WO2023056881A1 - Ct成像系统 - Google Patents

Ct成像系统 Download PDF

Info

Publication number
WO2023056881A1
WO2023056881A1 PCT/CN2022/122477 CN2022122477W WO2023056881A1 WO 2023056881 A1 WO2023056881 A1 WO 2023056881A1 CN 2022122477 W CN2022122477 W CN 2022122477W WO 2023056881 A1 WO2023056881 A1 WO 2023056881A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging system
detector
area
detection areas
detection
Prior art date
Application number
PCT/CN2022/122477
Other languages
English (en)
French (fr)
Inventor
张丽
陈志强
常铭
金鑫
黄清萍
洪明志
张立国
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to EP22877900.5A priority Critical patent/EP4413925A1/en
Priority to KR1020247014891A priority patent/KR20240089325A/ko
Priority to JP2024520993A priority patent/JP2024536404A/ja
Publication of WO2023056881A1 publication Critical patent/WO2023056881A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3307Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts source and detector fixed; object moves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/419Imaging computed tomograph
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/50Detectors
    • G01N2223/501Detectors array

Definitions

  • the present application relates to the technical field of security inspection, in particular to a CT imaging system.
  • the size of the detector and the acquisition speed are mutually restricted.
  • the acquisition speed of the high-resolution detector is slow, and thousands of frames of data need to be collected in the CT imaging system, so it takes a long time to obtain the complete data.
  • its imaging area is small and cannot meet the imaging requirements of a large field of view.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • the embodiments of the present disclosure provide a CT imaging system that can be used for high-resolution X-ray imaging while meeting the requirements of large field of view and acquisition speed. scope of application.
  • a CT imaging system including: a scanning channel, which is arranged along a first direction, so that the object to be tested enters and exits the CT imaging system through the scanning channel; A radiation source assembly on one side of the channel, the radiation source assembly is used to emit a beam of radiation; a detector assembly arranged on the other side of the scanning channel, the detector assembly is arranged opposite to the radiation source assembly, and is used to receive The ray beam, the ray beam forms an imaging area between the ray source assembly and the detector assembly, wherein the detector assembly includes at least two detection areas and a blank area, and the imaging area has Extending through the main beam plane of the ray source assembly, the position of the detection area and the position of the blank area are complementary with respect to the main beam plane.
  • the algorithm can The missing data is compensated, and the complete projection data is obtained, which is used to restore the image information of the object to be measured.
  • one of the at least two detection areas is set on the central axis, and the other of the at least two detection areas is set on one side of the one.
  • one of the at least two detection areas is set on the main beam plane and equally divided by the main beam plane.
  • another one of the at least two detection areas is adjacent to one of the at least two detection areas.
  • another one of the at least two detection areas is separated from one of the at least two detection areas by the blank area.
  • At least one detector is included in the detection area, and the size of the blank area is not smaller than the size of one detector pixel.
  • the CT imaging system has a first position where the ray beam covers the first blank area and a second position where the ray beam covers the first detection area, and the output from the first position and the second position Image data is the same.
  • the detector assemblies are provided in multiple rows, and the detector assemblies in multiple rows are arranged in a first direction.
  • the ray beam includes a first outgoing angle and a second outgoing angle, and the coverage of the first outgoing angle and the second outgoing angle is the outgoing range of the ray beam.
  • At least two detection areas are covered in the emission range.
  • a stage is further included, and the stage is slidably arranged on the scanning channel, so that the object to be tested enters and exits the CT imaging system through the scanning channel.
  • an adjustment platform is provided between the stage and the item to be tested, and the adjustment platform is used to adjust the posture of the item to be tested.
  • FIG. 1 is an application scene diagram of a CT imaging system according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a CT imaging system according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a CT imaging system at a first position according to an embodiment of the present application
  • Fig. 4 is a schematic structural diagram of a CT imaging system at a second position according to an embodiment of the present application.
  • the main beam surface 31 , the first outgoing angle 32 , and the second outgoing angle 33 are identical to each other.
  • the CT imaging system is a collimated ray beam with a certain energy emitted by the ray source that passes through the object to be inspected. According to the different attenuation coefficients of each volume element in each transmission direction, the projected energy received by the detector is also different. After a series of signal conversions, a scanned image is obtained.
  • the size of the detector and the acquisition speed are mutually restricted.
  • the acquisition speed of the high-resolution detector is relatively slow.
  • a multi-segmented scanning scheme is adopted, which requires multiple scans of the object to be tested.
  • Thousands of frames of data need to be collected in the medium, so it takes a long time to obtain complete data, and the detector with a high acquisition speed has a small imaging area, which cannot meet the imaging requirements of a large field of view.
  • the current scheme of splicing multiple rows of detectors is adopted.
  • the current high The edge thickness of the high-resolution detector is much larger than the size of the detector pixel.
  • the direct use of the whole block detector has higher requirements on the detector system and the detector itself.
  • the field of view, transmission rate, resolution and other requirements will be higher, which is usually difficult to achieve.
  • the present application proposes a CT imaging system 1000 capable of realizing a large field of view, in which a high-resolution and small-sized detector is used, and complete CT data can be obtained through only one CT scan, which can solve the above-mentioned problems.
  • the collimated beam with a certain energy emitted by the ray source passes through the object to be inspected.
  • the projected energy received by the detector It is also different. After a series of signal conversions, a scanned image is obtained.
  • CCD imaging is used, and X-rays are directly irradiated and processed to obtain an overlapping image of the object that X-rays pass through in the direction of irradiation.
  • the workpiece to be tested in the embodiments of the present disclosure may be devices to be tested in various fields, such as rocket bodies in the aerospace field, or pipes in the pipeline device field.
  • the workpiece is specifically a cylindrical or near-cylindrical structure. It can be understood that workpieces with other contour structures, such as cube structures, pyramid structures, etc., can also use the method in the present technology.
  • CT imaging system 1000 The following describes a CT imaging system 1000 according to an embodiment of the present application with reference to FIGS. 1-4 .
  • a CT imaging system 1000 of the present application which can be used to detect the internal structure of the object 100 to be measured, and the system includes: a scanning channel 200, a radiation source assembly arranged on one side of the scanning channel 200 10 and a detector assembly 20 arranged on the other side of the scanning channel 200.
  • the scanning passage 200 is arranged along the first direction, so that the object 100 to be tested enters and exits the CT imaging system 1000 through the scanning passage 200, the radiation source assembly 10 is used to emit a radiation beam, and the detector assembly 20 is arranged opposite to the radiation source assembly 10, For receiving beams of radiation.
  • the first direction can be understood as the conveying direction of the scanning channel 200 , and the object to be tested 100 is placed in the scanning channel 200 and enters and exits the CT imaging system 1000 along the first direction.
  • a radiation source assembly 10 and a detector assembly 20 are arranged on both sides of the scanning channel 200 respectively, and the radiation source assembly 10 and the detector assembly 20 are arranged opposite to each other at 180°.
  • a radiation generator is arranged in the radiation source assembly 10 , which is the core component of the radiation source assembly 10 , and X-rays are generated by the excitation of the radiation generator, which can be used to detect the object 100 to be tested.
  • a detector is arranged in the detector assembly 20 to receive the radiation emitted by the radiation source and convert it into a digital signal, including: a detector panel, a power supply, cables, a detector shielding device and the like.
  • the ray beam forms an imaging area between the ray source assembly 10 and the detector assembly 20 .
  • a collimator is provided at the exit of the ray generator. After the X-rays are emitted from the ray generator, they need to pass through the collimator first, and then irradiate the object 100 to be tested.
  • the collimator restricts the emission range of X-rays and forms an imaging area, which mainly shields X-rays emitted from other directions and limits X-rays in the same plane.
  • the detector assembly 20 includes at least two detection areas 21 and one blank area 22 , and at least one detector is disposed in each detection area 21 .
  • a detection area 21 and a blank area 22 are arranged in the detector assembly 20, wherein a detector is arranged in the detection area 21, which can receive the ray beam, and two adjacent detection areas 21 are spaced apart.
  • the open and spaced areas have no detectors, so they do not have the function of receiving ray beams. It can be understood that the area set between two adjacent detection areas 21 is the blank area 22 . Therefore, there should be at least two detection areas 21 separated to form a blank area 22 in the detector assembly 20 .
  • the total number of physical units of the detectors that is, the detector pixels
  • the resolution of the detectors is closely related to the size of the pixels, the more pixels The smaller the number, the higher the resolution of the CT imaging system 1000 and the clearer the image.
  • the imaging area has a main beam surface 31 extending through the radiation source assembly 10, at least two detection areas 21 are asymmetrically distributed in the second direction with the main beam surface 31 as a reference, and the position of the detection area 21 is opposite to the position of the blank area 22 Complementary to the main beam surface 31.
  • the dotted line in the middle of the imaging area is the main beam plane 31 , with the main beam plane 31 as a reference, the detection areas 21 are asymmetrically distributed in the second direction, that is, the detection areas 21 on both sides of the main beam plane 31 It is asymmetric, the distance between the position of the detection area 21 and the main beam surface 31 and the distance between the position of the blank area 22 and the main beam surface 31 are the same, and there is a complementary relationship in space.
  • the range of a detection area 21 may be greater than or equal to the range of the blank area 22 corresponding to the detection area 21 in space relative to the main beam surface 31, that is, the length of the detection area 21 in the second direction It may be greater than or equal to the length in the second direction of the blank area 22 corresponding to the detection area 21 spatially relative to the main beam plane 31 .
  • the range of the detection area 21 is equal to the range of the blank area 22 corresponding to the detection area 21 spatially relative to the main beam plane 31, the minimum number of detectors is required, and the cost is reduced to a greater extent.
  • the CT imaging system 1000 includes a slip ring surrounding the scanning channel 200, the ray source assembly 10 and the detector assembly 20 are arranged on the slip ring and are arranged oppositely, after the slip ring is driven by the drive motor, It can rotate around the axis of the scanning channel 200 , that is, after the slip ring rotates, the radiation source assembly 10 and the detector assembly 20 can rotate around the axis of the scanning channel 200 to detect different sections of the object 100 to be tested.
  • the CT imaging system 1000 of the present application multiple detectors with high resolution, small size, and high acquisition speed are used. Since the detection area 21 is asymmetrically distributed with respect to the main beam plane 31, and its position is opposite to that of the blank area 22 Complementary to the main beam surface 31 , relying on data symmetry by means of rotational scanning, missing data can be compensated by an algorithm to obtain complete data. The principle of obtaining missing data by means of rotational scanning will be described through the following specific examples.
  • one of the at least two detection areas 21 is disposed on the main beam plane 31 , and the other of the at least two detection areas 21 is disposed on one side of one.
  • the main beam surface 31 passes through one of the detection areas 21, and the other detection area 21 is arranged on the right side of the detection area 21 and spaced apart to form a In the blank area 22, relative to the main beam plane 31, the two detectors in the imaging area are arranged asymmetrically.
  • the arrangement form of the detector assembly 20 can be further subdivided into the following two embodiments.
  • one of the at least two detection areas 21 is set on the main beam surface 31, and is equally divided by the main beam surface 31. Wherein, another one of the at least two detection areas 21 is adjacent to one of the at least two detection areas 21 .
  • the main beam surface 31 passes through one of the detection areas 21, the detection area 21 is equally divided, and the other detection area 21 is adjacent to the right side of the detection area 21, which is equivalent to Since the two detection areas 21 are closely spliced, relative to the main beam plane 31 , the two detectors in the imaging area are arranged asymmetrically.
  • one of the at least two detection areas 21 is set on the main beam surface 31 and is not equally divided by the main beam surface 31 . Wherein, another one of the at least two detection areas 21 is separated from one of the at least two detection areas 21 by a blank area 22 .
  • the main beam surface 31 passes through one of the detection areas 21, and the detection areas on the left and right sides of the detection area 21 passed by the main beam surface 31 have different sizes of detection areas, and the other detection area 21 is arranged on the right side of the detection area 21 and spaced apart to form a blank area 22 , relative to the main beam plane 31 , the two detectors in the imaging area are arranged asymmetrically.
  • one of the at least two detection areas 21 is set on the main beam surface 31 and is not equally divided by the main beam surface 31 . Wherein, another one of the at least two detection areas 21 is separated from one of the at least two detection areas 21 by a blank area 22 .
  • the main beam surface 31 passes through one of the detection areas 21, and the detection areas on the left and right sides of the detection area 21 passed by the main beam surface 31 have different sizes of detection areas, and the other detection area 21 is immediately adjacent to the right side of the detection area 21, which is equivalent to splicing two detection areas 21.
  • the two detectors in the imaging area are arranged asymmetrically.
  • the different sizes of the detection areas on the left and right sides of the detection area 21 passed by the main beam plane 31 mentioned in the above embodiments refer to differences in a physical sense, that is, different coverage areas.
  • the detection area 21 includes at least one detector, and the size of the blank area 22 is not smaller than the size of one detector pixel.
  • the blank area 22 is formed due to the interval between two adjacent detection areas 21, and the size of the blank area 22 represents the distance between two adjacent detection areas, which is not less than one detector in the detection area 21
  • the size of the pixel for example: the size of the detector pixel in the detection area 21 is 0.1 mm ⁇ 0.1 mm, in this case, the size of the blank area is not less than 0.1 mm.
  • the CT imaging system 1000 has a first position where the ray beam covers the first blank area 221 and a second position where the ray beam covers the first detection area 211, and the image data output from the first position and the second position same.
  • blank area 22 is shown in FIG. 3 and FIG. Locations between areas 21 where detectors are not installed.
  • the first position of the CT imaging system 1000 is shown in FIG. 3 , the ray source assembly 10 emits the ray beam above the scanning channel 200 , and the detector assembly 20 receives the ray beam below the scanning channel 200 , and the detector assembly 20 moves from left to right.
  • the first detection area 211 , the second detection area 212 and the first blank area 221 are in sequence, and the ray beam can cover the first detection area 211 , the second detection area 212 and the first blank area 221 .
  • the first detection area 211 and the second detection area 212 are equipped with detectors, they can both be imaged, and since there is no detector in the first blank area 221 , data here is missing.
  • the second position of the CT imaging system 1000 is shown in FIG. 4 .
  • the CT imaging system 1000 rotates counterclockwise from the first position to the second position.
  • the radiation source assembly 10 emits radiation beams at the lower left of the scanning channel 200 to detect
  • the detector assembly 20 receives the ray beam at the upper right of the scanning channel 200.
  • the detector assembly 20 includes the first detection area 211, the second detection area 212 and the first blank area 221 from bottom to top, and the ray beam can cover the first detection area. 211 , the second detection area 212 and the first blank area 221 .
  • the first detection area 211 and the second detection area 212 are equipped with detectors, they can both be imaged, and since there is no detector in the first blank area 221 , data here is missing.
  • the imaging data of the radiation source assembly 10 and the first detection area 211 in the first position and the imaging data of the radiation source assembly 10 and the first blank area 221 in the second position Similarly, the missing data of the first blank area 221 in the second position can be filled by the first detection area 211 in the first position, and data complementation can be completed, so as to construct the complete data required by the object 100 to be tested.
  • the present application does not limit the spacing of each detection area 21, the spacing between two adjacent detection areas 21 may not be equal, or the spacing between two adjacent detection areas 21 may be partially unequal, or The distance between two adjacent detection areas 21 may be equal.
  • the distance refers to the length distance between two adjacent detection areas 21 in the second direction.
  • the distances between two adjacent detection areas 21 are equal.
  • the distances between two adjacent detection areas 21 are equal, that is, the adjacent two detection areas 21 are in the second direction. The distances above are equal.
  • the application does not limit the coverage area of each detection area 21, the coverage area of each detection area 21 can be completely different, or the coverage area of each detection area 21 can be partially different, or the coverage area of each detection area 21 can be are the same.
  • the coverage area refers to the product of the length of each detection area 21 in the second direction and the length in the third direction. It should be noted that even if the coverage areas of the two detection areas 21 are the same, the lengths of the two detection areas 21 in the second direction and the length in the third direction may be different.
  • the third direction can be understood as a radial direction with the radiation source assembly 10 as the center, and the third direction is perpendicular to the second direction and the first direction.
  • the coverage areas of the detection areas 21 in the second direction are all equal.
  • the detection areas 21 have the same area and the same length in the second direction.
  • the detector assemblies 20 are provided in multiple rows, and the detector assemblies 20 in multiple rows are arranged in a first direction.
  • this application does not limit the number of rows of detector assemblies 20, and multiple rows of detector assemblies 20 in one of the above-mentioned embodiments can be installed in the first direction, which can be used in spiral CT scanning, saving inspection time and improving work efficiency.
  • the radiation beam includes a first emission angle 32 and a second emission angle 33 , and the coverage of the first emission angle 32 and the second emission angle 33 is the emission range of the radiation beam.
  • the dotted line in the middle is the main beam surface 31
  • the angle formed by the left dotted line and the main beam surface 31 is the first exit angle 32
  • the included angle formed by 31 is the second outgoing angle 33
  • the outgoing range covered by the first outgoing angle 32 and the outgoing range covered by the second outgoing angle 33 together form the outgoing range of the ray beam, which is the CT imaging system 1000 of the present application.
  • the CT imaging system 1000 can complete the acquisition of all images of the object 100 to be tested by one revolution.
  • At least two detection areas 21 are covered in the emission range.
  • the emission range In order to meet the conditions of high resolution and high speed while imaging a large field of view in this application, the emission range must cover at least two detection areas 21, that is, within the smallest emission range, it must also cover two detection areas 21 and two detection areas. A blank area 22 between the detection areas 21. There is a blank area 22 within the coverage of the emission range, which can reduce the number of detectors used, reduce the cost of the CT imaging system 1000, and use the spatial complementarity method to obtain the data of the blank area 22 through two detection areas 21 during rotation scanning , so as to obtain complete image data, the specific principle has been explained above, and will not be repeated here.
  • the CT imaging system 1000 further includes a stage 400 , which is slidably disposed on the scanning channel 200 , so as to pass the object 100 to be tested into and out of the CT imaging system 1000 through the scanning channel 200 .
  • the stage 400 is connected to the lead screw, and the object 100 to be tested is placed on the stage 400 .
  • the stage 400 is driven by the lead screw, and the stage 400 can push the object 100 to be tested to move in the scanning channel 200 .
  • the lead screw accurately locates the object 100 to be tested on the ray beam of the CT imaging system 1000, which effectively solves the problem of insufficient positioning accuracy of the transmission system of the testing equipment and meets the requirements of certain products for image testing quality.
  • an adjustment platform 300 is provided between the stage 400 and the object to be tested 100 , and the adjustment platform 300 is used to adjust the attitude of the object to be tested 100 .
  • the adjustment platform 300 of the present application can be used to adjust the motion posture of the object under test 100 conveyed on the production line, and can also be used in the field of radiation detection to adjust the object under test 100 to a preset detection position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种CT成像系统(1000),包括:沿第一方向布置的扫描通道(200);设置在扫描通道(200)一侧的射线源组件(10),射线源组件(10)用于发出射线束;设置在扫描通道(200)另一侧的探测器组件(20),探测器组件(20)与射线源组件(10)相对设置,用于接收射线束,射线束在射线源组件(10)与探测器组件(20)之间形成成像区域,其中,探测器组件(20)包括至少两个探测区域(21)以及一个空白区域(22),成像区域具有延伸通过射线源组件(10)的主束面(31),探测区域(21)的位置与空白区域(22)的位置相对于主束面(31)互补。CT成像系统(1000),借助旋转扫描依靠数据对称性,可通过算法补偿得到缺失的数据,得到完整的投影数据,用于待测物品(100)的图像信息复原。

Description

CT成像系统 技术领域
本申请涉及安检技术领域,尤其涉及一种CT成像系统。
背景技术
探测器的尺寸和采集速度是相互制约的,高分辨率的探测器采集速度较慢,在CT成像系统中需要采集上千帧数据,因此得到完整数据的时间较长,而高采集速度的探测器,其成像面积较小,无法满足大视野的成像需求。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
例如,本公开的实施例提供了一种CT成像系统,可用于高分辨率的X射线成像,同时满足大视野以及采集速度的需求,对探测器的型号无特殊限制,扩大了现有探测器的适用范围。
为了达到上述目的,本申请提出了CT成像系统,包括:扫描通道,所述扫描通道沿第一方向布置,以将待测物品通过所述扫描通道进出所述CT成像系统;设置在所述扫描通道一侧的射线源组件,所述射线源组件用于发出射线束;设置在所述扫描通道另一侧的探测器组件,所述探测器组件与所述射线源组件相对设置,用于接收所述射线束,所述射线束在所述射线源组件与所述探测器组件之间形成成像区域,其中,所述探测器组件包括至少两个探测区域以及一个空白区域,所述成像区域具有延伸通过所述射线源组件的主束面,所述探测区域的位置与所述空白区域的位置相对于所述主束面互补。
根据本申请的CT成像系统,由于探测区域相对于所述主束面非对称分布,且其位置与空白区域的位置相对于所述主束面互补,借助旋转扫描依靠数据对称性,可通过算法补偿得到缺失的数据,得到完整的投影数据,用于待测物体的图像信息复原。
进一步地,所述至少两个探测区域中的一个设置在所述中轴线上,所述至少两个探测区域中的另一个设置在所述一个的一侧。
进一步地,所述至少两个探测区域中的一个设置在所述主束面上,且被所 述主束面均分。
进一步地,所述至少两个探测区域中的另一个与所述至少两个探测区域中的一个相邻。
进一步地,所述至少两个探测区域中的另一个与所述至少两个探测区域中的一个被所述空白区域隔开。
进一步地,所述探测区域内包括至少一个探测器,所述空白区域的尺寸不小于一个探测器像素的大小。
进一步地,所述CT成像系统具有所述射线束覆盖第一空白区域的第一位置和所述射线束覆盖第一探测区域的第二位置,所述第一位置和所述第二位置输出的图像数据相同。
进一步地,所述探测器组件设置有多排,多排所述探测器组件在第一方向上排列。
进一步地,所述射线束包括第一出射角度和第二出射角度,所述第一出射角度和所述第二出射角度的覆盖范围为所述射线束的出射范围。
进一步地,所述出射范围内至少覆盖两个探测区域。
进一步地,还包括载台,所述载台可滑动地设置在所述扫描通道上,以将待测物品通过所述扫描通道进出所述CT成像系统。
进一步地,所述载台与所述待测物品之间设置有调整平台,所述调整平台用于调整所述待测物品的姿态。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
通过下文中参照附图对本公开所作的描述,本公开的其它目的和优点将显而易见,并可帮助对本公开有全面的理解。
图1是根据本申请实施例中CT成像系统的应用场景图;
图2是根据本申请实施例中CT成像系统的结构示意图;
图3是根据本申请实施例中CT成像系统在第一位置的结构示意图;
图4是根据本申请实施例中CT成像系统在第二位置的结构示意图。
需要注意的是,为了清晰起见,在用于描述本公开的实施例的附图中,结 构或区域的尺寸可能被放大或缩小,即这些附图并非按照实际的比例绘制。
附图标记:
CT成像系统1000,
待测物品100,扫描通道200,调整平台300,载台400,
射线源组件10,
探测器组件20,
探测区域21,第一探测区域211,第二探测区域212,
空白区域22,第一空白区域221,
主束面31,第一出射角度32,第二出射角度33。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本领域普通技术人员所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。
在本文中,除非另有特别说明,诸如“上”、“下”、“左”、“右”、“内”、“外”等方向性术语用于表示基于附图所示的方位或位置关系,仅是为了便于描述本公开,而不是指示或暗示所指的装置、元件或部件必须具有特定的方位、以特定的方位构造或操作。需要理解的是,当被描述对象的绝对位置改变后,则它们表示的相对位置关系也可能相应地改变。因此,这些方向性术语不能理解为对本公开的限制。
CT成像系统是由射线源发出、经过准直且具有一定能量的射线束穿过被检物体,根据各个透射方向上各体积元的衰减系数的不同,探测器所接收到的投射能量也不同,经过一系列的信号转换,得到扫描图像。
探测器的尺寸和采集速度是相互制约的,高分辨率的探测器采集速度较慢,针对大视野成像,采用多次分段的扫描方案,需要对待测物品进行多次扫描,在CT成像系统中需要采集上千帧数据,因此得到完整数据的时间较长,而高采集速度的探测器,其成像面积较小,无法满足大视野的成像需求。
为满足大视野需求,目前采取多排探测器拼接的方案,在拼接布置时需要尽可能的减少探测器之间拼接缝隙,否则会因数据缺失产生环状伪影,影响图像质量,但目前高分辨率的探测器边缘厚度远远大于探测器像素的尺寸,采用直接拼接的方式会存在大量的数据缺失,而直接使用整块的探测器对探测器系统的要求较高,对探测器自身的视野、传输速率、分辨率等要求会更高,通常难以实现。
本申请提出一种可实现大视野的CT成像系统1000,其中采用了高分辨率且尺寸小的探测器,仅通过一次CT扫描即可获得完整的CT数据,可解决上述提到的问题。
需要说明的是,本公开的实施例适用于CT扫描、DR扫描等应用场景,在此对扫描的种类不做任何限定。
例如,在CT扫描中,由射线源发出、经过准直且具有一定能量的射线束穿过被检物体,根据各个透射方向上各体积元的衰减系数的不同,探测器所接收到的投射能量也不同,经过一系列的信号转换,得到扫描图像。
例如,在DR扫描中,使用CCD成像,直接用X光照射后成像处理,得到一个在照射方向上X光所穿过物体的重叠形象。
本公开的实施例中的待测工件可为多种领域中的待检测器件,如航天航空领域中的箭体,或者管路器件领域中的管道等。工件具体为的圆柱体或者近圆柱体结构。可以理解地,其他轮廓结构的工件,如方体结构、椎体结构等,同样可采用本技术中的方法。
下面参照图1-图4描述根据本申请实施例的CT成像系统1000。
如图1和图2所示,为本申请的CT成像系统1000,该系统可用于待测物体100内部结构的检测,该系统包括:扫描通道200、设置在扫描通道200一侧的射线源组件10以及设置在扫描通道200另一侧的探测器组件20。
具体的,扫描通道200沿第一方向布置,以将待测物品100通过扫描通道200进出CT成像系统1000,射线源组件10用于发出射线束,探测器组件20与 射线源组件10相对设置,用于接收射线束。
第一方向可以理解为扫描通道200的输送方向,待测物品100置于扫描通道200内,沿第一方向进出CT成像系统1000。在扫描通道200的两侧分别设置有射线源组件10和探测器组件20,射线源组件10和探测器组件20呈180°相对设置。
其中,在射线源组件10内设置有射线发生器,是射线源组件10的核心部件,通过射线发生器的激励生成X射线,可用于对待测物品100进行检测。在探测器组件20内设置有探测器,用于接收射线源发出的射线并转换为数字信号,其中包括:探测器面板、电源、线缆、探测器屏蔽装置等。
射线束在射线源组件10与探测器组件20之间形成成像区域。在射线发生器的出口位置上设置有准直器,X射线从射线发生器发射出来之后,需要先经过准直器后,再照射到待测物品100上。准直器对X射线的出射范围产生限制,形成成像区域,主要是屏蔽其他方向发射的X射线,将X射线限制在同一个平面内。
探测器组件20包括至少两个探测区域21以及一个空白区域22,每个探测区域21内至少设置有一个探测器。
本申请为了减少探测器的数量,将探测器组件20内设置探测区域21和空白区域22,其中,探测区域21内设置有探测器,可以接收射线束,相邻的两个探测区域21是间隔开的,间隔开的区域无探测器,因此不具备接收射线束的功能,可以理解为,设置在两个相邻的探测区域21之间的区域即为空白区域22。因此,在探测器组件20内应至少要包括两个探测区域21间隔开以形成一个空白区域22。
在视野方面,由于探测器组件20中具有间隔开的探测区域21,至少两个探测区域21可以同时接收射线束,因此在成像过程中具有大视野的功能;在成本方面,由于探测器组件20中存在空白区域22,进而可以减少探测器的使用数量,降低CT成像系统1000的成本。
当然,每个探测区域21内可以存在多个用于接收射线束的探测器,探测器的总物理单元数,也就是探测器像素,探测器的分辨率与像素的大小有密切关系,像素越小、数目越多,CT成像系统1000的分辨率越高、图像越清晰。
成像区域具有延伸通过射线源组件10的主束面31,至少两个探测区域21 以主束面31为参照在第二方向上呈非对称分布,探测区域21的位置与空白区域22的位置相对于主束面31互补。
如图2所示,成像区域中间的虚线为主束面31,以主束面31为参照,将探测区域21非对称分布在第二方向上,也就是主束面31两侧的探测区域21是非对称的,探测区域21的位置与主束面31的距离和空白区域22的位置与主束面31的距离是相同的,在空间上有互补的关系。
需要注意的是,一个探测区域21的范围可大于或等于与此探测区域21在空间上相对于主束面31对应的空白区域22的范围,也就是在探测区域21在第二方向上的长度可大于或等于与此探测区域21在空间上相对于主束面31对应的空白区域22在第二方向上的长度。作为优选方案,若探测区域21的范围等于与此探测区域21在空间上相对于主束面31对应的空白区域22的范围,则需要的探测器数量最少,更大程度的降低成本。
在一种优选方式中,CT成像系统1000上包括围绕扫描通道200的滑环,射线源组件10和探测器组件20均设置在滑环上,并呈相对布置,滑环由驱动电机驱动后,可围绕扫描通道200的轴线旋转,也就是说,滑环转动后,使射线源组件10和探测器组件20围绕扫描通道200的轴线旋转,以检测待测物品100的不同截面。
根据本申请的CT成像系统1000,使用多块高分辨率、小尺寸、高采集速度的探测器,由于探测区域21相对于主束面31非对称分布,且其位置与空白区域22的位置相对于主束面31互补,借助旋转扫描依靠数据对称性,可通过算法补偿得到缺失的数据,得到完整数据,借助旋转扫描得到缺失的数据的原理,会通过下述具体实施例进行展开描述。
在本申请的一个示意性的实施例中,至少两个探测区域21中的一个设置在主束面31上,至少两个探测区域21中的另一个设置在一个的一侧。
以探测器组件20包括两个探测器区域和一个空白区域22举例,主束面31穿过其中一个探测区域21,另一个探测区域21布置在与此探测区域21的右侧且间隔开形成一个空白区域22,相对于主束面31,成像区域内的两个探测器为非对称性排布。
对探测器组件20的布置形式做进一步细分,可以分为以下两种实施例。
实施例1,至少两个探测区域21中的一个设置在主束面31上,且被主束面 31均分。其中,至少两个探测区域21中的另一个与至少两个探测区域21中的一个相邻。
在多个探测区域21和多个空白区域22中,主束面31穿过其中一个探测区域21,此探测区域21均分,另一个探测区域21紧邻在与此探测区域21的右侧,相当于两个探测区域21紧密拼接成,相对于主束面31,成像区域内的两个探测器为非对称性排布。
实施例2,至少两个探测区域21中的一个设置在主束面31上,且未被主束面31均分。其中,至少两个探测区域21中的另一个与至少两个探测区域21中的一个被空白区域22隔开。
在多个探测区域21和多个空白区域22中,主束面31穿过其中一个探测区域21,被主束面31穿过的探测区域21左右两侧探测区域的大小不同,另一个探测区域21布置在与此探测区域21的右侧且间隔开形成一个空白区域22,相对于主束面31,成像区域内的两个探测器为非对称性排布。
实施例3,至少两个探测区域21中的一个设置在主束面31上,且未被主束面31均分。其中,至少两个探测区域21中的另一个与至少两个探测区域21中的一个被空白区域22隔开。
在多个探测区域21和多个空白区域22中,主束面31穿过其中一个探测区域21,被主束面31穿过的探测区域21左右两侧探测区域的大小不同,另一个探测区域21紧邻在与此探测区域21的右侧,相当于两个探测区域21拼接成,相对于主束面31,成像区域内的两个探测器为非对称性排布。
需要注意的是,上述实施例中提到的被主束面31穿过的探测区域21左右两侧探测区域的大小不同,指的是物理意义上的不同,也就是覆盖面积不同。
根据本申请的一个实施例,所述探测区域21内包括至少一个探测器,空白区域22的尺寸不小于一个探测器像素的大小。
空白区域22是由于相邻的两个探测区域21间隔而形成的,空白区域22的尺寸大小代表的是相邻的两个探测区域间隔的距离,此距离不小于探测区域21内的一个探测器像素的大小,例如:探测区域21内探测器像素的大小为0.1mmx0.1mm,在此种情况下,空白区域的尺寸大小不小于0.1mm。
根据本申请的一个实施例,CT成像系统1000具有射线束覆盖第一空白区域221的第一位置和射线束覆盖第一探测区域211的第二位置,第一位置和第二位 置输出的图像数据相同。
为了进一步解释本申请中通过空间互补进而补全缺失数据的原理,在CT成像系统1000中列举两个具有代表性的位置,即覆盖第一空白区域221的第一位置和射线束覆盖第一探测区域211第二位置。
需要注意的是,为了更易理解,图3和图4中将空白区域22示出,具有填充的为探测区域21,而空白的为空白区域22,但在实际中,空白区域22是两个探测区域21之间的未设置探测器的位置。
CT成像系统1000的第一位置如图3所示,射线源组件10在扫描通道200的上方发射射线束,探测器组件20在扫描通道200的下方接收射线束,探测器组件20从左向右依次为第一探测区域211、第二探测区域212和第一空白区域221,射线束可以覆盖到第一探测区域211、第二探测区域212和第一空白区域221。
在第一位置中,由于第一探测区域211和第二探测区域212内均安装有探测器,因此均可成像,而由于第一空白区域221内无探测器,因此此处数据缺失。
CT成像系统1000的第二位置如图4所示,是通过CT成像系统1000逆时针旋转由第一位置转到第二位置的,射线源组件10在扫描通道200的左下方发射射线束,探测器组件20在扫描通道200的右上方接收射线束,探测器组件20从下向上依次为第一探测区域211、第二探测区域212和第一空白区域221,射线束可以覆盖到第一探测区域211、第二探测区域212和第一空白区域221。
在第二位置中,由于第一探测区域211和第二探测区域212内均安装有探测器,因此均可成像,而由于第一空白区域221内无探测器,因此此处数据缺失。
对照第一位置和第二位置可以发现,在第一位置中射线源组件10与第一探测区域211的成像的数据与在第二位置中射线源组件10与第一空白区域221的成像的数据相同,第二位置中第一空白区域221缺失的数据可由第一位置中第一探测区域211补齐,可以完成数据互补,从而构建待测物品100所需完整的数据。
本申请对每个探测区域21的间距不做限定,相邻的两个探测区域21之间的间距可以均不相等,或者相邻的两个探测区域21之间的间距可以部分不等, 或者相邻的两个探测区域21之间的间距可以均相等。
此处间距指的是相邻的两个探测区域21间在第二方向上的长度距离。
在一个实施例中,相邻的两个探测区域21之间的间距均相等。
为了利于计算探测器组件20内探测器的数量以及布置每个探测器的位置,相邻的两个探测区域21之间的间距均相等,也就是相邻的两个探测区域21在第二方向上的长度距离均相等。
本申请对每个探测区域21的覆盖面积不做限定,每个探测区域21的覆盖面积可以全不同,或者每个探测区域21的覆盖面积可以部分不同,或者每个探测区域21的覆盖面积可以均相同。
此处覆盖面积指的是每个探测区域21在第二方向上的长度和第三方向上的长度乘积。需要注意的是,即使两个探测区域21的覆盖面积相同,这两个探测区域21在第二方向上的长度和第三方向上的长度可以不同。
第三方向可以理解为以射线源组件10为圆心的半径方向,第三方向与第二方向、第一方向均垂直。
在一个实施例中,探测区域21在第二方向上的覆盖面积均相等。
为了利于计算探测器组件20内探测器的数量以及布置每个探测器的位置,探测区域21面积均相等,且在第二方向上的长度相等。
根据本申请的一个实施例,探测器组件20设置有多排,多排探测器组件20在第一方向上排列。
当然,本申请对探测器组件20的排数不做限定,可以在第一方向上安装多排上述其中一个实施例中的探测器组件20,可运用在螺旋CT扫描中,节约检查时间,提高工作效率。
根据本申请的一个实施例,射线束包括第一出射角度32和第二出射角度33,第一出射角度32和第二出射角度33的覆盖范围为射线束的出射范围。
如图2所示,射线束形成的成像区域,其中间的虚线为主束面31,左侧虚线和主束面31所构成的夹角为第一出射角度32,右侧虚线和主束面31所构成的夹角为第二出射角度33,第一出射角度32覆盖的出射范围和第二出射角度33覆盖的出射范围共同形成射线束的出射范围,也就是本申请CT成像系统1000中的视野范围,CT成像系统1000旋转一圈,即可完成待测物品100全部影像的获取。
根据本申请的一个实施例,出射范围内至少覆盖两个探测区域21。
为了满足本申请成像大视野的同时,高分辨率、高速率的条件,出射范围必须至少覆盖两个探测区域21,也就是在最小的出射范围内,也必须覆盖包含两个探测区域21和两个探测区域21之间的一个空白区域22。在出射范围的覆盖内存在空白区域22,可减少探测器的使用数量,降低CT成像系统1000成本,利用空间互补的方式,在旋转扫描中,可通过两个探测区域21获取空白区域22的数据,从而得到完整图像数据,具体原理已在上述解释说明,在此不再赘述。
根据本申请的一个实施例,CT成像系统1000还包括载台400,载台400可滑动地设置在扫描通道200上,以将待测物品100通过扫描通道200进出CT成像系统1000。
载台400与丝杠连接,待测物品100放置在载台400上,在驱动装置的作用下,载台400被丝杠带动,载台400能推动待测物品100在扫描通道200内移动。丝杠将待测物品100准确定位于CT成像系统1000的射线束上,有效解决检测设备的传动系统定位精度不够的问题,满足某些产品对图像检测质量的要求,
根据本申请的一个实施例,载台400与待测物品100之间设置有调整平台300,调整平台300用于调整待测物品100的姿态。
本申请的调整平台300可用于调整生产线上传送的待测物品100的运动姿态,还可用于辐射检测领域中,用于将待测物品100调整到预设的检测位置处。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“实例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
虽然根据本公开总体技术构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本公开总体技术构思的原则和精神的情况下,可对这些实施例做出改变,本公开的范围以权利要求和它们的等同物限定。

Claims (12)

  1. 一种CT成像系统,其特征在于,包括:
    扫描通道,所述扫描通道沿第一方向布置,以将待测物品通过所述扫描通道进出所述CT成像系统;
    设置在所述扫描通道一侧的射线源组件,所述射线源组件用于发出射线束;
    设置在所述扫描通道另一侧的探测器组件,所述探测器组件与所述射线源组件相对设置,用于接收所述射线束,所述射线束在所述射线源组件与所述探测器组件之间形成成像区域,
    其中,所述探测器组件包括至少两个探测区域以及一个空白区域,所述成像区域具有延伸通过所述射线源组件的主束面,所述探测区域的位置与所述空白区域的位置相对于所述主束面互补。
  2. 根据权利要求1所述的CT成像系统,其特征在于,所述至少两个探测区域中的一个设置在所述主束面上,所述至少两个探测区域中的另一个设置在所述一个的一侧。
  3. 根据权利要求2所述的CT成像系统,其特征在于,所述至少两个探测区域中的一个设置在所述主束面上,且被所述主束面均分。
  4. 根据权利要求2所述的CT成像系统,其特征在于,所述至少两个探测区域中的另一个与所述至少两个探测区域中的一个相邻。
  5. 根据权利要求2所述的CT成像系统,其特征在于,所述至少两个探测区域中的另一个与所述至少两个探测区域中的一个被所述空白区域隔开。
  6. 根据权利要求1-5中任一项所述的CT成像系统,其特征在于,所述探测区域内包括至少一个探测器,所述空白区域的尺寸不小于一个探测器像素的大小。
  7. 根据权利要求1所述的CT成像系统,其特征在于,所述CT成像系统具有所述射线束覆盖第一空白区域的第一位置和所述射线束覆盖第一探测区域的第二位置,所述第一位置和所述第二位置输出的图像数据相同。
  8. 根据权利要求1所述的CT成像系统,其特征在于,所述探测器组件设置有多排,多排所述探测器组件在第一方向上排列。
  9. 根据权利要求1所述的CT成像系统,其特征在于,所述射线束包括第一出射角度和第二出射角度,所述第一出射角度和所述第二出射角度的覆盖范围为所述射线束的出射范围。
  10. 根据权利要求9所述的CT成像系统,其特征在于,所述出射范围内至少覆盖两个探测区域。
  11. 根据权利要求1所述的CT成像系统,其特征在于,还包括载台,所述载台可滑动地设置在所述扫描通道上,以将待测物品通过所述扫描通道进出所述CT成像系统。
  12. 根据权利要求11所述的CT成像系统,其特征在于,所述载台与所述待测物品之间设置有调整平台,所述调整平台用于调整所述待测物品的姿态。
PCT/CN2022/122477 2021-10-08 2022-09-29 Ct成像系统 WO2023056881A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22877900.5A EP4413925A1 (en) 2021-10-08 2022-09-29 Ct imaging system
KR1020247014891A KR20240089325A (ko) 2021-10-08 2022-09-29 Ct 이미징 시스템
JP2024520993A JP2024536404A (ja) 2021-10-08 2022-09-29 Ct撮像システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111173186.7A CN115963124B (zh) 2021-10-08 2021-10-08 Ct成像系统
CN202111173186.7 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023056881A1 true WO2023056881A1 (zh) 2023-04-13

Family

ID=85803161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122477 WO2023056881A1 (zh) 2021-10-08 2022-09-29 Ct成像系统

Country Status (5)

Country Link
EP (1) EP4413925A1 (zh)
JP (1) JP2024536404A (zh)
KR (1) KR20240089325A (zh)
CN (1) CN115963124B (zh)
WO (1) WO2023056881A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117270066A (zh) * 2023-11-09 2023-12-22 清华大学 直线扫描ct成像系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030111610A1 (en) * 2001-12-17 2003-06-19 Siemens Medical Solutions Usa, Inc. High resolution, multiple detector tomographic radionuclide imaging based upon separated radiation detection elements
CN101315341A (zh) * 2007-05-31 2008-12-03 德律科技股份有限公司 分层摄影检测系统与方法
CN104545976A (zh) * 2014-12-30 2015-04-29 上海优益基医疗器械有限公司 计算机体层摄影方法和装置
CN104792805A (zh) * 2015-04-16 2015-07-22 中国原子能科学研究院 一种透射探测器和插值数据计算方法
CN106483548A (zh) * 2015-08-28 2017-03-08 北京纳米维景科技有限公司 一种光子计数探测器阵列及其成像方法
CN106999128A (zh) * 2014-09-24 2017-08-01 通用电气公司 采用x射线和伽马检测的多检测器成像系统
CN113133772A (zh) * 2020-01-20 2021-07-20 上海交通大学 Pet-ct系统及扫描方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7062009B2 (en) * 2002-09-12 2006-06-13 Analogic Corporation Helical interpolation for an asymmetric multi-slice scanner
US8111804B2 (en) * 2005-05-31 2012-02-07 Arineta Ltd. Graded resolution field of view CT scanner
CN103829964A (zh) * 2012-11-27 2014-06-04 Ge医疗系统环球技术有限公司 X射线检测器、准直仪、ct设备及其所用的方法
CN111657979A (zh) * 2019-03-08 2020-09-15 江苏一影医疗设备有限公司 Ct成像系统及其成像方法
CN112683934A (zh) * 2020-12-04 2021-04-20 重庆大学 一种基于电子束扫描的x射线源静态ct成像系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030111610A1 (en) * 2001-12-17 2003-06-19 Siemens Medical Solutions Usa, Inc. High resolution, multiple detector tomographic radionuclide imaging based upon separated radiation detection elements
CN101315341A (zh) * 2007-05-31 2008-12-03 德律科技股份有限公司 分层摄影检测系统与方法
CN106999128A (zh) * 2014-09-24 2017-08-01 通用电气公司 采用x射线和伽马检测的多检测器成像系统
CN104545976A (zh) * 2014-12-30 2015-04-29 上海优益基医疗器械有限公司 计算机体层摄影方法和装置
CN104792805A (zh) * 2015-04-16 2015-07-22 中国原子能科学研究院 一种透射探测器和插值数据计算方法
CN106483548A (zh) * 2015-08-28 2017-03-08 北京纳米维景科技有限公司 一种光子计数探测器阵列及其成像方法
CN113133772A (zh) * 2020-01-20 2021-07-20 上海交通大学 Pet-ct系统及扫描方法

Also Published As

Publication number Publication date
JP2024536404A (ja) 2024-10-04
EP4413925A1 (en) 2024-08-14
CN115963124B (zh) 2024-01-26
KR20240089325A (ko) 2024-06-20
CN115963124A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
US9885801B2 (en) Detector device, dual energy CT system and detection method using the system
WO2023056881A1 (zh) Ct成像系统
US20090168971A1 (en) Arm frame structure and scan apparatu having the same
JP2009536320A (ja) 荷物セキュリティ検査システム
US20160003965A1 (en) X-ray backscattering safety inspection system having distributed x-ray source and method using the same
WO2023280213A1 (zh) 检查系统和方法
US8781070B2 (en) Detection of wafer-edge defects
WO2023280216A1 (zh) 检查系统和方法
WO2023280214A1 (zh) 检查系统和方法
WO2019062171A1 (zh) 用于物品安全检查的扫描成像系统及其成像方法
WO2023280217A1 (zh) 检查系统和方法
US20050105691A1 (en) Segmented collimator assembly
US7486761B2 (en) Computed tomography facilitation method and apparatus
WO2023280218A1 (zh) 检查系统和方法
WO2023280215A1 (zh) 检查系统和方法
WO2023280210A1 (zh) 检查系统和方法
US11375962B2 (en) Fast foreign object scanner for scanning human bodies
EP4368979A1 (en) Ray scanning device
US20200003702A1 (en) Nondestructive inspection apparatus and nondestructive inspection method
WO2023280209A1 (zh) 检查系统和方法
CN111221049A (zh) 一种三维断层成像设备
US20240248049A1 (en) Ray scanning apparatus
KR102697254B1 (ko) 원통형 배터리의 ct 및 비전 검사 시스템
KR20230165172A (ko) 배터리 셀 정렬 상태의 검사 방법
JPH04320244A (ja) 放射線画像情報読取装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024520993

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247014891

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022877900

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022877900

Country of ref document: EP

Effective date: 20240508