WO2023280079A1 - 射线扫描设备 - Google Patents

射线扫描设备 Download PDF

Info

Publication number
WO2023280079A1
WO2023280079A1 PCT/CN2022/103432 CN2022103432W WO2023280079A1 WO 2023280079 A1 WO2023280079 A1 WO 2023280079A1 CN 2022103432 W CN2022103432 W CN 2022103432W WO 2023280079 A1 WO2023280079 A1 WO 2023280079A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
radiation
radiation source
ray
conveying direction
Prior art date
Application number
PCT/CN2022/103432
Other languages
English (en)
French (fr)
Inventor
陈志强
张丽
黄清萍
金鑫
丁辉
周勇
扈宝元
赵振华
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to KR1020237044638A priority Critical patent/KR20240021831A/ko
Priority to EP22836830.4A priority patent/EP4369055A1/en
Publication of WO2023280079A1 publication Critical patent/WO2023280079A1/zh

Links

Images

Classifications

    • G01V5/226
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/308Accessories, mechanical or electrical features support of radiation source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/32Accessories, mechanical or electrical features adjustments of elements during operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/321Accessories, mechanical or electrical features manipulator for positioning a part
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3307Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts source and detector fixed; object moves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array

Definitions

  • the application belongs to the field of data radiation imaging, and in particular relates to a ray scanning device.
  • the embodiment of the present application provides a ray scanning device, which can solve the problem of poor reliability and maintainability caused by the concentration of multiple ray sources in a single annular closed cavity.
  • each detector group of the detector can be multiple The ray source modules are shared, thereby reducing the equipment cost.
  • the detector can be easily replaced or maintained while shortening the coverage of the optical path as much as possible, and at the same time, the inclination angle between the center of the ray beam and the surface of the detector can be reduced. to improve image quality.
  • the embodiment of the present application provides a radiation scanning device, which includes: a conveying device, which transports an object to be detected through the scanning area of the radiation scanning device; a radiation source, which includes a plurality of radiation source modules, each of which The source module includes at least one ray source point that emits a ray beam, and a plurality of ray source modules are arranged around the scanning area above the conveying device and fixed in a plane perpendicular to the conveying direction of the detected object; and a detector, which is used for detecting The ray that passes through the detected object is transmitted during scanning and includes a plurality of detector groups whose ends are connected to each other to be arranged around the scanning area, and the plurality of detector groups are fixed perpendicular to the conveying direction of the detected object In the plane; wherein, the detector is located between the radiation source and the scanning area along the vertical direction of the conveying direction of the detected object, the radiation source and the detector are arranged to at least partially overlap along the conveying direction of the detected object,
  • the radiation scanning device In the radiation scanning device according to this embodiment, only the radiation source module is arranged around the scanning area above the conveying device, the radiation source module is not arranged below the conveying device, and the detector is arranged around the scanning area.
  • a radiation scanning device can reduce the The high height facilitates the transfer of the detected object to the transmission device of the ray scanning equipment, and can reduce the manufacturing cost while ensuring the image quality.
  • the radiation source module is a distributed multi-point source, and multiple radiation source modules surround the scanning area to form a non-closed structure with an opening below the conveying device.
  • each of the multiple ray source modules is a linear distributed multi-point source
  • the multiple linear distributed multi-point sources are arranged on the upper side, the left side and the right side of the scanning area, wherein the multiple linear distributed multi-point sources The ends of the sources are directly connected or spaced apart.
  • the plurality of ray source modules includes a plurality of first distributed multipoint sources and a plurality of second distributed multipoint sources, and a plurality of first distributed multipoint sources and a plurality of second distributed multipoint sources Arranged alternately, and the ends are directly connected or arranged at intervals.
  • the first distributed multipoint source is a straight line distributed multipoint source
  • the second distributed multipoint source is a straight line distributed multipoint source or an arc distributed multipoint source shorter in length than the first distributed multipoint source.
  • each of the plurality of ray source modules is a single-point source group, and the plurality of single-point source groups are arranged at least on the left viewing angle, the right viewing angle, the top viewing angle and the corner oblique viewing angle above the conveying device, and each A single point source group includes at least two single point sources.
  • each radiation source module has an independent cavity for accommodating a respective radiation generating device.
  • the individual cavity of each radiation source module is provided with a mounting and positioning structure, which is used to install and position the radiation source module, and is used to rotate the radiation source module to adjust the beam-out angle of the radiation beam.
  • each detector group is a detector array including a plurality of detector units, and the plurality of detector groups are arranged in a closed square structure, rectangular structure, polygonal structure or elliptical structure surrounding the scanning area.
  • each detector group is a linear detector array
  • the detector includes four linear detector arrays, and the four linear detector arrays are arranged on the upper, lower, left, and right sides of the scanning area to form a rectangular or square structure.
  • each detector group is a linear detector array
  • the detector includes a plurality of first linear detector arrays and a plurality of second linear detector arrays, and the second linear detector array detects more than the first linear detector arrays.
  • the detector array is short, and the first linear detector array and the second linear detector array are alternately arranged around the scanning area to form a polygonal structure.
  • individual detector groups of detectors are detachable and installable independently of each other.
  • each detector group of the detector is configured to move along the conveying direction of the object to be detected for disassembly and installation.
  • each detector group of the detector is configured such that a part of the detector group moves along the conveying direction of the detected object for disassembly and installation, and another part of the detector group moves along a direction perpendicular to the conveying direction of the detected object for disassembly and installation. Install.
  • each detector group of the detector includes a detector arm
  • the radiation scanning device includes a support frame fixed relative to the installation platform of the radiation scanning device, and the detector group moves along the conveying direction of the detected object or is detected by the detector arm. A movement perpendicular to the conveying direction of the object is detected to be attached to or detached from the support frame.
  • each detector group of the detector is configured to avoid the radiation beam of the radiation source module on the same side and receive radiation from all the radiation source modules on the same side except the radiation source module on the same side.
  • each detector unit of the detector group includes a detector crystal for receiving rays transmitted through the object to be detected during scanning, the detector crystal being arranged at the side of the detector unit along the direction of conveyance of the object to be detected. end, and arranged to be close to the edge of the radiation beam of the radiation source module on the same side in the conveying direction of the detected object, but not to block the radiation beam.
  • the respective radiation source modules of the radiation source are arranged such that the radiation beam avoids the detector group on the same side and illuminates the detector crystals of the detector group on the opposite side.
  • each radiation source module is configured to rotate around the target axis so that the central position of the radiation beam irradiates the detector crystals of the detector group on the opposite side.
  • the radiation scanning device further includes an image processing module configured to perform data compensation and/or reconstructed image restoration for missing projection data at the end of the radiation source module to obtain a complete reconstructed image.
  • the image processing module is configured to perform image reconstruction by an iterative method, an image threshold inpainting method, or a combination of both.
  • the embodiment of the present application also provides a radiation scanning device, including: a conveying device, which transports the detected object through the scanning area of the radiation scanning device; a radiation source, which includes a plurality of radiation source modules, and each radiation
  • the source module includes at least one ray source point for emitting ray beams, and a plurality of ray source modules are arranged around the scanning area in a non-closed structure with openings on the left or right side of the scanning area, and are fixed in a direction perpendicular to the conveying direction of the detected object.
  • a detector for detecting rays transmitted through the detected object during scanning including a plurality of detector groups whose ends are connected to each other so as to be arranged around the scanning area, and the plurality of detectors
  • the group is fixed in a plane perpendicular to the conveying direction of the detected object, wherein the detector is located between the ray source and the scanning area along the vertical direction of the conveyed direction of the detected object, and the ray source and the detector are arranged along the direction of the detected object
  • the conveying directions are at least partially overlapped, and multiple radiation source modules can be disassembled and installed independently of each other.
  • the ray source modules are arranged around the scanning area on the upper side, the lower side, and the left or right side of the scanning area, and the detectors are arranged around the scanning area.
  • Such a ray scanning device is suitable for detecting Airport carry-on luggage, taking advantage of the characteristics of large width and small thickness of airport carry-on luggage, and considering the influence of luggage item self-occlusion and ray attenuation on projection data, can reduce manufacturing costs while ensuring high image quality.
  • the ray source module is a distributed multi-point source, and multiple ray source modules surround the scanning area to form an open structure opening on the left or right side of the scanning area.
  • each of the plurality of ray source modules is a linear distributed multi-point source
  • the plurality of linear distributed multi-point sources are respectively arranged on the upper side, the lower side, and the left or right side of the scanning area to form a linear distributed multi-point source.
  • the plurality of ray source modules includes a plurality of first distributed multipoint sources and a plurality of second distributed multipoint sources, and a plurality of first distributed multipoint sources and a plurality of second distributed multipoint sources Arranged alternately, and the ends are directly connected or arranged at intervals.
  • the first distributed multipoint source is a straight line distributed multipoint source
  • the second distributed multipoint source is a straight line distributed multipoint source or an arc distributed multipoint source shorter in length than the first distributed multipoint source.
  • each of the multiple ray source modules is a single-point source group
  • the multiple single-point source groups are arranged at least on the top viewing angle, the bottom viewing angle, the left viewing angle or the right viewing angle, and at least part of the corner oblique viewing angles of the scanning area.
  • each single-point source group includes at least two single-point sources.
  • each radiation source module has an independent cavity for accommodating a respective radiation generating device.
  • the chamber of each radiation source module includes a separate vacuum chamber for accommodating multiple targets.
  • the spacing between the target points in each radiation source module is smaller than the spacing between the target points at the ends of adjacent radiation source modules.
  • the individual cavity of each radiation source module is provided with a mounting and positioning structure, which is used to install and position the radiation source module, and is used to rotate the radiation source module to adjust the beam-out angle of the radiation beam.
  • each detector group is a detector array including a plurality of detector units, and the plurality of detector groups are arranged in a closed square structure, rectangular structure, polygonal structure or elliptical structure surrounding the scanning area.
  • each detector group is a linear detector array
  • the detector includes four linear detector arrays, and the four linear detector arrays are arranged on the upper, lower, left, and right sides of the scanning area to form a rectangular or square structure.
  • each detector group is a linear detector array
  • the detector includes a plurality of first linear detector arrays and a plurality of second linear detector arrays, and the second linear detector array detects more than the first linear detector arrays.
  • the detector array is short, and multiple first linear detector arrays and multiple second linear detector arrays are alternately arranged around the scanning area to form a polygonal structure.
  • individual detector groups of detectors are detachable and installable independently of each other.
  • the detector groups at the upper and lower sides of the scanning area and the opening of the radiation source structure are configured to move perpendicular to the conveying direction of the object to be detected for disassembly and installation, and the detection at the opposite side of the radiation source structure opening
  • the device group is configured to move along the conveying direction of the object to be detected for disassembly and installation.
  • each detector group of the detector includes a detector arm
  • the radiation scanning device includes a support frame fixed relative to the installation platform of the radiation scanning device
  • the detector group is mounted to or detached from the support frame via the detector arm .
  • each detector group of the detector is configured to avoid the radiation beam of the radiation source module on the same side and receive radiation from all the radiation source modules on the same side except the radiation source module on the same side.
  • each detector unit of the detector group includes a detector crystal for receiving rays transmitted through the object to be detected during scanning, the detector crystal being arranged at the side of the detector unit along the direction of conveyance of the object to be detected. end, and arranged to be close to the edge of the radiation beam of the radiation source module on the same side in the conveying direction of the detected object, but not to block the radiation beam.
  • the respective radiation source modules of the radiation source are arranged such that the radiation beam avoids the detector group on the same side and illuminates the detector crystals of the detector group on the opposite side.
  • each radiation source module is configured to rotate around the target axis so that the central position of the radiation beam irradiates the detector crystals of the detector group on the opposite side.
  • the radiation scanning device further includes an image processing module configured to perform data compensation and/or reconstructed image restoration for missing projection data at the end of the radiation source module to obtain a complete reconstructed image.
  • the image processing module is configured to perform image reconstruction by an iterative method, an image threshold inpainting method, or a combination of both.
  • the embodiment of the present application also provides a ray scanning device, which includes a conveying device, which transports the detected object through the scanning area of the ray scanning device; a ray source, which includes a plurality of ray source modules, and each ray
  • the source module includes at least one ray source point that emits a ray beam, and viewed along the conveying direction of the object to be detected, a plurality of ray source modules are arranged around the scan area in a non-closed structure with an opening on one side of the scan area; and a detector, which It is used to detect the rays transmitted through the detected object during scanning and includes a plurality of detector groups, viewed along the conveying direction of the detected object, the ends of the plurality of detector groups are connected to each other and opened on one side of the scanning area
  • the non-closed structure is arranged around the scanning area, wherein the opening of the non-closed structure of the radiation source and the opening of the non-closed structure of the detector are arranged oppositely, and a
  • both the radiation source and the detector surround the scanning area on only three sides, as opposed to surrounding the scanning area on four sides (either one or both of the radiation source and the detector).
  • enough data can be obtained for image reconstruction, and the cost and weight of the equipment can be reduced, so that light-weight ray scanning equipment can be provided.
  • the radiation source module and the plurality of detector groups of the detector are fixed on the same plane perpendicular to the conveying direction of the detected object, and the other parts of the radiation source
  • the ray source module is fixed in another plane perpendicular to the conveying direction of the detected object.
  • other radiation source modules of the radiation source are fixed in another same plane perpendicular to the conveying direction of the detected object.
  • a plurality of radiation source modules can be disassembled and installed independently of each other.
  • each of the plurality of ray source modules is a distributed multi-point source, viewed along the conveying direction of the object to be detected, the plurality of distributed multi-point sources are respectively arranged on three sides of the scanning area to form a ray surrounding the scanning area A non-enclosed structure that is open on one side.
  • the distributed multi-point source is in the shape of a straight line, an arc, a broken line or any combination thereof, so that the ray source is in the shape of a right-angled rectangle or a rounded rectangle with an opening on one side of the scanning area viewed from the conveying direction of the detected object , polygonal or elliptical structures.
  • each of the plurality of ray source modules is a single point source group, and each single point source group includes at least two single point sources.
  • each radiation source module has an independent cavity for accommodating a respective radiation generating device.
  • the chamber of each radiation source module includes a separate vacuum chamber for accommodating multiple targets.
  • the spacing between the target points in each radiation source module is smaller than the spacing between the target points at the ends of adjacent radiation source modules.
  • the individual cavity of each radiation source module is provided with a mounting and positioning structure, which is used to install and position the radiation source module, and is used to rotate the radiation source module to adjust the beam-out angle of the radiation beam.
  • each detector group is a detector array including a plurality of detector units, and the detector array includes a linear detector array, an arc detector array, or a combination of both.
  • each detector group is a linear detector array
  • the detector includes three linear detector arrays, and the three linear detector arrays are respectively arranged on three sides of the scanning area, forming an opening on one side of the scanning area. Rectangular or square structure.
  • each detector group is a linear detector array
  • the detector includes a plurality of first linear detector arrays and a plurality of second linear detector arrays, and the second linear detector array detects more than the first linear detector arrays.
  • the detector array is short, and multiple first linear detector arrays and multiple second linear detector arrays are alternately arranged around the scanning area to form a polygonal structure with an opening on one side of the scanning area.
  • individual detector groups of detectors are detachable and installable independently of each other.
  • the detector group of the detector is configured to move perpendicularly or parallel to the conveying direction of the detected object for disassembly and installation.
  • each detector group of the detector includes a detector arm
  • the radiation scanning device includes a support frame fixed relative to the installation platform of the radiation scanning device
  • the detector group is mounted to or detached from the support frame via the detector arm .
  • the detector viewed from the conveying direction of the detected object, is arranged between the radiation source and the scanning area; and along the conveying direction of the detected object, other radiation source modules at least partially overlap with the detector group on the same side.
  • the detector group of the detector on the same side as other radiation source modules is configured to avoid the radiation beams of the radiation source modules on the same side and receive radiation beams from all radiation source modules on the same side except the radiation source modules on the same side. Rays.
  • each detector unit of the detector group includes a detector crystal for receiving radiation transmitted through the detected object during scanning, and the detector crystal is arranged in the direction of conveyance of the detected object along the direction of the detector unit
  • the end of the detector and the detector crystals of the detector group on the same side as other radiation source modules are arranged to be close to the edge of the radiation beam of the radiation source module on the same side in the conveying direction of the object to be detected, but not to block the radiation beam.
  • the other radiation source modules of the radiation source are arranged such that the radiation beam avoids the detector group on the same side and illuminates the detector crystals of the detector group on the opposite side.
  • the other radiation source module is configured to rotate around the target axis so that the central position of the radiation beam irradiates the detector crystals of the detector group on the opposite side.
  • the radiation scanning device further includes an image processing module configured to perform data compensation and/or reconstructed image restoration for missing projection data at the end of the radiation source module to obtain a complete reconstructed image.
  • the image processing module is configured to perform image reconstruction by an iterative method, an image threshold inpainting method, or a combination of both.
  • the embodiments of the present application provide an installation and positioning structure of a radiation source of a radiation scanning device.
  • the radiation scanning device includes a radiation source and a fixed support frame.
  • the installation and positioning structure includes a main body that can be fixedly connected to the radiation source and a supporting frame, so that the radiation source can be fixedly installed on the supporting frame through the main body, and the installation and positioning structure also includes: a moving device, the radiation source can be moved to a predetermined installation position on the first plane by the moving device; a first positioning device, which used for positioning the radiation source on the first plane; the lifting device, which is used to adjust the position of the radiation source along the first direction, wherein the first direction is perpendicular to the first plane; and the second positioning device, which is used for One direction fixes the position of the ray source.
  • each radiation source module of the radiation source can be disassembled and installed separately, and the beam output angle of the radiation source module can also be adjusted.
  • the moving device includes rollers arranged at both ends of the radiation source along the length direction.
  • the first positioning device includes a first positioning pin and a first pin hole corresponding to the first positioning pin provided on the main body and the support frame.
  • the lifting device is arranged at both ends of the radiation source along the length direction, wherein the lifting device at one end is formed as a liftable roller, and the lifting device at the other end is formed as a lifting jack wire.
  • the second positioning device is formed as a positioning spacer, and the positioning spacer is placed under the main body after the radiation source is adjusted to a predetermined position along the first direction by the lifting device.
  • the installation and positioning structure further includes: an adjustment device, which is used to rotate the radiation source along a predetermined axis to adjust the beam output angle of the radiation source.
  • the radiation source is provided with an installation shaft, and the main body is provided with a corresponding shaft hole, and the main body is installed on the installation shaft of the radiation source through the shaft hole;
  • the positioning installation structure also includes a positioning piece and a fastener, and the main body is positioned The cooperation between the fitting and the shaft hole and the installation shaft is positioned relative to the radiation source, and is fixedly connected to the radiation source through a fastener;
  • the adjustment device includes a rotating drive device, which can be driven when the positioning member and the fastener are loosened.
  • the ray source rotates around the installation axis.
  • the rotation driving device includes an adjustment block fixed on the radiation source and a top wire provided on the main body that abuts against the adjustment block, and the top wire can be rotated to push the adjustment block to move so as to rotate the radiation source.
  • the positioning member includes a second positioning pin and a corresponding second pin hole formed on the main body and the radiation source
  • the fastener includes a fixing bolt and a corresponding threaded hole formed on the main body and the radiation source.
  • a radiation scanning device which includes a radiation source and a fixed support frame, and the radiation source is fixedly installed on the support frame via the installation and positioning structure of any of the above embodiments.
  • the radiation scanning device rotates the radiation source by installing the positioning structure to adjust the beam output angle of the radiation source.
  • the embodiment of the present application also provides an installation and fixing structure for a detector of a radiation scanning device.
  • the radiation scanning device includes a detector and a fixed support frame, and the detector includes one or more detector groups , the detector group is fixedly installed on or removed from the support frame via the installation and fixing structure.
  • the installation and fixing structure includes: a first installation part, which is fixedly arranged on the detector group; a second installation part, which is fixedly arranged on the support on the frame and can move linearly with the first installation part, and the detector group can move to a predetermined installation position along the second installation part under the condition that the first installation part and the second installation part cooperate with each other; and the fixing device, which is arranged on One side of the detector group along the width direction is used for fixing the detector group relative to the installation reference plane on the support frame.
  • each detector group of the detector can be disassembled and installed separately, and can be disassembled and maintained without disassembling the radiation source module when it is arranged inside the radiation source module, which improves the detection efficiency.
  • the second installation part is further configured to support the detector group at a predetermined installation position in a state of being matched with the first installation part.
  • the first installation part includes a slider extending along the length direction of the detector group, and the second installation part includes a fixed guide rail matched with the slider.
  • the fixing device includes a fastener and a positioning piece arranged on the support frame, and the end surface of the positioning piece away from the support frame is formed as an installation reference surface for abutting against one side of the detector group along the width direction.
  • the fastener passes through the positioning member and fastens the detector group relative to the end surface of the positioning member.
  • the sliders are arranged on opposite sides of the detector group along the width direction, and have inner extensions extending inward from the edges of the detector group on opposite sides along the width direction; The outwardly extending extensions on opposite sides in the width direction; in the state where the first installation part is matched with the second installation part, the inner extension of the slider is located above the outer extension of the fixed guide rail and the two are in contact and overlapped , to hang the detector group on the fixed rail.
  • the stationary rail supports the slider underneath the slider.
  • the first mounting part is formed as a sliding groove extending along the width direction of the detector group, and the second mounting part is formed as a sliding rod matched with the sliding groove.
  • a convex portion is formed at one end of the sliding rod close to the support frame, and the surface of the convex portion facing the detector group is formed as an installation reference surface for abutting against the surface on the other side of the detector group along the width direction.
  • the fixing device is arranged at the other end of the sliding rod opposite to the convex portion, and is arranged to abut against the convex portion on both sides in the width direction of the detector group respectively.
  • the fixing device includes a positioning sleeve and a fastener, the positioning sleeve is sleeved on the other end of the slide bar and abuts against one side of the detector along the width direction, and the fastener is used to fix the positioning sleeve to the slide on the other end of the rod.
  • the second installation part includes two sliding rods
  • the first installation part includes two slide slots formed at both ends of the detector group along the length direction
  • the two slide bars and the two slide slots are connected to each other respectively. Cooperate to set the detector at the intended installation position.
  • the first mounting part is formed as a fixed block fixed on one side of the detector group along the width direction, and the fixed block has an opening toward one side of the thickness direction of the detector group;
  • the second mounting part is formed as The cantilever part fixed on the support frame is provided with an extension part on the end part of the cantilever part far away from the support frame, and the extension part can linearly move and cooperate with the opening of the fixed block.
  • the fixing device includes a fixing piece and a fastening piece arranged on the supporting frame, and the end surface of the fixing piece away from the supporting frame is formed as an installation reference plane for abutting against one side of the detector group along the width direction. surface, and the fastener is used to fasten the detector group relative to the end face of the fixture.
  • the cantilever part in a state where the first installation part is mated with the second installation part, supports the detector group at a predetermined installation position through the fixing block.
  • a radiation scanning device which includes a detector and a fixed support frame, the detector includes one or more detector groups, and the detector groups are installed and fixed by the installation and fixing structure of any of the above embodiments to or from the supporting frame.
  • the width direction of the detector group is parallel to the conveying direction of the detected object
  • the length direction and the thickness direction of the detector group are perpendicular to the conveying direction of the detected object
  • the conveying direction of the detected object is when the detected object is conveyed The direction of the scan area of the device through the ray scan.
  • the mounting reference planes for each of the plurality of detector groups are located in the same plane perpendicular to the conveying direction of the detected object.
  • the direction in which the first mounting part moves linearly relative to the second mounting part is parallel to or perpendicular to the conveying direction of the object to be detected.
  • FIG. 1 shows a schematic structural diagram of a radiation scanning device provided according to some embodiments of the present application
  • FIG. 2 shows a schematic structural diagram of a radiation source and a detector according to the radiation scanning device shown in FIG. 1;
  • Fig. 3 shows a schematic diagram of the beam shape of the radiation source provided according to some embodiments of the present application
  • Fig. 4 shows a schematic diagram of the distribution of radiation sources in the form of targets according to some embodiments of the present application
  • Fig. 5 is a schematic diagram of the installation and positioning structure of the radiation source module provided according to some embodiments of the present application.
  • Fig. 6 is a schematic diagram of the distribution of detectors according to some embodiments of the present application.
  • Fig. 7 is a schematic structural diagram of a linear detector group according to some embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of a detector unit according to some embodiments of the present application.
  • Fig. 9 is a schematic diagram of the installation and fixing structure of the detector group according to some embodiments of the present application.
  • Fig. 10 is a schematic diagram of the corresponding relationship between the radiation source module and the detector group receiving its radiation according to some embodiments of the present application;
  • Fig. 11 is a schematic cross-sectional structural diagram of the radiation scanning device shown in Fig. 1 along the centerline of the conveying direction of the detected object according to some embodiments of the present application;
  • Fig. 12 is a schematic top view of the layout of detectors and radiation sources according to some embodiments of the present application.
  • Fig. 13 is a combined schematic diagram of a detector and a radiation source according to some embodiments of the present application.
  • Fig. 14 is a schematic diagram of the disassembly direction of the detector group in the combination of the detector and the radiation source shown in Fig. 13 according to some embodiments of the present application;
  • Fig. 15 is a mounting and fixing structure suitable for detector groups according to some embodiments of the present application.
  • Fig. 16 is a mounting and fixing structure suitable for detector groups according to other embodiments of the present application.
  • Fig. 17 is a mounting and fixing structure suitable for detector groups according to some other embodiments of the present application.
  • Fig. 18 is a schematic diagram of arrangement of radiation sources and detectors of a radiation scanning device according to some embodiments of the present application.
  • Fig. 19 is a perspective schematic diagram of a layout of radiation sources and detectors of a radiation scanning device according to some embodiments of the present application.
  • Fig. 20 is a side view of the radiation source and detector layout of the radiation scanning device shown in Fig. 19 along the Z-axis direction;
  • Fig. 21 is a top view schematic diagram of the radiation source and detector layout of the radiation scanning device shown in Fig. 19;
  • Fig. 22 is a schematic diagram of the distribution of a single point source of a radiation source of a radiation scanning device according to some embodiments of the present application.
  • Fig. 23 is a schematic structural diagram of a detector of a radiation scanning device according to some embodiments of the present application.
  • Fig. 24 is a schematic view of the detachment direction of the detector according to some embodiments of the present application.
  • the static CT (distributed multi-point source) or multi-viewpoint (single-point source) device in the above-mentioned background technology usually includes multiple planar light paths, and the multiple planar light paths are along the length direction of the device (that is, the conveying direction of the detected object) arranged.
  • This arrangement leads to a long coverage of the optical path of the static CT (distributed multi-point source) or multi-viewpoint (single point source) equipment, which is not conducive to shortening the length of the whole machine and reducing the weight of the whole machine.
  • a group of detector arrays only corresponds to a group of distributed multi-point sources or a single point source, thereby increasing the number of detector arrays in the whole machine, which is not conducive to reducing the cost of the whole machine equipment.
  • the arrangement of the ray source ring and the detector ring can ensure that a single detector is shared by multiple ray sources, it still does not solve the problem of concentrating the ray sources on The problems of poor reliability and maintainability caused in a single annular closed cavity.
  • the detector can only be replaced or maintained from the inside of the ring, and the maintainability of the detector is poor.
  • the detector can be replaced or maintained from the outside of the ring, and this arrangement will increase the coverage of the optical path, resulting in an increase in the length of the device.
  • There is an inclination angle with the surface of the detector crystal and the ray beam obliquely hits the detector crystal, which affects the image quality.
  • an embodiment of the present application provides a radiation scanning device, which includes: a conveying device, which transports the detected object through the scanning area of the radiation scanning device; a radiation source, which includes a plurality of radiation source modules , each ray source module includes at least one ray source point that emits a ray beam, a plurality of ray source modules are arranged around the scanning area, and are fixed in a plane perpendicular to the conveying direction of the detected object; and a detector, which is used for detecting The ray that passes through the object to be inspected is transmitted during scanning and includes a plurality of detector groups whose ends are connected to each other to be arranged around the scanning area, and the plurality of detector groups are fixed in a direction perpendicular to the conveying direction of the object to be inspected.
  • the detector is located between the radiation source and the scanning area along the vertical direction of the conveying direction of the detected object, the radiation source and the detector are arranged to at least partially overlap along the conveying direction of the detected object, and a plurality of radiation source modules Can be removed and installed independently of each other.
  • the radiation source is formed by arranging a plurality of radiation source modules around the scanning area, and the plurality of radiation source modules can be disassembled and installed independently of each other, that is, each radiation source module has a separate cavity To accommodate their respective radiation generating devices.
  • the radiation source formed by the combination of multiple radiation source modules of the present application can reduce the shell size of a single radiation source module and the volume of the internal vacuum cavity, so that the volume of a single radiation source module is small,
  • the light weight makes it easy to disassemble and install the radiation source; in addition, multiple targets of a single radiation source module can use separate vacuum chambers, thus reducing the risk of ignition in the chamber during maintenance of the radiation source.
  • the individual cavity of each radiation source module is provided with a mounting and positioning structure, and the mounting and positioning structure is used to fix the radiation source module at a relative position in the radiation scanning device, for example, positioning the radiation source relative to the support frame
  • the module is also used to rotate the ray source module around a predetermined axis to adjust the beam-out angle of the ray beam.
  • the position of each radiation source module can be determined, so as to ensure that a plurality of radiation source modules of the radiation source are located in a plane perpendicular to the conveying direction of the detected object after installation (for example, in the same plane or in different planes). in plane).
  • the radiation source module may be a distributed multi-point source to form a ring structure around the scanning area, such as a rectangular ring, a polygonal ring, or an elliptical ring.
  • the ray source module can be a linear distributed multi-point source, each ray source module can include multiple target points, and the multiple ray source modules can be distributed on the upper side, lower side, left side and right side of the scanning area to form A rectangular ring around the scan area.
  • the ends of the radiation source modules can be directly connected to form a continuous rectangular ring, or can be separated by a certain gap to form a discontinuous rectangular ring.
  • the ray source may further include a plurality of shorter linear distributed multi-point sources, and the plurality of shorter linear distributed multi-point sources may be alternated with a plurality of longer linear distributed multi-point sources set, and the ends are directly connected to form a continuous polygonal arrangement, or the ends are arranged at intervals to form a non-continuous polygonal arrangement; or, the ray source can further include a plurality of arc-shaped distributed multi-points with shorter lengths Sources, multiple arc-shaped distributed multi-point sources can be alternately arranged with multiple longer straight-line distributed multi-point sources, and the ends are directly connected to form a continuous rounded rectangular arrangement, or the ends are arranged at intervals A discontinuous rectangular arrangement with rounded corners is formed; alternatively, the ray source may also include ray source modules of other numbers, shapes and/or lengths to form other polygonal or elliptical structures.
  • each ray source module of the ray source can also be a single-point source group, and each single-point source group includes at least two single-point sources.
  • multiple single-point source groups of the ray source are distributed around the scanning area Bottom viewing angles, left and right side viewing angles, top viewing angles and corner oblique viewing angles form a multi-viewing angle arrangement.
  • the radiation source module can also be arranged around the scanning area on only three sides, for example, the upper side, the left side and the right side, the upper and lower sides and the left or right side, etc. (here, it should be noted that , in this article, the upper side, lower side, left side and right side of the scanning area refer to the upper side, lower side, left side and right side when viewing the scanning area along the conveying direction of the detected object). Therefore, the ray source can be arranged in a non-closed structure with one side opening around the scanning area, such as a rectangular structure, a polygonal structure, or an elliptical structure with one side opening, and more specifically, it can be a structure with one side opening surrounding the scanning area.
  • Discontinuous or continuous rectangular structures continuous polygonal structures, continuous rounded rectangles, discontinuous polygonal or discontinuous rounded rectangular structures, and other polygonal and elliptical structures, etc.
  • the ray source is composed of a single point source, correspondingly, no single point source may be provided on one side of the scanning area.
  • the detector is a structure surrounding the scanning area formed by connecting the ends of a plurality of detector groups to each other.
  • various radiation sources for example, a structure surrounding the scanning area on four sides, up, down, left, and right, or a non-closed structure opening on one side of the scanning area, such as a rectangular structure opening on one side of the scanning area, Polygonal or elliptical structures (more specifically, such as continuous or non-continuous rectangular structures surrounding openings on one side of the scanning area, continuous or non-continuous polygonal structures, continuous or non-continuous rounded rectangular structures, and single-point source multi-angle Arrangement), multiple detector groups of the detector are arranged in a closed rectangular structure, square structure, polygonal structure or elliptical structure, etc.
  • each detector group of the detector may include a plurality of detector units and a detector arm, and the plurality of detector units are linearly arranged on the detector arm.
  • the detectors may include four detector groups respectively arranged on the upper, lower, left, and right sides of the scanning area to form a closed rectangular or square structure surrounding the scanning area.
  • the detectors may also include a plurality of longer detector groups and a plurality of shorter detector groups to form a closed polygonal structure surrounding the scanning area.
  • multiple detector groups of the detector in conjunction with the non-closed structure with an opening on one side of the scanning area of the above-mentioned radiation source, multiple detector groups of the detector can also be arranged in a non-closed structure with an opening on one side of the scanning area, for example, one side Open rectangular structure, square structure, polygonal structure or oval structure, etc.
  • the plurality of detector groups of the detector are configured to be independently detachable and installable.
  • each detector group can be disassembled and installed separately, which facilitates the maintenance of the detectors.
  • the plurality of detector groups of the detector can be configured to move along the conveying direction of the object to be detected for assembly and disassembly.
  • a part of the multiple detector groups of the detector can be moved along the vertical direction of the conveying direction of the object to be inspected for disassembly, and the other A part moves along the conveying direction of the detected object for disassembly.
  • the detector group can be disassembled and maintained without disassembling the radiation source module, thereby Improve the operation convenience of detector disassembly and maintenance.
  • the above-mentioned detector group can be disassembled by means of the detector arm of the detector group and its linear movement cooperation between the installation site of the radiation scanning device, such as the support frame of the radiation scanning device, such as linear sliding Or linear rolling fit, etc., for example, it can be the slider guide rail fit between the detector arm and the support frame or the linear ball bearing and the cylindrical shaft fit.
  • each detector unit of the detector group includes a detector crystal for receiving radiation, and each detector unit of each detector group is arranged on the detector arm with the detector crystal facing the same direction. to arrange.
  • each detector group is located in a plane perpendicular to the conveying direction of the object to be detected, especially in the same plane, which specifically means that the detector crystals of each detector group are located In the same plane perpendicular to the conveying direction of the detected object.
  • the detector groups can also be located in different planes perpendicular to the conveying direction of the object to be detected.
  • the radiation source of any of the above embodiments is combined with the detector of any of the above embodiments.
  • each radiation source module of the radiation source is located perpendicular to the detected In the plane (one or more planes) of the conveying direction of the object
  • each detector group of the detector is located in other planes (especially in the same plane) perpendicular to the conveying direction of the detected object
  • the detectors are in the conveying direction
  • the vertical direction is located inside the radiation source, and the radiation source and the detector are arranged to at least partially overlap in the conveying direction of the object to be detected.
  • the at least partial overlap of the radiation source and the detector in the conveying direction of the detected object can reduce the arrangement length of the radiation source and the detector, thereby helping to reduce the length of the entire radiation scanning system.
  • each detector group of the detector is arranged so as not to block the ray beam of the ray source module on the same side, and at the same time can receive the ray from each ray source module on the other side, so that different ray source modules share the same Detector groups, which can reduce the total number of detectors.
  • the detector crystals of each detector group of the detector are arranged at the end of the detector unit along the conveying direction of the object to be detected, and are arranged to be adjacent to the radiation source on the same side in the conveying direction of the object to be detected
  • the ray beam of the module is arranged on the edge, but does not block the ray beam of the ray source module on the same side. In this way, the covering length of the optical path between the radiation source and the detector can be reduced as much as possible, thereby further reducing the length of the device.
  • each radiation source module is arranged such that the radiation beam avoids the same side detector group and illuminates the detector crystals of the opposite side detector group. More specifically, the ray source module can be rotated relative to a predetermined axis, such as the target axis (for example, by means of the installation and positioning structure of the aforementioned ray source module) to adjust the beam-out angle of the ray beam, so that the center of the ray beam of the ray source module The position illuminates the detector crystals of the opposite side detector set.
  • a predetermined axis such as the target axis
  • the radiation source module since the detector crystal of the detector is located at the end of the detector unit in the conveying direction of the detected object and is arranged close to the edge of the beam of the radiation source on the same side, the radiation source module only needs to rotate a small angle to make the radiation beam
  • the detector crystal is irradiated at the central position of the detector crystal, so that the adverse effect on imaging caused by the ray beam obliquely incident on the surface of the detector crystal can be minimized.
  • the adjustment of the beam output angle of the radiation source can also be realized by setting the opening direction of the radiation source module, adjusting the collimator and other suitable methods.
  • the image processing module of the ray scanning device of the present application is configured to have a data compensation function, which can compensate for missing view angle data and/or repair the reconstructed image, so as to improve image quality.
  • the image processing module is configured to perform image reconstruction with an iterative method, an image threshold inpainting method or a combination of the two. In this way, the lack of projection data caused by the increased distance between target points at the ends of adjacent ray source modules can be compensated, thereby improving the quality of the reconstructed image.
  • Fig. 1 schematically shows a radiation scanning device according to some embodiments of the present application.
  • the conveying device 1 is used to transport the detected object 6 through the scanning area of the radiation scanning device, and the scanning area is defined by the radiation source 3 and the detector 4 .
  • the object 6 to be detected enters the channel 2 from the opening at one end of the channel 2 and exits from the opening at the other end of the channel 2 driven by the conveying device 1.
  • the channel 2 can shield the rays of the radiation source 3 from the external environment, avoiding radiation near the equipment. Radiation damage caused to people, and at the same time, the volume of the detected object 6 entering the channel 2 can also be limited.
  • the radiation source 3 is fixed on the supporting frame 5 outside the channel 2, and is used for emitting radiation beams to irradiate the detected object 6 during scanning.
  • Detectors 4 are also fixed to the support frame 5 on the outside of the channel 2, which are used to detect the radiation transmitted through the detected object 6 during scanning.
  • the support frame 5 is used to support and fix the transmission device 1, the channel 2, the radiation source 3, the detector 4 and other devices, which are fixed relative to the ground. It should be noted that although the ray source 3 and the detector 4 are arranged outside the channel 2, in the scanning area, the channel 2 is provided with an avoidance area, which will not block the ray beam of the ray source 3 and will not hinder the detector. 4 Receive rays.
  • the radiation scanning device may further include a control device, which can control the operation of various components of the radiation scanning device, for example, control the emission of radiation from the radiation source 3, the data output from the detector 4, and the like.
  • the control device can also include an image processing module, which can perform image reconstruction according to the information output by the detector 4 to obtain a scanned image of the detected object 6 .
  • the conveying device 1 may be, for example, a conveyor belt; the object to be detected 6 may be, for example, parcels, luggage, and other items that require safety inspection.
  • the radiation source 3 may include a plurality of radiation source modules, and each radiation source module is arranged around the scanning area and located in a plane perpendicular to the conveying direction of the detected object 6 .
  • Each radiation source module can be arranged in the same plane perpendicular to the conveying direction of the detected object 6 or in different planes.
  • each radiation source module is located in the same plane perpendicular to the conveying direction of the detected object 6 (specifically It refers to the fact that the radiation openings of each radiation source module are located in the same plane perpendicular to the conveying direction of the detected object 6) as an example, but it is also applicable to the case where each radiation source module is located on a different plane.
  • the advancing direction Z of the detected object 6 is shown in Fig.
  • conveying direction or Z direction is defined as the advancing direction of the detected object 6, including the reverse direction of the advancing direction .
  • Figure 1 shows the XYZ coordinate system, which can be used as a reference coordinate system to describe the position of the components in the ray scanning device. These position descriptions are for clearly describing the principles of the present application and have no limiting effect.
  • the advancing direction Z of the detected object 6 is the same as the Z direction of the XYZ coordinate system.
  • each ray source module of the ray source 3 of the ray scanning device may be a distributed multi-point source, and multiple ray source modules may be arranged in a rectangular structure, a polygonal structure, an ellipse, etc. surrounding the scanning area. Shaped structure, etc., wherein part of the structure is located below the conveying device 1 to completely surround the conveying device 1.
  • each ray source module can have a plurality of target points, and each target point of each ray source module can independently generate a ray beam, and each target point can be controlled by the control device according to
  • the radiation beams are generated in predetermined timing.
  • the beam of rays may be a fan beam with an aperture angle A, as shown in FIG. 3 .
  • the shape of the ray beam is not limited to a fan beam, and may also be a ray beam of other shapes such as a cone beam and a parallel beam, which may be specifically set as required.
  • Fig. 2 shows a schematic structural diagram of a radiation source and a detector according to some embodiments, where multiple radiation source modules of the radiation source 3 are arranged in a rectangular structure surrounding a scanning area.
  • the ray source 3 includes four ray source modules 31, 32, 33, 34, each ray source module is a linear distributed multi-point source (that is, multiple target points are arranged in a straight line), and the four ray source modules 31, 32, 33, 34 are respectively arranged on the upper side, the lower side, the left side and the right side of the scanning area, forming a rectangular structure surrounding the scanning area.
  • the ends of the radiation source modules 31 , 32 , 33 , 34 are spaced apart by a certain distance, thus forming a non-continuous rectangular structure (as shown in (a) of FIG. 4 , the target points are also arranged in a non-continuous rectangular structure).
  • the arrangement of the radiation source 3 is not limited to the embodiments shown in FIG. 2 and (a) of FIG. 4 , and may also include some other alternative arrangements.
  • the ends of the ray source modules 31, 32, 33, and 34 can be directly connected so that the ray source 3 is arranged around the scanning area in a continuous rectangular structure (as shown in (b) of FIG. rectangular arrangement).
  • the ray source 3 is arranged around the scanning area in a continuous rectangular structure (as shown in (b) of FIG. rectangular arrangement).
  • the radiation source 3 may also include four other linear distributed radiation source modules 35, 36, 37, 38, whose length is shorter than that of the radiation source modules 31, 32, 33, 34, Alternately arranged with the radiation source modules 31, 32, 33, 34 and the ends are directly connected, so that the radiation sources 3 are arranged in a continuous polygonal structure (as shown in (c) of FIG. 4, the target points are arranged in a continuous polygonal shape).
  • the ray source modules 35, 36, 37, 38 may be arc-shaped distributed ray sources, arranged alternately with the ray source modules 31, 32, 33, 34 and directly connected at the ends, so that the ray source 3 forms a continuous rounded rectangle structural arrangement.
  • the ends of the ray source modules 31, 32, 33, 34, 35, 36, 37, 38 can also be spaced at a certain distance, so that the ray source 3 is arranged in a discontinuous polygonal structure or a discontinuous rounded rectangular structure (attached not shown in the figure).
  • the length of the radiation source modules 35, 36, 37, 38 can be the same as or longer than the length of the radiation source modules 31, 32, 33, 34, or the radiation source 3 can include other numbers (multiple) and/or lengths
  • the ray source module forms a polygonal structure different from the polygon shown in (c) of FIG. 4 .
  • the radiation source 3 may include radiation source modules of other numbers (multiples), lengths and/or shapes, so as to form an elliptical structure.
  • the radiation source modules included in the radiation source 3 are detachable and installable independently of each other, that is, each radiation source module has a separate cavity for accommodating its own radiation generating device.
  • Each radiation source module has an independent chamber, which means that multiple targets of each radiation source module share a single vacuum chamber.
  • the distance between multiple target points of each radiation source module in the vacuum cavity can be determined by the number of target points and the length of the cavity. According to some embodiments, the number of target points in a single radiation source module may be 192, 264, etc., and the distance between target points in a single radiation source module may be 4 mm, 12 mm, etc.
  • each ray source module has a separate cavity and has the following advantages: compared with the ray source of the integrated annular cavity (that is, all the target points of the ray source are located in the same annular vacuum cavity), the size of a single ray source module can be reduced.
  • each radiation source module uses a separate vacuum chamber, which can reduce the impact on the radiation source. Risk of sparking in the cavity when the module is being serviced.
  • each radiation source module of the radiation source 3 is provided with an installation and positioning structure, so as to facilitate the installation and adjustment of the radiation source modules.
  • each radiation source module of the radiation source 3 can be installed and fixed at a predetermined position in the radiation scanning device (for example, at a specific position in the radiation scanning device relative to the XYZ reference coordinate system), for example to ensure Multiple radiation source modules are located in the same plane perpendicular to the conveying direction of the detected object 6 .
  • the radiation source module can also be rotated to adjust the beam-out angle of the radiation beam.
  • Each radiation source module of the radiation source 3 may adopt different installation methods due to different positions in the radiation scanning device, and have different installation and positioning structures.
  • the ray source modules located above and to the side of the scanning area can be installed in a hoisting manner through equipment such as a crane.
  • the ray source module located below the scanning area is not suitable for hoisting, and needs to be installed in other ways.
  • embodiments of the present application provide an installation and positioning structure, which can easily install and fix radiation source modules that are not suitable for hoisting at a predetermined position of the radiation scanning equipment, and can also Rotate the ray source module to adjust the beam-out angle of the ray beam.
  • the installation and positioning structure includes a main body, which can be fixedly connected to the support frame of the radiation source module and the radiation scanning device, so that the radiation source module can be fixedly installed on the support frame through the main body, wherein the installation and positioning structure includes: A moving device, by which the radiation source module can be moved to a predetermined installation position on a first plane (for example, the XZ plane in Fig. 1 ); a first positioning device, which positions the radiation source module on the first plane a lifting device, which is used to adjust the position of the ray source module along a first direction (for example, the Y direction in FIG. 1 , which is perpendicular to the XZ plane), wherein the first direction is perpendicular to the first plane; and a second positioning device, It is used to fix the position of the radiation source module in the first direction.
  • a moving device by which the radiation source module can be moved to a predetermined installation position on a first plane (for example, the XZ plane in Fig. 1 );
  • Fig. 5 shows a specific embodiment of the installation and positioning structure of the radiation source module.
  • the mounting and positioning structure includes main bodies 11, 12, the main bodies 11, 12 are respectively located at both ends of the radiation source module along the length direction, and are fixedly connected to the radiation source module (here, the radiation source module is shown in Fig. 2
  • the ray source module 33 of the ray source 3 is described as an example, and it can also be other suitable ray source modules), the ray source module 33 is fixedly installed on the support frame 5 (not shown in FIG. 5 ) via the main body 11 and 12 .
  • the moving device for installing the positioning structure is specifically configured as rollers 13, 14, which are respectively arranged on the main bodies 11, 12, and the radiation source module 33 can be pushed through the rollers 13, 14 to move to a predetermined installation position on the XZ plane.
  • the moving device for installing the positioning structure is not limited to rollers.
  • the radiation source module can also be moved in a sliding manner. The source module 33 is moved to a predetermined installation position.
  • the first positioning device includes first positioning pins 15, 16 and corresponding first pin holes (not shown) respectively arranged on the main body 11, 12 and the supporting frame 5 of the radiation scanning equipment, and the radiation source module 33 passes through After the rollers 13 and 14 are moved to the predetermined installation positions, the first positioning pins 15 and 16 are respectively inserted into the corresponding first pin holes, so that the radiation source module 33 can be positioned on the XZ plane.
  • the lifting device includes a roller 13 arranged at the main body 11, wherein the roller 13 is specifically configured as a liftable roller, and also includes a lifting jack wire 17 arranged on the main body 12, and one end of the lifting jack wire 17 abuts against the support frame 5.
  • the main body 12 and the radiation source module 33 can be lifted or lowered relative to the supporting frame 5 by twisting and lifting the jacking screw 17 .
  • the position of the radiation source module 33 relative to the support frame 5 can be adjusted along the Y direction by adjusting the liftable roller 13 and the lift jack wire 17 .
  • the second positioning device is formed as positioning pads 19, 20.
  • the positioning pads 19, 20 are respectively placed on the Below the main bodies 11 and 12, the height of the radiation source module 33 relative to the support frame 5 can be fixed, so that the radiation source module 33 can be positioned along the first direction Y.
  • the positioning block 20 below the main body 12 can be arranged in a U-shape, and the lower part of the lifting jack wire 17 is located in the opening of the U-shaped positioning block 20 to prevent the two from interfering with each other.
  • the installation and positioning structure may also include first fixing bolts 21, 22 and corresponding first threaded holes provided in the main bodies 11, 12, positioning spacers 19, 20 and the support frame 5, and the first fixing bolts 21, 22 are respectively By inserting into corresponding first threaded holes and tightening, the positioning pads 19 , 20 can be fixed relative to the main bodies 11 , 12 and the support frame 5 , and the radiation source module 33 can be fixedly connected to the support frame 5 .
  • the mounting and positioning structure further includes an adjustment device, which is used to rotate the radiation source module along a predetermined axis to adjust its beam output angle.
  • the radiation source module 33 is provided with a mounting shaft 331, and the main bodies 11 and 12 are respectively provided with shaft holes, and the main bodies 11 and 12 are mounted on the mounting shaft 331 through the shaft holes;
  • the mounting positioning structure also includes The second positioning pins 23, 24, the main bodies 11, 12 and the radiation source module 33 are respectively provided with second pin holes corresponding to the second positioning pins 23, 24, by fitting the shaft holes of the main bodies 11, 12 on the installation shaft 331 , and inserting the second positioning pins 23 , 24 into the corresponding second pin holes respectively, the main bodies 11 , 12 can be positioned relative to the radiation source module 33 .
  • the installation and positioning structure also includes second fixing bolts 25 and 26 for fixing and connecting the main bodies 11 and 12 relative to the radiation source module 33 , and corresponding second threaded holes provided on the main bodies 11 and 12 and the radiation source module 33 , by screwing the second fixing bolts 25 , 26 into the corresponding second threaded holes, the main bodies 11 , 12 can be fixedly connected to the radiation source module 33 . Pulling out the second positioning pins 23, 24 and loosening the second fixing bolts 25, 26 can make the main body 11, 12 loosen relative to the radiation source module 33. In this state, the adjustment device can drive the radiation source module 33 Rotate relative to the main bodies 11 and 12 around the installation shaft 331 .
  • the adjustment device includes a rotation drive mechanism
  • the rotation drive mechanism includes an adjustment block 27 fixed on the radiation source module 33 and a top wire 28 arranged on the main body 11 against the adjustment block 27, the top wire 28 It can be screwed to push the adjustment block 27 to move so as to rotate the radiation source module 33 .
  • the rotation driving mechanism is only arranged on one main body of the mounting and positioning structure, that is, only on one end of the radiation source module 33 along the length direction. Since both ends of the radiation source module 33 are supported by the installation shaft 331, the radiation source module 33 is pushed to rotate at one end of the radiation source module 33, and the radiation source module 33 as a whole can rotate accordingly.
  • the main bodies 11 and 12 can be fixedly connected to the radiation source module 33 .
  • the installation axis 331 on the radiation source module 33 can coincide with the virtual connection line of multiple target points in the radiation source module 33, therefore, rotating the radiation source module 33 around the installation axis 331 can make the radiation source module 33 Rotate around the target axis.
  • the installation and positioning structure according to the above embodiment is described by taking the radiation source module 33 of the radiation source 3 in FIG. 2 as an example, the above installation and positioning structure can be applied to the installation, positioning and adjustment.
  • the installation, positioning and adjustment of the radiation source module 33 of the radiation source 3 in FIG. 2 are not limited to the installation and positioning structure of the above embodiment, and any other suitable structure may also be adopted.
  • the lifting device is realized by the lifting roller 13 and the lifting jack wire 17, but the lifting device is not limited to the specific structure of this embodiment, and can also be realized as other suitable structures, such as Lifting jackscrews are used on both main bodies for lifting.
  • the specific implementation of the moving device, the first positioning device, the second positioning device and the adjusting device are not limited to the specific structures in the above embodiments, and other suitable structures can be adopted as long as their functions can be realized.
  • a single point source group includes at least two single point sources.
  • Each single point source can individually emit a beam of rays, for example a fan beam with an aperture angle A (as shown in FIG. 3 ).
  • Each single point source of the radiation source 3 can emit radiation according to a predetermined time sequence under the control of the control device of the radiation scanning system.
  • (d) of FIG. 4 shows a layout of radiation sources including multiple single-point source groups according to some embodiments.
  • the ray source includes a plurality of single-point source groups arranged around the scanning area at bottom viewing angle, left viewing angle, right viewing angle, top viewing angle and corner oblique viewing angle, wherein: bottom viewing angle single point The source group includes 3 single point sources, which are respectively arranged at the left bottom viewing angle, the middle bottom viewing angle and the right bottom viewing angle; the top viewing angle single point source group includes 3 single point sources, which are respectively arranged at the left top viewing angle, the middle top viewing angle and the right top viewing angle Angle of view; the single-point source group of the left view angle includes 2 single-point sources, which are respectively arranged in the upper left view angle and the lower left view angle; the right view angle single-point source group includes 2 single point sources, which are respectively arranged in the upper right view angle and the lower right view Side view; corner oblique view single-point source group includes 4 single-point sources, which are respectively arranged at left upper oblique angle, right upper oblique angle, left lower oblique angle and
  • each single point source group may also respectively include more single point sources.
  • each single-point source may include its own installation and positioning structure to install and position the single-point source, so as to ensure that multiple single-point sources are located in the same plane perpendicular to the conveying direction of the detected object 6 .
  • the installation and positioning structure can also be used to rotate the single-point source to adjust the beam-out angle of the rays of each single-point source.
  • the detector 4 may include a plurality of detector groups, the plurality of detector groups are located in a plane perpendicular to the conveying direction of the detected object 6 , and the ends of each detector group are connected to each other to be arranged around the scanning area.
  • Multiple detector groups can be located in the same plane perpendicular to the conveying direction of the detected object 6 or in different planes, and can optionally be arranged in the same plane. This embodiment is described as an example of being located in the same plane, but it is also applicable on different planes.
  • each detector group of the detector 4 is a detector array including a plurality of detector units, and the plurality of detector groups can be arranged in a closed square structure, a rectangular structure, a polygonal structure or an elliptical structure surrounding the scanning area. , wherein part of the structure is located below the conveying device 1 to completely surround the conveying device 1 .
  • Figure 2 shows an arrangement of detectors according to some embodiments, wherein the detector 4 comprises four detector groups 41, 42, 43, 44, each detector group 41, 42, 43, 44 being a linear detector array , including multiple detector units arranged along a line.
  • the four detector groups 41 , 42 , 43 , 44 are arranged on the upper, lower, left, and right sides of the scanning area and their ends are connected to each other to form a closed rectangular structure (as shown in FIG. 6( a )) or a square structure.
  • the arrangement of the detectors 4 is not limited to the embodiments shown in FIG. 2 and (a) of FIG. 6 , and alternatively, other structures may also be arranged.
  • the detector 4 can include four longer linear detector arrays and four shorter linear detector arrays, these detector arrays are alternately arranged around the scanning area and the ends are connected to each other to form a closed polygonal structure (such as Figure 6 (b) shown).
  • the detector 4 may include other numbers of multiple longer linear detector arrays and other numbers of multiple shorter linear detector arrays, these detector arrays are alternately arranged around the scanning area and the ends are connected to each other to form a closed other polygonal structures.
  • the detector 4 may also include detector groups of other numbers, lengths and/or shapes to form closed structures of other shapes, such as elliptical structures and the like.
  • the detector group in the form of a linear detector array may adopt any suitable structure, and according to some embodiments, its specific structure may be as shown in FIG. 7 .
  • the detector group includes a plurality of detector units 45 and a detector arm 46 , and the plurality of detector units 45 are arranged side by side along a straight line on the detector arm 46 .
  • the specific structure of the detector unit 45 can be as shown in FIG. 8 , and of course other suitable structures can also be adopted.
  • the detector unit 45 includes a detector crystal 451 for receiving radiation.
  • a plurality of detector units 45 are arranged side by side on the detector arm 46 with the detector crystals 451 facing the same direction.
  • the structure of the detector arm 46 is not limited to the embodiment shown in FIG.
  • the detector group of the present application is not limited to the form of a linear detector array, and may also be in the form of an arc-shaped detector array to form a detector with an elliptical structure.
  • the arc detector array may comprise a plurality of arc detector units and arc detector arms, and the plurality of arc detector units are arranged side by side on the arc detector arms, wherein the detector crystals of the detector units face the same direction.
  • each detector group of the detector 4 is independently detachable and installable, thereby improving the maintainability of the detector.
  • a plurality of detector groups of the detector 4 are configured to be disassembled, installed and adjusted along the conveying direction of the detected object 6, so that when the detector 4 is arranged along the ray perpendicular to the conveying direction of the detected object 6 When the source 3 is inside, the detector group can be disassembled, adjusted and maintained without dismantling the radiation source, further improving the maintainability of the detector.
  • the detector group of the detector 4 can be moved along the conveying direction of the detected object 6 relative to its installation position (for example, the support frame 5) in the radiation scanning device. Move to remove from or install to said mounting position.
  • the installation and fixing structure of the detector group specifically includes a first installation part, which is fixedly arranged on the detector group; a second installation part, which is fixedly arranged on the support frame of the radiation scanning device, and Cooperate with the first installation part for linear movement, wherein the detector group can move to a predetermined installation position along the second installation part in the state where the first installation part and the second installation part cooperate with each other; and a fixing device, which is arranged on the detector group One side along the width direction is used to fix the detector group relative to the installation reference plane on the support frame.
  • the detector group is installed and fixed on the support frame of the radiation scanning equipment via the detector arm, wherein the first mounting part is fixedly arranged on the detector arm of the detector group, and the fixing device is arranged on the detector arm One side along the width direction, fix the detector arm to the supporting frame to fix the detector group.
  • FIG. 9 shows the installation and fixing structure of the detector group according to some specific embodiments, wherein figure (a) shows the exploded perspective view of the detector arm and the installation and fixing structure, and figure (b) is the detector group in the fixed state A partial cross-sectional view of the detector arm.
  • the complete detector group is not shown in FIG. 9 , only the detector arm is shown, where multiple detector units can be arranged side by side along the length direction on the shown detector arm to form a complete detector group.
  • the first installation part of the installation and fixing structure of the detector group is specifically formed as a slide groove 471 extending in the width direction of the detector arm 47, wherein, when installed to the support frame 5 of the radiation scanning device In this state, the width direction of the detector arm 47 is consistent with the conveying direction of the detected object 6 .
  • the second mounting portion is formed as a sliding rod 472 matched with the sliding groove 471 .
  • the sliding groove 471 is formed as a semicircular opening sliding groove, and the sliding rod 472 is correspondingly formed as a cylindrical sliding rod.
  • the sliding rod 472 is fixedly arranged on the supporting frame 5 , or is integrally formed with the supporting frame 5 , and its length direction is consistent with the conveying direction of the detected object 6 .
  • One end of the sliding rod 472 close to the support frame 5 is configured to increase in size relative to the rest of the sliding rod 472 to form a convex portion 473 .
  • An end surface of the protrusion 473 facing the probe arm 47 is formed as a mounting reference surface 474 for abutting against a surface 475 of the probe arm 47 on one side in the width direction.
  • the surface 475 is the installation surface of the detector arm 475, which is processed to have good flatness with the installation reference surface 474.
  • the fixing device is provided at the other end of the slide bar 472 opposite to the convex portion 473, and is arranged to abut against the convex portion 473 on both sides of the detector arm 471 in the width direction, thereby limiting the width of the detector arm 47 in the width direction.
  • the fixing device includes a positioning sleeve 476 and a fastener 477.
  • the positioning sleeve 476 is sleeved on the other end of the sliding rod 472 opposite to the convex portion 473 and abuts against the other side of the detector arm 47 along the width direction.
  • the fastener 477 fixes the positioning sleeve 476 to the other end of the slide bar 472 opposite the protrusion 473 .
  • the fastener 477 can be a fastening screw, and the positioning sleeve 476 and the other end of the sliding rod 472 are provided with a threaded hole, and the fastening screw is screwed in the threaded hole to tighten relative to the sliding rod 472.
  • the positioning sleeve 476 is fixed so as to fix the detector arm 47 in the width direction relative to the sliding rod 472 (ie, the support frame 5 ).
  • the shape fit between the slide bar 472 and the sliding slot 471 restricts other degrees of freedom, the detector arm 47 can be completely positioned and fixed.
  • the slide bar 472 extends along the conveying direction of the detected object 6, that is, the linear movement between the detector group and the support frame 5 cooperates along the conveying direction of the detected object, and the fixing device is arranged on the detector One side of the group along the width direction, and the width direction of the detector group is consistent with the conveying direction of the detected object 6 .
  • the detector group can be moved along the conveying direction of the detected object 6 to be installed or disassembled, and the fastening operation can also be performed on one side of the detector group along the conveying direction of the detected object, Therefore, the detector can be disassembled or maintained from the side along the conveying direction of the detected object, and even if the detector is arranged inside the radiation source perpendicular to the conveying direction, its disassembly or maintenance can also avoid the radiation source
  • the obstruction can be carried out without dismantling the radiation source, thereby improving the convenience of disassembling and maintaining the detector.
  • the second installation part of the above-mentioned installation and fixing structure is configured to support the detector group at a predetermined installation position in a state of being matched with the first installation part.
  • the second mounting part includes two sliding rods 472, and two sliding grooves 471 are formed on the detector arm 47 correspondingly, which are arranged at both ends of the detector arm 47 along the length direction, so that the detector arm 47 After the two slide bars 472 are moved to the predetermined installation position, the two slide bars 472 can support the detector group at the predetermined installation position without needing other auxiliary structures and/or tools. In this way, when the detector group is fastened, it can be operated without additional tools and without the operator supporting the detector group, thereby improving the convenience of operation.
  • the above-mentioned installation and fixing structure is not limited to the installation and removal of the detector group arranged vertically in the radiation scanning equipment, and the detector group arranged in other directions
  • the above-mentioned mounting and fixing structure can also be used.
  • the installation and fixing structure between the detector group and the support frame 5 is not limited to the embodiment shown in FIG. 9 , and other suitable installation and fixing structures can also be used. It is other suitable fits, such as linear rolling fits such as the fit of linear ball bearings and cylindrical shafts.
  • the cross section of the chute 471 is not limited to a semicircle, but can be a semi-rectangular shape, and correspondingly, the slide bar 472 is not limited to a cylinder, and can also be a prism matching with the slide groove 471 and the like.
  • the detector when the detector includes a plurality of detector groups, setting the installation reference planes of each of the plurality of detector groups in the same plane perpendicular to the conveying direction of the detected object 6 can ensure that the plurality of detector groups After installation, it is in the same plane perpendicular to the conveying direction of the detected object 6 .
  • each detector group is installed using an installation and fixing structure as shown in FIG. In the same plane where the conveying direction of the detected object 6 is vertical, and the installation surfaces 475 of each detector group along the width direction are all fixed against the respective installation reference planes 474, a plurality of detector groups must be positioned at In the same plane perpendicular to the conveying direction of the detected object 6 .
  • the radiation source 3 includes a plurality of radiation source modules, each radiation source module is arranged around the scanning area, and is located in the same plane perpendicular to the conveying direction of the detected object 6;
  • the detector 4 includes a plurality of detector groups, A plurality of detector groups are located in the same plane perpendicular to the conveying direction of the detected object 6 , and the ends of the respective detector groups are connected to each other so as to be arranged around the scanning area.
  • the detector 4 is arranged inside the radiation source 3 in the vertical direction to the conveying direction of the detected object 6, and the radiation source 3 and the detector 4 are arranged in a
  • the conveying direction of the object 6 to be detected is at least partially overlapped, wherein the multiple radiation source modules of the radiation source 3 can be arranged in a rectangular structure, a polygonal structure, an elliptical structure, etc.
  • the detector groups are arranged in a square structure, a rectangular structure, a polygonal structure, an elliptical structure, etc., as in any embodiment described above.
  • the four linear distributed radiation source modules 31, 32, 33 of the radiation source 3 , 34 are arranged in a non-continuous rectangular structure, and the four linear detector arrays 41, 42, 43, 44 of the detector 4 are arranged in a closed rectangular structure.
  • the detailed arrangement in the combined state described in FIG. 2 is also applicable to the radiation source 3 and any other combination of detector 4.
  • each detector group 41 , 42 , 43 , 44 of the detector 4 is arranged so as not to block the radiation beams of the radiation source modules on the same side, while being able to receive radiation from each radiation source module on the other side. Since both the radiation source 3 and the detector 4 are arranged in a ring shape, the same detector group can be shared by different radiation source modules of the radiation source.
  • Fig. 10 shows the corresponding relationship between each radiation source module and the detector group receiving its radiation, wherein, the radiation beams of each target point of each radiation source module 31, 32, 33, 34 of the radiation source 3 are in the form of a fan beam (such as The ray beam with opening angle A) shown in FIG.
  • a ray's detector group and its parts are indicated by thick solid lines.
  • FIG. 10 shows the detector group and its part corresponding to the ray beam of the ray source module 31 above the scanning area, wherein the detector groups 42, 43, 44 of the detector 4 receive the rays from the ray source module 31
  • FIG. 10 shows the corresponding detector group and part thereof of the ray beam of the ray source module 32 on the right side of the scanning area, wherein the detector group 41, 43, 44 of the detector 4 receives the ray beam from the ray source module
  • FIG. 10 (c) has shown the corresponding detector group and part thereof of the ray beam of the ray source module 33 of scanning area lower side, wherein the detector group 41,42,44 of detector 4 receives from The ray beam of the ray source module 33; (d) of Fig. 10 shows the corresponding detector group and part thereof of the ray beam of the ray source module 34 on the left side of the scanning area, wherein the detector groups 41, 42, 43 receives the ray beam from the ray source module 34 . It can be seen from Fig.
  • the rays of a radiation source module can be received by other side detector groups except the detector group on the same side, and different radiation source modules can share the same detector group, for example, radiation source modules 31 and 32 share The detector groups 43, 44, the radiation source modules 32, 33 share the detector groups 41, 44, and the radiation source modules 33, 34 share the detector groups 41, 42, etc.
  • the rays of each ray source module can be detected by the detector group on the opposite side, and can also be received by detector groups on other sides except the detectors on the same side. Therefore, the rays of each ray source module can be received as much as possible. May be detected by detectors as many times as possible. Therefore, the detector of the present application can reduce the number of detector groups while improving image quality, and reduce equipment cost.
  • the detector crystals of each detector group of the detector 4 are arranged at the end of the detector unit along the conveying direction of the detected object 6 , and arranged so as to be adjacent to the same crystal in the conveying direction of the detected object 6 .
  • the edge of the ray beam of the side ray source module but does not block the ray beam of the same side ray source module.
  • the coverage length of the optical path between the radiation source and the detector can be reduced as much as possible, thereby reducing the length of the device.
  • Fig. 11 is a schematic cross-sectional structural view of the radiation scanning device shown in Fig. 1 along the centerline of the conveying direction of the detected object according to some embodiments.
  • the detector unit can be, for example, the detector unit 45 shown in Figure 7, and the detector crystal can be, for example, the detector crystal 451 shown in Figure 7; the surface of the detector crystal 451 is parallel to the surface of the detected object 6.
  • FIG. 12 shows a schematic top view of the layout of detectors and radiation sources according to some embodiments.
  • the radiation source modules on the left and right sides of the figure are the radiation source modules 34 and 32 of the radiation source 3 respectively.
  • the detectors on the left and right sides Detector crystals 451-4 and 451-2 represent the positions of the detector crystals of detector sets 44 and 42, respectively. It can be seen from FIG. 12 that the detector crystal 451-4 is arranged adjacent to the edge of the ray beam of the ray source module 34 on the same side in the conveying direction of the detected object 6, and does not block the ray beam of the ray source module 34 on the same side;
  • the detector crystal 451 - 2 is arranged close to the edge of the radiation beam of the radiation source module 32 on the same side in the conveying direction of the detected object 6 , and does not block the radiation beam of the radiation source module 32 on the same side.
  • each radiation source module of the radiation source 3 is arranged such that the radiation beam avoids the detector group on the same side and irradiates the detector crystals of the detector group on the opposite side.
  • the ray beam of the ray source module 34 can also cover and irradiate the detector crystal 451-2 of the detector group 42 on the opposite side while avoiding the detector group 44 on the same side, and the ray beam of the ray source module 32 While avoiding the detector set 42 on the same side, the beam can also cover and illuminate the detector crystal 451-4 of the detector set 44 on the opposite side.
  • each radiation source module of the radiation source 3 is arranged to irradiate the detector crystals of the detector group on the opposite side with the central position of the radiation beam.
  • the ray source module can be rotated by a predetermined angle relative to the target axis to adjust the beam-out angle of the ray beam of the ray source module, so that the central position of the ray beam irradiates the detector crystal.
  • the target axis refers to a virtual line connecting multiple target points in the radiation source module. Since the detector crystal of the detector is located at the end position of the detector unit in the conveying direction of the detected object 6 and is arranged close to the edge of the beam of the radiation source on the same side, the radiation source module can only rotate by a very small predetermined angle, for example, is 1.5 degrees, that is, the center position of the ray beam can irradiate the detector crystal.
  • the rotation of the ray source module is not limited to the rotation around the target axis, and can also be rotated relative to other axes than the target axis to adjust the beam output angle of the ray beam, wherein the rotation of the ray source relative to the target axis or other axes can be achieved through the aforementioned
  • the installation and positioning structure of the above-mentioned radiation source module is realized.
  • the method of adjusting the beam emission angle of the ray beam is not limited to the above-mentioned embodiments, and other methods, such as changing the opening direction of the ray source module, adjusting the collimator, and other suitable methods to change the emission angle of the ray beam, It is sufficient as long as the above arrangement of the radiation source can be realized.
  • the radiation source is composed of multiple radiation source modules, and the ends of the multiple radiation source modules are directly connected or arranged at intervals.
  • the radiation source points between adjacent radiation source modules must be discontinuous, for example, the target at the ends of two adjacent radiation source modules The distance between the points is obviously larger than the distance between the target points inside the radiation source module; this is especially true in the case of the end portions of the radiation source module being arranged at intervals. Therefore, projection data is missing at the ends of adjacent radiation source modules due to lack of target points during the scanning process.
  • the image processing module of the radiation scanning device of the present application is configured to have a data compensation function, which can compensate for missing view data and/or repair the reconstructed image, so as to improve image quality.
  • the image processing module is configured to perform image reconstruction with an iterative method, an image threshold inpainting method or a combination of the two.
  • the iterative method specifically includes the following steps:
  • Step 1 Use the missing data for image reconstruction, where the missing data is the initial data measured by the detector, which lacks the projection data of the viewing angle at the non-target point, for example, when the ray scanning device uses Figure 2 or Figure 2
  • the initial data measured by the detector lacks the projection data at the oblique angles of the four corners of the rectangular structure;
  • Step 2 Perform forward reprojection on the reconstructed image obtained in step 1 according to the complete geometry.
  • the reconstructed image obtained in step 1 may present an object with an incomplete geometric structure due to the use of missing data from the perspective, and proceed forward according to the complete geometry.
  • Forward reprojection refers to performing forward reprojection when the geometric shape is completed. Specifically, the geometric shape can be completed by guessing, assuming, etc.;
  • Step 3 Using the reprojection data obtained in step 2 as a reference, use the image restoration algorithm to repair the missing data in the projection domain, and use the repaired data to reconstruct the image again;
  • Step 4 The aforementioned forward reprojection step, the missing data repair step and the image reconstruction step are iterated several times, and the image obtained in the last image reconstruction step is used as the final reconstructed image.
  • the convergence threshold can be set in advance.
  • the iteration is stopped, and the image is used as the final reconstructed image;
  • the image obtained in the image reconstruction step does not meet the set convergence threshold, continue to One iteration, namely, the forward reprojection step, the viewpoint missing data repair step and the image reconstruction step, until the image obtained in the image reconstruction step satisfies the set convergence threshold.
  • the image restoration algorithm in step 2 includes various traditional algorithms, such as methods based on TV regularization terms, wavelet analysis, dictionary learning, etc., and artificial neural network methods.
  • image reconstruction methods include commonly used algorithms such as analytical algorithms and iterative algorithms.
  • the image processing module may also use an image threshold inpainting method to obtain the reconstructed image.
  • the image processing module can use the missing view data, that is, the initial data measured by the detector, to perform image reconstruction, and use an image restoration algorithm to perform artifact removal and data correction processing on the reconstructed image at the image threshold, to obtain The final reconstructed image.
  • the image restoration algorithm includes various traditional algorithms, such as methods based on TV regularization terms, wavelet analysis, dictionary learning, and artificial neural network methods.
  • the image processing module may use a combination of the above-mentioned iterative method and the above-mentioned image threshold repair method to perform image reconstruction, so as to improve image quality.
  • the image processing module can first use the above iterative method to complete the missing data in the projection domain, and obtain a reconstructed image that meets the set convergence threshold, and then use the above image threshold repair method to reconstruct the image obtained by the above iterative method
  • the image inpainting algorithm is used to remove the artifacts and correct the data, and obtain the final reconstructed image.
  • the source points of the ray source in the form of a single point source are relatively sparse, and the image processing module can use an image reconstruction algorithm suitable for sparse viewing angle data to obtain scanned images.
  • the radiation source surrounds the scanning area on four sides, up, down, left, and right.
  • the present application also provides a radiation scanning device, the arrangement of which is basically the same as that of the foregoing embodiments, the difference mainly lies in the arrangement of the radiation sources, wherein the radiation sources are only on the upper side, the lower side and the left and right sides Surround the scan area on one side.
  • the following description takes the example that the radiation source is arranged on the upper side, the lower side and the right side of the scanning area, but it is also applicable to the case where the radiation source is arranged on the upper side, the lower side and the left side of the scanning area.
  • each ray source module of the ray source 3 is a distributed multi-point source, and multiple ray source modules can be arranged in a rectangular structure, a polygonal structure, an elliptical structure, etc. surrounding the scanning area.
  • the multiple ray source modules of the ray source can still be distributed multi-point sources, the difference is that the multiple ray source modules are arranged in an unclosed structure that surrounds the scanning area and opens on the left side of the scanning area, for example, the left A rectangular structure, a polygonal structure, an elliptical structure, etc. with side openings.
  • the left side of the scanning area refers to the left side of the scanning area in the vertical direction to the conveying direction of the detected object 6 .
  • the ray source 3 has a discontinuous or continuous rectangular structure, a continuous polygonal structure, a continuous rounded rectangle, a discontinuous polygon or a discontinuous rounded rectangular structure, and other polygonal and elliptical structures.
  • the ray source has a discontinuous or continuous rectangular structure, a continuous polygonal structure, a continuous rounded rectangle, a discontinuous polygon or a rounded rectangular structure with openings on the left side of the scanning area.
  • the radiation source 3 in this embodiment does not include at least the radiation source module on the left side of the detected object 6 .
  • the ray source in this embodiment can also be composed of multiple single-point source groups.
  • the ray source 3 in this embodiment does not include the single-point source at the left viewing angle. , or excluding single-point sources at left-hand angles and oblique left-up and left-lower angles.
  • the characteristics of various aspects of the detector of this embodiment are basically the same as those of the detector 4 in the previous embodiments, the only difference is that in this embodiment, the detector and the detector are only scanned around the upper side, the lower side and the right side.
  • the dismounting and installation of each detector group of the detector 4 can be adopted in addition to the same manner as the foregoing embodiment, and can also be adopted in a manner different from the foregoing embodiment as described below to further facilitate the disassembly and assembly of the detector. maintain.
  • the detector 4 can be disassembled and installed in the following manner: the detector group 41', 43', 44' is perpendicular to the conveying direction of the detected object 6 (as shown in Figure 14, along the X direction ) is disassembled or installed relative to the support frame 5 , and the detector group 42 ′ is disassembled or installed relative to the support frame 5 along the conveying direction of the detected object 6 (as shown in FIG. 14 , along the Z direction).
  • the detector group 42' can be disassembled or installed relative to the support frame 5 by using the same installation and fixing structure (as shown in FIG. 9 ) as in the previous embodiment.
  • the installation and fixing structures of the foregoing embodiments are not suitable for the disassembly or installation of the detector groups 41', 43', 44' along the X direction, so different installation and fixing structures are required. Specific embodiments of these mounting and fixing structures will be described in detail below.
  • the installation and fixing structure suitable for the disassembly and assembly of the detector groups 41 ′, 43 ′, 44 ′ in the X direction also specifically includes a first installation part, which is fixedly arranged on the detector group ; the second installation part, which is fixedly arranged on the support frame of the ray scanning equipment, and moves in a straight line with the first installation part, wherein the detector group can move along the second installation part in the state where the first installation part and the second installation part cooperate with each other The second installation part moves to a predetermined installation position; and a fixing device, which is arranged on one side of the detector group along the width direction, is used to fix the detector group relative to the installation reference plane on the support frame.
  • the detector groups 41', 43', 44' are installed and fixed on the support frame of the X-ray scanning equipment via the detector arm, wherein the first mounting part is fixedly arranged on the detector arm, and the fixing device is arranged On one side of the detector arm in the width direction, it fixes the detector arm to the support frame to fix the detector group.
  • FIG. 15 shows an installation and fixing structure suitable for a detector group 41' according to some specific embodiments, wherein figure (a) shows a perspective view of a detector group in an installed state, and figure (b) is a detector group in an installed state The side view below, figure (c) is a perspective view of the detector group in a disassembled state, and figure (d) is a cross-sectional view of a detector group with a fixing device in an installed state.
  • the first installation part of the installation and fixing structure of the detector group 41' includes a slider 412 arranged on the detector arm 411, and the slider 412 extends along the length direction of the detector arm 411, wherein the detector When the group 41 ′ is installed in the radiation scanning device, the length direction of the detector arm 411 is perpendicular to the conveying direction of the detected object 6 .
  • the slider 412 extends over a part of the length of the detector arm 411 , and in other embodiments, the slider 412 can also be configured to extend over the entire length of the detector arm 411 or other lengths.
  • the slider 412 may be fixed to the detector arm 411 by bolting or the like. According to other embodiments, the slider 412 may also be integrally formed with the detector arm 411 .
  • the second mounting portion is formed as a fixed guide rail 413 matched with the slider 412 .
  • the fixed guide rail 413 is fixedly connected to the support frame 5 (not shown in FIG. 15 ) of the radiation scanning device, and may also be integrally formed with the support frame 5 .
  • the length direction of the fixed guide rail 413 is perpendicular to the conveying direction of the detected object 6 of the radiation scanning device.
  • One end of the fixed guide rail 413 along the length direction can be provided with a limiting part (not shown in the figure), when the detector group 41' is installed, the slider 412 is aligned with the fixed guide rail 413, and the detector group is pushed along the fixed guide rail 413 41' until the detector arm 411 abuts against the limiting part, thereby moving the detector group 41' to a predetermined installation position.
  • the fixing device is arranged on one side of the detector group 41' along the width direction, and abuts against the surface 414 of the detector arm 411 on one side along the width direction.
  • the fixing device includes a positioning piece 415 and a fastener 416, wherein the positioning piece 415 is fixedly connected to the support frame 5, and its end face away from the support frame 5 is formed as an installation reference surface 417, which is used to resist Close to the surface 414 of one side along the width direction of the detector arm 411 .
  • the surface 414 is the installation surface of the detector arm 411, and it and the installation reference surface 417 are all processed to have good flatness, so that when the installation surface 414 of the detector arm 411 is fixed against the installation reference surface 417, it can be fixed in the width direction.
  • the fastener 416 can pass through the positioning piece 415, and fasten the detector group 41' relative to the end surface of the positioning piece 415.
  • the fastener 416 may be, for example, a fastening bolt.
  • Corresponding threaded holes are provided on the sides of the positioning piece 415 and the detector arm 411 opposite to the positioning piece 415, and the fastening bolt 416 is passed through the corresponding threaded hole and By tightening, the detector group 41 ′ can be fastened relative to the end face of the positioning member 415 .
  • Multiple fixing devices such as at least two, can be provided along the length direction of the detector group 41', so as to firmly fix the detector group 41' on the support frame 5.
  • the detector group 41' when installing the detector group 41', in the state where the detector unit of the detector group 41' faces downward, first align the slider 412 on the detector group 41' with the fixed guide rail 413, so that The detector group 41' moves along the fixed guide rail 413 until it abuts against the limit part on the fixed guide rail 413; then, the fastening bolt 416 is passed through the corresponding threaded hole on the positioning piece 415 and the detector arm 411 and tightened, thereby The detector group 41 ′ is positioned relative to the end surface of the positioning member 415 , that is, the installation reference surface 417 .
  • the opposite operation can be carried out.
  • the detector The group 41 ′ can be detached or installed relative to the support frame 5 perpendicular to the conveying direction of the detected object 6 of the radiation scanning device.
  • the fixing device is arranged on one side of the detector group along the width direction, that is, the side of the detector along the Z direction. Therefore, the detector group can be fastened while avoiding the shielding of the radiation source, and the disassembly of the detector group is facilitated. installation and maintenance.
  • the second installation part is configured to support the detector group 41' at a predetermined installation position in a state of being matched with the first installation part.
  • the slider 412 is disposed on opposite sides of the detector arm 411 in the width direction, and has inner extensions 4121, 4122 extending inward from the edges of the detector arm 411 on the two sides opposite in the width direction (see Fig. 15 (b));
  • the fixed rail 413 includes outwardly extending extensions 4131, 4132 (see Fig.
  • the inner extensions 4121 , 4122 of the slider 412 are located above the outer extensions 4131 , 4132 of the fixed guide rail 413 and are in contact with and overlapped.
  • the detector group 41' can be suspended on the outer extension parts 4131, 4132 of the fixed guide rail 413 through the inner extension parts 4121, 4122 of the slider 412 .
  • the fixed guide rail 413 can support the detector group 41' at the predetermined installation position without the need for other additional auxiliary structures or tools, and when the detector group 41' is fastened, the operator does not need to fix the detector.
  • the group 41' can be operated with support, thereby improving the convenience of operation.
  • Fig. 16 shows an installation and fixing structure suitable for a detector group 43' according to some specific embodiments, wherein figure (a) shows a perspective view of the detector group in an installed state, and figure (b) is a detector Side view of the group installed.
  • the first installation part of the installation and fixing structure of the detector group 43' includes a slider 432 arranged on the detector arm 431, and the slider 432 extends along the length direction of the detector arm 431, wherein the detector
  • the length direction of the detector arm 431 is perpendicular to the conveying direction of the detected object 6 of the radiation scanning device.
  • the slider 432 can be fixed to the detector arm 431 through bolt connection or the like, and can also be integrally formed with the detector arm 431 .
  • the detector arm 431 is formed with a groove 433 extending in the length direction, and the slider 432 is disposed in the groove 433 .
  • the second mounting portion is formed as a fixed guide rail 434 matched with the slider 432 .
  • the fixed guide rail 434 is fixedly connected to the support frame 5 of the X-ray scanning device, and may also be integrally formed with the support frame 5 .
  • the length direction of the fixed guide rail 434 is perpendicular to the conveying direction of the detected object 6 .
  • One end of the fixed guide rail 434 along the length direction can be provided with a limiting part (not shown in the figure), when the detector group 43' is installed, the slide block 432 is aligned with the fixed guide rail 434, and the detector group is pushed along the fixed guide rail 434 43' until the detector arm 431 abuts against the limiting part, thereby moving the detector group 43' to a predetermined installation position.
  • the fixing device of the installation and fixing structure of the detector group 43' adopts the same fixing device as that of the detector group 41', and the specific structure of the fixing device will not be described in detail here.
  • the detector group 43' can be fastened and fixed against the corresponding installation reference surface on the support frame 5.
  • the detector arm 431 of the detector group 43' is also provided with a mounting surface on one side along the width direction, and similarly, the mounting surface and the mounting reference plane on the support frame 5 are all processed to have good flatness, When the installation surface of the detector arm 431 abuts against the installation reference surface, the detector group 43 ′ can be accurately positioned in the width direction.
  • multiple fixing devices can be provided along the length direction of the detector group 43', such as at least two, so as to firmly fix the detector group 43' on the support frame 5.
  • the detector The group 43' can be detached or installed relative to the support frame 5 perpendicular to the conveying direction of the detected object 6 of the radiation scanning device.
  • the fixing device is arranged on one side of the detector group 43' along the width direction, that is, the side of the detector along the Z direction. Therefore, the detector group can be fastened while avoiding the shielding of the radiation source, which facilitates the detection of the detector group. disassembly and maintenance.
  • the second installation part is configured to support the detector group 43' at a predetermined installation position in a state of being matched with the first installation part.
  • the fixed guide rail 434 includes supporting parts 4341, 4342.
  • the supporting parts 4341, 4342 also support the sliding block 432 under the sliding block 432, thereby After the detector group 43' moves to the predetermined installation position along the fixed guide rail 434, the detector group 43' is supported at the predetermined installation position from below. In this way, when the detector group 43' is fastened, it can be operated without additional tools and without the operator supporting the detector group 43', thereby improving the convenience of operation.
  • FIG. 17 shows an installation and fixing structure suitable for a detector group 44' according to some specific embodiments, wherein figure (a) shows a perspective view of the detector group in an installed state, and figure (b) is the first installation and fixing structure of the detector group.
  • FIG. 17 shows an installation and fixing structure suitable for a detector group 44' according to some specific embodiments, wherein figure (a) shows a perspective view of the detector group in an installed state, and figure (b) is the first installation and fixing structure of the detector group.
  • Figures (c) and (d) are perspective views of different viewing angles when the first mounting part and the second mounting part of the mounting and fixing structure are mated.
  • the first installation portion of the installation and fixing structure of the detector group 44 ′ is specifically formed as a fixing block 442 disposed on one side of the detector arm 441 along the width direction, and the fixing block 442 has a direction toward the detector arm 441 along the thickness direction.
  • the width direction of the detector arm 441 is consistent with the conveying direction of the detected object 6 of the radiation scanning device, and the thickness direction is perpendicular to the conveying direction of the detected object 6.
  • the opening 443 of the fixing block 442 can be U-shaped or other suitable shapes.
  • the fixing block 442 can be fixedly connected to the detector arm 441 by means of bolt fixing or the like, and can also be integrally formed with the detector arm 441 .
  • the second mounting part is formed as a cantilever part 444 fixed on the support frame 5, and an extension part 445 is provided at the end of the cantilever part 444 away from the support frame 5, and the extension part 445 is linearly moved and matched with the opening 443 on the fixed block 442, That is, the extension part 445 can move straightly from the edge of the opening 443 to the inside of the opening 443 .
  • the length direction of the cantilever portion 444 is consistent with the conveying direction of the detected object 6 of the radiation scanning device.
  • the bottom of the opening 443 can be used as a stopper.
  • the fixing device is arranged on one side of the detector arm 441 along the width direction (disposed on the same side as the fixing block 442), the end surface of the fixing device is formed as a mounting reference plane, and the fixing device fastens the detector arm 441 relative to the mounting reference plane .
  • the fixing device may include a fixing piece 446 and a fastener 447, and the end surface of the fixing piece 446 away from the support frame 5 is formed as a mounting reference plane 448, which is used to abut against one side of the detector arm 441 along the width direction. Surface 449.
  • the surface 449 is the installation surface of the detector arm 441, and it and the installation reference surface 448 are all processed to have good flatness, when the installation surface 449 of the detector arm 441 is fixed against the installation reference surface 448, it can Accurately position detector set 44'.
  • the fastener 447 is used to fasten the detector arm 441 relative to the end surface 448 of the fixing piece 446 .
  • the fastening member 447 can be a fixing bolt, and the side opposite to the fixing member 446 along the width direction of the detector arm 441 is formed with a corresponding threaded hole on the fixing member 446, and the fixing bolt 447 can pass through the fixing member 446 and the detector.
  • the fixing device may include a plurality, for example at least two, and the plurality of fixing devices may be arranged at intervals along the length direction of the detector group 41', so as to securely fix and position the detector group 44'.
  • the detector group 44' when installing the detector group 44', in the state where the detector unit is facing the scanning area and the width direction is consistent with the conveying direction of the detected object 6, firstly, the fixed block 442 on the detector group 44' The opening 443 of the cantilever part 444 is aligned with the extension 445 of the cantilever part 444, and the detector group 44' is moved along the extension 445 until the bottom of the opening 443 is against the extension 445; then, the fastener 447 is passed through the fixing part 446 and the detection Corresponding threaded holes on the arm 441 and tightened, thereby positioning the detector set 44 ′ relative to the installation reference surface 448 of the fixing member 446 .
  • the opposite operation can be carried out.
  • the cantilever portion 444 extends along the conveying direction of the detected object 6 in the radiation scanning device, the width direction of the detector group 44 ′ is parallel to the conveying direction of the detected object 6 , and the fixed block 442
  • the opening 443 of the detector group 44' faces one side in the thickness direction, and the detector group 44' can be installed or removed along the direction perpendicular to the conveying direction of the detected object 6 by making the detector crystal face to the scanning area.
  • the second installation part is configured to support the detector group 44' at a predetermined installation position in a state of being matched with the first installation part. That is, the cantilever part 444 can support the entire detector group 44' through the fixing block 442 after the detector group 44' moves to a predetermined installation position relative to the extension part 445 of the cantilever part 444, without requiring other auxiliary structures or tools. In this way, when the detector group 44' is fastened, it can be operated without additional tools and without the operator supporting the detector group 44', thereby improving the convenience of operation.
  • each detector group 41', 42', 43', 44' adopts different fixed installation structures to disassemble or install relative to the support frame 5, each detector group can still be vertical to other detector groups after installation. In the same plane as the conveying direction of the detected object 6 . Specifically, setting the installation reference planes of each detector group in the same plane perpendicular to the conveying direction of the detected object 6 can ensure that each detector group 41 ′, 42 ′, 43 ′, 44 ′ is located in the position after being installed in place. In the same plane perpendicular to the conveying direction of the detected object 6 .
  • the radiation source 3 includes a plurality of radiation source modules, each radiation source module is arranged around the scanning area, and is located in a plane perpendicular to the conveying direction of the detected object 6, especially in the same plane;
  • the detector 4 includes A plurality of detector groups, the plurality of detector groups are located in other planes perpendicular to the conveying direction of the detected object 6, especially in the same plane, and the ends of each detector group are connected to each other to be arranged around the scanning area, and further Specifically, in the combined state of the ray source 3 and the detector 4, the detector 4 is arranged inside the ray source 3 along the vertical direction of the conveying direction of the detected object 6, and the ray source 3 and the detector 4 are arranged so that the detected object 6 6 at least partially overlap in the conveying direction, wherein the plurality of detector groups of the detector 4 can be any one of the closed square structure,
  • the multiple radiation source modules of the radiation source 3 are arranged in a non-closed structure that surrounds the scanning area and opens on the left side of the scanning area, such as a rectangular structure, a polygonal structure, and an elliptical structure with an opening on the left side etc., as any structure described above in this embodiment.
  • each detector group of the detector 4 in this embodiment is optionally arranged so as not to block the radiation beams of the radiation source modules on the same side, while being able to receive radiation from the radiation source modules on the other sides. Since the radiation source 3 and the detector 4 are arranged in a ring (wherein the radiation source 3 is a semi-closed ring with an opening on the left), the same detector group can be shared by different radiation source modules of the radiation source. In addition, the rays of each radiation source module of the radiation source 3 can be detected by other side detector groups in addition to being detected by the detector group on the opposite side. Therefore, the radiation of each radiation source module can be detected by as much as possible. detected by the detector. Therefore, the detector of this embodiment can also improve the image quality while reducing the number of detector groups and reducing equipment costs.
  • the detector crystals of each detector group of the detector 4 are arranged at the end of the detector unit along the conveying direction of the detected object 6 , and are arranged in a manner that the detected object 6 In the conveying direction, it is close to the edge of the radiation beam of the radiation source module on the same side, but does not block the radiation beam of the radiation source module on the same side.
  • the coverage length of the optical path between the radiation source and the detector can be reduced as much as possible, thereby reducing the length of the device.
  • each radiation source module of the radiation source 3 is arranged such that the radiation beam avoids the detector group on the same side and irradiates the detector crystals of the detector group on the opposite side.
  • the ray source module can be rotated at a predetermined angle relative to the target axis to adjust the beam output angle of the ray beam of the ray source module, so that the central position of the ray beam irradiates the detector crystal.
  • the radiation source module can only rotate by a very small predetermined angle, for example, is 1.5 degrees, that is, the center position of the ray beam can irradiate the detector crystal. In this way, it is possible to minimize the adverse effect of the ray beam obliquely incident on the surface of the detector crystal on the imaging. Similar to the foregoing embodiments, the radiation source module can be rotated around the target axis or other axes, or through other suitable methods mentioned in the foregoing embodiments to adjust the beam-out angle of the radiation beam.
  • projection data is also lacking at the end of the adjacent radiation source module of the radiation source in this embodiment, so the image processing module of the radiation scanning device in this embodiment is also configured to have a data compensation function, It can compensate for missing perspective data and/or repair reconstructed images to improve image quality.
  • the image processing module of the radiation scanning device in this embodiment uses the same method as that in the previous embodiment to perform image reconstruction.
  • the radiation scanning device of this embodiment also has the following advantages.
  • the ray scanning device of this embodiment is particularly suitable for use in the security inspection of hand luggage at airports.
  • Airport hand luggage has the characteristics of small size (for example, usually within 600mm*400mm), large length, wide width and small thickness, and when it is placed on the conveyor for detection, the thickness is usually along the up and down direction, the width along the left and right directions, and the length along the Conveying direction.
  • radiation source modules are arranged on the upper and lower sides of the scanning area to scan the luggage in the thickness direction. In this way, more projection data can be obtained in the thickness direction with smaller dimensions.
  • the projection data in the thickness direction is less affected by self-occlusion and ray attenuation.
  • the projection data in the thickness direction is more accurate and clear than other directions, which is conducive to improving image quality.
  • the ray source module of the ray scanning device of the present invention is only provided with a ray source module on one side in the width direction of the luggage.
  • the projection data is greatly affected by the self-occlusion of the luggage item and the ray attenuation. Therefore, the projection data The quality is poorer than the projection data quality in the thickness direction. Setting the ray source module on only one side in the width direction of the luggage can reduce the cost of the ray source while ensuring the image quality.
  • the ray scanning device of this embodiment does not have a ray source on the left side of the scanning area, it still has a right side detector group opposite to the left side of the scanning area, and the right side detector group can receive radiation from the upper and lower sides
  • the corresponding detection data of the rays of the ray source modules on the upper and lower sides are added. Therefore, image quality can be improved compared to the case where the detector group is only arranged on the opposite side of each ray source module.
  • this embodiment is described by taking the multiple radiation source modules of the radiation source arranged in the same plane perpendicular to the conveying direction of the detected object as an example, but it is also applicable to the multiple radiation source modules of the radiation source being arranged in the same plane perpendicular to The situation in different planes of the conveying direction of the detected object.
  • the embodiment has been described with the example that multiple detector groups of the detector are arranged in the same plane of the conveying direction of the object to be detected, but it is also applicable to the multiple detector groups of the detector being arranged on a plane perpendicular to the object to be detected The situation in different planes of the conveying direction.
  • the present application also provides a radiation scanning device, the arrangement of which is basically the same as that of the foregoing embodiment, the difference mainly lies in the arrangement of the radiation source, wherein in this embodiment, the radiation source is only on the The scanning area is surrounded by three sides, the left side and the right side, that is, the radiation source surrounds the scanning area only above the conveying device, and no radiation source module is arranged below the conveying device (see FIG. 18 for details.
  • FIG. 18 shows the The schematic diagram of the layout of the ray source and the detector in this embodiment).
  • the above of the conveying device includes not only directly above the conveying device, but also above the side of the conveying device; in addition, the above of the conveying device is not strictly limited to be higher than the conveying device in height, and is approximately the same in height as the conveying device , or slightly lower than the transmission device is also included in the scope of this embodiment.
  • each ray source module of the ray source 3 is a distributed multi-point source, and multiple ray source modules can be arranged in a rectangular structure, a polygonal structure, or an elliptical structure surrounding the scanning area. Wait.
  • the multiple ray source modules of the ray source can still be distributed multi-point sources, the difference is that the multiple ray source modules are arranged in a non-closed structure that surrounds the scanning area and opens below the conveying device, for example, in the conveying Rectangular structures, polygonal structures, elliptical structures, etc. with openings below the device.
  • the ray source 3 has a discontinuous or continuous rectangular structure, a continuous polygonal structure, a continuous rounded rectangle, a discontinuous polygonal or discontinuous rounded rectangular structure, and other polygonal and elliptical structures.
  • the radiation source is in a discontinuous or continuous rectangular structure, a continuous polygonal structure, a continuous rounded rectangle, a discontinuous polygon or a discontinuous rounded rectangular structure with openings below the conveying device and other polygonal and elliptical structural arrangements.
  • the radiation source shown in FIG. 34 below the conveying device 1; for example, compared to the radiation source shown in (b)-(c) in FIG.
  • the ray source in this embodiment can also be composed of multiple single-point source groups, the only difference is that the ray source 3 in this embodiment does not include bottom angle of view, left oblique angle of view and right lower oblique angle of view. single point source.
  • the characteristics of various aspects of the detector of this embodiment are basically the same as the detector 4 in the previous embodiment, the only difference is that in this embodiment, the detector is surrounded only on the upper side, the left side and the right side.
  • the radiation source combination of the scanning area, the detector group below the scanning area of the detector 4 has no radiation source module on the same side, and the disassembly and installation of the detector group below the scanning area of the detector 4 will not be affected by the radiation from the lower side Blocking of source modules. Therefore, except that each detector group of the detector can be disassembled using the same installation and fixing structure as the previous embodiment, the detector group located below the scanning area is not hindered by the left or right ray source module. , can also be disassembled or installed relative to the support frame 5 along a direction perpendicular to the conveying direction of the detected object 6, specifically, the installation and fixing structure described above with reference to FIG. 16 can be used for disassembly and assembly.
  • the relative arrangement of the radiation source 3 and the detector 4 of the radiation scanning device of this embodiment is basically the same as that of the foregoing embodiment.
  • the radiation source 3 includes a plurality of radiation source modules, each radiation source module is arranged around the scanning area, and is located in a plane perpendicular to the conveying direction of the detected object 6, especially in the same plane;
  • the detector 4 includes a plurality of detector groups, the plurality of detector groups are located in other planes perpendicular to the conveying direction of the detected object 6, especially in the same plane, and the ends of the respective detector groups are connected to each other to surround the scanning area arrangement, and further, in the combined state of the radiation source 3 and the detector 4, the detector 4 is arranged inside the radiation source 3 along the vertical direction of the conveying direction of the detected object 6, and the radiation source 3 and the detector 4 are arranged
  • the detection objects 6 are at least partially overlapped in the conveying direction, wherein the plurality of detector groups of the detector 4 can be any of the enclosed square structures, rectangular structures
  • the multiple radiation source modules of the radiation source 3 are arranged in a non-closed structure that is opened below the conveying device around the scanning area, such as a rectangular structure, a polygonal structure, an elliptical structure that is opened below the conveying device Shaped structure, etc., such as any structure described above in this embodiment.
  • each detector group of the detector 4 in this embodiment is optionally arranged so as not to block the radiation beams of the radiation source modules on the same side, while being able to receive radiation from the radiation source modules on the other sides. Since both the radiation source 3 and the detector 4 are arranged in a ring shape (wherein the radiation source 3 is a semi-closed ring with a lower opening), thus, the same detector group can be shared by different radiation source modules of the radiation source.
  • the radiation of each radiation source module of the radiation source 3 can be detected by other side detector groups besides being detected by the detector group on the opposite side, therefore, the radiation of each radiation source module can be detected as much as possible detected by the device. Therefore, the detector of this embodiment can also improve the image quality while reducing the number of detector groups and reducing equipment costs.
  • the detector crystals of each detector group of the detector 4 are arranged at the end of the detector unit along the conveying direction of the detected object 6 , and are arranged in a manner that the detected object 6 In the conveying direction, it is close to the edge of the radiation beam of the radiation source module on the same side, but does not block the radiation beam of the radiation source module on the same side.
  • the coverage length of the optical path between the radiation source and the detector can be reduced as much as possible, thereby reducing the length of the device.
  • each radiation source module of the radiation source 3 is arranged such that the radiation beam avoids the detector group on the same side and irradiates the detector crystals of the detector group on the opposite side.
  • the ray source module can be rotated at a predetermined angle relative to the target axis to adjust the beam output angle of the ray beam of the ray source module, so that the central position of the ray beam irradiates the detector crystal.
  • the radiation source module can only rotate by a very small predetermined angle, for example, is 1.5 degrees, that is, the center position of the ray beam can irradiate the detector crystal. In this way, it is possible to minimize the adverse effect of the ray beam obliquely incident on the surface of the detector crystal on the imaging. Similar to the foregoing embodiments, the radiation source module can be rotated around the target axis or other axes, or through other suitable methods mentioned in the foregoing embodiments to adjust the beam-out angle of the radiation beam.
  • projection data is also lacking at the end of the adjacent radiation source module of the radiation source in this embodiment, so the image processing module of the radiation scanning device in this embodiment is also configured to have a data compensation function, It can compensate for missing perspective data and/or repair reconstructed images to improve image quality.
  • the image processing module of the radiation scanning device in this embodiment uses the same method as that in the previous embodiment to perform image reconstruction.
  • the radiation scanning device of this embodiment also has the following advantages.
  • the radiation scanning device of this embodiment does not arrange a radiation source module under the conveying device, so the height of the conveying device can be reduced, and the transport of the detected items to the conveying device is facilitated; in addition, compared with the aforementioned arrangement of the radiation source module under the conveying device Embodiment, this embodiment can save equipment cost.
  • the ray scanning device in this embodiment is not provided with a lower ray source, it still has an upper detector group opposite to the lower position, which can receive rays from the ray source modules on the left and right sides, increasing the left and right sides.
  • the corresponding detection data of the rays of the side ray source module Therefore, image quality can be improved compared to the case where the detector group is only arranged on the opposite side of each ray source module.
  • this embodiment is described by taking the multiple radiation source modules of the radiation source arranged in the same plane perpendicular to the conveying direction of the detected object as an example, but it is also applicable to the multiple radiation source modules of the radiation source being arranged in the same plane perpendicular to The situation in different planes of the conveying direction of the detected object.
  • the embodiment has been described with the example that multiple detector groups of the detector are arranged in the same plane of the conveying direction of the object to be detected, but it is also applicable to the multiple detector groups of the detector being arranged on a plane perpendicular to the object to be detected The situation in different planes of the conveying direction.
  • the radiation scanning device is described in which the radiation source and the detector surround the scanning area on four sides: up, down, left, and right.
  • the present application also provides a radiation scanning device, which is basically the same in structure as the radiation scanning device in the foregoing embodiment, except that the arrangement of radiation sources and detectors is different.
  • multiple radiation source modules of the radiation source are arranged around the scanning area in a non-closed structure with an opening on one side of the scanning area, and multiple detection modules of the detector
  • the detector group is also arranged around the scanning area with a non-closed structure opening on one side of the scanning area, and the opening of the non-closed structure of the detector is set opposite to the opening of the non-closed structure of the radiation source; in addition, multiple detectors of the detector
  • the detector group is fixed in the same plane perpendicular to the conveying direction of the detected object, and the multiple radiation source modules of the radiation source are fixed in multiple different planes perpendicular to the conveying direction of the detected object.
  • the arrangement of the radiation source is in The radiation source module on the opening side of the non-closed structure of the detector and each detector group of the detector are fixed in the same plane perpendicular to the conveying direction of the object to be detected, while the other radiation source modules of the radiation source are fixed in the same plane perpendicular to the direction of the detected object. Detect objects in other planes of the conveying direction.
  • the radiation source of the radiation scanning device in this embodiment includes multiple radiation source modules, and each radiation source module may be a distributed multi-point source.
  • each ray source module can have multiple targets, and each target point of each ray source module can generate ray beams independently, and each target point can be generated according to a predetermined timing under the control of the control device beam of rays.
  • the beam of rays may be a fan beam with an aperture angle A, as shown in FIG. 3 .
  • the shape of the ray beam is not limited to a fan beam, and may also be a ray beam of other shapes such as a cone beam and a parallel beam, which may be specifically set as required.
  • the plurality of radiation source modules of the radiation source surround the scanning area on four sides, while in this embodiment, viewed along the conveying direction of the detected object, the rays
  • the plurality of radiation source modules of the source are arranged around the scanning area only on three sides, ie in a non-closed structure that is open on one side of the scanning area.
  • Fig. 19-Fig. 21 Fig. 19 is a three-dimensional schematic diagram of the layout of the radiation source and the detector of the radiation scanning device according to this embodiment
  • Fig. 20 is the layout of the radiation source and the detector shown in Fig. 19 A schematic side view of the object to be detected viewed from the conveying direction.
  • Figure 21 is a schematic top view of the layout of the radiation source and detector shown in Figure 19, where the radiation source modules on the left and right sides of the scanning area are arranged perpendicular to the object to be detected in the same plane as the conveying direction (as shown by the solid line ray exit position in Figure 21), and the ray source module below the scanning area is arranged in another plane perpendicular to the conveying direction of the detected object (as shown by the dotted line in Figure 21 As shown in the position of the ray outlet)), viewed from the conveying direction of the object to be detected, the ray source 3 includes ray source modules 31, 32, 33 arranged on the left side, the right side and the lower side of the scanning area respectively.
  • the ray source modules 31, 32 and 33 form a non-closed structure surrounding the scanning area with an opening on the upper side of the scanning area.
  • the radiation source module is a linear distributed multi-point source
  • the non-closed structure of the radiation source is a right-angled rectangular structure with an opening on the upper side of the scanning area.
  • the ray source modules 31 , 32 , 33 of the ray source 3 are not limited to linear distributed multi-point sources, and according to other embodiments, may also be in the shape of an arc, a broken line, or the like.
  • Linear, arc-shaped or broken-line ray source modules can be arranged or combined as required, so that viewed from the conveying direction of the detected object, the ray source 3 can be in the form of a rounded rectangular structure with an opening on the upper side of the scanning area surrounding the scanning area, Polygonal structures, elliptical structures, etc.
  • the radiation source modules of the radiation source 3 are not limited to being arranged on the left, right and lower sides of the scanning area, and can also be arranged on, for example, the upper, left and right sides, The upper, lower, and left sides, and the upper, lower, and right sides can be set according to actual usage scenarios.
  • the case where the radiation source module is arranged on the left side, the right side and the lower side of the scanning area is taken as an example for description, but the described principle is also applicable to any other three-side arrangement of the radiation source module Case.
  • the multiple radiation source modules of the radiation source in this embodiment can also be disassembled and installed independently of each other, that is, each radiation source module has a separate cavity for accommodating its own radiation generating device , each radiation source module has a separate cavity, which means that multiple targets of each radiation source module share a single vacuum chamber.
  • the distance between multiple target points of each radiation source module in the vacuum cavity can be determined by the number of target points and the length of the cavity. According to some embodiments, the number of target points in a single radiation source module may be 192, 264, etc., and the distance between target points in a single radiation source module may be 4 mm, 12 mm, etc.
  • Each ray source module has a separate cavity and has the following advantages: Compared with the ray source of the integrated annular cavity (that is, all the target points of the ray source are located in the same annular vacuum cavity), the size of a single ray source module can be reduced. The size of the outer shell and the volume of the internal vacuum chamber reduce the volume and weight of a single radiation source module, so it is convenient to disassemble and install the radiation source; in addition, each radiation source module uses a separate vacuum chamber, which can reduce the impact on the radiation source. Risk of sparking in the cavity when the module is being serviced.
  • each radiation source module of the radiation source 3 is provided with an installation and positioning structure, so as to facilitate the installation and adjustment of the radiation source module.
  • each radiation source module of the radiation source 3 can be installed and fixed at a predetermined position in the radiation scanning device.
  • the radiation source module can also be rotated to adjust the beam-out angle of the radiation beam.
  • Each radiation source module of the radiation source 3 may adopt different installation methods due to different positions in the radiation scanning device, and have different installation and positioning structures.
  • the ray source modules located on the left and right sides of the scanning area can be installed by hoisting through equipment such as cranes, and the ray source modules located on the lower side of the scanning area are not suitable for hoisting.
  • the installation and positioning structure described in the embodiments (such as the installation and positioning structure shown in FIG. 5 ) is used to install and fix or adjust the outgoing beam angle of the ray beam.
  • the radiation source 3 may also be composed of multiple single-point sources, and each radiation source module may be a single-point source group, and each single-point source group includes at least two single-point sources.
  • Each single point source can individually emit a beam of rays, for example a fan beam with an aperture angle A (as shown in FIG. 3 ).
  • Each single point source of the radiation source 3 can emit radiation according to a predetermined time sequence under the control of the control device of the radiation scanning system.
  • each ray source module is a single-point source group, viewed from the conveying direction of the detected object 6, the single-point source group is at least distributed at the bottom viewing angle, the left viewing angle and the right viewing angle, and can be further distributed at the corner oblique viewing angle , such as the lower left oblique angle and the lower right oblique angle, and even further include the upper left oblique angle and the upper right oblique angle (as shown in FIG. 22 ).
  • the detector 4 may include a plurality of detector groups, and the plurality of detector groups are optionally located in the same plane perpendicular to the conveying direction of the detected object 6 .
  • the detector group in this embodiment is also a detector array including a plurality of detector units.
  • a plurality of detector groups of the detector 4 are arranged around the scanning area on four sides to form a closed structure surrounding the scanning area, while in the present embodiment Among them, viewed along the conveying direction of the object to be detected, the detector groups of the detector 4 are only arranged around the scanning area on three sides, that is, they are arranged around the scanning area in a non-closed structure with an opening on one side of the scanning area. Specifically, as shown in FIGS. 19-21 , the detector 4 includes detector groups 41 , 42 , and 43 respectively arranged on the left, right, and upper sides of the scanning area.
  • the detector groups 41 , 42 , and 43 The ends of the detector groups 41 , 42 , and 43 The interconnections form a non-enclosed structure surrounding the scanning area that is open on the underside of the scanning area.
  • the detector group 41, 42, 43 is a linear detector array including a plurality of detector units arranged in a straight line, thus forming a non-closed detector with an opening on the lower side of the scanning area. Rectangular or square structure.
  • the detector 4 of this embodiment is not limited to the above-mentioned structure, and can also be arranged in other structures.
  • the detector 4 may include 3 longer linear detector arrays and 2 shorter linear detector arrays, these detector arrays are alternately arranged around the scanning area and the ends are connected to each other to form an opening on the lower side of the scanning area.
  • the non-closed polygonal structure (as shown in Figure 23).
  • the detector 4 may also include other numbers of multiple longer linear detector arrays and other numbers of multiple shorter linear detector arrays, these detector arrays are alternately arranged around the scanning area and the ends are connected to each other, so as to Form other non-closed polygonal structures with openings on the lower side of the scanning area.
  • the detector group of the detector 4 of this embodiment can also be an arc detector array, and a plurality of arc detector arrays are arranged around the scanning area and the ends are connected to each other to form a non-closed ellipse with an opening on the lower side of the scanning area. structure.
  • the detector group of the detector 4 in this embodiment can also be a combination of a linear detector array and an arc detector array to form a non-closed structure with openings on the lower side of the scanning area, for example, an opening on the lower side of the scanning area The rounded rectangular structure, etc.
  • the structure of the detector unit and the structure of the detector groups in the form of a linear detector array and in the form of an arc detector array are exactly the same as those described in the foregoing embodiment.
  • the detector groups of the detector 4 are not limited to being arranged on the left, right and upper sides of the scanning area as shown in FIGS.
  • the case where the detector groups shown in Figures 19-21 are arranged on the left, right and upper sides of the scanning area is used as an example to describe, but this embodiment is also applicable to the detector groups arranged on the any other three-sided situation.
  • each detector group of the detector 4 is detachable and installable independently, thereby improving the maintainability of the detector.
  • the plurality of detector groups of the detector 4 of the present embodiment are configured to move along the conveying direction of the detected object 6 to be disassembled and installed, so that when the detector groups of the detector 4 move along the direction perpendicular to When the conveying direction of the detected object 6 is arranged inside the radiation source 3, the detector group can be disassembled, adjusted and maintained without dismantling the radiation source, further improving the maintainability of the detector.
  • the detector groups 41, 42, 43 can be moved along the conveying direction parallel to the detected object 6 for disassembly and installation, so that the radiation source modules 31, 32 can be disassembled , 33 for disassembly, adjustment and maintenance.
  • the detector groups 41, 42, 43 of the detector 4 can adopt the same installation and fixing structure as described in the foregoing embodiments (the embodiment shown in FIG. 9 and its variants, etc.)
  • the installation position in the apparatus is moved in the conveying direction of the object 6 to be detected to be detached from or installed to the installation position.
  • the detector groups 41 , 42 , 43 can be mounted to or detached from the support frame 5 of the radiation scanning device via a detector arm.
  • the detector group of the detector 4 can also move along the vertical direction of the conveying direction of the detected object to disassemble and Install.
  • FIG. 24 viewed along the conveying direction of the detected object, the openings of the non-closed structure of the radiation source modules 31, 32, 33 of the radiation source face to the left side of the scanning area, and the detector groups 41, 42, The opening of the non-closed structure of 43 is towards the right side of the scanning area.
  • the detector groups 41, 42, 43 can be moved relative to the installation position (such as the support frame 5) along the direction perpendicular to the conveying direction of the detected object to be disassembled or installed.
  • the specific moving direction is shown in (b) of FIG. ) indicated by the arrow in the figure. Since there is no radiation source module on the left side of the scanning area, the radiation source does not hinder the above-mentioned movement of the detector, and the detector group can be easily disassembled.
  • the installation and fixing structure described above that is suitable for disassembling and installing the detector group along the vertical direction of the conveying direction of the object to be detected can be used, for example, the installation and fixing structure described with reference to Fig. 15-Fig. installation method.
  • the detector group of the detector 4 can also be arranged so that a part moves along the conveying direction of the detected object for disassembly and installation, and another part moves along the direction perpendicular to the conveying direction of the detected object for disassembly and installation.
  • the detector group 41 can also be Move along the vertical direction of the conveying direction of the detected object to remove and install.
  • the specific installation and fixing structure can adopt the embodiment shown in FIG. 15 and its modifications.
  • the lower detectors of detector 4 are arranged on the left, right and lower sides of the scanning area, and the lower detector groups are lower than the lowest points of the left and right ray source modules, the lower detectors
  • the group can also be moved in a direction perpendicular to the conveying direction of the object to be detected for disassembly and installation.
  • the specific installation and fixing structure can adopt the embodiment shown in FIG. 16 and its modifications.
  • a plurality of detector groups of detectors are mounted on the same plane by virtue of their respective installation surfaces and corresponding installation reference planes (set in the same plane perpendicular to the conveying direction of the object 6 to be detected). and then in the same plane perpendicular to the conveying direction of the detected object 6 .
  • the relative arrangement of the radiation source 3 and the detector 4 of the radiation scanning device will be further described.
  • the relative arrangement of the radiation source 3 and the detector 4 in this embodiment is different from the previous embodiments.
  • the opening of the non-closed structure of the radiation source is arranged opposite to the opening of the non-closed structure of the detector, and a plurality of detector groups of the detector are fixed perpendicular to the In the same plane of the conveying direction of the detection object, and the multiple radiation source modules of the radiation source are arranged in multiple planes perpendicular to the conveying direction of the detected object, for example, the radiation source is arranged in the opening of the non-closed structure of the detector
  • the ray source module on one side and each detector group of the detector are fixed in the same plane perpendicular to the conveying direction of the detected object, while the other ray source modules of the ray source are fixed in other planes perpendicular to the conveying direction of the detected object Inside.
  • Other ray source modules of the ray source can be located in other single planes perpendicular to the conveying direction of the object to be detected or in other multiple different planes, optionally in other single planes.
  • other ray source modules are arranged in vertical
  • the description is made in another single plane (as shown in FIG. 21 ) in the conveying direction of the object to be detected as an example, but it is also applicable to the situation of other multiple different planes.
  • the ray source can be the structure of any embodiment described above, such as a rectangular, polygonal, or elliptical structure with an opening on one side of the scanning area when viewed along the conveying direction of the object to be detected.
  • the detector can be the structure of any embodiment described above, such as a square structure, a rectangular structure, a polygonal structure, an elliptical structure, etc., with openings on one side of the scanning area, as long as the openings of the radiation source and the detector structure are arranged relatively .
  • the detailed arrangement of the radiation source 3 and the detector 4 in the combined state will be described by taking the embodiment shown in FIGS. 19-21 as an example, but the same principle is also applicable to any other structure of the radiation source 3 and detector 4 combination.
  • the detector group 41 of the detector 4 , 42, 43 can be respectively arranged to be able to receive radiation from each radiation source module on the other side, so that multiple radiation source modules of the radiation source can share each detector group of the detector. Thereby, the number of detector groups can be reduced.
  • the rays of the ray source modules 31 and 32 can be detected by the detector groups 42 and 41 on the opposite side respectively, they can also be received by other side detector groups except the detectors on the same side, the ray source module 33
  • the radiation of each radiation source module can be received by all the detector groups 41, 42, 43, therefore, the radiation of each radiation source module can be detected by the detectors as much as possible.
  • the radiation scanning device of this embodiment can still obtain enough detection data for image reconstruction.
  • the group can reduce the weight of the equipment, which is beneficial to the construction of light-weight ray scanning equipment.
  • the radiation source module 33 of the radiation source 3 is arranged to be in the same plane as each detector group 41, 42, 43 of the detector 4, which is perpendicular to the conveying direction of the detected object. This specifically means that the radiation exit of the radiation source module 33 is facing the detector crystals of each detector group (as shown in FIG. 21 ).
  • the ray beam of the ray source module 33 can cover more detector crystals, which is beneficial to obtain more detection data and improve image quality.
  • the detector 4 and other rays are respectively arranged between the other radiation source modules 31, 32 of the radiation source 3 and the scanning area, and along the conveying direction of the detected object, the other radiation source modules 31, 32 It at least partially overlaps with the detector groups 41 and 42 on the same side (as shown in FIG. 21 ).
  • the length of the device covered by the optical path between the radiation source and the detector can be reduced, thereby reducing the total length of the device.
  • the detector group 41 , 42 when the detector groups 41, 42 overlap at least partially with the radiation source modules 31, 32 in the conveying direction of the detected object, the detector group 41 , 42 are configured to respectively avoid the radiation beams of the radiation source modules 31, 32 on the same side and receive radiation from all the radiation source modules on the same side except the radiation source modules on the same side.
  • the detector crystals of each detector group of the detector 4 are arranged at the end of the detector unit along the conveying direction of the object to be detected, and the detector 4 is connected with other radiation sources
  • the detector groups 41 and 42 on the same side of the modules 31 and 32 are arranged to be adjacent to the beam edges of the radiation source modules 31 and 32 on the same side respectively in the conveying direction of the detected object, but do not block the beams of the radiation source modules 31 and 32 on the same side. beam of rays.
  • the ray source 3 and the detector 4 can overlap to the greatest extent in the conveying direction of the detected object 6, so that the equipment length covered by the optical path between the ray source and the detector can be reduced as much as possible, thereby reducing the The overall length of the small device.
  • the radiation source modules 31 and 32 of the radiation source 3 are arranged so that the radiation beams avoid the detector groups 41 and 42 on the same side respectively and illuminate the detectors of the detector groups on the opposite side crystals. Furthermore, similar to the foregoing embodiments, the ray source modules 31 and 32 can rotate a predetermined angle relative to their respective target axes to adjust the beam-out angles of the respective ray beams, so that the central positions of the respective ray beams can irradiate relative side of the detector crystal.
  • the radiation source module can only rotate by a very small predetermined angle, for example, 1.5 degrees, that is, the center position of the ray beam can irradiate the detector crystal. In this way, it is possible to minimize the adverse effect of the ray beam obliquely incident on the surface of the detector crystal on the imaging.
  • the radiation source module can be rotated around the target axis or other axes, or through other suitable methods mentioned in the above-mentioned embodiments to adjust the beam-out angle of the radiation beam.
  • projection data may also be lacking at the ends of adjacent radiation source modules of the radiation source in this embodiment.
  • the distance between the target points at the adjacent ends of the radiation source modules 31, 33 and the adjacent ends of the radiation source modules 33, 32 may be greater than The spacing between target points within each ray source, therefore, projection data is missing at these ends.
  • the image processing module of the ray scanning device in this embodiment is also configured to have a data compensation function, which can compensate for the missing data of the angle of view and/or repair the reconstructed image to improve the image quality. quality.
  • the image processing module of the radiation scanning device in this embodiment uses the same method as that in the previous embodiment to perform image reconstruction.
  • the adjacent ends of the ray source modules 31, 33 can be And/or the adjacent ends of the ray source modules 33, 32 are arranged to overlap along the conveying direction of the detected object, so that the target points at the adjacent ends of the adjacent ray source modules 31, 33 or 32, 33 overlap, or The distance between the target points is not greater than the distance between the target points in each ray source. In this case, there is no missing projection data, and correspondingly, there is no need to use the data compensation function of the image processing module for image reconstruction.
  • the radiation scanning device of this embodiment also has the following advantages.
  • Both the radiation source and the detector in this embodiment surround the scanning area on three sides, compared with the situation of surrounding the scanning area on four sides (either one or both of the radiation source and the detector), sufficient Image reconstruction can also reduce the cost and weight of the equipment, so as to provide lightweight X-ray scanning equipment.
  • the ray source module on one side of the scanning area is directly facing the detector crystal of the detector, so that the rays of the ray source module can cover more detector units, which is beneficial to increase the amount of data. Improve image quality.
  • the radiation scanning device in which the radiation source surrounds the scanning area on four sides, up, down, left, and right, or on any three of them. According to other embodiments, the radiation source can also be arranged to surround the scanning area only on any two of the four sides, up, down, left, and right. .
  • each radiation source module used for the radiation source has been described above, and the above installation and positioning structure is not limited to use in the radiation scanning device of the present application, and can also be used in other suitable radiation scanning devices.
  • installation and fixing structures for detector groups have been described above.
  • the above installation and fixing structures are not limited to use in the radiation scanning equipment of the present application, and can also be used in other suitable radiation scanning equipment.
  • the installation and fixing structures of various embodiments can be used individually or combined in a single X-ray scanning device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种射线扫描设备,包括:传送装置(1),运送被检测物体(6)通过射线扫描设备的扫描区域;射线源(3),包括多个射线源模块(31,32,33,34),每个射线源模块(31,32,33,34)包括发射射线束的至少一个射线源点,多个射线源模块(31,32,33,34)在传送装置(1)上方围绕扫描区域布置并固定在垂直于被检测物体(6)的输送方向的平面内;探测器(4),用于检测在扫描期间传输通过被检测物体(6)的射线并包括多个探测器组(41,42,43,44),多个探测器组(41,42,43,44)的端部相互连接以围绕扫描区域布置,且多个探测器组(41,42,43,44)固定在垂直于被检测物体(6)的输送方向的平面内,探测器(4)沿被检测物体(6)的输送方向的垂直方向位于射线源(3)和扫描区域之间,射线源(3)和探测器(4)布置成沿被检测物体(6)的输送方向至少部分重叠,多个射线源模块(31,32,33,34)相互独立地拆卸和安装。

Description

射线扫描设备
相关申请的交叉引用
本申请要求享有于2021年07月07日提交的名称为“射线扫描设备”的中国专利申请202110769674.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请属于数据辐射成像领域,尤其涉及一种射线扫描设备。
背景技术
现有静态计算机断层扫描(Computed Tomography,CT)(技术(分布式多点源)或多视角(单点源)安检设备通常将多个不同的视角排布在垂直或倾斜于被检测物体输送方向的不同的平面内,或者将所有射线源集中在单个环形或矩形的封闭腔体中。探测器阵列的晶体大多与射线源的射线束中心面垂直,同一组探测器阵列只对应一组分布式多点源或者一个单点源。
相关技术中还存在双环结构设计的静态CT,其模拟滑环CT的工作原理,将射线源与探测器排布在两个不同的圆环上,射线源圆环与探测器圆环沿被检物体输送方向相隔一定间距。
发明内容
本申请的实施例提供了一种射线扫描设备,其能够解决多个射线源集中在单个环形封闭腔体内导致的可靠性和维护性差的问题,同时,探测器的每个探测器组可以为多个射线源模块所共用,从而降低设备成本,此外,还能够在尽量缩短光路覆盖范围的情况下使探测器方便更换或维护,并且,同时能够减小射线束中心与探测器表面之间的倾角,提高图像质量。
第一方面,本申请的实施例提供了一种射线扫描设备,其包括:传送装置,其运送被检测物体通过射线扫描设备的扫描区域;射线源,其包括多个射线源模块,每个射线源模块包括发射射线束的至少一个射线源点,多个射线源模块在传送装置上方围绕扫描区域布置,并且固定在垂直于被检测物体的输送方向的平面内;以及探测器,其用于检测在扫描期间传输通过被检测物体的射线并且包括多个探测器组,多个探测器组的端部相互连接以围绕扫描区域布置,并且多个探测器组固定在垂直于被检测物体的输送方向的平面内;其中,探测器沿被检测物体的输送方向的垂直方向位于射线源和扫描区域之间,射线源和探测器布置成沿被检测物体的输送方向至少部分重叠,并且多个射线源模块可相互独立地拆卸和安装。
在根据该实施例的射线扫描设备中,仅在传送装置上方围绕扫描区域布置射线源模块,在传送装置下方不布置射线源模块,探测器围绕扫描区域布置,这样的射线扫描设备可降低传送装置的高度,方便被检测物体到射线扫描设备的传送装置的转移,并且能够在保证图像质量的同时降低制造成本。
根据一些实施例,射线源模块为分布式多点源,多个射线源模块围绕扫描区域构成在传送装置下方开口的非封闭结构。
根据一些实施例,多个射线源模块的各个为直线分布式多点源,多个直线分布式多点源布置在扫描区域的上侧、左侧和右侧,其中多个直线分布式多点源的端部直接连接或间隔布置。
根据一些实施例,多个射线源模块包括多个第一分布式多点源和多个第二分布式多点源,多个第一分布式多点源与多个第二分布式多点源交替布置,且端部之间直接连接或间隔设置。
根据一些实施例,第一分布式多点源是直线分布式多点源,第二分布式多点源是长度比第一分布式多点源短的直线分布式多点源或弧形分布式多点源。
根据一些实施例,多个射线源模块的各个是单点源组,多个单点源组至少布置在传送装置上方的左侧视角、右侧视角、顶视角和角落斜视角上,并且每个单点源组包括至少两个单点源。
根据一些实施例,每个射线源模块具有单独的腔体以用于容纳各自的射线发生装置。
根据一些实施例,每个射线源模块的单独腔体设置有安装定位结构,安装定位结构用于对射线源模块进行安装和定位,并且用于转动射线源模块以调节射线束的出束角度。
根据一些实施例,每个探测器组是包括多个探测器单元的探测器阵列,多个探测器组布置成围绕扫描区域的封闭的方形结构、矩形结构、多边形结构或椭圆形结构。
根据一些实施例,每个探测器组是直线探测器阵列,探测器包括四个直线探测器阵列,四个直线探测器阵列布置在扫描区域的上下左右四侧,形成矩形或方形结构。
根据一些实施例,每个探测器组是直线探测器阵列,探测器包括多个第一直线探测器阵列和多个第二直线探测器阵列,第二直线探测器阵列比第一直线探测器阵列短,第一直线探测器阵列和第二直线探测器阵列环绕扫描区域交替布置以形成多边形结构。
根据一些实施例,探测器的各个探测器组是可相互独立地拆卸和安装的。
根据一些实施例,探测器的各个探测器组构造成沿被检测物体的输送方向移动以拆卸和安装。
根据一些实施例,探测器的各个探测器组构造成一部分探测器组沿被检测物体的输送方向移动以拆卸和安装,另一部分探测器组沿被检测物体的输送方向的垂直方向移动以拆卸和安装。
根据一些实施例,探测器的各个探测器组包括探测器臂,射线扫描设备包括相对于射线扫描设备的安装平台固定的支撑框架,探测器组经由探测器臂沿被检测物体的输送方向或被检测物体的输送方向的垂直方向移动以安装到支撑框架或从支撑框架拆卸。
根据一些实施例,探测器的各个探测器组被构造成避开同侧射线源模块的射线束并且接收除了同侧射线源模块之外的其余所有侧射线源模块的射线。
根据一些实施例,探测器组的每个探测器单元包括用于接收在扫描期间传输通过被检测物体的射线的探测器晶体,探测器晶体布置在探测器单元的沿被检测物体的输送方向的端部,并且布置成在被检测物体的输送方向上紧邻同侧射线源模块的射线束边缘,但不遮挡射线束。
根据一些实施例,射线源的各个射线源模块布置成使得射线束避开同侧探测器组并且照射相对侧的探测器组的探测器晶体。
根据一些实施例,各个射线源模块构造成绕靶轴转动以使得射线束的中心位置照射相对侧的探测器组的探测器晶体。
根据一些实施例,射线扫描设备还包括图像处理模块,图像处理模块配置成针对射线源模块的端部处的投影数据缺失进行数据补偿和/或重建图像修复以得到完整的重建图像。
根据一些实施例,图像处理模块构造成通过迭代方法、图像阈修复方法或者两者的组合来进行图像重建。
第二方面,本申请的实施例还提供了一种射线扫描设备,包括:传送装置,其运送被检测物体通过射线扫描设备的扫描区域;射线源,其包括多个射线源模块,每个射线源模块包括发射射线束的至少一个射线源点,多个射线源模块以在扫描区域的左侧或右侧开口的非封闭结构围绕扫描区域布置,并且固定在垂直于被检测物体的输送方向的平面内;以及探测器,其用于检测在扫描期间传输通过被检测物体的射线并且包括多个探测器组,多个探测器组的端部相互连接以围绕扫描区域布置,并且多个探测器组固定在垂直于被检测物体的输送方向的平面内,其中,探测器沿被检测物体的输送方向的垂直方向位于射线源和扫描区域之间,射线源和探测器布置成沿被检测物体的输送方向至少部分重叠,并且多个射线源模块可相互独立地拆卸和安装。
在根据本实施例的射线扫描设备中,射线源模块在扫描区域的上侧、下侧和左侧或右侧上环绕扫描区域布置,探测器围绕扫描区域布置,这样的射线扫描设备适用于检测机场手提行李,利用机场手提行李宽度大厚度小的特点,考虑行李物品自遮挡和射线衰减对投影数据的影响,可以在保证高图像质量的同时降低制造成本。
根据一些实施例,射线源模块为分布式多点源,多个射线源模块围绕扫描区域构成在扫描区域的左侧或右侧开口的非封闭结构。
根据一些实施例,多个射线源模块的各个为直线分布式多点源,多个直线分布式多点源分别布置在扫描区域的上侧、下侧以及左侧或右侧,以构成在扫描区域的左侧或右侧开口的非封闭结构,其中多个直线分布式多点源的端部直接连接或间隔布置。
根据一些实施例,多个射线源模块包括多个第一分布式多点源和多个第二分布式多点源,多个第一分布式多点源与多个第二分布式多点源交替布置,且端部之间直接连接或间隔设置。
根据一些实施例,第一分布式多点源是直线分布式多点源,第二分布式多点源是长度比第一分布式多点源短的直线分布式多点源或弧形分布式多点源。
根据一些实施例,多个射线源模块的各个是单点源组,多个单点源组至少布置在扫描区域的顶视角、底视角、左侧视角或右侧视角和至少部分角落斜视角上,并且每个单点源组至少包括两个单点源。
根据一些实施例,每个射线源模块具有单独的腔体以用于容纳各自的射线发生装置。
根据一些实施例,每个射线源模块的腔体包括用于容纳多个靶点的单独的真空腔。
根据一些实施例,每个射线源模块内的靶点之间的间距小于相邻射线源模块在端部处的靶点之间的间距。
根据一些实施例,每个射线源模块的单独腔体设置有安装定位结构,安装定位结构用于对射线源模块进行安装和定位,并且用于转动射线源模块以调节射线束的出束角度。
根据一些实施例,每个探测器组是包括多个探测器单元的探测器阵列,多个探测器组布置成围绕扫描区域的封闭的方形结构、矩形结构、多边形结构或椭圆形结构。
根据一些实施例,每个探测器组是直线探测器阵列,探测器包括四个直线探测器阵列,四个直线探测器阵列布置在扫描区域的上下左右四侧, 形成矩形或方形结构。
根据一些实施例,每个探测器组是直线探测器阵列,探测器包括多个第一直线探测器阵列和多个第二直线探测器阵列,第二直线探测器阵列比第一直线探测器阵列短,多个第一直线探测器阵列和多个第二直线探测器阵列环绕扫描区域交替布置以形成多边形结构。
根据一些实施例,探测器的各个探测器组是可相互独立地拆卸和安装的。
根据一些实施例,在扫描区域的上侧和下侧以及射线源结构开口处的探测器组构造成垂直于被检测物体的输送方向移动以拆卸和安装,在射线源结构开口的相对侧的探测器组构造成沿被检测物体的输送方向移动以拆卸和安装。
根据一些实施例,探测器的各个探测器组包括探测器臂,射线扫描设备包括相对于射线扫描设备的安装平台固定的支撑框架,探测器组经由探测器臂安装到支撑框架或从支撑框架拆卸。
根据一些实施例,探测器的各个探测器组被构造成避开同侧射线源模块的射线束并且接收除了同侧射线源模块之外的其余所有侧射线源模块的射线。
根据一些实施例,探测器组的每个探测器单元包括用于接收在扫描期间传输通过被检测物体的射线的探测器晶体,探测器晶体布置在探测器单元的沿被检测物体的输送方向的端部,并且布置成在被检测物体的输送方向上紧邻同侧射线源模块的射线束边缘,但不遮挡射线束。
根据一些实施例,射线源的各个射线源模块布置成使得射线束避开同侧探测器组并且照射相对侧的探测器组的探测器晶体。
根据一些实施例,各个射线源模块构造成绕靶轴旋转以使得射线束的中心位置照射相对侧的探测器组的探测器晶体。
根据一些实施例,射线扫描设备还包括图像处理模块,图像处理模块配置成针对射线源模块的端部处的投影数据缺失进行数据补偿和/或重建图像修复以得到完整的重建图像。
根据一些实施例,图像处理模块构造成通过迭代方法、图像阈修复方 法或者两者的组合来进行图像重建。
第三方面,本申请的实施例还提供了一种射线扫描设备,其包括传送装置,其运送被检测物体通过射线扫描设备的扫描区域;射线源,其包括多个射线源模块,每个射线源模块包括发射射线束的至少一个射线源点,并且沿被检测物体的输送方向观察,多个射线源模块以在扫描区域的一侧开口的非封闭结构围绕扫描区域布置;以及探测器,其用于检测在扫描期间传输通过被检测物体的射线并且包括多个探测器组,沿被检测物体的输送方向观察,多个探测器组的端部相互连接并且以在扫描区域的一侧开口的非封闭结构围绕扫描区域布置,其中,射线源的非封闭结构的开口和探测器的非封闭结构的开口相对设置,并且探测器的多个探测器组固定在垂直于被检测物体的输送方向的同一平面内,并且射线源的多个射线源模块布置在垂直于被检测物体的输送方向的多个不同平面内。
在根据本实施例的射线扫描设备中,射线源和探测器均仅在三侧上围绕扫描区域,相对于在四侧上(可以是射线源和探测器其中一者或两者)围绕扫描区域的情况,可以获取足够的数据来进行图像重建,还可以降低设备成本,减小设备重量,从而可提供轻型化射线扫描设备。
根据一些实施例,射线源位于探测器的非封闭结构的开口一侧的射线源模块与探测器的多个探测器组固定在垂直于被检测物体的输送方向的同一平面内,射线源的其他射线源模块固定在垂直于被检测物体的输送方向的其他平面内。
根据一些实施例,射线源的其他射线源模块固定在垂直于被检测物体的输送方向的其他同一平面内。
根据一些实施例,多个射线源模块可相互独立地拆卸和安装。
根据一些实施例,多个射线源模块的各个为分布式多点源,沿被检测物体的输送方向观察,多个分布式多点源分别布置在扫描区域的三侧,以构成围绕扫描区域的一侧开口的非封闭结构。
根据一些实施例,分布式多点源呈直线、弧线、折线形状或其任意组合,以使得射线源从被检测物体的输送方向观察呈在扫描区域的一侧开口的直角矩形、圆角矩形、多边形或椭圆形结构。
根据一些实施例,多个射线源模块的各个是单点源组,每个单点源组至少包括两个单点源。
根据一些实施例,每个射线源模块具有单独的腔体以用于容纳各自的射线发生装置。
根据一些实施例,每个射线源模块的腔体包括用于容纳多个靶点的单独的真空腔。
根据一些实施例,每个射线源模块内的靶点之间的间距小于相邻射线源模块在端部处的靶点之间的间距。
根据一些实施例,每个射线源模块的单独腔体设置有安装定位结构,安装定位结构用于对射线源模块进行安装和定位,并且用于转动射线源模块以调节射线束的出束角度。
根据一些实施例,每个探测器组是包括多个探测器单元的探测器阵列,探测器阵列包括直线探测器阵列、弧形探测器阵列,或者两者的组合。
根据一些实施例,每个探测器组是直线探测器阵列,探测器包括三个直线探测器阵列,三个直线探测器阵列分别布置在扫描区域的三侧,形成在扫描区域的一侧开口的矩形或方形结构。
根据一些实施例,每个探测器组是直线探测器阵列,探测器包括多个第一直线探测器阵列和多个第二直线探测器阵列,第二直线探测器阵列比第一直线探测器阵列短,多个第一直线探测器阵列和多个第二直线探测器阵列环绕扫描区域交替布置以形成在扫描区域一侧开口的多边形结构。
根据一些实施例,探测器的各个探测器组是可相互独立地拆卸和安装的。
根据一些实施例,探测器的探测器组构造成垂直于或者平行于被检测物体的输送方向移动以拆卸和安装。
根据一些实施例,探测器的各个探测器组包括探测器臂,射线扫描设备包括相对于射线扫描设备的安装平台固定的支撑框架,探测器组经由探测器臂安装到支撑框架或从支撑框架拆卸。
根据一些实施例,从被检测物体的输送方向观察,探测器布置在射线源与扫描区域之间;并且沿被检测物体的输送方向,其他射线源模块与同 侧探测器组至少部分重叠。
根据一些实施例,探测器的与其他射线源模块同侧的探测器组被构造成避开同侧射线源模块的射线束并且接收除了同侧射线源模块之外的其余所有侧射线源模块的射线。
根据一些实施例,探测器组的每个探测器单元包括用于接收在扫描期间传输通过被检测物体的射线的探测器晶体,并且探测器晶体布置在探测器单元的沿被检测物体的输送方向的端部,以及探测器的与其他射线源模块同侧的探测器组的探测器晶体布置成在被检测物体的输送方向上紧邻同侧射线源模块的射线束边缘,但不遮挡射线束。
根据一些实施例,射线源的其他射线源模块布置成使得射线束避开同侧探测器组并且照射相对侧的探测器组的探测器晶体。
根据一些实施例,其他射线源模块构造成绕靶轴旋转以使得射线束的中心位置照射相对侧的探测器组的探测器晶体。
根据一些实施例,射线扫描设备,还包括图像处理模块,图像处理模块配置成针对射线源模块的端部处的投影数据缺失进行数据补偿和/或重建图像修复以得到完整的重建图像。
根据一些实施例,图像处理模块构造成通过迭代方法、图像阈修复方法或者两者的组合来进行图像重建。
第四方面,本申请的实施例提供了一种射线扫描设备的射线源的安装定位结构,射线扫描设备包括射线源以及固定设置的支撑框架,安装定位结构包括主体,主体能够固定连接到射线源和支撑框架,使得射线源能够通过主体固定安装到支撑框架上,安装定位结构还包括:移动装置,射线源能够通过移动装置在第一平面上被移动到预定安装位置;第一定位装置,其用于在第一平面上对射线源进行定位;升降装置,其用于沿第一方向调节射线源的位置,其中第一方向垂直于第一平面;以及第二定位装置,其用于在第一方向上固定射线源的位置。
利用根据上述实施例的安装定位结构,射线源的各个射线源模块可单独拆卸和安装,还能够调节射线源模块的出束角度。
根据一些实施例,移动装置包括设置在射线源的沿长度方向的两端的滚轮。
根据一些实施例,第一定位装置包括第一定位销以及设置在主体和支撑框架上的对应于第一定位销的第一销孔。
根据一些实施例,升降装置设置在射线源的沿长度方向的两端,其中一端的升降装置形成为可升降滚轮,另一端的升降装置形成为起升顶丝。
根据一些实施例,第二定位装置形成为定位垫块,定位垫块在射线源通过升降装置被调节到沿第一方向的预定位置之后放置在主体的下方。
根据一些实施例,安装定位结构还包括:调节装置,其用于沿预定轴线旋转射线源以调节射线源的出束角度。
根据一些实施例,射线源上设置有安装轴,主体上设置有对应的轴孔,主体通过轴孔安装在射线源的安装轴上;定位安装结构还包括定位件和紧固件,主体通过定位件以及轴孔与安装轴的配合相对于射线源定位,并且通过紧固件固定连接到射线源;调节装置包括转动驱动装置,转动驱动装置能够在定位件和紧固件松开的情况下驱动射线源绕安装轴转动。
根据一些实施例,转动驱动装置包括固定在射线源上的调节块以及设置在主体上的与调节块相抵靠的顶丝,顶丝能够被旋转以推动调节块移动从而使射线源转动。
根据一些实施例,定位件包括第二定位销以及形成在主体和射线源上的对应的第二销孔,并且紧固件包括固定螺栓以及形成在主体和射线源上的对应的螺纹孔。
根据一些实施例,还提供了一种射线扫描设备,其包括射线源以及固定设置的支撑框架,射线源经由如上任意实施例的安装定位结构固定安装到支撑框架上。
根据一些实施例,射线扫描设备通过安装定位结构使射线源转动以调节射线源的出束角度。
第五方面,本申请的实施例还提供了一种用于射线扫描设备的探测器的安装固定结构,射线扫描设备包括探测器和固定设置的支撑框架,探测器包括一个或多个探测器组,探测器组经由安装固定结构固定安装到支撑 框架上或从支撑框架上拆卸,安装固定结构包括:第一安装部,其固定设置在探测器组上;第二安装部,其固定设置在支撑框架上并且能够与第一安装部直线移动配合,探测器组在第一安装部与第二安装部相互配合的状态下能够沿第二安装部移动到预定安装位置;以及固定装置,其设置在探测器组的沿宽度方向的一侧,用于相对于支撑框架上的安装基准面固定探测器组。
利用根据上述实施例的安装固定结构,探测器的各个探测器组可单独拆卸和安装,能够在布置在射线源模块内侧的情况下不需要拆卸射线源模块即可拆装和维护,提高了探测器组的拆装和维护的便利性。
根据一些实施例,第二安装部还配置成在与第一安装部相配合的状态下将探测器组支撑在预定安装位置处。
根据一些实施例,第一安装部包括滑块,滑块沿探测器组的长度方向延伸,并且第二安装部包括与滑块相配合的固定导轨。
根据一些实施例,固定装置包括紧固件以及设置在支撑框架上的定位件,定位件的远离支撑框架的端面形成为安装基准面,用于抵靠探测器组的沿宽度方向的一侧的表面,紧固件穿过定位件并且相对于定位件的端面紧固探测器组。
根据一些实施例,滑块设置在探测器组的沿宽度方向相对的两侧,并且具有从探测器组的沿宽度方向相对的两侧的边缘向内延伸的内延部;固定导轨包括在沿宽度方向相对的两侧上向外延伸的外延部;在第一安装部与第二安装部配合的状态下,滑块的内延部位于固定导轨的外延部的上方并且两者接触且重叠布置,以将探测器组悬挂在固定导轨上。
根据一些实施例,固定导轨在滑块的下方支撑滑块。
根据一些实施例,第一安装部形成为沿探测器组的宽度方向延伸的滑槽,并且第二安装部形成为与滑槽相配合的滑杆。
根据一些实施例,滑杆的靠近支撑框架的一端形成有凸部,凸部的朝向探测器组的表面形成为安装基准面,用于抵靠探测器组的沿宽度方向的另一侧的表面。
根据一些实施例,固定装置设置在滑杆的与凸部相对的另一端,并且 布置成与凸部分别抵靠探测器组的宽度方向的两侧。
根据一些实施例,固定装置包括定位套和紧固件,定位套套设在滑杆的另一端上并且抵靠探测器的沿宽度方向的一侧,并且紧固件用于将定位套固定到滑杆的另一端上。
根据一些实施例,第二安装部包括两个滑杆,第一安装部包括形成在探测器组的沿长度方向的两端处的两个滑槽,两个滑杆与两个滑槽分别相互配合以将探测器组在预定安装位置处。
根据一些实施例,第一安装部形成为固定在探测器组的沿宽度方向的一侧上的固定块,固定块具有朝向探测器组的厚度方向的一侧的开口;第二安装部形成为固定在支撑框架上的悬臂部,悬臂部的远离支撑框架的端部上设置有延伸部,延伸部能够与固定块的开口直线移动配合。
根据一些实施例,固定装置包括设置在支撑框架上的固定件和紧固件,固定件的远离支撑框架的端面形成为安装基准面,用于抵靠探测器组的沿宽度方向的一侧的表面,并且紧固件用于相对于固定件的端面紧固探测器组。
根据一些实施例,在第一安装部与第二安装部配合的状态下,悬臂部通过固定块将探测器组支撑在预定安装位置处。
根据一些实施例,还提供了一种射线扫描设备,其包括探测器以及固定设置的支撑框架,探测器包括一个或多个探测器组,探测器组通过如上任意实施例的安装固定结构安装固定到支撑框架上或者从支撑框架上拆除。
根据一些实施例,探测器组的宽度方向平行于被检测物体的输送方向,探测器组的长度方向和厚度方向垂直于被检测物体的输送方向,被检测物体的输送方向是被检测物体被输送通过射线扫描设备的扫描区域的方向。
根据一些实施例,在探测器包括多个探测器组的情况下,用于多个探测器组的各个的安装基准面位于垂直于被检测物体的输送方向的同一平面内。
根据一些实施例,第一安装部相对于第二安装部直线移动的方向平行或垂直于被检测物体的输送方向。
本申请的其他特征和技术优势将在下面参考附图和其他实施例的详细 描述中更加清楚明白。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本申请一些实施例提供的一种射线扫描设备的结构示意图;
图2示出了根据图1所示的射线扫描设备的射线源和探测器的具体结构示意图;
图3示出了根据本申请一些实施例提供的射线源的射线束形状示意图;
图4示出了根据本申请一些实施例提供的以靶点形式示出的射线源分布示意图;
图5根据本申请一些实施例提供的射线源模块的安装定位结构的示意图;
图6是根据本申请一些实施例的探测器的分布示意图;
图7是根据本申请一些实施例的直线探测器组的结构示意图;
图8是根据本申请一些实施例的探测器单元的结构示意图;
图9是根据本申请一些实施例的探测器组的安装固定结构示意图;
图10是根据本申请一些实施例的射线源模块与接收其射线的探测器组的对应关系示意图;
图11是根据本申请一些实施例的图1所示的射线扫描设备的沿被检测物体的输送方向的中心线的截面结构示意图;
图12是根据本申请一些实施例的探测器与射线源的布局的俯视示意图;
图13是根据本申请一些实施例的探测器和射线源的组合示意图;
图14是根据本申请一些实施例的在图13所示的探测器和射线源的组合中探测器组的拆卸方向示意图;
图15是根据本申请一些实施例的适于探测器组的安装固定结构;
图16是根据本申请另一些实施例的适于探测器组的安装固定结构;
图17是根据本申请又一些实施例的适于探测器组的安装固定结构;
图18是根据本申请一些实施例的射线扫描设备的射线源和探测器的布置示意图;
图19是根据本申请一些实施例的射线扫描设备的射线源和探测器布局的立体示意图;
图20是图19所示射线扫描设备的射线源和探测器布局的沿Z轴方向观察的侧视图;
图21是图19所示射线扫描设备的射线源和探测器布局的俯视示意图;
图22是根据本申请一些实施例的射线扫描设备的射线源的单点源的分布示意图;
图23是根据本申请一些实施例的射线扫描设备的探测器的结构示意图;以及
图24是根据本申请一些实施例的探测器的拆装方向示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅意在解释本申请,而不是限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物 品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
上述背景技术部分的静态CT(分布式多点源)或者多视角(单点源)设备通常包含多个平面光路,多个平面光路沿着设备的长度方向(即,被检测物体的输送方向)排布。该排布方式导致静态CT(分布式多点源)或者多视角(单点源)设备整机光路覆盖范围长,不利于缩短整机长度,不利于减小整机重量。
此外,在如上所述布局的设备中,一组探测器阵列只对应一组分布式多点源或者一个单点源,从而增加整机探测器阵列的数量,不利于降低整机设备成本。
在如上所述布局的设备中,将所有射线源集中在单个环形或矩形的封闭腔体中,会增加设备的复杂程度,降低设备的可靠性,尤其是对于需要保持高真空度的设备更是如此;另外,射线源的可维护性也较差。
此外,在如上所述的双环结构设计的静态CT中,虽然射线源圆环与探测器圆环的排布能确保单个探测器被多个射线源共用,但其仍未解决将射线源集中在单个环形封闭腔体内导致的可靠性以及可维护性较差的问题。同时,如果射线源圆环与探测器圆环之间距离排布太近,探测器只能从圆环内侧更换或维护,探测器的可维护性也较差。如果射线源圆环与探测器圆环之间距离排布足够大,能使探测器从圆环外侧更换或维护,这样的布置又会增大光路覆盖范围,导致增加设备长度,同时射线束中心与探测器晶体表面之间存在倾角,射线束斜射探测器晶体,影响图像质量。
为了解决上述各种技术问题,本申请的实施例提供了一种射线扫描设备,其包括:传送装置,其运送被检测物体通过射线扫描设备的扫描区域;射线源,其包括多个射线源模块,每个射线源模块包括发射射线束的至少一个射线源点,多个射线源模块围绕扫描区域布置,并且固定在垂直于被检测物体的输送方向的平面内;以及探测器,其用于检测在扫描期间传输通过被检测物体的射线并且包括多个探测器组,多个探测器组的端部相互连接以围绕扫描区域布置,多个探测器组固定在垂直于被检测物体的输送 方向的平面内;其中,探测器沿被检测物体的输送方向的垂直方向位于射线源和扫描区域之间,射线源和探测器布置成沿被检测物体的输送方向至少部分重叠,并且多个射线源模块可相互独立地拆卸和安装。
根据本申请实施例的射线扫描设备,射线源由多个射线源模块围绕扫描区域布置而形成,且多个射线源模块可相互独立地拆卸和安装,即,各个射线源模块具有单独的腔体以容纳各自的射线发生装置。相对于一体式环绕扫描区域的射线源,本申请的由多个射线源模块组合形成的射线源可以缩小单个射线源模块的外壳尺寸以及内部真空腔体的体积,使得单个射线源模块体积小、重量轻,从而方便射线源的拆卸和安装;另外,单个射线源模块的多个靶点可采用单独的真空腔体,因此能够降低维护射线源时腔内打火的风险。
根据本申请的一些实施例,每个射线源模块的单独腔体设置有安装定位结构,安装定位结构用于将射线源模块固定在射线扫描设备中的相对位置,例如相对于支撑框架定位射线源模块,还用于绕预定轴线转动射线源模块以调节射线束的出束角度。此外,利用该安装定位结构,可以确定各个射线源模块的位置,从而可确保射线源的多个射线源模块在安装后位于垂直于被检测物体的输送方向的平面内(例如同一平面内或不同平面内)。
这里,可选地,射线源模块可以是分布式多点源,以围绕扫描区域形成环形结构,例如矩形环、多边形环或椭圆形环等。具体地,射线源模块可以是直线分布式多点源,每个射线源模块可以包括多个靶点,多个射线源模块可以分布在扫描区域的上侧、下侧、左侧和右侧形成围绕扫描区域的矩形环。射线源模块的端部之间可以直接连接形成连续的矩形环,也可以间隔一定间隙形成非连续的矩形环。根据其他实施例,射线源还可以进一步包括多个长度较短的直线分布式多点源,多个长度较短的直线分布式多点源可以与多个较长的直线分布式多点源交替设置,且端部之间直接连接,形成连续的多边形布置,或者端部之间间隔布置形成非连续的多边形布置;或者,射线源还可以进一步包括多个长度较短的弧形分布式多点源,多个弧形分布式多点源可以与多个较长的直线分布式多点源交替设置,且端部之间直接连接,形成连续的圆角矩形布置,或者端部之间间隔布置形 成非连续的圆角矩形布置;或者,射线源还可以包括其他数量、形状和/或长度的射线源模块,以形成其他多边形结构或椭圆形结构等。
此外,射线源的各个射线源模块还可以是单点源组,每个单点源组包括至少两个单点源,可选地,射线源的多个单点源组分布在围绕扫描区域的底视角、左右侧视角、顶视角和角落斜视角处,形成多视角布置。
此外,根据其他实施例,射线源模块也可以仅在三侧上围绕扫描区域布置,例如,上侧、左侧和右侧,上下两侧和左侧或右侧等(这里,需要注意的是,在本文中,扫描区域的上侧、下侧、左侧和右侧是指沿着被检测物体的输送方向观察扫描区域时的上侧、下侧、左侧和右侧)。由此,射线源可以布置成围绕扫描区域的一侧开口的非封闭结构,例如一侧开口的矩形结构、多边形结构或椭圆形结构等,更具体地,可以是围绕扫描区域的一侧开口的非连续的或连续的矩形结构、连续的多边形结构、连续的圆角矩形、非连续的多边形或非连续的圆角矩形结构以及其他多边形和椭圆形的结构等。在射线源由单点源组成的情况下,相应地,可以在扫描区域的一侧不设置单点源。
在本申请的射线扫描设备中,探测器是由多个探测器组端部相互连接而形成的围绕扫描区域的结构。可选地,配合上述各种射线源的布置方式,例如在上下左右四侧上围绕扫描区域的结构、或在扫描区域一侧开口的非封闭结构,例如在扫描区域一侧开口的矩形结构、多边形结构或椭圆形结构(更具体地,如围绕扫描区域一侧开口的连续或非连续的矩形结构、连续或非连续的多边形结构、连续或非连续的圆角矩形结构和单点源多视角等布置),探测器的多个探测器组布置成环绕扫描区域的封闭的矩形结构、方形结构、多边形结构或椭圆形结构等。具体地,探测器的各个探测器组可以包括多个探测器单元和探测器臂,多个探测器单元在探测器臂上直线排列。探测器可以包括分别布置在扫描区域的上下左右四侧上的四个探测器组,以形成环绕扫描区域的封闭的矩形结构或方形结构。探测器也可以包括多个较长的探测器组和多个较短的探测器组,以形成环绕扫描区域的封闭的多边形结构。或者,根据其他实施例,配合上述射线源的在扫描区域一侧开口的非封闭结构,探测器的多个探测器组也可以布置成环绕扫描 区域的一侧开口的非封闭结构,例如一侧开口的矩形结构、方形结构、多边形结构或椭圆形结构等。
根据一些实施例,探测器的多个探测器组构造成可独立拆卸和安装的。由此,各个探测器组可以单独地拆卸和安装,方便探测器的维护。此外,探测器的多个探测器组可以构造成沿被检测物体的输送方向移动以进行拆装。或者,在射线源布置成围绕扫描区域的一侧开口的非封闭结构的情况下,探测器的多个探测器组可以构成一部分沿被检测物体的输送方向的垂直方向移动以进行拆装,另一部分沿被检测物体的输送方向移动以进行拆装。由此,即使在探测器沿被检测物体的输送方向的垂直方向布置在射线源的内侧的情况下,也可以在不需要拆卸射线源模块的情况下进行探测器组的拆装和维护,从而改善探测器的拆装和维护的操作便利性。
此外,根据一些实施例,上述探测器组的拆装可借助于探测器组的探测器臂与其在射线扫描设备的安装部位,例如射线扫描设备的支撑框架之间的直线移动配合,例如直线滑动或直线滚动配合等来完成,例如可以是设置在探测器臂与支撑框架之间的滑块导轨配合或者直线滚珠轴承与圆柱轴配合等。
此外,根据一些实施例,探测器组的每个探测器单元均包括用于接收射线的探测器晶体,每个探测器组的各探测器单元以探测器晶体朝向相同的方向在探测器臂上进行排列。此外,如前所述,在本申请中,各个探测器组位于垂直于被检测物体的输送方向的平面内,特别是位于同一平面内,这具体地是指各个探测器组的探测器晶体位于垂直于被检测物体的输送方向的同一平面内。根据其他实施例,各个探测器组也可以位于垂直于被检测物体的输送方向的不同平面内。
在根据本申请的射线扫描设备中,将如上所述任意实施例的射线源与如上所述任意实施例的探测器相组合,在组合状态下,射线源的各个射线源模块位于垂直于被检测物体的输送方向的平面内(一个或多个平面内),探测器的各个探测器组位于垂直于被检测物体的输送方向的其他平面内(特别是同一平面内),探测器在输送方向的垂直方向上位于射线源的内侧,并且射线源与探测器布置成在被检测物体的输送方向上至少部分重叠。 射线源与探测器在被检测物体的输送方向上至少部分重叠可以减小射线源和探测器的排布长度,从而有利于减小整个射线扫描系统的长度。
在一些实施例中,探测器的各个探测器组布置成不遮挡同侧射线源模块的射线束,同时能够接收来自其余侧的各个射线源模块的射线,从而使不同的射线源模块共用相同的探测器组,可以减少探测器的总数量。
在一些实施例中,探测器的各个探测器组的探测器晶体布置在探测器单元的沿被检测物体的输送方向的端部,并且布置成在被检测物体的输送方向上紧邻同侧射线源模块的射线束边缘布置,但不遮挡同侧射线源模块的射线束。这样,可以尽可能地减小射线源与探测器之间的光路的覆盖长度,从而进一步减小设备长度。
在一些实施例中,各个射线源模块被布置成射线束避开同侧探测器组且照射相对侧探测器组的探测器晶体。更具体地,射线源模块可相对于预定轴线,例如靶轴等转动(例如借助于前述射线源模块的安装定位结构)以调整射线束的出束角度,从而使射线源模块的射线束的中心位置照射相对侧探测器组的探测器晶体。由于探测器的探测器晶体在被检测物体的输送方向上位于探测器单元的端部位置且紧邻同侧射线源的射线束边缘布置,射线源模块仅需转动很小的角度即可使得射线束的中心位置照射探测器晶体,从而能够最大程度地减小射线束斜射入探测器晶体表面对成像产生的不利影响。射线源出束角度的调节还可以通过设置射线源模块的开口方向、调节准直器等其他适合的方式来实现。
根据一些实施例,本申请的射线扫描设备的图像处理模块被配置成具有数据补偿功能,其能够针对视角缺失数据进行补偿和/或对重建图像进行修复,以提高图像质量。具体地,该图像处理模块被配置成以迭代方法、图像阈修复方法或者两者的组合来进行图像重建。由此,由于相邻射线源模块端部处的靶点间距增大造成的投影数据缺失可以得到补偿,从而可以提高重建图像的质量。
下面参考附图详细描述本申请的实施例。
图1示意性地示出了根据本申请的一些实施例的射线扫描设备。图1所示的射线扫描设备包括传送装置1、通道2、射线源3、探测器4以及支 撑框架5。传送装置1用于运送被检测物体6通过射线扫描设备的扫描区域,该扫描区域由射线源3和探测器4限定。被检测物体6在传送装置1的带动下从通道2的一端的开口进入通道2并从通道2的另一端的开口离开,通道2可以相对于外部环境屏蔽射线源3的射线,避免对设备附近的人造成辐射伤害,同时还可以限定进入通道2的被检测物体6的体积。射线源3在通道2的外侧固定到支撑框架5上,其用于发射射线束以在扫描期间照射被检测物体6。探测器4也在通道2的外侧固定到支撑框架5上,其用于检测在扫描期间传输通过被检测物体6的射线。支撑框架5用于支撑和固定传送装置1、通道2、射线源3、探测器4等装置,其相对于地面固定。需要注意的是,虽然射线源3和探测器4均布置在通道2外侧,但是在扫描区域处,通道2设置有避让区域,并不会遮挡射线源3的射线束,也不会妨碍探测器4接收射线。
根据本申请的实施例的射线扫描设备还可以包括控制装置,控制装置可控制射线扫描设备的各个部件的操作,例如控制射线源3的射线的发射、探测器4的数据输出等。控制装置还可以包括图像处理模块,该图像处理模块可以根据探测器4的输出的信息进行图像重建,得到被检测物体6的扫描图像。
传送装置1例如可以是传送带;被检测物体6例如可以是包裹、行李等各种需要进行安全检测的物品。
射线源3可以包括多个射线源模块,各个射线源模块围绕扫描区域布置,并且位于垂直于被检测物体6的输送方向的平面内。各个射线源模块可以布置在垂直于被检测物体6的输送方向的同一平面内或不同平面内,本实施例以各个射线源模块位于垂直于被检测物体6的输送方向的同一平面内(具体地是指各个射线源模块的射线开口位于垂直于被检测物体6的输送方向的同一平面内)为例进行描述,但同样适用于各射线源模块位于不同平面的情况。图1中示出了被检测物体6的前进方向Z,被检测物体6的输送方向(后文有时简称输送方向或Z向)定义为被检测物体6的前进方向,包括前进方向的反向方向。图1中示出了XYZ坐标系,该XYZ坐标系可作为参考坐标系对射线扫描设备中的部件位置进行描述,这些位置 描述是为了清楚描述本申请的原理,并无限定作用。被检测物体6的前进方向Z与该XYZ坐标系的Z向相同。
根据一些实施例,根据本申请实施例的射线扫描设备的射线源3的各个射线源模块可以是分布式多点源,多个射线源模块可以布置成围绕扫描区域的矩形结构、多边形结构、椭圆形结构等,其中结构的部分位于传送装置1的下方,以完整地包围传送装置1。
具体地,作为分布式多点源,每个射线源模块可具有多个靶点,每个射线源模块的每个靶点可单独产生射线束,并且各个靶点可以在控制装置的控制下按照预定时序产生射线束。射线束可以是具有张角A的扇形束,如图3所示。当然,射线束的形状不限于扇形束,可以也是锥形束、平行束等其他形状的射线束,可以根据需要具体设置。
射线源3的具体布置如下所述。图2示出了根据一些实施例的射线源和探测器的结构示意图,其中射线源3的多个射线源模块布置成围绕扫描区域的矩形结构。具体地,射线源3包括四个射线源模块31、32、33、34,每个射线源模块为直线分布式多点源(即,多个靶点直线排列),四个射线源模块31、32、33、34分别布置在扫描区域的上侧、下侧、左侧和右侧,形成围绕扫描区域的矩形结构。射线源模块31、32、33、34的端部之间间隔一定距离,因此形成非连续的矩形结构(如图4的(a)所示,靶点同样以非连续的矩形布置)。
射线源3的布置不限于图2和图4的(a)所示的实施例,也可包括其他一些可替换的布置。例如,射线源模块31、32、33、34的端部之间可以直接连接,使射线源3以连续的矩形结构围绕扫描区域布置(如图4的(b)所示,靶点以连续的矩形布置)。此外,射线源3可以在图2所示实施例的基础上还包括另外四个直线分布式射线源模块35、36、37、38,其长度比射线源模块31、32、33、34短,与射线源模块31、32、33、34交替布置且端部直接连接,使得射线源3以连续的多边形结构布置(如图4的(c)所示,靶点以连续的多边形布置)。此外,射线源模块35、36、37、38可以是弧形分布式射线源,与射线源模块31、32、33、34交替布置且端部直接连接,使得射线源3以连续的圆角矩形结构布置。当然,射线源模块31、 32、33、34、35、36、37、38的端部也可以间隔一定距离,使得射线源3以非连续的多边形结构或非连续的圆角矩形结构布置(附图中未示出)。此外,射线源模块35、36、37、38的长度可以与射线源模块31、32、33、34的长度相同或更长,或者,射线源3可以包括其他数量(多个)和/或长度的射线源模块,从而形成与图4的(c)所示多边形不同的多边形结构。此外,射线源3可以包括其他数量(多个)、长度和/或形状的射线源模块,从而形成椭圆形结构。
在一些实施例中,射线源3所包括的射线源模块是可相互独立拆卸和安装的,即,每个射线源模块具有单独的腔体以用于容纳各自的射线发生装置。每个射线源模块具有单独的腔体意味着各个射线源模块的多个靶点共用一个单独的真空腔。每个射线源模块的多个靶点在真空腔体内的间距可以由靶点数量和腔体的长度决定。根据一些实施例,单个射线源模块中的靶点数量可以是192、264等,单个射线源模块中的靶点间距可以是4mm、12mm等。这里需要注意的是,相邻射线源模块的端部处的靶点之间的间距大于单个射线源模块内的靶点之间的间距,即使相邻射线源模块的端部直接连接、即两个单独腔体直接连接的情况下也是如此。每个射线源模块具有单独的腔体具有如下优点:相对于一体式环形腔体的射线源(即,射线源的所有靶点均位于同一个环形真空腔体内),可以缩小单个射线源模块的外壳尺寸以及内部真空腔体的体积,使单个射线源模块体积减小、重量减轻,因此方便射线源的拆卸和安装;另外,每个射线源模块采用单独的真空腔体,可以降低对射线源模块进行维护时腔内打火的风险。
此外,根据一些实施例,射线源3的各个射线源模块设置有安装定位结构,以便于射线源模块的安装和调节。借助于安装定位结构,射线源3的各个射线源模块可安装和固定在射线扫描设备中的预定位置处(例如,射线扫描设备中相对于XYZ参考坐标系的某个具体位置处),例如确保多个射线源模块位于垂直于被检测物体6的输送方向的同一平面内。此外,借助于安装定位结构,射线源模块还可以被旋转以调节射线束的出束角度。
射线源3的各个射线源模块由于在射线扫描设备中的位置不同可采用不同的安装方式,具有不同的安装定位结构。例如,位于扫描区域上方和 侧方的射线源模块可通过天车等设备采用吊装的方式进行安装。但是,位于扫描区域下方的射线源模块不适于采用吊装的方式,需要采用其他的方式进行安装。为了方便这样的射线源模块的安装,本申请的实施例提供了一种安装定位结构,其能够方便地将不适于吊装的射线源模块安装和固定在射线扫描设备的预定位置处,且还能够对射线源模块进行转动以调节射线束的出束角度。根据一些实施例,该安装定位结构包括主体,该主体能够固定连接到射线源模块和射线扫描设备的支撑框架上,使得射线源模块能够通过主体固定安装到支撑框架,其中该安装定位结构包括:移动装置,射线源模块能够通过该移动装置在第一平面(例如,图1中的XZ平面)上被移动到预定安装位置;第一定位装置,其在第一平面上对射线源模块进行定位;升降装置,其用于沿第一方向(例如,图1中的Y方向,其垂直于XZ平面)调节射线源模块的位置,其中第一方向垂直于第一平面;以及第二定位装置,其用于在第一方向上固定射线源模块的位置。
图5示出了上述射线源模块的安装定位结构的一个具体实施例。如图5所示,安装定位结构包括主体11、12,主体11、12分别位于射线源模块的沿长度方向的两端,并且固定连接到射线源模块上(这里,射线源模块以图2中的射线源3的射线源模块33为例进行描述,也可以是其他适合的射线源模块),射线源模块33经由主体11、12固定安装到支撑框架5(在图5中未示出)上。安装定位结构的移动装置具体地设置成滚轮13、14,分别设置在主体11、12上,射线源模块33可经由滚轮13、14被推动,从而在XZ平面上移动到预定安装位置。当然,安装定位结构的移动装置不限于滚轮,根据其他实施例,也可以采用滑动的方式来移动射线源模块,例如,可以在安装定位结构与支撑框架5之间设置直线滑动配合,以将射线源模块33移动到预定安装位置处。
第一定位装置包括第一定位销15、16以及分别设置在主体11、12和射线扫描设备的支撑框架5上的对应的第一销孔(图中未示出),在射线源模块33经由滚轮13、14被移动到预定安装位置之后,将第一定位销15、16分别插入对应的第一销孔中,即可将射线源模块33在XZ平面上定位。
升降装置包括设置在主体11处的滚轮13,其中滚轮13具体地被设置 成可升降滚轮,并且还包括设置在主体12上的起升顶丝17,起升顶丝17的一端抵靠支撑框架5,旋拧起升顶丝17可使得主体12以及射线源模块33相对于支撑框架5提升或下降。通过调节可升降滚轮13和起升顶丝17,可沿Y方向调节射线源模块33相对于支撑框架5的位置。第二定位装置形成为定位垫块19、20,在通过调节可升降滚轮13和起升顶丝17沿Y方向将射线源模块33调节到预定位置之后,将定位垫块19、20分别放置在主体11、12的下方,可以固定射线源模块33相对于支撑框架5的高度,从而将射线源模块33沿第一方向Y定位。这里,在一些示例中,主体12下方的定位垫块20可设置成U型形状,起升顶丝17的下部位于U型定位垫块20的开口中,以防止两者相互妨碍。此外,安装定位结构还可以包括第一固定螺栓21、22以及设置在主体11、12、定位垫块19、20和支撑框架5中对应的第一螺纹孔,将第一固定螺栓21、22分别插入对应的第一螺纹孔并拧紧,可相对于主体11、12和支撑框架5固定定位垫块19、20,并且可以将射线源模块33固定连接到支撑框架5。
此外,根据一些实施例,安装定位结构还包括调节装置,该调节装置用于沿预定轴线转动射线源模块以调节其出束角度。根据图5的具体实施例,射线源模块33设置有安装轴331,主体11、12上分别设置有轴孔,主体11、12通过轴孔安装在安装轴331上;此外,安装定位结构还包括第二定位销23、24,主体11、12和射线源模块33上分别设置有对应于第二定位销23、24的第二销孔,通过将主体11、12的轴孔配合在安装轴331上,并且将第二定位销23、24分别插入到对应的第二销孔中,可使得主体11、12相对于射线源模块33定位。此外,安装定位结构还包括用于相对于射线源模块33固定连接主体11、12的第二固定螺栓25、26,以及设置在主体11、12和射线源模块33上的对应的第二螺纹孔,通过将第二固定螺栓25、26旋入对应的第二螺纹孔中,可将主体11、12相对于射线源模块33固定连接。而拔出第二定位销23、24并且松开第二固定螺栓25、26,可使得主体11、12相对于射线源模块33松开,在这种状态下,调节装置可驱动射线源模块33绕安装轴331相对于主体11、12转动。
在具体实施例中,调节装置包括转动驱动机构,该转动驱动机构包括 固定在射线源模块33上的调节块27以及设置在主体11上的与调节块27相抵靠的顶丝28,顶丝28能够被旋拧以推动调节块27移动从而使射线源模块33转动。这里,转动驱动机构仅设置在安装定位结构的一个主体上,即,仅设置在射线源模块33的沿长度方向的一端。由于射线源模块33的两端均通过安装轴331支撑,在射线源模块33的一端推动射线源模块33转动,射线源模块33整体可相应地转动。在使射线源模块33转过预定角度后,再次将第二定位销23、24插入对应的第二销孔中,并且再次将第二固定螺栓25、26旋入对应的第二螺纹孔中,可将主体11、12相对于射线源模块33固定连接。
在上述实施例中,射线源模块33上的安装轴331可以与射线源模块33中的多个靶点的虚拟连线重合,因此,绕安装轴331转动射线源模块33可以使得射线源模块33绕靶轴转动。
此外,虽然以图2中的射线源3的射线源模块33为例描述了根据上述实施例的安装定位结构,但是,上述安装定位结构可适用于任何适合的射线扫描设备的射线源的安装、定位和调节。当然,图2中的射线源3的射线源模块33的安装、定位和调节也不限于上述实施例的安装定位结构,也可采用任何其他适合的结构。例如,在图5所示的实施例中,升降装置由可升降滚轮13和起升顶丝17实现,但是,升降装置不限于该实施例的具体结构,也可以实现为其他适合的结构,例如在两个主体上均采用起升顶丝来进行升降。同样地,移动装置、第一定位装置、第二定位装置和调节装置的具体实施均不限于上述实施例中的具体结构,都可以采用其他适合的结构,只要能够实现其功能即可。
在上述实施例中,图1所示的射线扫描设备的射线源3的射线源模块是分布式射线源,但是可替换地,射线源3还可以由多个单点源组构成,其中,每个单点源组至少包括两个单点源。每个单点源可以单独地发射射线束,例如具有张角A的扇形束(如图3所示)。射线源3的各个单点源可以在射线扫描系统的控制装置的控制下按照预定的时序发射射线。图4的(d)示出了根据一些实施例的包括多个单点源组的射线源的布局。如图4的(d)所示,射线源包括围绕扫描区域在底视角、左侧视角、右侧视 角、顶视角和角落斜视角处布置的多个单点源组,其中:底视角单点源组包括3个单点源,分别布置在左底视角、中间底视角和右底视角;顶视角单点源组包括3个单点源,分别布置在左顶视角、中间顶视角和右顶视角;左侧视角单点源组包括2个单点源,分别布置在左上侧视角和左下侧视角;右侧视角单点源组包括2个单点源,分别布置在右上侧视角和右下侧视角;角落斜视角单点源组包括4个单点源,分别布置在左上斜视角、右上斜视角、左下斜视角和右下斜视角。根据其他实施例,各个单点源组还可以分别包括更多的单点源。类似地,每个单点源可以包括各自的安装定位结构,以对单点源进行安装和定位,从而确保多个单点源位于垂直于被检测物体6的输送方向的同一平面内。安装定位结构还可用于转动单点源以调节各个单点源的射线的出束角度。
下面,详细描述图1所示的射线扫描设备的探测器4的布置。探测器4可以包括多个探测器组,多个探测器组位于垂直于被检测物体6的输送方向的平面内,并且各个探测器组的端部相互连接以围绕扫描区域布置。多个探测器组可以位于垂直于被检测物体6的输送方向的同一平面内或不同平面内,可选地设置在同一平面内,本实施例以位于同一平面内为例进行描述,但是同样适用于不同平面的情况。具体地,探测器4的每个探测器组是包括多个探测器单元的探测器阵列,多个探测器组可以布置成围绕扫描区域的封闭的方形结构、矩形结构、多边形结构或椭圆形结构,其中结构的部分位于传送装置1的下方,以完整包围传送装置1。
图2示出了根据一些实施例的探测器的布置,其中探测器4包括四个探测器组41、42、43、44,每个探测器组41、42、43、44是直线探测器阵列,包括沿直线排列的多个探测器单元。四个探测器组41、42、43、44布置在扫描区域的上下左右四侧且端部相互连接,以形成封闭的矩形结构(如图6的(a)所示)或方形结构。探测器4的布置不限于图2和图6的(a)所示的实施例,并且可替换地,也可以布置成其他结构。例如,探测器4可包括四个较长的直线探测器阵列和四个较短的直线探测器阵列,这些探测器阵列环绕扫描区域交替布置且端部相互连接,以形成封闭的多边形结构(如图6的(b)所示)。探测器4可以包括其他数量的多个较长 的直线探测器阵列和其他数量的多个较短的直线探测器阵列,这些探测器阵列环绕扫描区域交替布置且端部相互连接,以形成封闭的其他多边形结构。探测器4还可以包括其他数量、长度和/或形状的探测器组,以形成其他形状的封闭结构,如椭圆形结构等。
直线探测器阵列形式的探测器组可以采用任何适合的结构,并且根据一些实施例,其具体结构可以如图7所示。如图7所示,探测器组包括多个探测器单元45和探测器臂46,多个探测器单元45在探测器臂46上沿直线并排布置。探测器单元45的具体结构可以如图8所示,当然也可以采用其他适合的结构。如图8所示,探测器单元45包括用于接收射线的探测器晶体451。多个探测器单元45以探测器晶体451朝向相同的方向在探测器臂46上并排布置。探测器臂46的结构不限于图7所示的实施例,也可以采用其他适合的结构(后文的图9、图15-图17中所示的探测器臂结构)。本申请的探测器组不限于直线探测器阵列的形式,还可以是弧形探测器阵列的形式,以构成椭圆形结构的探测器。弧形探测器阵列可以包括多个弧形探测器单元和弧形探测器臂,多个弧形探测器单元并排布置在弧形探测器臂上,其中,探测器单元的探测器晶体朝向相同的方向。
根据一些实施例,探测器4的各个探测器组是可独立拆卸和安装的,由此,可改善探测器的可维护性。此外,在一些示例中,探测器4的多个探测器组构造成沿被检测物体6的输送方向拆卸、安装和调节,这样当探测器4沿垂直于被检测物体6的输送方向布置在射线源3内侧时,可以在不需要拆卸射线源的情况下进行探测器组的拆装、调节和维护,进一步改善探测器的可维护性。
具体地,借助于本申请的探测器组的安装固定结构,探测器4的探测器组可以相对于其在射线扫描设备中的安装位置(例如,支撑框架5)沿被检测物体6的输送方向移动以从所述安装位置拆卸或安装到该安装位置。
下面,详细描述根据本申请的一些实施例的用于探测器组的安装固定结构。根据本申请的一些实施例的探测器组的安装固定结构具体地包括第一安装部,其固定设置在探测器组上;第二安装部,其固定设置在射线扫描设备的支撑框架上,且与第一安装部直线移动配合,其中探测器组在第 一安装部与第二安装部相互配合的状态下能够沿第二安装部移动到预定安装位置;以及固定装置,其设置在探测器组的沿宽度方向的一侧,用于相对于所述支撑框架上的安装基准面固定探测器组。在一些具体实施例中,探测器组经由探测器臂安装固定到射线扫描设备的支撑框架上,其中,第一安装部固定设置在探测器组的探测器臂上,固定装置设置在探测器臂的沿宽度方向的一侧,将探测器臂固定到支撑框架上以固定探测器组。
图9示出了根据一些具体实施例的探测器组的安装固定结构,其中图(a)示出了探测器臂以及安装固定结构的分解立体图,图(b)是探测器组安装固定状态下的探测器臂的局部剖视图。图9中未示出完整的探测器组,仅示出了探测器臂,其中多个探测器单元可以在所示出的探测器臂上沿长度方向并排布置以形成完整的探测器组。
如图9所示,探测器组的安装固定结构的第一安装部具体地形成为设置在探测器臂47的宽度方向上延伸的滑槽471,其中,在安装到射线扫描设备的支撑框架5的状态下探测器臂47的宽度方向与被检测物体6的输送方向相一致。第二安装部形成为与滑槽471相配合的滑杆472。滑槽471形成为半圆形开口滑槽,滑杆472相应地形成为圆柱形滑杆。滑杆472固定设置在支撑框架5上,或者与支撑框架5一体形成,其长度方向与被检测物体6的输送方向一致。滑杆472靠近支撑框架5的一端设置成相对于滑杆472的其余部分尺寸增大,以形成凸部473。凸部473的朝向探测器臂47的端面形成为安装基准面474,用于抵靠探测器臂47的沿宽度方向的一侧的表面475。表面475是探测器臂475的安装表面,其与安装基准面474均被加工成具有良好的平面度,当探测器组的安装表面475抵靠安装基准面474定位时,可在宽度方向上,即被检测物体6的输送方向上准确地定位探测器组。凸部473还可用作限位部分,在安装探测器组时,将滑槽471对准滑杆472并沿着滑杆472朝向支撑框架5推动探测器臂47,直到探测器臂47抵靠凸部473,从而可以将探测器臂47移动到预定安装位置。
固定装置设置在滑杆472的与凸部473相对的另一端,并且布置成与凸部473分别抵靠探测器臂471的沿宽度方向的两侧,从而在宽度方向上限定探测器臂47的位置。具体地,固定装置包括定位套476和紧固件477, 定位套476套设在滑杆472的与凸部473相对的另一端上并且抵靠探测器臂47的沿宽度方向的另一侧的表面478,紧固件477将定位套476固定到滑杆472的与凸部473相对的另一端上。具体地,紧固件477可以为紧固螺钉,定位套476和滑杆472的所述另一端上均设置有螺纹孔,通过将紧固螺钉旋拧在螺纹孔中来相对于滑杆472紧固定位套476,从而相对于滑杆472(即支撑框架5)在宽度方向上固定探测器臂47。同时,由于滑杆472与滑槽471的形状配合限制了其他自由度,探测器臂47可以被完全定位和固定。
通过上述安装固定结构,在安装探测器组时,在探测器单元面向扫描区域且宽度方向与被检测物体6的输送方向一致的状态下,首先将探测器臂47的滑槽471对准滑杆472,使探测器臂47沿滑杆472移动直到抵靠凸部473为止;然后,将定位套476套设在滑杆472的与凸部473相对的一端,并用螺钉将其相对于滑杆472固定,从而固定探测器臂47。在拆卸探测器组时,进行相反的操作即可。
通过上述安装固定结构,由于滑杆472沿被检测物体6的输送方向延伸,即,探测器组与支撑框架5之间的直线移动配合沿被检测物体的输送方向,并且固定装置设置在探测器组的沿宽度方向的一侧,而探测器组的宽度方向与被检测物体6的输送方向一致。因此,借助于上述安装固定结构,探测器组能够沿被检测物体6的输送方向移动以安装或拆卸,且紧固操作也可以在探测器组的沿被检测物体的输送方向的一侧进行,因此,探测器可以从沿被检测物体的输送方向的侧面来拆装或维护,即使在探测器沿垂直于输送方向布置在射线源内侧的情况下,其拆装或维护也可以避开射线源的妨碍,能够在不需要拆卸射线源的情况下进行,从而改善了探测器的拆装和维护的便利性。
此外,可选地,上述安装固定结构的第二安装部被配置成在与第一安装部相配合的状态下将探测器组支撑在预定安装位置处。具体地,第二安装部包括两个滑杆472,探测器臂47上相应地形成有两个滑槽471,其设置在探测器臂47的沿长度方向的两端,使得探测器臂47在两个滑杆472上移动到预定安装位置之后,两个滑杆472可以将探测器组支撑在预定安 装位置处,而不需要其他的辅助结构和/或工具。这样,在对探测器组进行紧固时,不需要额外的工具也不需要操作人员对探测器组进行扶持即可进行操作,从而改善了操作便利性。
虽然在图9中探测器臂示出为竖直方向,但上述安装固定结构并不限于仅用于在射线扫描设备中竖直布置的探测器组的安装和拆卸,其他方向布置的探测器组也可以使用上述安装固定结构。
当然,探测器组与支撑框架5之间的安装固定结构不限于图9所示的实施例,也可以采用其他适合的安装固定结构,例如,根据一些实施例,安装固定结构的直线移动配合可以是其他适合的配合,例如直线滚珠轴承与圆柱轴的配合等直线滚动配合,根据另一些实施例,滑槽471的截面不限于半圆形,可以是半矩形等形状,并且相应地,滑杆472也不限于圆柱体,还可以是与滑槽471相配合的棱柱等形状。
此外,在探测器包括多个探测器组的情况下,将多个探测器组的各个的安装基准面设置在垂直于被检测物体6的输送方向的同一平面内,可确保多个探测器组在安装后处于垂直于被检测物体6的输送方向的同一平面内。具体地,如果各个探测器组均使用如图9所示的安装固定结构来进行安装,使得各个探测器组对应的凸部473的朝向探测器臂47的端面,即安装基准面474处在与被检测物体6的输送方向垂直的同一平面内,并且使得各个探测器组的沿宽度方向的安装表面475均抵靠各自的安装基准面474固定,多个探测器组在安装就位之后必然位于与被检测物体6的输送方向垂直的同一平面内。
下面,进一步描述根据本申请实施例的射线扫描设备的射线源3和探测器4的相对布置。如前所述,射线源3包括多个射线源模块,各个射线源模块围绕扫描区域布置,并且位于垂直于被检测物体6的输送方向的同一平面内;探测器4包括多个探测器组,多个探测器组位于垂直于被检测物体6的输送方向的同一平面内,并且各个探测器组的端部相互连接以围绕扫描区域布置。进一步地,在射线源3和探测器4的组合状态下,探测器4在被检测物体6的输送方向的垂直方向上布置在射线源3的内侧,并且射线源3与探测器4布置成在被检测物体6的输送方向上至少部分重叠, 其中射线源3的多个射线源模块可以布置成矩形结构、多边形结构、椭圆形结构等如前所述任意实施例的结构,探测器4的多个探测器组布置成方形结构、矩形结构、多边形结构、椭圆形结构等如前所述任意实施例的结构。下面,以图2所示实施例为例来描述射线源3和探测器4在组合状态下的详细布置,在图2中,射线源3的四个直线分布式射线源模块31、32、33、34以非连续矩形结构布置,探测器4的四个直线探测器阵列41、42、43、44以封闭矩形结构布置,以图2为例描述的组合状态下的详细布置同样适用于射线源3和探测器4的其他任何结构的组合。
可选地,探测器4的各个探测器组41、42、43、44布置成不遮挡同侧射线源模块的射线束,同时能够接收来自其余侧的各个射线源模块的射线。由于射线源3和探测器4均呈环状布置,由此,同一个探测器组可以被射线源的不同射线源模块共用。图10示出了各个射线源模块与接收其射线的探测器组的对应关系,其中,射线源3的各个射线源模块31、32、33、34的各个靶点的射线束以扇形束(如图3所示的具有张角A的射线束)为例进行表示,每个射线源模块31、32、33、34发出的射线束可以由探测器4的三侧探测器组检测,可以接收到射线的探测器组及其部分用粗实线表示。图10的(a)示出了扫描区域上方的射线源模块31的射线束对应的探测器组及其部分,其中探测器4的探测器组42、43、44接收来自射线源模块31的射线束;图10的(b)示出了扫描区域右侧的射线源模块32的射线束对应的探测器组及其部分,其中探测器4的探测器组41、43、44接收来自射线源模块32的射线束;图10的(c)示出了扫描区域下侧的射线源模块33的射线束对应的探测器组及其部分,其中探测器4的探测器组41、42、44接收来自射线源模块33的射线束;图10的(d)示出了扫描区域左侧的射线源模块34的射线束对应的探测器组及其部分,其中探测器4的探测器组41、42、43接收来自射线源模块34的射线束。由图10可以看出,一个射线源模块的射线可以被除了同侧探测器组以外的其他侧探测器组接收,不同的射线源模块可以共用同一探测器组,例如射线源模块31和32共用探测器组43、44,射线源模块32、33共用探测器组41、44,射线源模块33、34共用探测器组41、42等。此外,每个射线源模块的射线除了可以被相 对侧的探测器组检测之外,还可以被除了同侧探测器之外的其他侧探测器组接收,因此,各个射线源模块的射线可以尽可能多地被探测器检测到。因此,本申请的探测器可以在提高图像质量的同时减少探测器组的数量,降低设备成本。
此外,可选地,探测器4的各个探测器组的探测器晶体布置在探测器单元的沿被检测物体6的输送方向的端部,并且布置成在被检测物体6的输送方向上紧邻同侧射线源模块的射线束边缘,但不遮挡同侧射线源模块的射线束。由此,可以尽可能地减小射线源与探测器之间光路的覆盖长度,从而减小设备长度。具体如11和图12所示。图11是根据一些实施例的图1所示的射线扫描设备的沿被检测物体的输送方向的中心线的截面结构示意图。如图11所示,探测器单元例如可以是图7所示的探测器单元45,探测器晶体例如可以是图7所示的探测器晶体451;探测器晶体451表面平行于被检测物体6的输送方向布置,位于探测器单元45的沿被检测物体6的输送方向的端部,同时,探测器组的其他部件,例如探测器单元45的其他元件以及探测器臂等在探测器单元45的端部处与探测器晶体451平齐,均避开同侧射线源的射线束出口。此外,图12示出了根据一些实施例的探测器与射线源的布局的俯视示意图,图中左右两侧的射线源模块分别是射线源3的射线源模块34和32,左右两侧的探测器晶体451-4和451-2分别代表探测器组的44和42的探测器晶体的位置。从图12中可以看出,探测器晶体451-4在被检测物体6的输送方向上紧邻同侧射线源模块34的射线束的边缘设置,且不遮挡同侧射线源模块34的射线束;探测器晶体451-2在被检测物体6的输送方向上紧邻同侧射线源模块32的射线束的边缘设置,且不遮挡同侧射线源模块32的射线束。以上述配置,射线源3和探测器4能够最大程度地在被检测物体6的输送方向上重叠,从而可以尽可能地减小射线源与探测器之间的光路的覆盖长度,由此减小设备长度。
在一些示例中,射线源3的各个射线源模块被布置成射线束避开同侧探测器组且照射相对侧探测器组的探测器晶体。如图12所示,射线源模块34的射线束在避开同侧探测器组44的同时还能够覆盖并照射相对侧的探测器组42的探测器晶体451-2,射线源模块32的射线束在避开同侧探测器 组42的同时还能够覆盖并照射相对侧的探测器组44的探测器晶体451-4。更进一步地,射线源3的各个射线源模块被布置成以射线束的中心位置照射相对侧的探测器组的探测器晶体。具体地,射线源模块可相对于靶轴转动预定角度,以调整射线源模块的射线束的出束角度,从而使得射线束的中心位置照射探测器晶体。这里,靶轴是指将射线源模块内的多个靶点的虚拟连线。由于探测器的探测器晶体在被检测物体6的输送方向上位于探测器单元的端部位置且紧邻同侧射线源的射线束边缘布置,射线源模块可以仅转动非常小的预定角度,例如可以是1.5度,即可使得射线束的中心位置照射探测器晶体。这样,能够最大程度地减小射线束斜射入探测器晶体表面对成像产生的不利影响。此外,射线源模块的转动不限于绕靶轴转动,也可以相对于靶轴以外的其他轴线转动来调节射线束的出束角度,其中射线源相对于靶轴或其他轴线的转动可通过前文所述的射线源模块的安装定位结构来实现。此外,调节射线束的出束角度的方式不限于上述实施例,还可以通过其他方式,例如改变射线源模块的开口方向、调节准直器以及其他适合的方式等来改变射线束的出射角度,只要能够实现射线源的上述布置即可。
在本申请实施例的射线扫描设备中,射线源由多个射线源模块组成,多个射线源模块的端部直接连接或间隔设置。在射线源模块的端部直接连接的情况下,由于端部之间存在机械连接结构,相邻射线源模块之间的射线源点必然不连续,例如相邻两个射线源模块端部处靶点之间的间距明显大于射线源模块内部靶点之间的间距;在射线源模块的端部间隔设置的情况下更是如此。因此在扫描过程中相邻射线源模块的端部处由于缺少靶点而缺少投影数据。对此,根据一些实施例,本申请的射线扫描设备的图像处理模块被配置成具有数据补偿功能,其能够针对视角缺失数据进行补偿和/或对重建图像进行修复,以提高图像质量。具体地,该图像处理模块被配置成以迭代方法、图像阈修复方法或者两者的组合来进行图像重建。
迭代方法具体地包括以下步骤:
步骤1:使用视角缺失数据进行图像重建,其中视角缺失数据也就是探测器测得的初始数据,该初始数据中缺乏无靶点处视角的投影数据,例 如,当射线扫描设备使用图2或图4的(a)所示的非连续矩形结构的射线源时,探测器测得的初始数据中缺少矩形结构的四个角落斜视角处的投影数据;
步骤2:对步骤1中获得的重建图像按照完全几何进行前向重投影,这里,步骤1中获得的重建图像由于使用视角缺失数据,因此可能呈现几何结构不完整的物体,按照完全几何进行向前重投影是指在几何形状补充完整的情况下进行前向重投影,具体地,可以通过推测、假设等方式将几何形状补充完整;
步骤3:以步骤2中获得的重投影数据为参考,采用图像修复算法在投影域对视角缺失数据进行修复,并且利用修复后的数据再次进行图像重建;
步骤4:对前述前向重投影步骤、视角缺失数据修复步骤和图像重建步骤进行迭代若干次,以最后一次图像重建步骤中获得的图像作为最终的重建图像。
在上述迭代方法中,可预先设置收敛阈值。当图像重建步骤中获得的图像满足设定的收敛阈值时,则停止迭代,并以该图像作为最终的重建图像;当图像重建步骤中获得的图像不满足设定的收敛阈值时,则继续下一次迭代,即,前向重投影步骤、视角缺失数据修复步骤和图像重建步骤,直到图像重建步骤中获得的图像满足设定的收敛阈值为止。
在上述迭代方法中,步骤2中的图像修复算法包括各种传统算法,例如基于TV正则项、小波分析、字典学习等的方法以及人工神经网络方法等。
在上述迭代方法中,图像重建方法包括解析算法和迭代算法等常用算法。
根据其他实施例,图像处理模块还可以使用图像阈修复方法来获得重建图像。具体地,图像处理模块可以采用视角缺失数据,即探测器测得的初始数据,来进行图像重建,并且在图像阈采用图像修复算法对所重建的图像进行伪影去除和数据修正处理,以获得最终的重建图像。在本实施例中,图像修复算法包括各种传统算法,例如基于TV正则项、小波分析、 字典学习等的方法以及人工神经网络方法等。
根据另一些实施例,图像处理模块可以采用上述迭代方法以及上述图像阈修复方法的组合来进行图像重建,以提高图像质量。具体地,图像处理模块可以首先采用上述迭代方法在投影域对缺失数据进行补全,并得到满足设定的收敛阈值的重建图像,然后采用上述图像阈修复方法对通过上述迭代方法得到的重建图像在图像阈采用图像修复算法进行伪影去除和数据修正处理,并得到最终的重建图像。
与采用分布式多点源的射线源相比,采用单点源形式的射线源的源点相对稀疏,图像处理模块可采用适用于稀疏视角数据的图像重建算法来获得扫描图像。
在前述实施例的射线扫描设备中,射线源在上下左右四侧围绕扫描区域。根据其他实施例,本申请还提供了一种射线扫描设备,其布置基本与前述实施例的射线扫描设备相同,区别主要在于射线源的布置,其中射线源仅在上侧、下侧和左右侧中的一侧上围绕扫描区域。下面的描述以射线源布置在扫描区域的上侧、下侧和右侧为例进行,但是同样适用于射线源布置在扫描区域的上侧、下侧和左侧的情况。
具体地,在前述实施例的射线扫描设备中,射线源3的各个射线源模块是分布式多点源,多个射线源模块可以布置成围绕扫描区域的矩形结构、多边形结构、椭圆形结构等。在本实施例中,射线源的多个射线源模块仍然可以是分布式多点源,不同的是多个射线源模块布置成围绕扫描区域的在扫描区域左侧开口的非封闭结构,例如左侧开口的矩形结构、多边形结构、椭圆形结构等,这里,扫描区域左侧指的是扫描区域的在被检测物体6的输送方向的垂直方向上的左侧。在前述实施例中,射线源3以非连续的或连续的矩形结构、连续的多边形结构、连续的圆角矩形、非连续的多边形或非连续的圆角矩形结构以及其他多边形和椭圆形的结构布置,相应地,在本实施例中,射线源以在扫描区域左侧开口的非连续的或连续的矩形结构、连续的多边形结构、连续的圆角矩形、非连续的多边形或圆角矩形结构以及其他多边形和椭圆形的结构布置,例如相对于图2所述的射线源,本实施例的射线源3至少不包括扫描区域左侧的射线源模块34;例如 相对于图4的(b)-图4的(c)所示的射线源,本实施例的射线源3至少不包括被检测物体6左侧的射线源模块。
此外,与前述实施例相同,本实施例的射线源也可以由多个单点源组构成,与前述实施例的区别仅在于本实施例的射线源3不包括左侧视角处的单点源,或者不包括左侧视角以及左上斜视角和左下斜视角处的单点源。
除了上述区别之外,本实施例的射线源的其他方面的特征均与前述实施例中的射线源3相同。
本实施例的探测器的各个方面的特征基本上与前述实施例中的探测器4相同,不同之处仅在于在本实施例中,探测器与仅在上侧、下侧和右侧围绕扫描区域的射线源组合,探测器4的位于扫描区域左侧的探测器组的同侧没有射线源模块。因此,探测器4的各个探测器组的拆卸和安装除了可采用与前述实施例相同的方式以外,还可采取如下所述的与前述实施例不同的方式,以进一步方便探测器的拆装和维护。具体地,以图13所示的探测器组和射线源的组合为例(其中,探测器组与图2所示的探测器组相同,射线源与图2所示的射线源相比缺少扫描区域左侧的射线源模块),探测器4可以采取如下方式拆卸和安装:探测器组41’、43’、44’垂直于被检测物体6的输送方向(如图14所示,沿X方向)相对于支撑框架5拆卸或安装,探测器组42’沿被检测物体6的输送方向(如图14所示,沿Z方向)相对于支撑框架5拆卸或安装。
探测器组42’可以采用与前述实施例相同的安装固定结构(如图9所示)来相对于支撑框架5拆卸或安装。但是,前述实施例的安装固定结构并不适于探测器组41’、43’、44’的沿X方向的拆卸或安装,因此需要不同的安装固定结构。下面将详细描述这些安装固定结构的具体实施例。
与前述实施例的安装固定结构类似,适于探测器组41’、43’、44’的X方向的拆装的安装固定结构也具体地包括第一安装部,其固定设置在探测器组上;第二安装部,其固定设置在射线扫描设备的支撑框架上,且与第一安装部直线移动配合,其中探测器组在第一安装部与第二安装部相互配合的状态下能够沿第二安装部移动到预定安装位置;以及固定装置,其设置在探测器组的沿宽度方向的一侧,用于相对于支撑框架上的安装基准面 固定探测器组。在一些具体实施例中,探测器组41’、43’、44’经由探测器臂安装固定到射线扫描设备的支撑框架上,其中,第一安装部固定设置在探测器臂上,固定装置设置在探测器臂的沿宽度方向的一侧,其将探测器臂固定到支撑框架上以固定探测器组。
图15示出了根据一些具体实施例的适于探测器组41’的安装固定结构,其中图(a)示出了探测器组安装状态下的立体图,图(b)是探测器组安装状态下的侧视图,图(c)是探测器组拆卸状态下的立体图,以及图(d)是带有固定装置的探测器组安装状态下的截面图。如图15所示,探测器组41’的安装固定结构的第一安装部包括设置在探测器臂411上的滑块412,滑块412沿探测器臂411的长度方向延伸,其中在探测器组41’安装到射线扫描设备中的状态下,探测器臂411的长度方向垂直于被检测物体6的输送方向。在图15中,滑块412延伸过探测器臂411的长度的一部分,在其他实施例中,滑块412也可以设置成延伸过探测器臂411的全部长度或其他长度。此外,滑块412可以通过螺栓连接等固定到探测器臂411上。根据其他实施例,滑块412也可以与探测器臂411一体成型。
第二安装部形成为与滑块412相配合的固定导轨413。固定导轨413固定连接在射线扫描设备的支撑框架5(图15中未示出)上,也可以与支撑框架5一体成型。固定导轨413的长度方向垂直于射线扫描设备的被检测物体6的输送方向。固定导轨413沿长度方向的一端可以设置有限位部分(图中未示出),当安装探测器组41’时,将滑块412对准固定导轨413,并沿着固定导轨413推动探测器组41’,直到探测器臂411抵靠限位部分,从而将探测器组41’移动到预定安装位置。
固定装置设置在探测器组41’的沿宽度方向的一侧,并且与探测器臂411的沿宽度方向的一侧的表面414相抵靠。具体地,固定装置包括定位件415和紧固件416,其中定位件415固定连接在支撑框架5上,并且其远离支撑框架5的端面形成为安装基准面417,该安装基准面417用于抵靠探测器臂411的沿宽度方向的一侧的表面414。表面414是探测器臂411的安装表面,其与安装基准面417均被加工成具有良好的平面度,使得当探测器臂411的安装表面414抵靠安装基准面417固定时,可在宽度方向上准 确地定位探测器组41’。紧固件416可以穿过定位件415,并且相对于定位件415的端面紧固探测器组41’。具体地,紧固件416例如可以是紧固螺栓,定位件415和探测器臂411的与定位件415相对的侧面上设置有对应的螺纹孔,将紧固螺栓416穿过对应的螺纹孔并拧紧,可以相对于定位件415的端面紧固探测器组41’。固定装置可以沿探测器组41’的长度方向设置多个,例如至少两个,以将探测器组41’牢固地固定在支撑框架5上。
通过上述安装固定结构,在安装探测器组41’时,在探测器组41’的探测器单元朝下的状态下,首先将探测器组41’上的滑块412对准固定导轨413,使探测器组41’沿固定导轨413移动直到抵靠固定导轨413上的限位部分为止;然后,将紧固螺栓416穿过定位件415和探测器臂411上的对应螺纹孔并拧紧,从而将探测器组41’相对于定位件415的端面、即安装基准面417定位。在拆卸探测器组41’时,进行相反的操作即可。
由于固定导轨的长度方向垂直于射线扫描设备的被检测物体6的输送方向,且探测器组41’的沿X方向的一侧没有射线源的阻碍,因此,借助于上述安装固定结构,探测器组41’可以垂直于射线扫描设备的被检测物体6的输送方向相对于支撑框架5拆卸或安装。此外,固定装置设置在探测器组的沿宽度方向的一侧,即探测器的沿Z向的一侧,因此,可以避开射线源的遮挡来紧固探测器组,方便探测器组的拆装和维护。
此外,可选地,在上述安装固定结构中,第二安装部被配置成在与第一安装部相配合的状态下,将探测器组41’支撑在预定安装位置。具体地,滑块412设置在探测器臂411的沿宽度方向相对的两侧,并且具有从探测器臂411的沿宽度方向相对的两侧的边缘向内延伸的内延部4121、4122(参见图15的图(b));固定导轨413包括在沿宽度方向相对的两侧上向外延伸的外延部4131、4132(参见图15的图(b));并且,在滑块412与固定导轨413相配合的状态下,滑块412的内延部4121、4122位于固定导轨413的外延部4131、4132的上方并且两者接触且重叠布置。由此,在探测器组41’沿着固定导轨413移动到预定安装位置之后,探测器组41’可以通过滑块412的内延部4121、4122悬挂在固定导轨413的外延部4131、4132上。这样,固定导轨413可以将探测器组41’支撑在预定安装位置处, 而不需要其他额外的辅助结构或工具,在对探测器组41’进行紧固时,也不需要操作人员对探测器组41’进行扶持即可进行操作,从而改善了操作便利性。
探测器组43’与探测器组41’类似地采用滑块与固定导轨的组合来进行拆装。具体地,图16示出了根据一些具体实施例的适于探测器组43’的安装固定结构,其中图(a)示出了探测器组安装状态下的立体图,图(b)是探测器组安装状态下侧视图。
如图16所示,探测器组43’的安装固定结构的第一安装部包括设置在探测器臂431上的滑块432,滑块432沿探测器臂431的长度方向延伸,其中在探测器组43’安装到射线扫描设备中的状态下,探测器臂431的长度方向垂直于射线扫描设备的被检测物体6的输送方向。滑块432可以通过螺栓连接等固定到探测器臂431上,也可以与探测器臂431一体成型。探测器臂431形成有沿长度方向延伸的凹槽433,滑块432设置在该凹槽433中。
第二安装部形成为与滑块432相配合的固定导轨434。固定导轨434固定连接在射线扫描设备的支撑框架5上,也可以与支撑框架5一体成型。固定导轨434的长度方向垂直于被检测物体6的输送方向。固定导轨434沿长度方向的一端可以设置有限位部分(图中未示出),当安装探测器组43’时,将滑块432对准固定导轨434,并沿着固定导轨434推动探测器组43’,直到探测器臂431抵靠限位部分,从而将探测器组43’移动到预定安装位置。
探测器组43’的安装固定结构的固定装置采用与探测器组41’相同的固定装置,在此不再详细描述固定装置的具体结构。利用该固定装置,可以将探测器组43’抵靠支撑框架5上的对应的安装基准面紧固固定。探测器组43’的探测器臂431在沿宽度方向的一侧上同样设置有安装表面,并且同样地,该安装表面与支撑框架5上的安装基准面均被加工成具有良好的平面度,以使得探测器臂431的安装表面抵靠安装基准面时,可在宽度方向上准确地定位探测器组43’。同样地,固定装置可以沿探测器组43’的长度方向设置多个,例如至少两个,以将探测器组43’牢固地固定在支撑框架5上。
通过上述安装固定结构,在安装探测器组43’时,在探测器单元朝上的情况下,首先将探测器组43’上的滑块432对准固定导轨434,使探测器组43’沿固定导轨434移动直到抵靠固定导轨434上的限位部分为止;然后,将紧固螺栓穿过定位件和探测器臂上的对应螺纹孔并拧紧,从而将探测器组43’相对于定位件上的安装基准面定位。在拆卸探测器组43’时,进行相反的操作即可。
由于固定导轨的长度方向垂直于射线扫描设备的被检测物体6的输送方向,且探测器组43’的沿X方向的一侧没有射线源的阻碍,因此,借助于上述安装固定结构,探测器组43’可以垂直于射线扫描设备的被检测物体6的输送方向相对于支撑框架5拆卸或安装。此外,固定装置设置在探测器组43’的沿宽度方向的一侧,即探测器的沿Z向的一侧,因此,可以避开射线源的遮挡来紧固探测器组,方便探测器组的拆装和维护。
此外,可选地,在上述安装固定结构中,第二安装部被配置成在与第一安装部相配合的状态下,将探测器组43’支撑在预定安装位置处。具体地,如图16所示,固定导轨434包括承托部4341、4342,该承托部4341、4342除了与滑块432滑动配合以外,还在滑块432的下方支撑滑块432,从而在探测器组43’沿着固定导轨434移动到预定安装位置之后,从下方将探测器组43’支撑在预定安装位置。这样,在对探测器组43’进行紧固时,不需要额外的工具也不需要操作人员对探测器组43’进行扶持即可进行操作,从而改善了操作便利性。
图17示出了根据一些具体实施例的适于探测器组44’的安装固定结构,其中图(a)示出了探测器组安装状态下的立体图,图(b)是安装固定结构的第一安装部和第二安装部分开状态下的示意图,图(c)和图(d)是安装固定结构的第一安装部和第二安装部配合状态下的不同视角的立体图。
探测器组44’的安装固定结构的第一安装部具体地形成为设置在探测器臂441的沿宽度方向的一侧上的固定块442,固定块442具有朝向探测器臂441的沿厚度方向的一侧的开口443。在探测器组44’的安装状态下,探测器臂441的宽度方向与射线扫描设备的被检测物体6的输送方向一致,厚度方向垂直于被检测物体6的输送方向。固定块442的开口443可以呈 U型,也可以是其他适合的形状。固定块442可以通过螺栓固定等方式固定连接在探测器臂441上,也可以与探测器臂441一体形成。
第二安装部形成为固定在支撑框架5上的悬臂部444,悬臂部444的远离支撑框架5的端部设置有延伸部445,该延伸部445与固定块442上的开口443直线移动配合,即,延伸部445能够从开口443的边缘处沿直线移动到开口443的内部。悬臂部444的长度方向与射线扫描设备的被检测物体6的输送方向一致。开口443的底部可用作限位部分,当安装探测器组44’时,将探测器臂441上的固定块442的开口443对准延伸部445,并且相对于延伸部445沿直线移动探测器臂441直到开口443的底部抵靠延伸部445,从而将探测器组44’限定在预定安装位置。
固定装置设置在探测器臂441的沿宽度方向的一侧(与固定块442设置在同一侧),固定装置的端面形成为安装基准面,并且固定装置相对于安装基准面紧固探测器臂441。具体地,固定装置可以包括固定件446和紧固件447,固定件446的远离支撑框架5的端面形成为安装基准面448,其用于抵靠探测器臂441的沿宽度方向的一侧的表面449。表面449是探测器臂441的安装表面,其与安装基准面448均被加工成具有良好的平面度,当探测器臂441的安装表面449抵靠安装基准面448固定时,可在宽度方向上准确地定位探测器组44’。紧固件447用于相对于固定件446的端面448紧固探测器臂441。紧固件447可以是固定螺栓,探测器臂441的沿宽度方向的与固定件446相对的一侧和固定件446上形成有对应的螺纹孔,固定螺栓447可以穿过固定件446和探测器臂441上的对应的螺纹孔并拧紧,以相对于安装基准面448紧固探测器组44’。此外,固定装置可以包括多个,例如至少两个,多个固定装置可以沿探测器组41’的长度方向间隔布置,以将探测器组44’牢固地固定和定位。
通过上述安装固定结构,在安装探测器组44’时,在探测器单元朝向扫描区域且宽度方向与被检测物体6的输送方向一致的状态下,首先将探测器组44’上的固定块442的开口443对准悬臂部444的延伸部445,使探测器组44’沿延伸部445移动直到开口443的底部抵靠延伸部445为止;然后,将紧固件447穿过固定件446和探测器臂441上的对应螺纹孔并拧紧, 从而将探测器组44’相对于固定件446的安装基准面448定位。在拆卸探测器组44’时,进行相反的操作即可。
由此,利用上述安装固定结构,由于悬臂部444在射线扫描设备中沿被检测物体6的输送方向延伸,探测器组44’的宽度方向平行于被检测物体6的输送方向,且固定块442的开口443朝向探测器组44’的厚度方向一侧,通过使得探测器晶体朝向扫描区域,可以沿垂直于被检测物体6的输送方向安装或拆卸探测器组44’。
此外,可选地,在上述安装固定结构中,第二安装部被配置成在与第一安装部相配合的状态下,将探测器组44’支撑在预定安装位置处。即,悬臂部444在探测器组44’相对于悬臂部444的延伸部445移动到预定安装位置之后,可以通过固定块442支撑整个探测器组44’,而不需要其他辅助结构或工具。这样,在对探测器组44’进行紧固时,不需要额外的工具也不需要操作人员对探测器组44’进行扶持即可进行操作,从而改善了操作便利性。
虽然各个探测器组41’、42’、43’、44’采用不同的固定安装结构相对于支撑框架5拆卸或安装,但是,各个探测器组仍可以在安装后与其他探测器组处于垂直于被检测物体6的输送方向的同一平面内。具体地,将各个探测器组的安装基准面设置在被检测物体6的输送方向垂直的同一平面内,可以确保各个探测器组41’、42’、43’、44’在安装就位之后位于垂直于被检测物体6的输送方向垂直的同一平面内。
此外,图15-图16中的固定安装结构的第一安装部与第二安装部之间的直线移动配合采用滑块导轨配合,根据其他实施例,本申请的固定安装结构也可以采用其他的直线移动配合,例如直线滑动或直线滚动配合等,例如直线滚珠轴承与圆柱轴配合等。
以上描述了本实施例的射线扫描设备的探测器4的探测器组的安装固定结构。下面继续描述本实施例的射线扫描设备的其他方面的特征。
本实施例的射线扫描设备的射线源3和探测器4的相对布置与前述实施例基本相同。与前述实施例相同,射线源3包括多个射线源模块,各个射线源模块围绕扫描区域布置,并且位于垂直于被检测物体6的输送方向 的平面内,特别是同一平面内;探测器4包括多个探测器组,多个探测器组位于垂直于被检测物体6的输送方向的其他平面内,特别是同一平面内,并且各个探测器组的端部相互连接以围绕扫描区域布置,并且进一步地,在射线源3和探测器4的组合状态下,探测器4沿被检测物体6的输送方向的垂直方向布置在射线源3的内侧,射线源3和探测器4布置成在被检测物体6的输送方向上至少部分重叠,其中,探测器4的多个探测器组可以是前述实施例中所述的围绕扫描区域的封闭的方形结构、矩形结构、多边形结构或椭圆形结构等任一结构;与前述实施例不同的是,射线源3的多个射线源模块布置成围绕扫描区域的在扫描区域左侧开口的非封闭结构,例如左侧开口的矩形结构、多边形结构、椭圆形结构等,如本实施例中前文所述的任一结构。
与前述实施例相同,本实施例的探测器4的各探测器组可选地布置成不遮挡同侧射线源模块的射线束,同时能够接收来自其余侧的各个射线源模块的射线。由于射线源3和探测器4均呈环状布置(其中,射线源3是左侧开口的半封闭环),同一个探测器组可以被射线源的不同射线源模块共用。另外,射线源3的各个射线源模块的射线除了可以被相对侧的探测器组检测之外,还可以被其他侧探测器组检测到,因此,各个射线源模块的射线可以尽可能多地被探测器检测到。因此,本实施例的探测器同样可以在提高图像质量的同时减少探测器组的数量,降低设备成本。
此外,与前述实施例相同,可选地,探测器4的各个探测器组的探测器晶体布置在探测器单元的沿被检测物体6的输送方向的端部,并且布置成在被检测物体6的输送方向上紧邻同侧射线源模块的射线束边缘,但不遮挡同侧射线源模块的射线束。由此,可以尽可能地减小射线源与探测器之间光路的覆盖长度,从而减小设备长度。
此外,与前述实施例相同,可选地,射线源3的各个射线源模块被布置成射线束避开同侧探测器组且照射相对侧探测器组的探测器晶体。具体地,与前述实施例相同,射线源模块可相对于靶轴转动预定角度,以调整射线源模块的射线束的出束角度,从而使得射线束的中心位置照射探测器晶体。由于探测器的探测器晶体在被检测物体6的输送方向上位于探测器 单元的端部位置且紧邻同侧射线源的射线束边缘布置,射线源模块可以仅转动非常小的预定角度,例如可以是1.5度,即可使得射线束的中心位置照射探测器晶体。这样,能够最大程度地减小射线束斜射入探测器晶体表面对成像产生的不利影响。与前述实施例相同地,射线源模块可绕靶轴或其他轴线转动、或通过前述实施例中所提及的其他适合的方式来调节射线束的出束角度。
此外,与前述实施例相同,本实施例的射线源的相邻射线源模块的端部处也缺少投影数据,因此本实施例的射线扫描设备的图像处理模块也被配置成具有数据补偿功能,其能够针对视角缺失数据进行补偿和/或对重建图像进行修复,以提高图像质量。本实施例的射线扫描设备的图像处理模块采用与前述实施例相同的方法进行图像重建。
除了具备与前述实施例的射线扫描设备相同的优点以外,本实施例的射线扫描设备还具有以下优势。
本实施例的射线扫描设备特别适应于在机场手提行李安全检测中使用。机场手提行李具有体积小(例如通常在600mm*400mm以内)以及长度、宽度大和厚度小的特点,且其放置在传送装置上进行检测时通常是厚度沿上下方向,宽度沿左右方向,以及长度沿输送方向。而本实施例的射线扫描设备在扫描区域的上下两侧均布置了射线源模块以在厚度方向上对行李进行扫描。这样,在尺寸较小的厚度方向上可以获得更多的投影数据。此外,由于行李厚度小,厚度方向上的投影数据受到自遮挡和射线衰减的影响都较小,因此,厚度方向上的投影数据相比较于其他方向更加准确、清晰,有利于提高图像质量。同时,本发明的射线扫描设备的射线源在行李的宽度方向上仅在一侧设置射线源模块,在宽度方向上,投影数据受到行李物品自遮挡和射线衰减的影响都较大,因此投影数据质量相对于厚度方向上的投影数据质量要差,在行李的宽度方向上仅在一侧设置射线源模块可以在保证图像质量的同时降低射线源成本。
此外,本实施例的射线扫描设备虽然在扫描区域左侧没有设置射线源,但是仍然设置了与扫描区域左侧位置相对的右侧探测器组,该右侧探测器组可接收上下两侧的射线源模块的射线,增加上下两侧射线源模块的射线 的对应检测数据。因此,相对于仅在每个射线源模块对侧设置探测器组的情况,可以提高图像质量。
此外,本实施例以射线源的多个射线源模块布置在垂直于被检测物体的输送方向的同一平面内为例进行了描述,但是同样适用于射线源的多个射线源模块布置在垂直于被检测物体的输送方向的不同平面内的情况。
此外,实施例以探测器的多个探测器组布置在被检测物体的输送方向的同一平面内为例进行了描述,但是同样适用于探测器的多个探测器组布置在垂直于被检测物体的输送方向的不同平面内的情况。
在前述实施例中,描述了射线源在上下左右四侧上围绕扫描区域的射线扫描设备。根据其他实施例,本申请还提供了一种射线扫描设备,其布置基本与该前述实施例的射线扫描设备相同,区别主要在于射线源的布置,其中在本实施例中,射线源仅在上侧、左侧和右侧三侧围绕扫描区域,即,射线源仅在传送装置的上方围绕扫描区域,而在传送装置下方不设置射线源模块(具体可参见图18,图18示出了根据本实施例的射线源和探测器的布局示意图)。这里,传送装置的上方不仅包括传送装置的正上方,还包括传送装置的侧上方;另外,传送装置的上方并不严格限定为在高度上必须高于传送装置,在高度上与传送装置大致相同,或者略低于传送装置的情况也包括在本实施例的范围内。
具体地,在该前述实施例的射线扫描设备中,射线源3的各个射线源模块是分布式多点源,多个射线源模块可以布置成围绕扫描区域的矩形结构、多边形结构、椭圆形结构等。在本实施例中,射线源的多个射线源模块仍然可以是分布式多点源,不同的是多个射线源模块布置成围绕扫描区域的在传送装置下方开口的非封闭结构,例如在传送装置下方开口的矩形结构、多边形结构、椭圆形结构等。在该前述实施例中,射线源3以非连续或连续的矩形结构、连续的多边形结构、连续的圆角矩形、非连续的多边形或非连续的圆角矩形结构以及其他多边形和椭圆形的结构布置,而在本实施例中,射线源以在传送装置下方开口的非连续的或连续的矩形结构、连续的多边形结构、连续的圆角矩形、非连续的多边形或非连续的圆角矩形结构以及其他多边形和椭圆形的结构布置,例如相对于图2所示的射线 源,本实施例的射线源3至少不包括下方的射线源模块33,在有些情况下还不包括射线源模块32、34的低于传送装置1的部分;例如相对于图4中(b)-(c)所示的射线源,本实施例的射线源3至少不包括被检测物体6下方的射线源模块。
此外,与该前述实施例相同,本实施例的射线源也可以由多个单点源组构成,区别仅在于本实施例的射线源3不包括底视角、左下斜视角和右下斜视角处的单点源。
除了上述区别之外,本实施例的射线源的其他方面的特征均与该前述实施例中的射线源3相同。
本实施例的探测器的各个方面的特征基本上与该前述实施例中的探测器4相同,不同之处仅在于在本实施例中,探测器与仅在上侧、左侧和右侧围绕扫描区域的射线源组合,探测器4的位于扫描区域下方的探测器组的同侧没有射线源模块,探测器4的位于扫描区域下方的探测器组的拆卸和安装将不会受到下侧射线源模块的阻碍。因此,探测器的各个探测器组除了可以采用与该前述实施例相同的安装固定结构进行拆装以外,位于扫描区域下方的探测器组在不受左侧或右侧射线源模块妨碍的情况下,还可以采用沿垂直于被检测物体6输送方向的方向相对于支撑框架5拆卸或安装,具体地,可以采用前述参考图16所描述的安装固定结构进行拆装。
此外,本实施例的射线扫描设备的射线源3和探测器4的相对布置与该前述实施例基本相同。具体地,与该前述实施例相同,射线源3包括多个射线源模块,各个射线源模块围绕扫描区域布置,并且位于垂直于被检测物体6的输送方向的平面内,特别是同一平面内;探测器4包括多个探测器组,多个探测器组位于垂直于被检测物体6的输送方向的其他平面内,特别是同一平面内,并且各个探测器组的端部相互连接以围绕扫描区域布置,并且进一步地,在射线源3和探测器4的组合状态下,探测器4沿被检测物体6的输送方向的垂直方向布置在射线源3的内侧,射线源3和探测器4在被检测物体6的输送方向上至少部分重叠,其中探测器4的多个探测器组可以是前述实施例中所述的围绕扫描区域的封闭的方形结构、矩形结构、多边形结构或椭圆形结构等任一结构;与前述实施例不同的是, 射线源3的多个射线源模块布置成围绕扫描区域的在传送装置下方开口的非封闭结构,如在传送装置下方开口的矩形结构、多边形结构、椭圆形结构等,如本实施例中前文所述的任一结构。
与前述实施例相同,本实施例的探测器4的各探测器组可选地布置成不遮挡同侧射线源模块的射线束,同时能够接收来自其余侧的各个射线源模块的射线。由于射线源3和探测器4均呈环状布置(其中,射线源3是下部开口的半封闭环),由此,同一个探测器组可以被射线源的不同射线源模块共用。另外,射线源3的各个射线源模块的射线除了可以被相对侧的探测器组检测之外,还可以被其他侧探测器组检测,因此,各个射线源模块的射线可以尽可能多地被探测器检测到。因此,本实施例的探测器同样可以在提高图像质量的同时减少探测器组的数量,降低设备成本。
此外,与前述实施例相同,可选地,探测器4的各个探测器组的探测器晶体布置在探测器单元的沿被检测物体6的输送方向的端部,并且布置成在被检测物体6的输送方向上紧邻同侧射线源模块的射线束边缘,但不遮挡同侧射线源模块的射线束。由此,可以尽可能地减小射线源与探测器之间光路的覆盖长度,从而减小设备长度。
此外,与前述实施例相同,可选地,射线源3的各个射线源模块被布置成射线束避开同侧探测器组且照射相对侧探测器组的探测器晶体。具体地,与前述实施例相同,射线源模块可相对于靶轴转动预定角度,以调整射线源模块的射线束的出束角度,从而使得射线束的中心位置照射探测器晶体。由于探测器的探测器晶体在被检测物体6的输送方向上位于探测器单元的端部位置且紧邻同侧射线源的射线束边缘布置,射线源模块可以仅转动非常小的预定角度,例如可以是1.5度,即可使得射线束的中心位置照射探测器晶体。这样,能够最大程度地减小射线束斜射入探测器晶体表面对成像产生的不利影响。与前述实施例相同地,射线源模块可绕靶轴或其他轴线转动、或通过前述实施例中所提及的其他适合的方式来调节射线束的出束角度。
此外,与前述实施例相同,本实施例的射线源的相邻射线源模块的端部处也缺少投影数据,因此本实施例的射线扫描设备的图像处理模块也被 配置成具有数据补偿功能,其能够针对视角缺失数据进行补偿和/或对重建图像进行修复,以提高图像质量。本实施例的射线扫描设备的图像处理模块采用与前述实施例相同的方法进行图像重建。
除了具备与前述实施例的射线扫描设备相同的优点外,本实施例的射线扫描设备还具有以下优势。
本实施例的射线扫描设备在传送装置下方没有布置射线源模块,因此可以降低传送装置的高度,方便被检测物品到传送装置的输送;此外,相对于在传送装置下方也布置射线源模块的前述实施例,本实施例可以节约设备成本。
此外,本实施例的射线扫描设备虽然没有设置下部射线源,但是仍然设置了与下部位置相对的上方探测器组,该上方探测器组可接收左右两侧的射线源模块的射线,增加左右两侧射线源模块的射线的对应检测数据。因此,相对于仅在每个射线源模块对侧设置探测器组的情况,可以提高图像质量。
此外,本实施例以射线源的多个射线源模块布置在垂直于被检测物体的输送方向的同一平面内为例进行了描述,但是同样适用于射线源的多个射线源模块布置在垂直于被检测物体的输送方向的不同平面内的情况。
此外,实施例以探测器的多个探测器组布置在被检测物体的输送方向的同一平面内为例进行了描述,但是同样适用于探测器的多个探测器组布置在垂直于被检测物体的输送方向的不同平面内的情况。
在前述实施例中,描述了射线源和探测器在上下左右四侧上围绕扫描区域的射线扫描设备。根据其他实施例,本申请还提供了一种射线扫描设备,其与该前述实施例的射线扫描设备结构基本相同,区别仅在于射线源和探测器的布置不同。具体区别如下:在本实施例中,从被检测物体的输送方向观察,射线源的多个射线源模块以在扫描区域的一侧开口的非封闭结构围绕扫描区域布置,探测器的多个探测器组也以在扫描区域的一侧开口的非封闭结构围绕扫描区域布置,并且,探测器的非封闭结构的开口与射线源的非封闭结构的开口相对设置;此外,探测器的多个探测器组固定 在垂直于被检测物体的输送方向的同一平面内,而射线源的多个射线源模块固定在垂直于被检测物体的输送方向的多个不同平面内,例如,射线源的布置在探测器的非封闭结构的开口一侧的射线源模块与探测器的各个探测器组固定在垂直于被检测物体的输送方向的同一平面内,而射线源的其他射线源模块固定在垂直于被检测物体的输送方向的其他平面内。
下面详细地描述根据本实施例的射线扫描设备的射线源的结构和布置。
与所述前述实施例相同,本实施例的射线扫描设备的射线源包括多个射线源模块,且各个射线源模块可以是分布式多点源。作为分布式多点源,每个射线源模块可具有多个靶点,每个射线源模块的每个靶点可单独产生射线束,并且各个靶点可以在控制装置的控制下按照预定时序产生射线束。射线束可以是具有张角A的扇形束,如图3所示。当然,射线束的形状不限于扇形束,可以也是锥形束、平行束等其他形状的射线束,可以根据需要具体设置。
在所述前述实施例中,沿被检测物体的输送方向观察,射线源的多个射线源模块在四侧上围绕扫描区域,而在本实施例中,沿被检测物体的输送方向观察,射线源的多个射线源模块仅在三侧上围绕扫描区域布置,即,以在扫描区域一侧开口的非封闭结构围绕扫描区域布置。具体地,如图19-图21所示(图19是根据本实施例的射线扫描设备的射线源和探测器的布局的立体示意图,图20是图19所示的射线源和探测器的沿被检测物体的输送方向观察的侧视示意图,图21是图19所示的射线源和探测器的布局的俯视示意图,其中扫描区域左侧和右侧的射线源模块布置在垂直于被检测物体输送方向的同一平面内(如图21中的实线射线出口位置所示),而扫描区域下方的射线源模块布置在垂直于被检测物体输送方向的另一平面内(如图21中的虚线射线出口位置所示)),从被检测物体的输送方向观察,射线源3包括分别布置在扫描区域的左侧、右侧和下侧的射线源模块31、32、33,射线源模块31、32、33形成在扫描区域上侧开口的围绕扫描区域的非封闭结构。在图示实施例中,射线源模块为直线分布式多点源,射线源的非封闭结构是在扫描区域上侧开口的直角矩形结构。射线源3的射线源模块31、32、33不限于直线分布式多点源,根据其他实施例, 还可以呈弧线状、折线状等。直线状、弧形状或折线状的射线源模块可以根据需要设置或组合,使得从被检测物体的输送方向观察,射线源3可以呈在扫描区域上侧开口的围绕扫描区域的圆角矩形结构、多边形结构、椭圆形结构等。此外,沿被检测物体的输送方向观察,射线源3的射线源模块不限于设置在扫描区域的左侧、右侧和下侧上,并且还可以设置在例如上侧、左侧和右侧,上下两侧和左侧,以及上下两侧和右侧,具体可以根据实际使用场景进行设置。在本实施例下文的描述中,以射线源模块设置在扫描区域的左侧、右侧和下侧的情况为例进行描述,但所描述的原理同样适用于射线源模块以其他任意三侧布置的情况。
与所述前述实施例相同,本实施例的射线源的多个射线源模块也是可相互独立拆卸和安装的,即,每个射线源模块具有单独的腔体以用于容纳各自的射线发生装置,每个射线源模块具有单独的腔体意味着各个射线源模块的多个靶点共用一个单独的真空腔。每个射线源模块的多个靶点在真空腔体内的间距可以由靶点数量和腔体的长度决定。根据一些实施例,单个射线源模块中的靶点数量可以是192、264等,单个射线源模块中的靶点间距可以是4mm、12mm等。每个射线源模块具有单独的腔体具有如下优点:相对于一体式环形腔体的射线源(即,射线源的所有靶点均位于同一个环形真空腔体内),可以缩小单个射线源模块的外壳尺寸以及内部真空腔体的体积,使单个射线源模块体积减小、重量减轻,因此方便射线源的拆卸和安装;另外,每个射线源模块采用单独的真空腔体,可以降低对射线源模块进行维护时腔内打火的风险。
进一步地,与所述前述实施例相同,射线源3的各个射线源模块设置有安装定位结构,以便于射线源模块的安装和调节。借助于安装定位结构,射线源3的各个射线源模块可安装和固定在射线扫描设备中的预定位置处。此外,借助于安装定位结构,射线源模块还可以被旋转以调节射线束的出束角度。射线源3的各个射线源模块由于在射线扫描设备中的位置不同可采用不同的安装方式,具有不同的安装定位结构。例如,位于扫描区域左侧和右侧的射线源模块可通过天车等设备采用吊装的方式进行安装,位于扫描区域下侧的射线源模块不适于采用吊装的方式,可以采用如在所述前 述实施例中描述的安装定位结构(如图5所示的安装定位结构等)进行安装固定或调节射线束的出束角度。
此外,与所述前述实施例相同,射线源3也可以由多个单点源构成,各个射线源模块可以是单点源组,每个单点源组至少包括两个单点源。每个单点源可以单独地发射射线束,例如具有张角A的扇形束(如图3所示)。射线源3的各个单点源可以在射线扫描系统的控制装置的控制下按照预定的时序发射射线。在各个射线源模块是单点源组的情况下,从被检测物体6的输送方向观察,单点源组至少分布在底视角、左侧视角和右侧视角处,可以进一步分布在角落斜视角处,例如左下斜视角和右下斜视角处,甚至更进一步地包括左上斜视角和右上斜视角处(如图22所示)。
下面,详细描述本实施例的射线扫描设备的探测器4的布置。与所述前述实施例相同,探测器4可以包括多个探测器组,多个探测器组可选地位于垂直于被检测物体6的输送方向的同一平面内。此外,与所述前述实施例相同,本实施例的探测器组也是包括多个探测器单元的探测器阵列。
此外,在所述前述实施例中,沿被检测物体的输送方向观察,探测器4的多个探测器组在四侧上围绕扫描区域布置,形成围绕扫描区域的封闭结构,而在本实施例中,沿被检测物体的输送方向观察,探测器4的探测器组仅在三侧上围绕扫描区域布置,即,以在扫描区域一侧开口的非封闭结构围绕扫描区域布置。具体地,如图19-图21所示,探测器4包括分别布置在扫描区域的左侧、右侧和上侧的探测器组41、42、43,探测器组41、42、43端部相互连接形成围绕扫描区域的在扫描区域下侧开口的非封闭结构。在图19-图21所示的实施例中,探测器组41、42、43是包括沿直线排列的多个探测器单元的直线探测器阵列,从而形成在扫描区域下侧开口的非封闭的矩形或方形结构。但是,本实施例的探测器4不限于上述结构,还可以布置成其他结构。例如,探测器4可以包括3个较长的直线探测器阵列和2个较短的直线探测器阵列,这些探测器阵列环绕扫描区域交替布置且端部相互连接,以形成在扫描区域下侧开口的非封闭的多边形结构(如图23所示)。此外,探测器4还可以包括其他数量的多个较长的直线探测器阵列和其他数量的多个较短的直线探测器阵列,这些探测器阵列环 绕扫描区域交替布置且端部相互连接,以形成在扫描区域下侧开口的非封闭的其他多边形结构。本实施例的探测器4的探测器组还可以弧形探测器阵列,多个弧形探测器阵列围绕扫描区域布置且端部相互连接,以形成在扫描区域下侧开口的非封闭的椭圆形结构。本实施例的探测器4的探测器组还可以是直线探测器阵列和弧形探测器阵列的组合,以形成其他形状的在扫描区域下侧开口的非封闭结构,例如在扫描区域下侧开口的圆角矩形结构等。这里,探测器单元的结构以及直线探测器阵列形式和弧形探测器阵列形式的探测器组的结构与该前述实施例中所描述的结构完全相同。
此外,探测器4的探测器组不限于图19-图21所示的设置在扫描区域的左侧、右侧和上侧上,并且还可以设置在例如下侧、左侧和右侧,上下两侧和左侧,以及上下两侧和右侧,只要可以使得射线源的非封闭结构的开口与射线源的非封闭结构的开口相对即可。在本实施例中,以图19-图21所示的探测器组设置在扫描区域的左侧、右侧和上侧的情况为例进行描述,但本实施例同样适用于探测器组布置在其他任意三侧的情况。
此外,与该前述实施例相同,在一些实施例中,探测器4的各个探测器组是可独立拆卸和安装的,由此,可改善探测器的可维护性。而且,与该前述实施例相同,本实施例的探测器4的多个探测器组构造成沿被检测物体6的输送方向移动以拆卸和安装,这样当探测器4的探测器组沿垂直于被检测物体6的输送方向布置在射线源3内侧时,可以在不需要拆卸射线源的情况下进行探测器组的拆装、调节和维护,进一步改善探测器的可维护性。如图19-图21所示的探测器4,探测器组41、42、43可以沿平行于被检测物体6的输送方向移动以拆卸和安装,从而可以在不需要拆卸射线源模块31、32、33的情况下进行拆装、调节和维护。探测器4的探测器组41、42、43可以采用与在所述前述实施例中描述的相同的安装固定结构(如图9所示的实施例及其变形例等)相对于其在射线扫描设备中的安装位置沿被检测物体6的输送方向移动以从所述安装位置拆卸或安装到该安装位置。例如,与所述前述实施例类似,探测器组41、42、43可以经由探测器臂安装到射线扫描设备的支撑框架5或从支撑框架5拆卸。
此外,在射线源或探测器的非封闭结构的开口朝向扫描区域的左侧或 右侧的情况下,探测器4的探测器组还可以沿被检测物体的输送方向的垂直方向移动以拆卸和安装。如图24所示,沿被检测物体的输送方向观察,射线源的射线源模块31、32、33的非封闭结构的开口朝向扫描区域的左侧,探测器4的探测器组41、42、43的非封闭结构的开口朝向扫描区域的右侧。在这种情况下,探测器组41、42、43可以沿垂直于被检测物体输送方向的方向相对于安装位置(例如支撑框架5)移动以拆卸或安装,具体移动方向如图24的(b)图中的箭头所示。由于扫描区域左侧没有设置射线源模块,因此射线源对探测器的上述移动方式没有阻碍,可以方便地拆卸探测器组。可以采用在前文中描述的适用于沿被检测物体的输送方向的垂直方向拆装探测器组的安装固定结构,例如参考图15-图17描述的安装固定结构及其变形例等实现这样的拆装方式。
此外,探测器4的探测器组还可以设置成部分沿被检测物体的输送方向移动以拆卸和安装,另一部分沿被检测物体的输送方向的垂直方向移动以拆卸和安装。例如,在图19-图21所示的实施例中,如果扫描区域左侧或右侧的射线源模块31、32的最高点低于扫描区域上方的探测器组41,探测器组41也可以沿被检测物体的输送方向的垂直方向移动以拆卸和安装。具体的安装固定结构可以采用图15所示的实施例及其变形例。类似地,如果探测器4的探测器组布置在扫描区域的左侧、右侧和下侧,而下侧的探测器组低于左侧和右侧射线源模块的最低点,下侧探测器组也可以沿被检测物体的输送方向的垂直方向移动以拆卸和安装。具体的安装固定结构可以采用图16所示的实施例及其变形例。
此外,与所述前述实施例相同,探测器的多个探测器组借助于各自的安装表面和对应的安装基准面(设置在垂直于被检测物体6的输送方向的同一平面内)而在安装后处于垂直于被检测物体6的输送方向的同一平面内。
下面,进一步描述根据本实施例的射线扫描设备的射线源3和探测器4的相对布置。本实施例的射线源3和探测器4的相对布置与前述实施例不同。在本实施例中,在射线源和探测器的组合状态下,射线源的非封闭结构的开口与探测器的非封闭结构的开口相对布置,探测器的多个探测器组 固定在垂直于被检测物体的输送方向的同一平面内,而射线源的多个射线源模块布置在垂直于被检测物体的输送方向的多个平面内,例如,射线源的布置在探测器的非封闭结构的开口一侧的射线源模块与探测器的各个探测器组固定在垂直于被检测物体的输送方向的同一平面内,而射线源的其他射线源模块固定在垂直于被检测物体的输送方向的其他平面内。射线源的其他射线源模块可位于垂直于被检测物体的输送方向的其他单个平面内或其他多个不同平面内,可选地是其他单个平面内,本实施例以其他射线源模块布置在垂直于被检测物体的输送方向其他单个平面内(如图21所示)为例进行描述,但同样适用于其他多个不同平面的情况。
在射线源和探测器的组合状态下,射线源可以是如前所述任意实施例的结构,例如沿被检测物体的输送方向观察呈在扫描区域一侧开口的矩形、多边形、椭圆形结构等,探测器可以是如前所述任意实施例的结构,如在扫描区域一侧开口的方形结构、矩形结构、多边形结构、椭圆形结构等,只要射线源和探测器结构的开口相对布置即可。下面,以图19-图21所示实施例为例来描述射线源3和探测器4在组合状态下的详细布置,但是相同的原理同样适用于射线源3和探测器4的其他任何结构的组合。
在一些示例中,与所述前述实施例类似地,基于如上所述的射线源3和探测器4的组合,鉴于探测器的环状布置(半封闭环),探测器4的探测器组41、42、43可以分别布置成能够接收来自其余侧的各个射线源模块的射线,使得射线源的多个射线源模块可以共用探测器的各个探测器组。由此,可以减少探测器组的数量。此外,由于射线源模块31、32的射线除了可以分别被相对侧的探测器组42、41检测之外,还可以被除了同侧探测器之外的其他侧探测器组接收,射线源模块33的射线则可以被所有探测器组41、42、43接收,因此,各个射线源模块的射线可以尽可能多地被探测器检测到。结果,虽然仅在扫描区域的三个侧面上布置射线源模块和探测器,本实施例的射线扫描设备仍然可以获取足够的检测数据来进行图像重建,同时,由于减少了射线源模块和探测器组,可以减轻设备重量,从而有利于构造轻型化射线扫描设备。
此外,在一些示例中,射线源3的射线源模块33布置成与探测器4的 各个探测器组41、42、43处于垂直于被检测物体的输送方向的同一平面内。这具体地是指射线源模块33的射线出口正对各个探测器组的探测器晶体(如图21所示)。由此,射线源模块33的射线束可以覆盖到更多的探测器晶体,有利于获取更多的检测数据,提高图像质量。
此外,在一些示例中,与上述前述实施例中的各个探测器组类似地,从被检测物体的输送方向观察,即在被检测物体的输送方向的垂直方向上,探测器4的与其他射线源模块31、32同侧的探测器组41、42分别布置在射线源3的其他射线源模块31、32与扫描区域之间,并且沿被检测物体的输送方向,其他射线源模块31、32与同侧的探测器组41、42至少部分重叠(如图21所示)。由此,可以减小射线源与探测器之间光路所覆盖的设备长度,从而减小设备总长度。
另外,在与所述前述实施例的各个探测器组类似地,在探测器组41、42在被检测物体的输送方向上与射线源模块31、32至少部分重叠的情况下,探测器组41、42被构造成分别避开同侧射线源模块31、32的射线束并且接收除了同侧射线源模块之外的其余所有侧射线源模块的射线。
更进一步地,与所述前述实施例类似,探测器4的各个探测器组的探测器晶体布置在探测器单元的沿被检测物体的输送方向的端部,并且探测器4的与其他射线源模块31、32同侧的探测器组41、42布置成在被检测物体的输送方向上分别紧邻同侧射线源模块31、32的射线束边缘,但不遮挡同侧射线源模块31、32的射线束。由此,射线源3和探测器4能够最大程度地在被检测物体6的输送方向上重叠,从而可以尽可能地减小射线源与探测器之间的光路所覆盖的设备长度,从而可以减小设备总长度。
更在一些示例中,与所述前述实施例类似,射线源3的射线源模块31、32被布置成射线束分别避开同侧探测器组41、42且照射相对侧探测器组的探测器晶体。更进一步地,与所述前述实施例相同,射线源模块31、32可相对于各自的靶轴转动预定角度,以调整各自的射线束的出束角度,从而使得各自射线束的中心位置照射相对侧的探测器晶体。由于探测器的探测器晶体在被检测物体的输送方向上位于探测器单元的端部位置且紧邻同侧射线源的射线束边缘布置,射线源模块可以仅转动非常小的预定角度, 例如可以是1.5度,即可使得射线束的中心位置照射探测器晶体。这样,能够最大程度地减小射线束斜射入探测器晶体表面对成像产生的不利影响。此外,与所述前述实施例相同地,射线源模块可绕靶轴或其他轴线转动、或通过前述实施例中所提及的其他适合的方式来调节射线束的出束角度。
此外,与所述前述实施例类似的,本实施例的射线源的相邻射线源模块的端部处也可能缺少投影数据。例如,在如图19-图21所示的实施例中,射线源模块31、33的相邻端部处以及射线源模块33、32的相邻端部处的靶点之间的间距可能大于每个射线源内的靶点之间的间距,因此,在这些端部处缺少投影数据。因此,与所述前述实施例类似,本实施例的射线扫描设备的图像处理模块也被配置成具有数据补偿功能,其能够针对视角缺失数据进行补偿和/或对重建图像进行修复,以提高图像质量。本实施例的射线扫描设备的图像处理模块采用与前述实施例相同的方法进行图像重建。
当然,根据其他实施例,由于射线源模块31、32与射线源模块33布置在垂直于被检测物体输送方向的不同平面内,可以在一些示例中将射线源模块31、33的相邻端部和/或射线源模块33、32的相邻端部设置成沿被检测物体的输送方向重叠布置,使得相邻射线源模块31、33或32、33的相邻端部处靶点重叠,或靶点间距不大于每个射线源内的靶点之间的间距。在这种情况下,不存在投影数据缺失,相应地,不需要使用图像处理模块的数据补偿功能来进行图像重建。
除了具备与所述前述实施例的射线扫描设备相同的优点以外,本实施例的射线扫描设备还具有以下优势。
本实施例的射线源和探测器均仅在三侧上围绕扫描区域,相对于在四侧上(可以是射线源和探测器其中一者或两者)围绕扫描区域的情况,可以获取足够的数据来进行图像重建,还可以降低设备成本,减小设备重量,从而可提供轻型化射线扫描设备。
此外,本实施例单独地使在扫描区域一侧上的射线源模块正对探测器的探测器晶体,可以使得该射线源模块的射线覆盖到更多的探测器单元,有利于增加数据量,提高图像质量。
以上描述了射线源在上下左右四侧或者在其中任意三侧上围绕扫描区域的射线扫描设备,根据其他实施例,射线源还可以布置成仅在上下左右四侧中的任意两侧围绕扫描区域。
以上描述了用于射线源的各个射线源模块的安装定位结构,以上安装定位结构不限于在本申请的射线扫描设备中使用,还可以在其他适合的射线扫描设备中使用。
以上描述了用于探测器组的各种安装固定结构,以上安装固定结构不限于在本申请的射线扫描设备中使用,还可以在其他适合的射线扫描设备中使用,各个实施例的安装固定结构可单独使用,也可在单个射线扫描设备中组合使用。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请实施例可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内
本领域技术人员应能理解,上述实施例均是示例性而非限制性的。在不同实施例中出现的不同技术特征可以进行组合,以取得有益效果。本领域技术人员在研究附图、说明书及权利要求书的基础上,应能理解并实现所揭示的实施例的其他变化的实施例。在权利要求书中,术语“包括”并不排除其他装置或步骤;物品没有使用数量词修饰时旨在包括一个/种或多个/种物品,并可以与“一个/种或多个/种物品”互换使用”;术语“第一”、“第二”用于标示名称而非用于表示任何特定的顺序。权利要求中的任何附图标记均不应被理解为对保护范围的限制。权利要求中出现的多个部分的功能可以由一个单独的硬件或软件模块来实现。某些技术特征出现在不同的从属权利要求中并不意味着不能将这些技术特征进行组合以取得有益效果。

Claims (21)

  1. 一种射线扫描设备,包括:
    传送装置,其运送被检测物体通过所述射线扫描设备的扫描区域;
    射线源,其包括多个射线源模块,每个射线源模块包括发射射线束的至少一个射线源点,所述多个射线源模块在所述传送装置上方围绕所述扫描区域布置,并且固定在垂直于所述被检测物体的输送方向的平面内;以及
    探测器,其用于检测在扫描期间传输通过所述被检测物体的射线并且包括多个探测器组,所述多个探测器组的端部相互连接以围绕所述扫描区域布置,并且所述多个探测器组固定在垂直于所述被检测物体的输送方向的平面内,
    其中,所述探测器沿所述被检测物体的输送方向的垂直方向位于所述射线源和所述扫描区域之间,所述射线源和所述探测器布置成沿所述被检测物体的输送方向至少部分重叠,并且所述多个射线源模块可相互独立地拆卸和安装。
  2. 根据权利要求1所述的射线扫描设备,其中,所述射线源模块为分布式多点源,所述多个射线源模块围绕所述扫描区域构成在所述传送装置下方开口的非封闭结构。
  3. 根据权利要求2所述的射线扫描设备,其中,所述多个射线源模块的各个为直线分布式多点源,多个直线分布式多点源布置在所述扫描区域的上侧、左侧和右侧,其中所述多个直线分布式多点源的端部直接连接或间隔布置。
  4. 根据权利要求2所述的射线扫描设备,其中,所述多个射线源模块包括多个第一分布式多点源和多个第二分布式多点源,所述多个第一分布式多点源与所述多个第二分布式多点源交替布置,且端部之间直接连接或间隔设置。
  5. 根据权利要求4所述的射线扫描设备,其中,所述第一分布式多点源是直线分布式多点源,所述第二分布式多点源是长度比所述第一分布式多点源短的直线分布式多点源或弧形分布式多点源。
  6. 根据权利要求1所述的射线扫描设备,其中,所述多个射线源模块的各个是单点源组,多个单点源组至少布置在所述传送装置上方的左侧视角、右侧视角、顶视角和角落斜视角上,并且每个单点源组包括至少两个单点源。
  7. 根据权利要求1-5中任一项所述的射线扫描设备,其中,每个射线源模块具有单独的腔体以用于容纳各自的射线发生装置。
  8. 根据权利要求7所述的射线扫描设备,其中,每个射线源模块的单独腔体设置有安装定位结构,所述安装定位结构用于对所述射线源模块进行安装和定位,并且用于转动所述射线源模块以调节射线束的出束角度。
  9. 根据权利要求1-6和8中任一项所述的射线扫描设备,其中,每个探测器组是包括多个探测器单元的探测器阵列,所述多个探测器组布置成围绕所述扫描区域的封闭的方形结构、矩形结构、多边形结构或椭圆形结构。
  10. 根据权利要求9所述的射线扫描设备,其中,每个探测器组是直线探测器阵列,所述探测器包括四个直线探测器阵列,所述四个直线探测器阵列布置在扫描区域的上下左右四侧,形成矩形或方形结构。
  11. 根据权利要求9所述的射线扫描设备,其中,每个探测器组是直线探测器阵列,所述探测器包括多个第一直线探测器阵列和多个第二直线探测器阵列,所述第二直线探测器阵列比所述第一直线探测器阵列短,所述第一直线探测器阵列和所述第二直线探测器阵列环绕所述扫描区域交替布置以形成多边形结构。
  12. 根据权利要求9所述的射线扫描设备,其中,所述探测器的各个探测器组是可相互独立地拆卸和安装的。
  13. 根据权利要求12所述的射线扫描设备,其中,所述探测器的各个探测器组构造成沿所述被检测物体的输送方向移动以拆卸和安装。
  14. 根据权利要求12所述的射线扫描设备,其中,所述探测器的各个探测器组构造成一部分探测器组沿所述被检测物体的输送方向移动以拆卸和安装,另一部分探测器组沿所述被检测物体的输送方向的垂直方向移动以拆卸和安装。
  15. 根据权利要求13或14所述的射线扫描设备,其中,所述探测器的各个探测器组包括探测器臂,所述射线扫描设备包括相对于所述射线扫描设备的安装平台固定的支撑框架,所述探测器组经由所述探测器臂沿所述被检测物体的输送方向或所述被检测物体的输送方向的垂直方向移动以安装到所述支撑框架或从所述支撑框架拆卸。
  16. 根据权利要求9所述的射线扫描设备,其中,所述探测器的各个探测器组被构造成避开同侧射线源模块的射线束并且接收除了同侧射线源模块之外的其余所有侧射线源模块的射线。
  17. 根据权利要求9所述的射线扫描设备,其中,所述探测器组的每个探测器单元包括用于接收在扫描期间传输通过所述被检测物体的射线的探测器晶体,所述探测器晶体布置在所述探测器单元的沿所述被检测物体的输送方向的端部,并且布置成在所述被检测物体的输送方向上紧邻同侧射线源模块的射线束边缘,但不遮挡所述射线束。
  18. 根据权利要求17所述的射线扫描设备,其中,所述射线源的各个射线源模块布置成使得射线束避开同侧探测器组并且照射相对侧的探测器组的探测器晶体。
  19. 根据权利要求18所述的射线扫描设备,其中,各个射线源模块构造成绕靶轴转动以使得射线束的中心位置照射相对侧的探测器组的探测器晶体。
  20. 根据权利要求1-6、8、10-14以及16-19中任一项所述的射线扫描设备,还包括:
    图像处理模块,所述图像处理模块配置成针对所述射线源模块的端部处的投影数据缺失进行数据补偿和/或重建图像修复以得到完整的重建图像。
  21. 根据权利要求20所述的射线扫描设备,其中,所述图像处理模块构造成通过迭代方法、图像阈修复方法或者两者的组合来进行图像重建。
PCT/CN2022/103432 2021-07-07 2022-07-01 射线扫描设备 WO2023280079A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237044638A KR20240021831A (ko) 2021-07-07 2022-07-01 방사선 주사 장비
EP22836830.4A EP4369055A1 (en) 2021-07-07 2022-07-01 Ray scanning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110769674.8A CN115097537A (zh) 2021-07-07 2021-07-07 射线扫描设备
CN202110769674.8 2021-07-07

Publications (1)

Publication Number Publication Date
WO2023280079A1 true WO2023280079A1 (zh) 2023-01-12

Family

ID=83287313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103432 WO2023280079A1 (zh) 2021-07-07 2022-07-01 射线扫描设备

Country Status (4)

Country Link
EP (1) EP4369055A1 (zh)
KR (1) KR20240021831A (zh)
CN (1) CN115097537A (zh)
WO (1) WO2023280079A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103340641A (zh) * 2013-04-27 2013-10-09 中国人民解放军北京军区总医院 Ct扫描仪脉冲成像系统及其脉冲成像方法
CN103901485A (zh) * 2012-12-27 2014-07-02 同方威视技术股份有限公司 一种人体安检系统
CN104483711A (zh) * 2014-12-17 2015-04-01 同方威视技术股份有限公司 基于分布式光源的辐射成像系统
CN206151474U (zh) * 2016-05-17 2017-05-10 苏州爱思源光电科技有限公司 一种探测器系统及ct扫描仪
US20180299580A1 (en) * 2017-04-17 2018-10-18 Rapiscan Systems, Inc. X-Ray Tomography Inspection Systems and Methods
US20190137651A1 (en) * 2017-09-06 2019-05-09 Rapiscan Systems, Inc. Method and System for a Multi-View Scanner
CN111388001A (zh) * 2020-03-31 2020-07-10 王振 一种非旋转式计算机断层成像装置及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901485A (zh) * 2012-12-27 2014-07-02 同方威视技术股份有限公司 一种人体安检系统
CN103340641A (zh) * 2013-04-27 2013-10-09 中国人民解放军北京军区总医院 Ct扫描仪脉冲成像系统及其脉冲成像方法
CN104483711A (zh) * 2014-12-17 2015-04-01 同方威视技术股份有限公司 基于分布式光源的辐射成像系统
CN206151474U (zh) * 2016-05-17 2017-05-10 苏州爱思源光电科技有限公司 一种探测器系统及ct扫描仪
US20180299580A1 (en) * 2017-04-17 2018-10-18 Rapiscan Systems, Inc. X-Ray Tomography Inspection Systems and Methods
US20190137651A1 (en) * 2017-09-06 2019-05-09 Rapiscan Systems, Inc. Method and System for a Multi-View Scanner
CN111388001A (zh) * 2020-03-31 2020-07-10 王振 一种非旋转式计算机断层成像装置及方法

Also Published As

Publication number Publication date
CN115097537A (zh) 2022-09-23
EP4369055A1 (en) 2024-05-15
KR20240021831A (ko) 2024-02-19

Similar Documents

Publication Publication Date Title
WO2023280256A1 (zh) 射线扫描设备及射线扫描系统
JP4628759B2 (ja) シンチレータ・コリメータ結合体、ct検出器、およびct検出器を含むctシステムとその製造方法
CN100500094C (zh) 确定射线摄影成像的管电流调制曲线的方法和装置
US4115695A (en) Gantry for computed tomography
US9182516B2 (en) Personnel screening system
JP6125704B2 (ja) コリメータ
US7667215B2 (en) Method and apparatus for providing radiation shielding for non-invasive inspection systems
WO2009094835A1 (fr) Structure de support de bras et système d'imagerie à rayonnement équipé de la structure de support de bras
US20130114786A1 (en) Coarse segmented detector architecture and method of making same
WO2023280079A1 (zh) 射线扫描设备
WO2023280268A1 (zh) 射线扫描设备
WO2023280279A1 (zh) 射线扫描设备
KR102187042B1 (ko) 엑스레이 화물검색기
US20120275776A1 (en) Camera enclosure assembly
WO2016070648A1 (zh) 一种用于x射线检查设备的旋转弧形探测器盒
CN115598716A (zh) 用于射线扫描设备的射线源的安装定位结构以及射线扫描设备
CN115598155A (zh) 用于射线扫描设备的探测器的安装固定结构以及射线扫描设备
WO2021082384A1 (zh) 一种基于传输速度改变自适应的安检设备
CN215640962U (zh) 射线扫描设备
US20050017183A1 (en) Nuclear medical diagnostic apparatus and method for detecting radiation
KR102598302B1 (ko) 양방향 엑스레이 화물검색기
WO2023056881A1 (zh) Ct成像系统
JP5025178B2 (ja) X線コンピュータ断層撮影装置
US4093861A (en) Gantry for computed tomography
KR102597060B1 (ko) 엑스레이 화물검색기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836830

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023579430

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20237044638

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237044638

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: P6003411/2023

Country of ref document: AE

WWE Wipo information: entry into national phase

Ref document number: 2022836830

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022836830

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE