absorbed the ammonia in the ammonia removal unit 44, and the air from which the ammonia has been removed are combined into the above and an absorbent discharge line 45 for discharging into the surrounding water on which the floating body body 2 floats.
  • An example of the ammonia remover 44 is a scrubber.
  • the air containing ammonia that has leaked into the compartment 30 and vaporized can be introduced into the ammonia removal section 44 via the duct 41 to remove the ammonia.
  • the absorbing liquid that has absorbed ammonia in the ammonia removal unit 44 is discharged into water through the absorbing liquid discharge line 45, the ammonia contained in the absorbing liquid is re-vaporized and discharged into the atmosphere, and the operator contact can be suppressed.
  • the absorbent that has absorbed ammonia does not remain inside the floating body body 2, contact between the absorbent that has absorbed ammonia and the operator can be suppressed. Therefore, it is possible to prevent the worker from coming into contact with ammonia without causing the equipment in the section 30 to be flooded.
  • a floating body 1 according to a second aspect is the floating body 1 of (1), and includes an intra-compartment sensor 46 capable of detecting ammonia contained in the air inside the compartment 30 . This makes it possible to detect ammonia leakage in the compartment 30 based on the detection result of the compartment sensor 46 . As a result, it is possible to operate the exhaust fan 42 to remove ammonia only when ammonia leaks in the section 30, thereby saving energy.
  • the floating body 1 according to the third aspect is the floating body 1 of (2), and includes a release line sensor 47 capable of detecting ammonia contained in the fluid flowing through the absorbent release line 45 .
  • a release line sensor 47 capable of detecting ammonia contained in the fluid flowing through the absorbent release line 45 .
  • the floating body 1 according to the fourth aspect is the floating body 1 of (3), and the exhaust fan 42 is a variable speed fan capable of adjusting the air volume.
  • the exhaust fan 42 is a variable speed fan capable of adjusting the air volume.
  • the floating body 1 according to the fifth aspect is the floating body 1 according to any one of (2) to (4), and the leakage of ammonia occurs based on the detection result of the intra-zone sensor 46. and a control device 48, 248, 348, 448 that determines whether or not the leakage of ammonia has occurred, and activates the exhaust fan 42, 242 when it is determined that the ammonia has leaked. As a result, ammonia that has leaked into the compartment 30 can be automatically removed by the controllers 48, 248, 348, 448.
  • the floating body 1 according to the sixth aspect is the floating body of (5), in which it is determined whether or not the ammonia has leaked based on the detection result of the intra-zone sensor 46, and the ammonia Control devices 48, 248 that operate the exhaust fans 42, 242 when it is determined that a leak has occurred, and adjust the air volume of the exhaust fans 42, 242 based on the detection result of the discharge line sensor 47 , 348, 448.
  • the concentration of ammonia contained in the fluid flowing through the absorbent discharge line 45 can be automatically prevented from exceeding the regulation value.
  • a floating body 1 according to a seventh aspect is the floating body of (3), comprising a circulation duct 81 branched and connected to the duct 41 and returning the air flowing through the duct 41 to the compartment 30, and the duct A duct damper 82 that is provided in the duct 41 and can adjust the flow rate of the air flowing through the duct 41, and a circulation duct damper that is provided in the circulation duct 81 and can adjust the flow rate of the air flowing in the circulation duct 81.
  • the exhaust fan 242 is a constant speed fan that maintains a constant flow rate. As a result, even if the air volume of the exhaust fan 242 cannot be adjusted, the flow rate of the air flowing into the scrubber 44 from the duct 41 can be changed.
  • the concentration of ammonia contained in the fluid flowing through the absorbent discharge line 45 is high, the flow rate of the air introduced from the section 30 to the scrubber 44 is reduced, and the fluid discharged through the absorbent discharge line 45 is reduced.
  • the ammonia concentration in the product does not exceed the regulation value.
  • the floating body 1 according to the eighth aspect is the floating body of (7), wherein the duct damper and the circulation duct damper are controlled based on the detection results of the intra-section sensor and the discharge line sensor. device, wherein the control device closes the duct damper and closes the circulation duct damper when it is determined that the ammonia has not leaked based on the detection result of the intra-zone sensor. While in the open state, if it is determined that the ammonia has leaked, the duct damper and the circulation duct damper reduce the amount of air flowing through the duct based on the detection result of the release line sensor.
  • the controller 248 can automatically prevent the concentration of ammonia contained in the fluid flowing through the absorbent discharge line 45 from exceeding the regulation value. .
  • the floating body 1 according to the ninth aspect is the floating body 1 according to any one of (1) to (8), and is ventilated to release the air inside the compartment 30 to the outside of the floating body body 2 An exhaust fan 56 is provided. As a result, it is possible to ventilate the compartment 30 by the ventilation exhaust fan 56 when there is no leakage of ammonia.
  • the floating body 1 is the floating body of (1), wherein the exhaust duct 354 is branched and connected to the duct 41 and discharges the air flowing through the duct 41 to the outside of the floating body body 2. a duct damper 82 provided in the duct 41 that can adjust the flow rate of the air flowing through the duct 41; and a duct damper 82 that is provided in the exhaust duct 354 and can adjust the flow rate of the air flowing through the exhaust duct 354 and an exhaust duct damper 85.
  • a flow path configured by the duct 41 and the exhaust duct 354 and communicating between the inside of the section 30 and the outside of the ship, and a flow path configured by the duct 41 and communicating between the inside of the section 30 and the inside of the scrubber 44 It becomes possible to switch and use. Since the exhaust fan 42 is provided in the shared part of these two flow paths that are used by switching, one exhaust fan 42 is used to ventilate the inside of the section 30 and send the air in the section 30 to the scrubber 44. can be Therefore, the number of parts can be reduced compared to the case where a fan for ventilation and a fan for removing ammonia are provided separately.
  • the floating body 1 is the floating body of (10) and includes an intra-compartment sensor 46 capable of detecting ammonia contained in the air inside the compartment 30 .
  • an intra-compartment sensor 46 capable of detecting ammonia contained in the air inside the compartment 30 .
  • the floating body 1 is the floating body 1 of (11), which is a control device that controls the duct damper 82 and the exhaust duct damper 85 based on the detection result of the intra-section sensor 46. 348, and the control device 348 closes the duct damper 82 and opens the exhaust duct damper 85 when it is determined that the ammonia does not leak.
  • the duct damper 82 is opened and the exhaust duct damper 85 is closed. As a result, the ammonia that has leaked into the compartment 30 can be automatically removed.
  • a floating body 1 according to a thirteenth aspect is the floating body 1 of (12), wherein the exhaust fan 42 is a variable speed fan capable of adjusting the air volume.
  • the exhaust fan 42 is a variable speed fan capable of adjusting the air volume.
  • a floating body 1 according to a fourteenth aspect is the floating body 1 of (13), further comprising a release line sensor 47 capable of detecting ammonia contained in the fluid flowing through the absorbent release line 45, and the control device 348 adjusts the air volume of the exhaust fan 42 based on the detection result of the discharge line sensor 47 .
  • the concentration of ammonia contained in the fluid flowing through the absorbent discharge line 45 can be automatically prevented from exceeding the regulation value.
  • the floating body 1 according to the fifteenth aspect is the floating body 1 of (2), wherein the ammonia removing section 44 removes the air flowing into the ammonia removing section 44 through the duct 41 into the atmosphere. and an open/close damper 58 for opening and closing the air release line 57 .
  • This allows the atmospheric discharge line 57 to be used instead of the ventilation exhaust duct. Therefore, while reducing the number of parts compared to the case where the fan for ventilation and the fan for removing ammonia are provided separately, the inside of the section 30 is ventilated and the air inside the section 30 is sent to the scrubber 44 to remove ammonia. can be removed. Furthermore, when ammonia leaks, it is possible to prevent air containing ammonia from coming into contact with the operator.
  • a floating body 1 according to a sixteenth aspect is the floating body of (15), and includes a control device 448 that controls opening and closing of the opening/closing damper 58 based on the detection result of the intra-section sensor 46 . As a result, the ammonia that has leaked into the compartment 30 can be automatically removed.
  • a floating body 1 according to a seventeenth aspect is the floating body of (16), comprising a release line sensor 47 capable of detecting ammonia contained in the fluid flowing through the absorbent release line, and the exhaust fan 42 , a variable speed fan capable of adjusting the air volume, and the control device 448 adjusts the air volume of the exhaust fan 42 based on the detection result of the discharge line sensor 47 .
  • the concentration of ammonia contained in the fluid flowing through the absorbent discharge line 45 can be automatically prevented from exceeding the regulation value.
  • a floating body 1 according to an eighteenth aspect is the floating body 1 according to any one of (1) to (17), and includes a heat exchanger 88 capable of heating or cooling the absorbing liquid. As a result, the absorption rate of ammonia by the absorption liquid can be improved, so that the energy consumed by the pump 49 can be reduced.
  • the floating body of the present disclosure it is possible to prevent workers from coming into contact with ammonia without flooding equipment in the compartment.
  • Circulation duct damper control section 81 ... Circulation duct 82 . Duct damper 83 ... Circulation duct damper 85 ... Exhaust duct damper 86 . Exhaust duct damper control section 87...Open/close damper control section 88...Heat exchanger 91...Scrubber casing 92...Liquid storage section 93...Internal absorption liquid supply line 93A...Main line 93B...Branch line 95...Internal space 97...Internal space sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

浮体は、浮体本体と、前記浮体本体に設けられ、アンモニア関連機器を内部に収容する区画と、前記区画に接続されて前記区画の内部と前記区画の外部とを連通させるダクトと、前記ダクトを介して前記区画の内部の空気を前記区画の外部に排出する排気ファンと、アンモニアを吸収可能な吸収液を供給する吸収液供給ラインと、前記区画の外部に配置されて、前記ダクトを介して前記排気ファンにより排出された空気に含まれるアンモニアを、前記吸収液供給ラインにより供給された前記吸収液に吸収させて除去可能なアンモニア除去部と、少なくとも前記アンモニア除去部にて前記アンモニアを吸収させた前記吸収液を、前記浮体本体の浮かぶ周囲の水の中に放出する吸収液放出ラインと、を備える。

Description

浮体
 本開示は、浮体に関する。
 本願は、2021年7月8日に日本に出願された特願2021-113523号について優先権を主張し、その内容をここに援用する。
 国際的な脱炭素燃料に関する機運が高まってきており、石炭火力発電所でのアンモニア混焼ボイラー導入等が検討されている。浮体においても、主機の燃料としてアンモニアを用いることが検討されている。
 例えば、発電所向け燃料としてのアンモニアを運搬する場合や、主機の燃料としてアンモニアを用いる場合に、アンモニアを取扱う機器を収容する機器室などの区画では、アンモニアの漏洩が生じる可能性がある。このようなアンモニア漏洩が生じた場合、この漏洩したアンモニアが気化して区画外に漏出することが想定される。その一方で、上記のような機器室の場合、散水によりアンモニアを除去しようとすると機器室に収容された機器が浸水してしまう可能性が有る。
 特許文献1では、区画内に連通する密閉されたダクトを設けて、このダクト内で水を散布し、ダクト内でアンモニアを水に吸収させて区画内を負圧することで、区画外へのアンモニアの漏出を防止している。
日本国特許第4356939号公報
 特許文献1に記載されているアンモニア除外方法では、区画外へのアンモニアの漏出が防止されるものの、区画内にはアンモニアが残留する。そのため、アンモニアが漏出した区画内に作業者が入ってしまうと、区画内に漏出したアンモニアに作業者が接触してしまう可能性がある。
 本開示は、上記課題を解決するためになされたものであって、区画内の機器を浸水させることなく作業者がアンモニアに接触することを抑制できる浮体を提供することを目的とする。
 上記の課題を解決するために以下の構成を採用する。
 本開示に係る浮体は、浮体本体と、前記浮体本体に設けられ、アンモニア関連機器を内部に収容する区画と、前記区画に接続されて前記区画の内部と前記区画の外部とを連通させるダクトと、前記ダクトを介して前記区画の内部の空気を前記区画の外部に排出する排気ファンと、アンモニアを吸収可能な吸収液を供給する吸収液供給ラインと、前記区画の外部に配置されて、前記ダクトを介して前記排気ファンにより排出された空気に含まれるアンモニアを、前記吸収液供給ラインにより供給された前記吸収液に吸収させて除去可能なアンモニア除去部と、少なくとも前記アンモニア除去部にて前記アンモニアを吸収させた前記吸収液を、前記浮体本体の浮かぶ周囲の水の中に放出する吸収液放出ラインと、を備える。
 上記態様の浮体によれば、区画内の機器を浸水させることなく作業者がアンモニアに接触することを抑制できる。
本開示の第一実施形態に係る浮体の側面図である。 本開示の第一実施形態におけるアンモニア除去システムの概略構成を示す図である。 本開示の第一実施形態における制御装置の概略構成を示すブロック図である。 上記制御装置の機能ブロック図である。 本開示の第一実施形態におけるアンモニア除去処理のフローチャートである。 本開示の第二実施形態における図2に相当する図である。 上記制御装置の機能ブロック図である。 本開示の第三実施形態における図2に相当する図である。 上記制御装置の機能ブロック図である。 本開示の実施形態におけるアンモニア除去処理のフローチャートである。 本開示の第四実施形態における図2に相当する図である。 上記制御装置の機能ブロック図である。 本開示の第一実施形態におけるアンモニア除去処理のフローチャートである。 本開示の各実施形態の第一変形例における図2に相当する図である。 本開示の各実施形態の第二変形例におけるスクラバーの拡大図である。
[第一実施形態]
 以下、本開示の第一実施形態に係る浮体について、図面を参照して説明する。図1は、本開示の第一実施形態に係る浮体の側面図である。
(浮体の構成)
 図1に示すように、この実施形態の浮体1は、浮体本体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、配管系統20と、区画30と、アンモニア除去システム40と、を備えている。なお、本実施形態の浮体1は、主機等により航行可能な船舶を一例として説明する。浮体1の船種は、特定の船種に限られない。浮体1の船種としては、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等を例示できる。
 浮体本体2は、その外殻をなす一対の舷側5A,5Bと船底6とを有している。舷側5A,5Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底6は、これら舷側5A,5Bを接続する船底外板を備える。これら一対の舷側5A,5B及び船底6により、浮体本体2の外殻は、船首尾方向FAに直交する断面においてU字状を成している。
 浮体本体2は、最も上層に配置される全通甲板である上甲板7を更に備えている。上部構造4は、この上甲板7上に形成されている。上部構造4内には、居住区等が設けられている。本実施形態の浮体1では、例えば、上部構造4よりも船首尾方向FAの船首3a側に、貨物を搭載するカーゴスペース(図示無し)が設けられている。
 燃焼装置8は、燃料を燃焼させることで熱エネルギーを発生させる装置であり、上記の浮体本体2内に設けられている。燃焼装置8としては、浮体1を推進させるための主機に用いられる内燃機関、船内に電気を供給する発電設備に用いられる内燃機関、作動流体としての蒸気を発生させるボイラー等を例示できる。本実施形態の燃焼装置8は、燃料としてアンモニア(以下、燃料アンモニアと称する)を用いている。
 アンモニアタンク10は、燃料アンモニアとしての液化アンモニアを貯留している。このアンモニアタンク10は、上部構造4よりも船尾3b側の上甲板7上に設置されている。なお、上記アンモニアタンク10の配置は一例であって、上部構造4よりも船尾3b側の上甲板7上に限られない。
 配管系統20は、燃焼装置8とアンモニアタンク10とを接続している。
 区画30は、アンモニア関連機器を収容する区画である。本実施形態における区画30は、上部構造4よりも船首3a側の上甲板7上に設けられている。上述した配管系統20は、この区画30内を経由して燃焼装置8とアンモニアタンク10とを接続している。ここで、上記アンモニア関連機器とは、アンモニアを取扱う機器全般を意味しており、例えば、燃料アンモニアを取扱うアンモニア燃料機器や、貨物としてのアンモニアを取扱うアンモニア貨物機器を挙げることができる。以下の説明では、アンモニア燃料機器が収容されている区画30について説明するが、アンモニア貨物機器が収容されている区画30であってもよい。
 本実施形態の区画30は、燃料供給装置室であって、配管系統20の一部を構成するアンモニア燃料機器を収容している。燃料供給装置室に収容されるアンモニア燃料機器としては、例えばアンモニアタンク10から燃焼装置8へとアンモニアを圧送するポンプや、燃焼装置8へ送られるアンモニアを加熱するためのヒーター、電動弁等、を例示できる。なお、アンモニア燃料機器を収容する区画30は、アンモニア燃料供給装置室に限られない。アンモニア燃料機器を収容する区画30は、例えば、アンモニア燃料調圧弁室、アンモニア燃料取込室(言い換えれば、バンカーステーション)等であってもよい。
(アンモニア除去システムの構成)
 図2は、本開示の第一実施形態におけるアンモニア除去システムの概略構成を示す図である。
 図2に示すように、本実施形態のアンモニア除去システム40は、ダクト41と、排気ファン42と、吸収液供給ライン43と、スクラバー(アンモニア除去部)44と、吸収液放出ライン45と、区画内センサー46と、放出ラインセンサー47と、制御装置48と、を備えている。
 ダクト41は、区画30に接続されている。ダクト41は、区画30の内部と区画30の外部とを連通させている。本実施形態のダクト41は、区画30に接続される第一端部41aと、スクラバー44に接続される第二端部41bとを有しており、区画30の内部空間と、スクラバー44の内部空間とを連通させている。すなわち、このダクト41は、第一端部41aから流入した区画30内の空気を、第二端部41bからスクラバー44内に導く流路を形成している。なお、本実施形態のダクト41は、第一端部41a及び第二端部41b以外から空気が流出しないように構成されている。
 排気ファン42は、ダクト41を介して区画30の内部の空気を区画30の外部に排出する。本実施形態の排気ファン42は、ダクト41の第一端部41aから第二端部41bに向かって送風することで、区画30の内部の空気を、区画30の外部であるスクラバー44に排出する。排気ファン42は、ダクト41に設けられている。本実施形態の排気ファン42は、風量を調節可能な可変速ファンであって、後述する制御装置48により制御される。なお、本実施形態における排気ファン42は、第一端部41a付近のダクト41に設けられている場合を例示しているが、排気ファン42の配置は、上記配置に限られない。
 吸収液供給ライン43は、アンモニアを吸収可能な吸収液を供給する。吸収液としては、海水、清水、及び、これら海水、清水を酸性になるよう処理したもの等を例示できる。吸収液供給ライン43は、吸収液を圧送するためのポンプ49を備えている。本実施形態の吸収液供給ライン43は、吸収液として浮体本体2の浮かぶ周囲の水(例えば、海水)を供給している。
 スクラバー44は、区画30の外部に配置されている。本実施形態においては、区画30の近傍に配置されている場合を示している。スクラバー44は、排気ファン42によりダクト41を介して排出された空気に含まれるアンモニアを、吸収液供給ライン43により供給された吸収液に吸収させて除去可能に構成されている。つまり、区画30内の空気に気化したアンモニアが含まれている場合に、スクラバー44は、ダクト41を介して送り込まれたアンモニアを含む空気からアンモニアを除去する。
 スクラバー44は、上記吸収液を噴霧するノズル部50を有している。このノズル部50は、スクラバー44の内部空間の上部に配置されている。ノズル部50から噴霧された吸収液は、自重により下方へ移動しながら、ダクト41を介してスクラバー44に供給された空気と接触する。この接触により、空気に含まれるアンモニアは、吸収液に吸収されてスクラバー44の下部に貯留される。
 ここで、上述したダクト41の第二端部41bは、ノズル部50よりも下方でスクラバー44に接続されている。上下方向における第二端部41bの位置は、内部空間の下部に貯留された吸収液の液面よりも下方としてもよい。このような位置に第二端部41bを接続することで、ダクト41からスクラバー44に流入する空気が、貯留された吸収液の中に気泡として放出される。そのため、空気に含まれるアンモニアが、スクラバー44の内部空間の下部に貯留された吸収液に吸収される。そして、吸収液の中に放出された空気の気泡が上方に移動して液面に到達し気相に放出されると、ノズル部50により噴霧された吸収液と接触して、空気に含まれる残りのアンモニアが吸収されることとなる。
 吸収液放出ライン45は、スクラバー44にてアンモニアを吸収させた吸収液を、浮体本体2の浮かぶ周囲の水の中に放出する。本実施形態における吸収液放出ライン45は、スクラバー44に接続される第一端部45aと、浮体本体2の軽荷喫水線よりも下方の舷側5A,5Bや船底6に接続される第二端部45bと、を有している。この吸収液放出ライン45の第一端部45aは、スクラバー44のうちの最も下方に接続されている。本実施形態におけるスクラバー44の内圧は、排気ファン42の送風により高まる。そのため、本実施形態では、この圧力を利用して、スクラバー44の下部に貯留されたアンモニアを吸収した吸収液を、吸収液放出ライン45を介して浮体本体2の外部の水の中に放出するようにしている。ここで、吸収液放出ライン45を介して浮体本体2の外部の水の中に放出されるのは、スクラバー44の下部に貯留された吸収液に限られない。例えば、スクラバー44内の吸収液と共に、スクラバー44内の空気も吸収液放出ライン45を介して浮体本体2の外部の水の中に放出されるようになっている。
 本実施形態のスクラバー44は、大気放出ライン57と、開閉ダンパー58と、を備えている。大気放出ライン57は、例えば、浮体本体2に設けられたベントパイプ(図示せず)等に接続され、ダクト41を介してスクラバー44の内部に流入した空気を大気に放出可能に構成されている。開閉ダンパー58は、大気放出ライン57を開閉する。第一実施形態におけるスクラバー44の開閉ダンパー58は、常閉とされている。この開閉ダンパー58は、例えば、メンテナンス等により後述する換気用排気ファン56が使用できない場合に開放可能とされている。このようにすることで、換気用排気ファン56が使用できない場合に換気用排気ダクト54の代わりに大気放出ライン57を用いて区画30の換気を行うことができる。
 区画内センサー46は、区画30の内部の空気に含まれるアンモニア(具体的には、アンモニアの濃度)を検出する。本実施形態の区画内センサー46は、検出結果の情報を制御装置48へ出力する。
 放出ラインセンサー47は、吸収液放出ライン45を流れる流体に含まれるアンモニア(具体的には、アンモニアの濃度)を検出する。本実施形態の放出ラインセンサー47は、上記区画内センサー46と同様に、検出結果の情報を制御装置48へ出力する。なお、作業者に検出されたアンモニアの濃度を報知するために、区画内センサー46の検出結果、及び放出ラインセンサー47の検出結果を表示する、ディスプレイ等の表示装置を設けてもよい。
 ここで、図2に示すように、上述した第一実施形態の区画30には、区画30内を換気するための換気用給気ダクト53と、換気用排気ダクト54と、が接続されている。さらに、換気用給気ダクト53には換気用給気ダンパー55が取り付けられ、換気用排気ダクト54には換気用排気ファン56及び換気用排気ダンパー59が取り付けられている。換気用給気ダクト53と換気用排気ダクト54とは、何れも区画30の内部と浮体本体2の外部とを連通している。換気用給気ダンパー55は、換気用給気ダクト53内を流れる空気の流量を調節する。本実施形態における換気用給気ダクト53は、制御装置48により制御される。換気用排気ファン56は、換気用排気ダクト54、換気用排気ダンパー59を介して区画30内の空気を送り出す。換気用排気ダンパー59は、換気用排気ダクト54を流れる流体(気体)の流量を調節する。なお、本実施形態の換気用給気ダクト53は、区画30の天井に接続されたダクト41の第一端部41aの位置に対して区画30の下部の反対側(言い換えれば、上下で対称となる位置)に配置してもよい。これにより、区画30内の空気が効率よくダクト41から区画30外に排出可能となる。なお、換気用排気ファン56の停止だけで換気用排気ダクト54の空気の流れを停止できない場合は、換気用排気ダクト54を開閉する換気用排気ダンパー(図示せず)を設けて換気用排気ファン56の停止と共に、換気用排気ダクト54を閉塞するようにしてもよい。
(制御装置の構成)
 制御装置48は、アンモニア除去システム40を制御する。より具体的には、制御装置48は、区画内センサー46の検出結果に基づいて、アンモニアの漏洩が発生したか否かを判定する。制御装置48は、この判定により、アンモニアの漏洩が発生していると判定された場合に、排気ファン42を作動させる。その一方で、制御装置48は、アンモニアの漏洩が発生していないと判定された場合、排気ファン42を停止状態にする。さらに、制御装置48は、区画内センサー46の検出結果に基づいて、区画30内でアンモニアの漏洩が発生したと判定された場合には、排気ファン42を作動させると共に、放出ラインセンサー47の検出結果に基づいて、排気ファン42の風量を調節する。また、本実施形態の制御装置48は、区画30内でアンモニアの漏洩が発生していないと判定された場合には、ポンプ49を停止状態として、吸収液供給ライン43による吸収液の供給を停止状態にする一方で、区画30内でアンモニアの漏洩が発生したと判定された場合には、ポンプ49を駆動して吸収液供給ライン43によってスクラバー44に吸収液を供給する。
(制御装置のハードウェア構成図)
 図3は、本開示の第一実施形態における制御装置の概略構成を示すブロック図である。
 図3に示すように、制御装置48は、CPU61(Central Processing Unit)、ROM62(Read Only Memory)、RAM63(Random Access Memory)、HDD64(Hard Disk Drive)、信号送受信モジュール65を備えるコンピュータである。信号送受信モジュール65は、区画内センサー46、放出ラインセンサー47の検出信号を受信する。また、信号送受信モジュール65は、排気ファン42、ポンプ49等を制御する制御信号を送信する。
(制御装置の機能ブロック図)
 図4は、上記制御装置の機能ブロック図である。
 制御装置48のCPU61は予めHDD64やROM62等に記憶されたプログラムを実行することにより、信号受信部71、排気ファン制御部72、ポンプ制御部73、換気用排気ダンパー制御部75、換気用給気ダンパー制御部76、換気用排気ファン制御部77、指令信号出力部78の各機能構成を実現する。
 信号受信部71は、信号送受信モジュール65を介して、区画内センサー46、放出ラインセンサー47からの検出信号を受信する。
 排気ファン制御部72は、信号受信部71で受信した区画内センサー46の検出信号及び放出ラインセンサー47の検出信号に基づいて、排気ファン42の作動、停止、及び風量を制御する。
 ポンプ制御部73は、区画内センサー46及び放出ラインセンサー47のうち片方または両方の検出信号に基づいて、ポンプ49の作動及び停止を制御する。なお、ポンプ49の停止は、作業者による手動で行うようにしてもよい。
 換気用給気ダンパー制御部76は、区画内センサー46の検出信号に基づいて、換気用給気ダンパー55の開度を制御する。具体的には、換気用給気ダンパー制御部76は、区画30内にアンモニアの漏洩が発生したと判定された場合に、区画30内が負圧に維持されるように換気用給気ダンパー55の開度を制御する。
 換気用排気ファン制御部77は、区画内センサー46の検出信号に基づいて、換気用排気ファン56の作動及び停止を制御する。換気用排気ダンパー制御部75は、区画内センサー46の検出信号に基づいて、換気用排気ダンパー59の開度(例えば、開閉)を制御する。
 指令信号出力部78は、排気ファン制御部72、ポンプ制御部73、換気用排気ダンパー制御部75、換気用給気ダンパー制御部76、換気用排気ファン制御部77による各制御を実現すべく排気ファン42、ポンプ49、換気用給気ダンパー55、換気用排気ファン56のそれぞれに指令信号を出力する。
(制御装置の動作)
 図5は、本開示の第一実施形態におけるアンモニア除去処理のフローチャートである。
 次に、上述した浮体1の区画30内のアンモニアを除去する際の制御装置48の動作について図5のフローチャートを参照しながら説明する。
 まず、制御装置48の排気ファン制御部72及びポンプ制御部73は、区画内センサー46の検出結果に基づいて、区画30内のアンモニア濃度が所定の第一閾値以上か否かを判定する(ステップS01)。区画30内のアンモニア濃度が第一閾値以上では無いと判定された場合、区画30内にアンモニア漏洩が無いため、排気ファン42とポンプ49とを停止状態にする(ステップS05)。その一方で、区画30内のアンモニア濃度が第一閾値以上であると判定された場合、区画30内にアンモニア漏洩が発生しているため、排気ファン制御部72は、排気ファン42の作動を開始し、ポンプ制御部73は、ポンプ49の作動を開始する(ステップS02)。これにより、区画30内の空気と吸収液とがそれぞれスクラバー44に供給され、空気内のアンモニアが吸収液に吸収される。本実施形態においては、区画30内のアンモニア濃度が第一閾値以上であると判定された場合、換気用排気ファン56を停止状態とし、換気用排気ダンパー59を閉塞させ、区画30内が所定の負圧に維持されるように換気用給気ダンパー55の開度を調節する。
 次いで、制御装置48の排気ファン制御部72は、放出ラインセンサー47の検出結果に基づいて、吸収液放出ライン45を流れる吸収液のアンモニア濃度が第二閾値以上か否かを判定する(ステップS03)。この判定では、吸収液放出ライン45を介して浮体本体2の外部に放出される吸収液のアンモニア濃度が、例えば、海洋放出に関する規則を満たすか否かを判定している。この判定の結果、吸収液放出ライン45を流れる吸収液のアンモニア濃度が第二閾値以上では無いと判定された場合は、ステップS01に戻る(リターン)。その一方で、吸収液放出ライン45を流れる吸収液のアンモニア濃度が第二閾値以上であると判定された場合は、排気ファン42の風量を所定量だけ低下させて、ステップS03に戻る。すなわち、吸収液放出ライン45を流れる吸収液のアンモニア濃度が所定未満となるまで、排気ファン42の風量が低下される。
(作用効果)
 上記第一実施形態の浮体1は、浮体本体2と、浮体本体2に設けられ、アンモニア関連機器を内部に収容する区画30と、区画30に接続されて区画30の内部と区画30の外部とを連通させるダクト41と、ダクト41を介して区画30の内部の空気を区画30の外部に排出する排気ファン42と、アンモニアを吸収可能な吸収液を供給する吸収液供給ライン43と、区画30の外部に配置されて、ダクト41を介して排気ファン42により排出された空気に含まれるアンモニアを吸収液供給ライン43により供給された吸収液に吸収させて除去可能なスクラバー44と、少なくともスクラバー44にてアンモニアを吸収させた吸収液を、浮体本体2の浮かぶ周囲の水の中に放出する吸収液放出ライン45と、を備えている。
 このようにすることで、区画30内に漏洩して気化したアンモニアを含む空気を、ダクト41を介してスクラバー44に導入してアンモニアを除去することができる。また、スクラバー44でアンモニアを吸収した吸収液は、吸収液放出ライン45を介して水中に放出されるため、吸収液に含まれたアンモニアが再度気化して大気中に放出されて作業者に接触することを抑制できる。さらに、アンモニアを吸収した吸収液が浮体本体2の内部に残らないため、アンモニアを吸収した吸収液と作業者との接触を抑制できる。したがって、区画30内の機器を浸水させることなく作業者がアンモニアに接触することを抑制できる。
 上記第一実施形態の浮体1は、更に、区画30の内部の空気に含まれるアンモニアを検出可能な区画内センサー46を備えている。
 これにより、区画内センサー46の検出結果に基づいて、区画30内におけるアンモニアの漏洩を検出することができる。そのため、区画30内でアンモニアの漏洩が発生した場合にだけ排気ファン42を動作させてアンモニアを除去することが可能となり、省エネルギー化を図ることができる。
 上記第一実施形態の浮体1は、更に、吸収液放出ライン45を流れる流体に含まれるアンモニアを検出可能な放出ラインセンサー47を備えている。
 これにより、例えば、吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が高い場合には、区画30からスクラバー44に導入する空気の流量を低減して、吸収液放出ライン45により排出される流体のアンモニア濃度が規制値を超えないようにすることができる。
 上記第一実施形態の浮体1の排気ファン42は、風量を調節可能な可変速ファンである。
 このようにすることで、例えば、吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が高い場合には、アンモニア濃度に応じて排気ファン42の風量を低減すれば、吸収液放出ライン45を流れる流体のアンモニア濃度を低減することができる。
 上記第一実施形態の浮体1は、区画内センサー46の検出結果に基づいて、アンモニアの漏洩が発生したか否かを判定し、アンモニアの漏洩が発生したと判定された場合に排気ファン42を作動させる制御装置48を備えている。
 このようにすることで、制御装置48によって自動的に区画30内に漏洩したアンモニアを除去することができる。
 上記第一実施形態の制御装置48は、更に、上記アンモニアの漏洩が発生したと判定された場合に排気ファン42を作動させると共に、放出ラインセンサー47の検出結果に基づいて、排気ファン42の風量を調節している。
 このようにすることで、制御装置48によって自動的に吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が規制値を超えないようにすることができる。
 上記第一実施形態の制御装置48は、さらに、区画30の内部の空気を、浮体本体2の外部へ放出する換気用排気ファン56及び換気用排気ダンパー59を備えている。
 これにより、アンモニアの漏洩が発生していないときには、換気用排気ファン56により区画30内の換気を行うことが可能となる。
(第二実施形態)
 次に、本開示の第二実施形態における浮体を図面に基づき説明する。この第二実施形態は、上述した第一実施形態に対して、ダクト41を流れる空気の流量を調節する手法が異なるだけである。そのため、この第二実施形態では、上述した第一実施形態と同一部分に同一符号を付して説明し、重複する説明を省略する。
 図6は、本開示の第二実施形態における図2に相当する図である。
 第二実施形態の浮体1は、浮体本体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、配管系統20と、区画30と、アンモニア除去システム240と、を備えている。
(アンモニア除去システムの構成)
 図6に示すように、アンモニア除去システム240は、ダクト41と、排気ファン242と、吸収液供給ライン43と、スクラバー(アンモニア除去部)44と、吸収液放出ライン45と、区画内センサー46と、放出ラインセンサー47と、循環ダクト81と、ダクトダンパー82と、循環ダクトダンパー83と、制御装置248と、を備えている。
 排気ファン242は、ダクト41を介して区画30の内部の空気を区画30の外部に向けて排出する。排気ファン242は、ダクト41のうち第一端部41aに近い側に設けられている。本実施形態の排気ファン242は、定常運転時に一定の流量を維持する定速回転のファンである。この排気ファン242の作動及び停止の切り換え制御は、制御装置248により行われる。
 循環ダクト81は、区画30とスクラバー44とを連通させるダクト41に分岐接続されている。循環ダクト81は、ダクト41を流れる空気を区画30に戻す流路を形成している。循環ダクト81は、排気ファン242とスクラバー44との間のダクト41から分岐している。
 ダクトダンパー82は、ダクト41に設けられている。ダクトダンパー82は、ダクト41内を流れる空気の流量を調節することが可能になっている。ダクトダンパー82は、循環ダクト81の分岐点P1よりもスクラバー44に近い側に配置されている。本実施形態のダクトダンパー82は、制御装置248によって制御される。
 循環ダクトダンパー83は、循環ダクト81に設けられている。循環ダクトダンパー83は、循環ダクト81内を流れる空気の流量を調節することが可能になっている。本実施形態の循環ダクトダンパー83は、制御装置248によって制御される。
(制御装置の構成)
 制御装置248は、アンモニア除去システム240を制御する。より具体的には、制御装置248は、区画内センサー46の検出結果に基づいて、アンモニアの漏洩が発生したか否かを判定する。制御装置248は、この判定により、アンモニアの漏洩が発生していないと判定された場合、排気ファン242を作動させずに停止状態とする。なお、排気ファン242は、常時作動させるようにしてもよく、この場合、アンモニアの漏洩が発生していないと判定された場合に、ダクトダンパー82を閉塞状態にすると共に循環ダクトダンパー83を開放状態にするようにしてもよい。
 一方で、制御装置248は、上記判定により、アンモニアの漏洩が発生したと判定された場合、排気ファン242及びポンプ49を作動状態にする。さらに、制御装置248は、放出ラインセンサー47の検出結果に基づいて、ダクトダンパー82及び循環ダクトダンパー83を制御する。より具体的には、制御装置248は、放出ラインセンサー47の検出結果に基づいて、ダクトダンパー82と循環ダクトダンパー83とにより、ダクト41に流れる空気の流量と、循環ダクト81に流れる空気の流量とを調節する。言い換えれば、排気ファン242によって送り込まれる空気のうち、一部を区画30に戻すことで、スクラバー44内へ流入する空気の流量を調節する。なお、この第二実施形態の制御装置248のハードウェア構成については第一実施形態と同様であるため、詳細説明を省略する。
(制御装置の機能ブロック図)
 図7は、上記制御装置の機能ブロック図である。
 制御装置248のCPU61は予めHDD64やROM62等に記憶されたプログラムを実行することにより、信号受信部71、排気ファン制御部272、ポンプ制御部73、換気用排気ダンパー制御部75、換気用給気ダンパー制御部76、換気用排気ファン制御部77、指令信号出力部278、ダクトダンパー制御部79、循環ダクトダンパー制御部80の各機能構成を実現する。なお、信号受信部71、ポンプ制御部73、換気用排気ダンパー制御部75、換気用給気ダンパー制御部76、換気用排気ファン制御部77については、上述した第一実施形態の制御装置48と同様である。
 排気ファン制御部272は、信号受信部71で受信した区画内センサー46の検出信号及び放出ラインセンサー47の検出信号に基づいて、排気ファン242の作動及び停止を制御する。
 ダクトダンパー制御部79は、放出ラインセンサー47の検出結果に基づいて、ダクトダンパー82の開度を制御する。
 循環ダクトダンパー制御部80は、ダクトダンパー制御部79によるダクトダンパー82の開度と放出ラインセンサー47の検出結果のうち片方もしくは両方に応じて、循環ダクトダンパー83の開度を制御する。具体的には、ダクト41を流れる空気の流量がダクトダンパー82の開度に応じた流量となるように、循環ダクトダンパー制御部80は、循環ダクトダンパー83の開度を制御する。
 指令信号出力部278は、排気ファン制御部272、ポンプ制御部73、換気用排気ダンパー制御部75、換気用給気ダンパー制御部76、換気用排気ファン制御部77、換気用排気ダンパー制御部75、ダクトダンパー制御部79、循環ダクトダンパー制御部80による各制御を実現すべく排気ファン42、ポンプ49、換気用給気ダンパー55、換気用排気ファン56、ダクトダンパー82、循環ダクトダンパー83のそれぞれに指令信号を出力する。
 なお、制御装置248の動作については、上述した第一実施形態のステップS04において、ダクトダンパー82と循環ダクトダンパー83とのそれぞれの開度を変化させてダクト41を介してスクラバー44内に流入する空気の流量を調節する点でのみ異なるため、詳細説明を省略する。
(作用効果)
 上記第二実施形態の浮体1によれば、第一実施形態の浮体1と同様に、区画30内に漏洩して気化したアンモニアを含む空気を、ダクト41を介してスクラバー44に導入してアンモニアを除去することができる。また、スクラバー44でアンモニアを吸収した吸収液は、吸収液放出ライン45を介して水中に放出されるため、吸収液に含まれたアンモニアが再度気化して大気中に放出されて作業者に接触することを抑制できる。さらに、アンモニアを吸収した吸収液が浮体本体2の内部に残らないため、アンモニアを吸収した吸収液と作業者との接触を抑制できる。したがって、区画30内の機器を浸水させることなく作業者がアンモニアに接触することを抑制できる。
 上記第二実施形態の浮体1は、更に、ダクト41に分岐接続されてダクト41を流れる空気を区画30に戻す循環ダクト81と、ダクト41に設けられてダクト41内を流れる空気の流量を調節可能なダクトダンパー82と、循環ダクト81に設けられて循環ダクト81内を流れる空気の流量を調節可能な循環ダクトダンパー83と、を備えている。そして、排気ファン242が、一定の流量を維持する定速ファンとされている。
 このように構成することで、排気ファン242の風量を調節不可な場合であっても、ダクト41からスクラバー44内へ流入する空気の流量を変化させることができる。したがって、例えば、吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が高い場合には、循環ダクト81により区画30に戻す空気の流量を増加させて、スクラバー44に導入する空気の流量を低減することができる。その結果、排気ファン242として定速ファンを用いつつ、吸収液放出ライン45により排出される流体のアンモニア濃度が規制値を超えないようにすることができる。
 上記第二実施形態の浮体1は、更に、区画内センサー46及び放出ラインセンサー47の検出結果に基づいて、ダクトダンパー82及び循環ダクトダンパー83を制御する制御装置248を備えている。この制御装置248は、区画内センサー46の検出結果に基づいて、アンモニアの漏洩が発生したと判定された場合に、放出ラインセンサー47の検出結果に基づいて、ダクトダンパー82と循環ダクトダンパー83とにより、ダクト41に流れる空気の流量と、循環ダクト81に流れる空気の流量とを調節することで、スクラバー44へ流入する空気の流量を調節している。
 このようにすることで、排気ファン242が定速ファンであっても、制御装置248によって自動的に吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が規制値を超えないようにすることが可能となる。
(第三実施形態)
 次に、本開示の第三実施形態における浮体を図面に基づき説明する。この第三実施形態は、上述した第一実施形態の排気ファンを、換気用排気ファンとして兼用する構成である点でのみ異なる。そのため、この第三実施形態では、上述した第一実施形態と同一部分に同一符号を付して説明し、重複する説明を省略する。
 図8は、本開示の第三実施形態における図2に相当する図である。
 第三実施形態の浮体1は、浮体本体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、配管系統20と、区画30と、アンモニア除去システム340と、を備えている。区画30には、第一実施形態と同様に、区画30内を換気するための換気用給気ダクト53が接続されており、この換気用給気ダクト53に換気用給気ダンパー55が設けられている。
(アンモニア除去システムの構成)
 図8に示すように、アンモニア除去システム340は、ダクト41と、排気ファン42と、吸収液供給ライン43と、スクラバー(アンモニア除去部)44と、吸収液放出ライン45と、区画内センサー46と、放出ラインセンサー47と、換気用排気ダクト354と、ダクトダンパー82と、排気ダクトダンパー85と、制御装置348と、を備えている。
 ダクト41は、第一実施形態のダクト41と同様の構成であり、区画30に接続される第一端部41aと、スクラバー44に接続される第二端部41bとを有している。ダクト41は、区画30の内部空間と、スクラバー44の内部空間とを連通させている。
 排気ファン42は、第一実施形態の排気ファン42と同一構成である。排気ファン42は、制御装置348により風量を調節可能な可変速ファンである。排気ファン42は、ダクト41のうち区画30に近い側である第一端部41a近傍に配置され、ダクト41を介して区画30の内部の空気を区画30の外部に排出する。
 換気用排気ダクト354は、ダクト41に分岐接続されている。換気用排気ダクト354は、ダクト41内の流路と浮体本体2の外部とを連通し、ダクト41を流れる空気を浮体本体2の外部へ排出可能に構成されている。この換気用排気ダクト354は、換気用給気ダクト53及びダクト41と共に、区画30内を換気するための流路を構成している。
 ダクトダンパー82は、第二実施形態のダクトダンパー82と同様の構成であり、ダクト41に設けられ、ダクト41内を流れる空気の流量を調節可能とされている。この第三実施形態におけるダクトダンパー82は、ダクト41と換気用排気ダクト354との分岐点P2よりもスクラバー44に近い側に配置されている。このダクトダンパー82は、制御装置348によって制御される。
 排気ダクトダンパー85は、換気用排気ダクト354に設けられて換気用排気ダクト354内を流れる空気の流量を調節可能とされている。この排気ダクトダンパー85は、制御装置348によって制御される。
(制御装置の構成)
 制御装置348は、アンモニア除去システム340を制御する。制御装置348は、区画内センサー46の検出結果に基づいて、アンモニアの漏洩が発生したか否かを判定する。制御装置348は、この判定により、アンモニアの漏洩が発生していないと判定された場合、排気ファン42の風量を換気用の風量とする。さらに制御装置348は、ダクトダンパー82を閉塞状態にすると共に排気ダクトダンパー85を開放状態にする。
 制御装置348は、上記判定によりアンモニアの漏洩が発生したと判定された場合、ポンプ49を作動状態にして、ダクトダンパー82を開放状態にすると共に排気ダクトダンパー85を開放状態にする。さらに、この第三実施形態の制御装置348は、放出ラインセンサー47の検出結果に基づいて、排気ファン342の風量を調節することで、スクラバー44内へ流入する空気の流量を調節する。なお、この第三実施形態の制御装置348のハードウェア構成については第一実施形態と同様であるため、詳細説明を省略する。
(制御装置の機能ブロック図)
 図9は、上記制御装置の機能ブロック図である。
 制御装置348のCPU61は予めHDD64やROM62等に記憶されたプログラムを実行することにより、信号受信部71、排気ファン制御部372、ポンプ制御部73、換気用給気ダンパー制御部76、指令信号出力部378、ダクトダンパー制御部79、排気ダクトダンパー制御部86の各機能構成を実現する。なお、信号受信部71、ポンプ制御部73、換気用給気ダンパー制御部76については、上述した第一実施形態の制御装置48と同様の構成である。
 排気ファン制御部372は、信号受信部71で受信した区画内センサー46の検出信号及び放出ラインセンサー47の検出信号に基づいて、排気ファン42の風量を制御する。例えば、排気ファン制御部372は、区画内センサー46の検出結果に基づいて区画30内にアンモニアの漏洩が発生していないと判定された場合、区画30内における通常の換気を行う風量(以下、換気風量と称する)で排気ファン42を作動させる。その一方で、排気ファン制御部372は、区画30内にアンモニアの漏洩が発生したと判定された場合、区画30内の空気をスクラバー44へ送るための風量(以下、除去風量と称する)で排気ファン42を作動させる。
 ダクトダンパー制御部79は、区画内センサー46の検出結果に基づいて、ダクトダンパー82の開度を制御する。具体的には、ダクトダンパー制御部79は、区画内センサー46の検出結果に基づいて区画30内にアンモニアの漏洩が発生したと判定された場合、ダクトダンパー82を開放状態(例えば、全開)にする。その一方で、区画30内にアンモニアの漏洩が発生していないと判定された場合、ダクトダンパー82を閉塞状態(例えば、全閉)にする。
 排気ダクトダンパー制御部86は、区画内センサー46の検出結果に基づいて、排気ダクトダンパー85の開度を制御する。具体的には、排気ダクトダンパー制御部86は、区画内センサー46の検出結果に基づいて、区画30内にアンモニアの漏洩が発生したと判定された場合、排気ダクトダンパー85を全閉状態にする。その一方で、区画30内にアンモニアの漏洩が発生していないと判定された場合、排気ダクトダンパー85を開放状態(例えば、全開)にする。
 指令信号出力部378は、信号受信部71、排気ファン制御部372、ポンプ制御部73、換気用給気ダンパー制御部76、指令信号出力部378、ダクトダンパー制御部79、排気ダクトダンパー制御部86による各制御を実現すべく排気ファン42、ポンプ49、換気用給気ダンパー55、ダクトダンパー82、排気ダクトダンパー85のそれぞれに指令信号を出力する。
(制御装置の動作)
 図10は、本開示の実施形態におけるアンモニア除去処理のフローチャートである。
 次に、上述した浮体1の区画30内のアンモニアを除去する際の制御装置348の動作について図10のフローチャートを参照しながら説明する。
 まず、制御装置348の排気ファン制御部72、ポンプ制御部73、ダクトダンパー制御部79、排気ダクトダンパー制御部86は、区画内センサー46の検出結果に基づいて、区画30内のアンモニア濃度が所定の第一閾値以上か否かを判定する(ステップS01)。区画30内のアンモニア濃度が第一閾値以上では無いと判定された場合、区画30内にアンモニア漏洩が無いため、ダクトダンパー制御部79は、ダクトダンパー82を閉塞状態にして、排気ダクトダンパー制御部86は、排気ダクトダンパー85を開放状態にする(ステップS13)。また、排気ファン制御部72は、排気ファン42を換気風量で作動させると共に、ポンプ制御部73はポンプ49を停止状態にする(ステップS14)。なお、この際、換気用給気ダンパー制御部76は、換気用給気ダンパー55を開放状態とする。これにより、区画30内が換気される。その後、ステップS01に戻る。
 一方で、ステップS01により、区画30内のアンモニア濃度が所定の第一閾値以上であると判定された場合、区画30内にアンモニアが漏洩しているため、ダクトダンパー制御部79は、ダクトダンパー82を開放状態にして、排気ダクトダンパー制御部86は、排気ダクトダンパー85を閉塞状態にする(ステップS11)。また、排気ファン制御部72は、排気ファン42を除去風量で作動させると共に、ポンプ制御部73はポンプ49を作動させる(ステップS12)。なお、この際、換気用給気ダンパー制御部76は、換気用給気ダンパー55の開度を調節して区画30内を所定の負圧に維持する。これにより、区画30内の空気がスクラバー44内へ送り込まれる。
 次いで、制御装置348の排気ファン制御部72は、上述した第一実施形態と同様に、放出ラインセンサー47の検出結果に基づいて、吸収液放出ライン45を流れる吸収液のアンモニア濃度が第二閾値以上か否かを判定する(ステップS03)。この判定では、吸収液放出ライン45を介して浮体本体2の外部に放出される吸収液のアンモニア濃度が、例えば、海洋放出に関する規則を満たすか否かを判定している。この判定の結果、吸収液放出ライン45を流れる吸収液のアンモニア濃度が第二閾値以上では無いと判定された場合は、ステップS01に戻る。その一方で、吸収液放出ライン45を流れる吸収液のアンモニア濃度が第二閾値以上であると判定された場合は、排気ファン42の風量を所定量だけ低下させて、ステップS03に戻る。すなわち、吸収液放出ライン45を流れる吸収液のアンモニア濃度が所定未満となるまで、排気ファン42の風量が低下される。
(作用効果)
 上記第三実施形態の浮体1によれば、第一実施形態の浮体1と同様に、区画30内に漏洩して気化したアンモニアを含む空気を、ダクト41を介してスクラバー44に導入してアンモニアを除去することができる。また、スクラバー44でアンモニアを吸収した吸収液は、吸収液放出ライン45を介して水中に放出されるため、吸収液に含まれたアンモニアが再度気化して大気中に放出されて作業者に接触することを抑制できる。さらに、アンモニアを吸収した吸収液が浮体本体2の内部に残らないため、アンモニアを吸収した吸収液と作業者との接触を抑制できる。したがって、区画30内の機器を浸水させることなく作業者がアンモニアに接触することを抑制できる。
 上記第三実施形態の浮体1は、換気用排気ダクト354と、ダクトダンパー82と、排気ダクトダンパー85と、を備えている。このようにすることで、区画30内と船外とを連通する流路と、区画30内とスクラバー44内とを連通する流路とを、切り替えて用いることが可能となる。そして、これら切り替えて用いる2つの流路の共用部分に排気ファン42を設けているため、一つの排気ファン42を用いて、区画30内を換気したり、区画30内の空気をスクラバー44へ送り込んだりすることができる。したがって、換気用のファンと、アンモニア除去用のファンを個別に設ける場合と比較して部品点数を低減できる。
(第四実施形態)
 次に、本開示の第四実施形態における浮体を図面に基づき説明する。この第四実施形態は、上述した第一実施形態に対して、換気用排気ダクト54及び換気用排気ファン56を省略したものである。そのため、この第四実施形態では、上述した第一実施形態と同一部分に同一符号を付して説明し、重複する説明を省略する。
(アンモニア除去システムの構成)
 図11は、本開示の第四実施形態における図2に相当する図である。
 図11に示すように、第四実施形態のアンモニア除去システム40は、ダクト41と、排気ファン42と、吸収液供給ライン43と、スクラバー44と、吸収液放出ライン45と、区画内センサー46と、放出ラインセンサー47と、制御装置448と、を備えている。
 また、区画30には、区画30内を換気するための換気用給気ダクト53が接続されている。さらに、換気用給気ダクト53には換気用給気ダンパー55が取り付けられている。
(制御装置の構成)
 制御装置448は、区画30内の空気に含まれるアンモニアをスクラバー44によって除去する点においては、上述した第一実施形態の制御装置48と同様の構成である。その一方で、制御装置448は、区画内センサー46の検出結果に基づいて、開閉ダンパー58を開閉制御する。すなわち制御装置448は、開閉ダンパー58を開放してダクト41、スクラバー44及び大気放出ライン57を介して区画30内の空気を浮体本体2の外部へ排出可能な状態と、開閉ダンパー58を閉塞して、区画30内の空気をスクラバー44内に流入させてアンモニアを除去して、吸収液放出ライン45から排出する状態と、を切り替える。
(制御装置の機能ブロック図)
 図12は、上記制御装置の機能ブロック図である。
 制御装置48のCPU61は予めHDD64やROM62等に記憶されたプログラムを実行することにより、信号受信部71、排気ファン制御部72、ポンプ制御部73、換気用給気ダンパー制御部76、指令信号出力部478、開閉ダンパー制御部87の各機能構成を実現する。
 開閉ダンパー制御部87は、区画内センサー46の検出信号に基づいて、開閉ダンパー58の開閉を制御する。具体的には、開閉ダンパー制御部87は、区画内センサー46の検出信号に基づいて区画30内にアンモニアの漏洩が発生したと判定された場合に、開閉ダンパー58を閉塞状態にする。一方で、開閉ダンパー制御部87は、区画30内にアンモニアの漏洩が発生していないと判定された場合に、開閉ダンパー58を開放状態にする。
 指令信号出力部478は、排気ファン制御部72、ポンプ制御部73、換気用給気ダンパー制御部76、開閉ダンパー制御部87による各制御を実現すべく排気ファン42、ポンプ49、換気用給気ダンパー55、開閉ダンパー58のそれぞれに指令信号を出力する。
(制御装置の動作)
 図13は、本開示の第一実施形態におけるアンモニア除去処理のフローチャートである。
 次に、上述した浮体1の区画30内のアンモニアを除去する際の制御装置448の動作について図13のフローチャートを参照しながら説明する。なお、この制御装置448の動作については、上述した第三実施形態の図10に示すフローチャートにおけるステップS11がステップS21に置き換わり、ステップS13がステップS23に置き換わっただけである。
 まず、制御装置448の排気ファン制御部72、ポンプ制御部73、ダクトダンパー制御部79、開閉ダンパー制御部87は、区画内センサー46の検出結果に基づいて、区画30内のアンモニア濃度が所定の第一閾値以上か否かを判定する(ステップS01)。区画30内のアンモニア濃度が第一閾値以上では無いと判定された場合、区画30内にアンモニア漏洩が無いため、開閉ダンパー制御部87は、開閉ダンパー58を開放状態にする(ステップS23)。また、排気ファン制御部72は、排気ファン42を換気風量で作動させると共に、ポンプ制御部73はポンプ49を停止状態にする(ステップS14)。なお、この際、換気用給気ダンパー制御部76は、換気用給気ダンパー55を開放状態とする。これにより、換気用給気ダクト53、ダクト41、スクラバー44、及び大気放出ライン57を介して、区画30内が換気される。その後、ステップS01に戻る。なお、ステップS14では、ポンプ制御部73は、ポンプ49を停止させずに作動を継続させていてもよい。
 一方で、ステップS01により、区画30内のアンモニア濃度が所定の第一閾値以上であると判定された場合、区画30内にアンモニアが漏洩しているため、ダクトダンパー制御部79は、開閉ダンパー58を閉塞状態にする(ステップS21)。また、排気ファン制御部72は、排気ファン42を除去風量で作動させると共に、ポンプ制御部73はポンプ49を作動させる(ステップS12)。なお、この際、換気用給気ダンパー制御部76は、換気用給気ダンパー55の開度を調節して区画30内を所定の負圧に維持する。これにより、区画30内の空気がスクラバー44内へ送り込まれるが、大気放出ライン57を介して大気へ放出されることはない。なお、ステップS03及びステップS04の説明については上述した第一実施形態と同様であるため省略する。
(作用効果)
 上記第四実施形態の浮体1によれば、第一実施形態の浮体1と同様に、区画30内に漏洩して気化したアンモニアを含む空気を、ダクト41を介してスクラバー44に導入してアンモニアを除去することができる。また、スクラバー44でアンモニアを吸収した吸収液は、吸収液放出ライン45を介して水中に放出されるため、吸収液に含まれたアンモニアが再度気化して大気中に放出されて作業者に接触することを抑制できる。さらに、アンモニアを吸収した吸収液が浮体本体2の内部に残らないため、アンモニアを吸収した吸収液と作業者との接触を抑制できる。したがって、区画30内の機器を浸水させることなく作業者がアンモニアに接触することを抑制できる。
 上記第四実施形態の制御装置448は、開閉ダンパー58を開閉制御している。このようにすることで、一つの排気ファン42を用いて、大気放出ライン57を換気用排気ダクトの代わりに用いることが可能になる。また、換気用排気ダクトを省略できる。したがって、換気用のファンと、アンモニア除去用のファンを個別に設けたり、換気用排気ダクトを設けたりする場合と比較して、部品点数を低減することができる。その結果、区画30内を換気したり、区画30内の空気をスクラバー44へ送り込んでアンモニアを除去したりすることができる。さらに、アンモニアの漏洩が発生した場合に、アンモニアを含む空気が作業者に接触することも抑制できる。
(各実施形態の第一変形例)
 次に、本開示の各実施形態における第一変形例を図14に基づき説明する。この第一変形例は、吸収液の供給に係る構成が上述した各実施形態と異なるだけであるため、各実施形態と同一部分に同一符号を付して説明すると共に、重複する説明を省略する。また、第一実施形態に本変形例を適用した場合を一例にして説明する。
 図14は、本開示の実施形態の第一変形例における図2に相当する図である。
 図14に示すように、この第一変形例におけるアンモニア除去システム40は、ダクト41と、排気ファン42と、吸収液供給ライン43と、スクラバー44と、吸収液放出ライン45と、区画内センサー46と、放出ラインセンサー47と、制御装置48と、熱交換器88を備えている。
 熱交換器88は、吸収液供給ライン43内を流れる吸収液と、外部の熱媒体とを熱交換して、吸収液を加熱又は冷却する。本変形例の熱交換器88は、例えば、燃料アンモニアの冷熱を有効利用すべく、燃料アンモニアを加熱するための加熱水等の熱媒体と、吸収液とを熱交換して、吸収液の液温を低下させている。ここで、吸収液が温度上昇によりアンモニアの吸収率を向上させることができるものである場合には、上記熱交換器88を用いて吸収液を加熱するようにしてもよい。
 したがって、本第一変形例によれば、吸収液によるアンモニアの吸収率を向上できるため、ポンプ49で消費されるエネルギーを低減することが可能となる。
(各実施形態の第二変形例)
 次に、本開示の各実施形態における第二変形例を図15に基づき説明する。この第二変形例は、スクラバーの構成が上述した各実施形態と異なるだけであるため、各実施形態と同一部分に同一符号を付して説明すると共に、重複する説明を省略する。
 図15は、本開示の各実施形態の第二変形例におけるスクラバーの拡大図である。
 図15に示すように、この第二変形例におけるスクラバー244は、上述したスクラバー44と同様に、区画30の外部に配置されている。スクラバー244は、ダクト41を介して区画30から排出された空気に含まれるアンモニアを、吸収液供給ライン43により供給された吸収液に吸収させて除去可能に構成されている。
 スクラバー244は、スクラバーケーシング91と、貯液部92と、ノズル部50と、内部吸収液供給ライン93と、を備えている。
 スクラバーケーシング91は、スクラバー244の内部空間95を画成している。
 貯液部92は、少なくとも内部空間95の一部に吸収液を貯留可能に構成されている。本第二変形例の貯液部92は、スクラバーケーシング91と共に、吸収液を貯留する貯留空間を形成している。この貯液部92は、その上部から吸収液をオーバーフローさせることが可能となっており、オーバーフローした吸収液は、吸収液放出ライン45によりスクラバーケーシング91の外部へ排出される。貯液部92の液面より下方には、ダクト41が接続されており、ダクト41を介して送り込まれた空気が貯液部92に貯留された吸収液の内部に放出されて、気泡として上方へ向かう。そして、貯液部92の液面に至った空気は、液面から内部空間95内に放出されるようになっている。
 内部吸収液供給ライン93は、ノズル部50及び貯液部92に吸収液を供給する。内部吸収液供給ライン93は、ノズル部50へ吸収液を供給する主ライン93Aと、主ライン93Aから分岐して貯液部92へ至る分岐ライン93Bと、を有している。
 ノズル部50は、内部空間95の上部に設けられて吸収液を噴霧する。ノズル部50から噴霧された吸収液は、自重により下方へ移動しながら、貯液部92を介して内部空間95に供給された空気と接触する。この接触により、空気に含まれるアンモニアは、吸収液に吸収されて内部空間95の下部へ至り、上記オーバーフローした吸収液と共に、吸収液放出ライン45より排出される。
 また、第二変形例においては、希釈水ライン96を備えている。この希釈水ライン96は、希釈水(例えば、海水や清水)を希釈水ポンプ(図示せず)により送り込んで吸収液放出ライン45に合流させることが可能となっている。この希釈水ポンプ(図示せず)は、可変流量タイプのポンプであって、例えば、制御装置48,248,348,448により制御されて、放出ラインセンサー47の検出結果に応じた流量の希釈水を吸収液放出ライン45合流させる。ここで、希釈水の流量は、吸収液放出ライン45から排出される排出アンモニア濃度に応じて制御することができる。例えば、排出アンモニア濃度は、希釈水の流量とアンモニアセンサーにより検出されたアンモニア濃度とにより求めることができる。
 なお、第二変形例における希釈水ライン96は、適宜設ければ良く、省略してもよい。この希釈水ライン96の構成を備えることで、希釈分の流量をポンプ49に持たせる必要が無くなるため、ポンプ49を小型化することが可能となる。さらに、第二変形例における希釈水ポンプ(図示せず)は、可変流量タイプに限られず、例えば、最大流量で一定流量を供給できるタイプのポンプであってもよい。
 また、第二変形例では、アンモニアセンサーとして、吸収液放出ライン45に設けられた放出ラインセンサー47を一例に説明したが、例えば、内部空間95のうち貯液部92を除く空間に設けられた内部空間センサー97を用いてもよい。
 また、第二変形例におけるスクラバー244は、スクラバーケーシング91の内部に貯液部92を備える場合について説明したが、貯液部92は、スクラバーケーシング91の外部に配置されていてもよい。この場合、例えば、貯液部92のオーバーフロー管をスクラバーケーシング91に接続し、貯液部92の気相とスクラバーケーシング91の気相とを配管等により連通させれば良い。
 上記第二変形例によれば、ダクト41を介して送り込まれた空気を、必ず吸収液に接触させることができるため、アンモニアを十分に除去できていない空気が吸収液放出ライン45から排出されることを抑制できる。
〈他の実施形態〉
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上記第一から第三実施形態では、大気放出ライン57、開閉ダンパー58を省略してもよい。
 上記各実施形態では、吸収液放出ライン45に放出ラインセンサー47を設けて、放出ラインセンサー47の検出結果に基づいて、ダクト41に流れる空気の流量を調節する場合について説明した。しかし、吸収液放出ライン45から放出される流体のアンモニア濃度が予め十分に低くなるように設計されている等で、吸収液放出ライン45から放出される流体のアンモニア濃度が規制値を超える可能性がない場合、放出ラインセンサー47を省略して、放出ラインセンサー47の検出結果に基づく制御を行わないようにしてもよい。また、放出ラインセンサー47を設けた場合であっても、放出ラインセンサー47の検出結果は、スクラバー44によるアンモニア除去が行われているか否かの確認を行うためにのみ用いてもよい。
 上記各実施形態では、制御装置48,248,348,448により、区画30内でアンモニアの漏洩が発生した場合に、自動的にスクラバー44によりアンモニアを除去する構成について説明した。しかし、この制御装置48,248,348,448を省略して、作業者が、例えば、区画内センサー46の検出結果を表示装置により目視して、排気ファン42,242を操作する等して、区画30内のアンモニアを除去するようにしてもよい。
 上記各実施形態では、吸収液供給ライン43を介してスクラバー44に吸収液を供給するために、専用のポンプ49を備えている場合を説明した。しかし、吸収液を供給するポンプ49は、浮体本体2に設けられた他の海水または清水ポンプと兼用してもよい。
 さらに、ポンプ49は、アンモニアの漏洩が発生したと判定された場合に作動させ、それ以外の場合停止状態にしていたが、常時作動状態としてもよい。
 上記実施形態の変形例においては、燃焼装置8の排熱を用いる場合について説明したが、燃焼装置8以外の熱源から供給される熱エネルギーを利用するようにしてもよい。
 上記実施形態の第二変形例では、希釈水ライン96を備えている場合について説明したが、例えば、この第二変形例の希釈水ライン96は、適宜第一実施形態から第四実施形態、及び第一変形例に対して設けるようにしてもよい。
 上記第一、第二実施形態では、換気用給気ダクト53、換気用排気ファン56、換気用排気ダンパー59、換気用排気ダンパー制御部75、換気用給気ダンパー制御部76、及び、換気用排気ファン制御部77をそれぞれ備える場合について説明したが、これらの構成は、適宜省略してもよい。
 上記各実施形態では、制御装置48,248,348,448として、コンピュータ装置を用いる場合を一例にして説明した。しかし、例えば、リレー回路等のハードウェアにより制御装置48,248,348,448の機能構成を実現したり、ハードウェアとソフトウェアとの組み合わせにより制御装置48,248,348,448の機能構成を実現したりしてもよい。
<付記>
 実施形態に記載の浮体1は、例えば以下のように把握される。
(1)第1の態様によれば浮体1は、浮体本体2と、前記浮体本体2に設けられ、アンモニア関連機器を内部に収容する区画30と、前記区画30に接続されて前記区画30の内部と前記区画30の外部とを連通させるダクト41と、前記ダクト41を介して前記区画30の内部の空気を前記区画30の外部に排出する排気ファン42,242と、アンモニアを吸収可能な吸収液を供給する吸収液供給ライン43と、前記区画30の外部に配置されて、前記ダクト41を介して前記排気ファン42,242により排出された空気に含まれるアンモニアを、前記吸収液供給ライン43により供給された前記吸収液に吸収させて除去可能なアンモニア除去部44と、前記アンモニア除去部44にて前記アンモニアを吸収させた前記吸収液と、前記アンモニアが除去された前記空気とを、前記浮体本体2の浮かぶ周囲の水の中に放出する吸収液放出ライン45と、を備える。
 アンモニア除去部44の例としては、スクラバーが挙げられる。
 これにより、区画30内に漏洩して気化したアンモニアを含む空気を、ダクト41を介してアンモニア除去部44に導入してアンモニアを除去することができる。また、アンモニア除去部44でアンモニアを吸収した吸収液は、吸収液放出ライン45を介して水中に放出されるため、吸収液に含まれたアンモニアが再度気化して大気中に放出されて作業者に接触することを抑制できる。さらに、アンモニアを吸収した吸収液が浮体本体2の内部に残らないため、アンモニアを吸収した吸収液と作業者との接触を抑制できる。したがって、区画30内の機器を浸水させることなく作業者がアンモニアに接触することを抑制できる。
(2)第2の態様に係る浮体1は、(1)の浮体1であって、前記区画30の内部の空気に含まれるアンモニアを検出可能な区画内センサー46を備える。
 これにより、区画内センサー46の検出結果に基づいて、区画30内におけるアンモニアの漏洩を検出することができる。これにより、区画30内でアンモニアの漏洩が発生した場合にだけ排気ファン42を動作させてアンモニアを除去することが可能となり、省エネルギー化を図ることができる。
(3)第3の態様に係る浮体1は、(2)の浮体1であって、前記吸収液放出ライン45を流れる流体に含まれるアンモニアを検出可能な放出ラインセンサー47を備える。
 これにより、例えば、吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が高い場合には、区画30からスクラバー44に導入する空気の流量を低減して、吸収液放出ライン45により排出される流体のアンモニア濃度が規制値を超えないようにすることができる。
(4)第4の態様に係る浮体1は、(3)の浮体1であって、前記排気ファン42は、風量を調節可能な可変速ファンである。
 これにより、例えば、吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が高い場合には、アンモニア濃度に応じて排気ファン42の風量を低減すれば、吸収液放出ライン45を流れる流体のアンモニア濃度を低減することができる。
(5)第5の態様に係る浮体1は、(2)から(4)の何れか一つの浮体1であって、前記区画内センサー46の検出結果に基づいて、前記アンモニアの漏洩が発生したか否かを判定し、前記アンモニアの漏洩が発生したと判定された場合に前記排気ファン42,242を作動させる制御装置48,248,348,448と、を備える。
 これにより、制御装置48,248,348,448により自動的に区画30内に漏洩したアンモニアを除去することができる。
(6)第6の態様に係る浮体1は、(5)の浮体であって、前記区画内センサー46の検出結果に基づいて、前記アンモニアの漏洩が発生したか否かを判定し、前記アンモニアの漏洩が発生したと判定された場合に前記排気ファン42,242を作動させるとともに、前記放出ラインセンサー47の検出結果に基づいて、前記排気ファン42,242の風量を調節する制御装置48,248,348,448を備える。
 これにより、自動的に吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が規制値を超えないようにすることができる。
(7)第7の態様に係る浮体1は、(3)の浮体であって、前記ダクト41に分岐接続されて前記ダクト41を流れる前記空気を前記区画30に戻す循環ダクト81と、前記ダクト41に設けられて前記ダクト41内を流れる前記空気の流量を調節可能なダクトダンパー82と、前記循環ダクト81に設けられて前記循環ダクト81内を流れる前記空気の流量を調節可能な循環ダクトダンパー83と、を備え、前記排気ファン242は、一定の流量を維持する定速ファンである。
 これにより、排気ファン242の風量を調節不可である場合であっても、ダクト41からスクラバー44内へ流入する空気の流量を変化させることができる。したがって、例えば、吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が高い場合には、区画30からスクラバー44に導入する空気の流量を低減して、吸収液放出ライン45により排出される流体のアンモニア濃度が規制値を超えないようにすることができる。
(8)第8の態様に係る浮体1は、(7)の浮体であって、前記区画内センサー及び前記放出ラインセンサーの検出結果に基づいて、前記ダクトダンパー及び前記循環ダクトダンパーを制御する制御装置を備え、前記制御装置は、前記区画内センサーの検出結果に基づいて前記アンモニアの漏洩が発生していないと判定された場合に、前記ダクトダンパーを閉塞状態にすると共に、前記循環ダクトダンパーを開放状態にする一方で、前記アンモニアの漏洩が発生したと判定された場合に、前記放出ラインセンサーの検出結果に基づいて、前記ダクトダンパーと前記循環ダクトダンパーとにより、前記ダクトに流れる前記空気の流量と、前記循環ダクトに流れる前記空気の流量と、を調節することで、前記アンモニア除去部へ流入する前記空気の流量を調節する。
 これにより、排気ファン242が定速ファンであっても、制御装置248によって自動的に吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が規制値を超えないようにすることが可能となる。
(9)第9の態様に係る浮体1は、(1)から(8)の何れか一つの浮体1であって、前記区画30の内部の空気を、前記浮体本体2の外部へ放出する換気用排気ファン56を備える。
 これにより、アンモニアの漏洩が発生していないときには、換気用排気ファン56により区画30内の換気を行うことが可能となる。
(10)第10の態様に係る浮体1は、(1)の浮体であって、前記ダクト41に分岐接続されて前記ダクト41を流れる前記空気を前記浮体本体2の外部へ排出する排気ダクト354と、前記ダクト41に設けられて前記ダクト41内を流れる前記空気の流量を調節可能なダクトダンパー82と、前記排気ダクト354に設けられて前記排気ダクト354内を流れる前記空気の流量を調節可能な排気ダクトダンパー85と、を備える。
 これにより、ダクト41と排気ダクト354とによって構成されて区画30内と船外とを連通する流路と、ダクト41により構成されて区画30内とスクラバー44内とを連通する流路とを、切り替えて用いることが可能となる。そして、これら切り替えて用いる2つの流路の共用部分に排気ファン42を設けているため、一つの排気ファン42を用いて、区画30内を換気したり、区画30内の空気をスクラバー44へ送り込んだりすることができる。したがって、換気用のファンと、アンモニア除去用のファンを個別に設ける場合と比較して部品点数を低減できる。
(11)第11の態様に係る浮体1は、(10)の浮体であって、前記区画30の内部の空気に含まれるアンモニアを検出可能な区画内センサー46を備える。
 これにより、区画内センサー46の検出結果に基づいて、区画30内におけるアンモニアの漏洩を検出することができるため、アンモニアの漏洩が発生したと判定された場合に、ダクト41により構成されて区画30内とスクラバー44内とを連通する流路に切り替えることが可能となる。したがって、作業者がアンモニアに接触することをより一層抑制することができる。
(12)第12の態様に係る浮体1は、(11)の浮体1であって、前記区画内センサー46の検出結果に基づいて、前記ダクトダンパー82及び前記排気ダクトダンパー85を制御する制御装置348を備え、前記制御装置348は、前記アンモニアの漏洩が発生していないと判定された場合に、前記ダクトダンパー82を閉塞状態にすると共に前記排気ダクトダンパー85を開放状態にする一方で、前記アンモニアの漏洩が発生したと判定された場合に、前記ダクトダンパー82を開放状態にすると共に前記排気ダクトダンパー85を閉塞状態にする。
 これにより、自動的に区画30内に漏洩したアンモニアを除去することができる。
(13)第13の態様に係る浮体1は、(12)の浮体1であって、前記排気ファン42は、風量を調節可能な可変速ファンである。
 これにより、例えば、吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が高い場合には、アンモニア濃度に応じて排気ファン42の風量を低減すれば、吸収液放出ライン45を流れる流体のアンモニア濃度を低減することができる。
(14)第14の態様に係る浮体1は、(13)の浮体1であって、前記吸収液放出ライン45を流れる流体に含まれるアンモニアを検出可能な放出ラインセンサー47を備え、前記制御装置348は、前記放出ラインセンサー47の検出結果に基づいて、前記排気ファン42の風量を調節する。
 これにより、自動的に吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が規制値を超えないようにすることができる。
(15)第15の態様に係る浮体1は、(2)の浮体1であって、前記アンモニア除去部44は、前記ダクト41を介して前記アンモニア除去部44の内部に流入した前記空気を大気に放出可能な大気放出ライン57と、前記大気放出ライン57を開閉する開閉ダンパー58と、を備える。
 これにより、大気放出ライン57を換気用排気ダクトの代わりに用いることが可能になる。したがって、換気用のファンと、アンモニア除去用のファンを個別に設ける場合と比較して部品点数を低減しつつ、区画30内を換気したり、区画30内の空気をスクラバー44へ送り込んでアンモニアを除去したりすることができる。さらに、アンモニアの漏洩が発生した場合に、アンモニアを含む空気が作業者に接触することも抑制できる。
(16)第16の態様に係る浮体1は、(15)の浮体であって、前記区画内センサー46の検出結果に基づいて、前記開閉ダンパー58を開閉制御する制御装置448を備える。
 これにより、自動的に区画30内に漏洩したアンモニアを除去することができる。
(17)第17の態様に係る浮体1は、(16)の浮体であって、前記吸収液放出ラインを流れる流体に含まれるアンモニアを検出可能な放出ラインセンサー47を備え、前記排気ファン42は、風量を調節可能な可変速ファンであり、前記制御装置448は、前記放出ラインセンサー47の検出結果に基づいて、前記排気ファン42の風量を調節する。
 これにより、自動的に吸収液放出ライン45を流れる流体に含まれるアンモニアの濃度が規制値を超えないようにすることができる。
(18)第18の態様に係る浮体1は、(1)から(17)の何れか一つの浮体1であって、前記吸収液を加熱又は冷却可能な熱交換器88を備える。
 これにより、吸収液によるアンモニアの吸収率を向上できるため、ポンプ49で消費されるエネルギーを低減することが可能となる。
 本開示の浮体によれば、区画内の機器を浸水させることなく作業者がアンモニアに接触することを抑制できる。
1…浮体 2…浮体本体 3a…船首 3b…船尾 4…上部構造 5A,5B…舷側 6…船底 7…上甲板 8…燃焼装置 10…アンモニアタンク 20…配管系統 30…区画 40,240…アンモニア除去システム 41…ダクト 42,242…排気ファン 43…吸収液供給ライン 44,244…スクラバー 45…吸収液放出ライン 46…区画内センサー 47…放出ラインセンサー 48,248,348,448…制御装置 49…ポンプ 50…ノズル部 53…換気用給気ダクト 54,354…換気用排気ダクト 55…換気用給気ダンパー 56…換気用排気ファン 57…大気放出ライン 58…開閉ダンパー 59…換気用排気ダンパー 61…CPU 62…ROM 63…RAM 64…HDD 65…信号送受信モジュール 71…信号受信部 72,272…排気ファン制御部 73…ポンプ制御部 75…換気用排気ダンパー制御部 76…換気用給気ダンパー制御部 77…換気用排気ファン制御部 78,278,378…指令信号出力部 79…ダクトダンパー制御部 80…循環ダクトダンパー制御部 81…循環ダクト 82…ダクトダンパー 83…循環ダクトダンパー 85…排気ダクトダンパー 86…排気ダクトダンパー制御部 87…開閉ダンパー制御部 88…熱交換器 91…スクラバーケーシング 92…貯液部 93…内部吸収液供給ライン 93A…主ライン 93B…分岐ライン 95…内部空間 97…内部空間センサー

Claims (18)

  1.  浮体本体と、
     前記浮体本体に設けられ、アンモニア関連機器を内部に収容する区画と、
     前記区画に接続されて前記区画の内部と前記区画の外部とを連通させるダクトと、
     前記ダクトを介して前記区画の内部の空気を前記区画の外部に排出する排気ファンと、
     アンモニアを吸収可能な吸収液を供給する吸収液供給ラインと、
     前記区画の外部に配置されて、前記ダクトを介して前記排気ファンにより排出された空気に含まれるアンモニアを、前記吸収液供給ラインにより供給された前記吸収液に吸収させて除去可能なアンモニア除去部と、
     少なくとも前記アンモニア除去部にて前記アンモニアを吸収させた前記吸収液を、前記浮体本体の浮かぶ周囲の水の中に放出する吸収液放出ラインと、
    を備える
    浮体。
  2.  前記区画の内部の空気に含まれるアンモニアを検出可能な区画内センサーを備える
    請求項1に記載の浮体。
  3.  前記吸収液放出ラインを流れる流体に含まれるアンモニアを検出可能な放出ラインセンサーを備える
    請求項2に記載の浮体。
  4.  前記排気ファンは、風量を調節可能な可変速ファンである
    請求項3に記載の浮体。
  5.  前記区画内センサーの検出結果に基づいて、前記アンモニアの漏洩が発生したか否かを判定し、前記アンモニアの漏洩が発生したと判定された場合に前記排気ファンを作動させる制御装置を備える
    請求項2から4の何れか一項に記載の浮体。
  6.  前記区画内センサーの検出結果に基づいて、前記アンモニアの漏洩が発生したか否かを判定し、前記アンモニアの漏洩が発生したと判定された場合に前記排気ファンを作動させると共に、前記放出ラインセンサーの検出結果に基づいて、前記排気ファンの風量を調節する制御装置を備える
    請求項3又は4に記載の浮体。
  7.  前記ダクトに分岐接続されて前記ダクトを流れる前記空気を前記区画に戻す循環ダクトと、
     前記ダクトに設けられて前記ダクト内を流れる前記空気の流量を調節可能なダクトダンパーと、
     前記循環ダクトに設けられて前記循環ダクト内を流れる前記空気の流量を調節可能な循環ダクトダンパーと、
    を備え、
     前記排気ファンは、一定の流量を維持する定速ファンである
    請求項3に記載の浮体。
  8.  前記区画内センサー及び前記放出ラインセンサーの検出結果に基づいて、前記ダクトダンパー及び前記循環ダクトダンパーを制御する制御装置を備え、
     前記制御装置は、
     前記区画内センサーの検出結果に基づいて、前記アンモニアの漏洩が発生したと判定された場合に、前記放出ラインセンサーの検出結果に基づいて、前記ダクトダンパーと前記循環ダクトダンパーとにより、前記ダクトに流れる前記空気の流量と、前記循環ダクトに流れる前記空気の流量とを調節することで、前記アンモニア除去部へ流入する前記空気の流量を調節する
    請求項7に記載の浮体。
  9.  前記区画の内部の空気を、前記浮体本体の外部へ放出する換気用排気ファンを備える請求項1から8の何れか一項に記載の浮体。
  10.  前記ダクトに分岐接続されて前記ダクトを流れる前記空気を前記浮体本体の外部へ排出する換気用排気ダクトと、
     前記ダクトに設けられて前記ダクト内を流れる前記空気の流量を調節可能なダクトダンパーと、
     前記換気用排気ダクトに設けられて前記換気用排気ダクト内を流れる前記空気の流量を調節可能な排気ダクトダンパーと、
    を備える
    請求項1に記載の浮体。
  11.  前記区画の内部の空気に含まれるアンモニアを検出可能な区画内センサーを備える
    請求項10に記載の浮体。
  12.  前記区画内センサーの検出結果に基づいて、前記ダクトダンパー及び前記排気ダクトダンパーを制御する制御装置を備え、
     前記制御装置は、
     前記アンモニアの漏洩が発生していないと判定された場合に、前記ダクトダンパーを閉塞状態にすると共に前記排気ダクトダンパーを開放状態にする一方で、
     前記アンモニアの漏洩が発生したと判定された場合に、前記ダクトダンパーを開放状態にすると共に前記排気ダクトダンパーを閉塞状態にする
    請求項11に記載の浮体。
  13.  前記排気ファンは、風量を調節可能な可変速ファンである
    請求項12に記載の浮体。
  14.   前記吸収液放出ラインを流れる流体に含まれるアンモニアを検出可能な放出ラインセンサーを備え、
     前記制御装置は、
     前記放出ラインセンサーの検出結果に基づいて、前記排気ファンの風量を調節する
    請求項13に記載の浮体。
  15.  前記アンモニア除去部は、
     前記ダクトを介して前記アンモニア除去部の内部に流入した前記空気を大気に放出可能な大気放出ラインと、
     前記大気放出ラインを開閉する開閉ダンパーと、
    を備える
    請求項2に記載の浮体。
  16.  前記開閉ダンパーを開閉制御する制御装置を備える
    請求項15に記載の浮体。
  17.  前記吸収液放出ラインを流れる流体に含まれるアンモニアを検出可能な放出ラインセンサーを備え、
     前記排気ファンは、風量を調節可能な可変速ファンであり、
     前記制御装置は、
     前記放出ラインセンサーの検出結果に基づいて、前記排気ファンの風量を調節する
    請求項16に記載の浮体。
  18.  前記吸収液を加熱又は冷却可能な熱交換器を備える
    請求項1から17の何れか一項に記載の浮体。
PCT/JP2022/018012 2021-07-08 2022-04-18 浮体 WO2023281896A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22837317.1A EP4368488A1 (en) 2021-07-08 2022-04-18 Floating body
KR1020247000039A KR20240016407A (ko) 2021-07-08 2022-04-18 부체
CN202280046687.5A CN117580761A (zh) 2021-07-08 2022-04-18 浮体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021113523A JP2023009884A (ja) 2021-07-08 2021-07-08 浮体
JP2021-113523 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023281896A1 true WO2023281896A1 (ja) 2023-01-12

Family

ID=84801452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018012 WO2023281896A1 (ja) 2021-07-08 2022-04-18 浮体

Country Status (5)

Country Link
EP (1) EP4368488A1 (ja)
JP (1) JP2023009884A (ja)
KR (1) KR20240016407A (ja)
CN (1) CN117580761A (ja)
WO (1) WO2023281896A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146327A (ja) * 1998-11-16 2000-05-26 Mayekawa Mfg Co Ltd アンモニア冷媒を使用した船舶用冷凍/空調装置
JP2006026555A (ja) * 2004-07-16 2006-02-02 Hachiyo Engneering Kk アンモニアガスの除害システム
JP4356939B2 (ja) 2005-05-16 2009-11-04 株式会社前川製作所 漏洩アンモニア除害方法及び装置
JP2010210129A (ja) * 2009-03-09 2010-09-24 Toyo Eng Works Ltd 冷却システム
JP2012082796A (ja) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd 舶用scr還元剤供給システム
WO2018078720A1 (ja) * 2016-10-25 2018-05-03 今治造船株式会社 ガス配管システムおよびそれを搭載した船舶
CN112696289A (zh) * 2020-12-28 2021-04-23 大连船舶重工集团有限公司 一种船用液氨燃料供给及燃料回收利用系统
JP2021113523A (ja) 2020-01-20 2021-08-05 トヨタ紡織株式会社 吸気系ダクトの組付け構造

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146327A (ja) * 1998-11-16 2000-05-26 Mayekawa Mfg Co Ltd アンモニア冷媒を使用した船舶用冷凍/空調装置
JP2006026555A (ja) * 2004-07-16 2006-02-02 Hachiyo Engneering Kk アンモニアガスの除害システム
JP4356939B2 (ja) 2005-05-16 2009-11-04 株式会社前川製作所 漏洩アンモニア除害方法及び装置
JP2010210129A (ja) * 2009-03-09 2010-09-24 Toyo Eng Works Ltd 冷却システム
JP2012082796A (ja) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd 舶用scr還元剤供給システム
WO2018078720A1 (ja) * 2016-10-25 2018-05-03 今治造船株式会社 ガス配管システムおよびそれを搭載した船舶
JP2021113523A (ja) 2020-01-20 2021-08-05 トヨタ紡織株式会社 吸気系ダクトの組付け構造
CN112696289A (zh) * 2020-12-28 2021-04-23 大连船舶重工集团有限公司 一种船用液氨燃料供给及燃料回收利用系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Report on Ammonia-Fueled Ships", KOREAN REGISTER, no. 2021-ETC-01, 31 January 2021 (2021-01-31), pages 1 - 62, XP093020681 *
NIKI YOICHI, AKIRA SHIMIZU, YOSHIFURU NITTA, YASUHISA ICHIKAWA, KAZUYOSHI HARUMI: "Fundamental Study on Application of Ammonia as a Fuel to Marine Diesel Engines", JOURNAL OF THE COMBUSTION SOCIETY OF JAPAN, vol. 61198, 1 January 2019 (2019-01-01), pages 313 - 319, XP093020687, ISSN: 1347-1864, DOI: 10.20619/jcombsj.61.198_313 *

Also Published As

Publication number Publication date
EP4368488A1 (en) 2024-05-15
KR20240016407A (ko) 2024-02-06
JP2023009884A (ja) 2023-01-20
CN117580761A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2012050196A1 (ja) 舶用scr還元剤供給システム
KR20160010956A (ko) 해수 순환 시스템 및 방법
JP2022179983A (ja) 船舶
WO2023281896A1 (ja) 浮体
WO2022210301A1 (ja) 船舶
KR102439124B1 (ko) 요소수탱크용 온도조절시스템
WO2022210390A1 (ja) 船舶
JP2004216917A (ja) 船舶の動揺軽減水槽及びその制御方法
KR20140044090A (ko) 외기독립추진 시스템이 탑재된 잠수함
KR20110138054A (ko) 선박용 통풍팬 설치방법
WO2023032347A1 (ja) 浮体
WO2023084962A1 (ja) 浮体
KR20180131285A (ko) 진공압을 이용한 고팽창 포말 시스템
KR101984928B1 (ko) 액화천연가스 화물창의 증발가스 억제장치
WO2023120323A1 (ja) アンモニア水貯留システム及びアンモニア燃料船
KR20210138943A (ko) 공기윤활시스템이 적용된 선박의 소화시스템
KR20180121237A (ko) 선박의 고팽창 포말 이중펌핑 시스템
KR102526244B1 (ko) 선박의 암모니아 누출 대피구조 및 이를 구비한 선박
WO2024058049A1 (ja) スクラバー装置、及びスクラバー装置におけるガス処理方法
JP2023123920A (ja) 浮体
KR102153302B1 (ko) Lng 를 이용하는 선박용의 lng 기화 장치 및 기체 윤활 시스템, 그리고, lng 를 이용하는 선박의 운전 방법
KR102455873B1 (ko) 보조탱크를 이용한 고팽창 포말 시스템
KR20210025345A (ko) 배터리 룸 관리 시스템 및 이를 구비하는 부유식 구조물
CN116943394A (zh) 一种氨动力船燃料泄漏处理系统
KR20240055379A (ko) 부유식 구조물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280046687.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247000039

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247000039

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022837317

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE