WO2023279546A1 - 晶圆调节装置、反应腔室以及晶圆调节方法 - Google Patents

晶圆调节装置、反应腔室以及晶圆调节方法 Download PDF

Info

Publication number
WO2023279546A1
WO2023279546A1 PCT/CN2021/121033 CN2021121033W WO2023279546A1 WO 2023279546 A1 WO2023279546 A1 WO 2023279546A1 CN 2021121033 W CN2021121033 W CN 2021121033W WO 2023279546 A1 WO2023279546 A1 WO 2023279546A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
module
carrying
air
air extraction
Prior art date
Application number
PCT/CN2021/121033
Other languages
English (en)
French (fr)
Inventor
吴从军
章杏
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/648,727 priority Critical patent/US11892778B2/en
Publication of WO2023279546A1 publication Critical patent/WO2023279546A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/707Chucks, e.g. chucking or un-chucking operations or structural details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present disclosure includes, but is not limited to, a wafer conditioning device, a reaction chamber, and a wafer conditioning method.
  • an intermediate adjustment is required to ensure that the state of the wafer can meet the requirements of the next process, and the requirements of different processes may be different. Requirements for the same process in different reaction chambers may also be different.
  • the intermediate adjustment includes adjusting the position, temperature and stress of the wafer.
  • a longer intermediate adjustment time of the wafer will result in a longer manufacturing time of the semiconductor structure, and a lower yield of the semiconductor structure.
  • how to shorten the adjustment time has become the focus of current research.
  • Embodiments of the present invention provide a wafer conditioning device, a reaction chamber, and a wafer conditioning method, which are beneficial to shortening the wafer conditioning time.
  • An embodiment of the present disclosure provides a wafer adjustment device, including: a lifting module, the lifting module has a first carrying surface for carrying wafers, and the first carrying surface can be raised to a preset highest position relative to a reference surface Or drop to the preset lowest position; the bearing module, the bearing module has a second bearing surface, the position of the second bearing surface is higher than the preset lowest position and lower than the preset highest position, the first The two carrying surfaces are used to transfer the wafer carried by the first carrying surface; an air pumping module, the air pumping module has a first air pumping port facing the wafer surrounded by the second carrying surface, The air extraction module is used for absorbing the wafer through the first air extraction port.
  • the air extraction module is also used to control the air extraction rate of the first air extraction port, so that the wafer carried by the carrier module is subjected to the pressure from the first air extraction port.
  • the first pressure is 1KPa ⁇ 30KPa.
  • the bearing module includes a plurality of bearing units, the bearing surfaces of the plurality of bearing units form the second bearing surface, and the air extraction module has a plurality of the first air inlets, each A bearing surface of the bearing unit surrounds the first air suction port.
  • the bearing module includes a first bearing unit and a plurality of second bearing units, the third bearing surface of the first bearing unit and the fourth bearing surface of the second bearing unit constitute the For the second bearing surface, multiple centers corresponding to the plurality of fourth bearing surfaces are on the same circle, the center of the third bearing surface coincides with the center of the circle, and the third bearing surface and each of the bearing surfaces Each of the fourth bearing surfaces surrounds one of the first air suction ports.
  • the wafer adjustment device further includes: a base plate, the top surface of the base plate is used as the reference plane, the reference plane is lower than or at the preset lowest position, and the air extraction module It also has a second suction port facing the wafer surrounded by the reference plane, the suction module is also used to absorb the wafer through the second suction port, and a plurality of the first suction ports correspond to A plurality of centers are on the same circle, and the center of the second air suction port coincides with the center of the circle.
  • the air extraction module is used to simultaneously absorb the wafer through the first air extraction port and the second air extraction port, and the air extraction module is also used to control the second air extraction port
  • the pumping rate is such that the adsorption force applied to the wafer through the second suction port is smaller than the suction force applied to the wafer through the first suction port.
  • the air extraction module is used to control the second pressure of the wafer carried by the carrier module from the second air extraction port to be 1KPa ⁇ 2KPa.
  • the air suction pipe with the first air suction port is arranged in the carrying module, and the second carrying surface exposes the first air suction port, and in the direction perpendicular to the reference plane , the orthographic projection of the first air inlet on the plane where the second bearing surface is located is surrounded by the second bearing surface.
  • the carrying module includes a fixing part and a supporting part, the supporting part has a columnar structure, the air suction pipe is arranged in the columnar structure, and the fixing part is arranged in the columnar structure
  • the ring structure on the edge of the top surface, the material of the ring structure is elastic material.
  • the first suction port is composed of at least two sub-pumping ports, and the suction module is used to absorb the wafer through at least two sub-pumping ports.
  • the first air inlet is composed of three sub-air outlets, and the line connecting the centers of the three sub-air outlets forms an equilateral triangle, and in the direction perpendicular to the reference plane , the orthographic projection of the center of the equilateral triangle coincides with the orthographic projection of the center of the second bearing surface.
  • An embodiment of the present disclosure also provides a reaction chamber, including: a glue coating and developing device for coating photoresist on a wafer carried by the wafer conditioning device; the wafer conditioning device as described in any one of the above , the wafer conditioning device is used for conditioning the wafer coated with the photoresist.
  • an embodiment of the present disclosure also provides a wafer adjustment method, including: providing the wafer adjustment device as described in any one of the above; controlling the first loading surface of the lifting module to rise to a preset highest position; providing the wafer and controlling The wafer is carried on the first carrying surface; the first carrying surface is controlled to drop to a preset lowest position, so that the second carrying surface of the carrying module is transferred to the wafer; the air pumping module is turned on , so as to absorb the wafer through the first suction port.
  • the air extraction module is turned on.
  • the bearing module includes a plurality of bearing units, the bearing surfaces of the plurality of bearing units constitute the second bearing surface of the bearing module, and the air extraction module has a plurality of the first air extraction modules.
  • the opening time of the air extraction module is 5-50s.
  • a lifting module that can adjust the vertical position of the wafer and a first suction port surrounded by the second carrying surface.
  • the first suction port absorbs the wafer through suction and fixes the wafer on the carrying module.
  • the second The suction effect of a suction port can release or homogenize the concentrated stress of the wafer, and can reduce the temperature of the wafer, that is to say, the wafer adjusting device can not only adjust the vertical height of the wafer relative to the reference plane, but also improve the The stress condition of the wafer and the temperature adjustment of the wafer, so that there is no need to set up multiple devices to adjust the position, stress or temperature of the wafer respectively, which is beneficial to shorten the adjustment time of the wafer.
  • the bearing surfaces of a plurality of bearing units constitute the second bearing surface. Compared with a single bearing surface, setting up multiple bearing surfaces is beneficial to ensure uniform stress on the wafer, avoid stress damage to the wafer and accelerate the wafer speed. Release of circular stress.
  • 1 is a schematic diagram of the double helix phenomenon of photoresist in the related art
  • FIG. 2 to FIG. 5 are structural schematic diagrams of a wafer adjustment device provided by an embodiment of the present disclosure.
  • the wafer After the wafer completes the corresponding process in the coating and developing device, it is transferred to the cooling plate (Interface Block Chill Plate Process Station, ICPL) to regulate the temperature of the wafer in advance through the ICPL; after being transferred to the ICPL, based on the temperature control unit (Temperature Stabilization Unit, TSU) for further transfer of wafers. If there are other wafers in the TSU or there is a failure, the wafer will be transferred to the wafer temporary buffer (Stationary Buffering Stage, SBU) to wait for the repair or vacancy of the TSU.
  • the SBU has no temperature adjustment function for the wafer. ; If there is no other wafer in the TSU and it is in a normal state, then transfer the wafer from the ICPL or SBU to the TSU.
  • the TSU and the scanning exposure device are in the same chamber, and the TSU is used to release the stress of the wafer and further regulate the temperature of the wafer to prepare for the photoresist exposure of the scanning exposure device. Since ICPL has already adjusted the wafer temperature in advance, the temperature adjustment time of TSU will be shortened. However, based on the process parameters of the existing ICPL and TSU, after temperature regulation and stress release, the technicians found that the photoresist exposed by the scanning exposure device showed a double helix phenomenon (refer to FIG. 1 ), that is, the photoresist on the wafer 14 The photoresist is subjected to stress along the direction of the arrow in FIG. 1 , and the stress release of the wafer 14 does not meet the requirements. In order to suppress the double helix phenomenon, the time for the TSU to release the stress can be selected to be extended, but this choice will lead to a longer fabrication time of the semiconductor structure and lower productivity of the semiconductor structure.
  • FIGS. 2 to 5 are structural schematic diagrams of the wafer adjustment device provided by the embodiments of the present disclosure.
  • the wafer adjustment device can be regarded as an improvement of ICPL; wherein, FIG. 3 is a schematic plan view of the structure shown in FIG. 2 , and FIG. 5 is a schematic diagram of the structure shown in FIG. Schematic diagram of the structure of the load-carrying unit in the structure shown.
  • the wafer adjusting device comprises: a lifting module 11, the lifting module 11 has a first carrying surface for carrying the wafer 14, and the first carrying surface can rise to a preset highest position or Descend to the preset lowest position; the bearing module 12, the bearing module 12 has a second bearing surface, the position of the second bearing surface is higher than the preset lowest position and lower than the preset highest position, and the second bearing surface is used to transfer the first Wafer 14 carried on the carrying surface; an air pumping module (not shown), the air pumping module has a first air pumping port 13 towards the wafer 14 surrounded by the second carrying surface, and the air pumping module is used to pass through the first pumping port 13 Suction wafer 14.
  • the lifting module 11 includes a plurality of support rods.
  • the lifting module 11 is used to carry the wafer 14 transferred by the robot arm.
  • the surface 10a has a minimum vertical height, and the lifting module 11 can set a preset highest position based on the minimum vertical height.
  • the preset highest position is set higher than or equal to the minimum vertical height, so as to ensure that the robot arm can safely transfer the wafer 14 to the first carrying surface; the preset lowest position can be within the reference plane 10a.
  • the lifting module 11 descends, the first carrying surface moves from the preset highest position to the preset lowest position, and when the first carrying surface is flush with the second carrying surface, the first carrying surface and the second carrying surface jointly carry the wafer 14.
  • the first carrying surface is lower than the second carrying surface, transfer the wafer 14 to the second carrying surface.
  • the lifting module 11 is a movable structure, compared with the fixed carrying module 12, the probability of damage to the wafer 14 due to the failure of the lifting module 11 is higher. Therefore, the setting of the carrying module 12 with the second carrying surface is beneficial. The damage rate of the wafer 14 is reduced. Since the second carrying surface is closer to the reference surface 10a relative to the preset highest position, the force originating from the reference surface 10a can more effectively affect the wafer 14 carried by the second carrying surface, thereby achieving the preset purpose.
  • the pumping module absorbs the wafer 14 by pumping air.
  • the pumping action can not only take away the heat on the surface of the wafer 14 to reduce the temperature of the wafer 14, but also apply adsorption force to balance different positions of the wafer 14.
  • the stress state of the wafer 14 is avoided to avoid stress concentration problems.
  • the wafer 14 takes the geometric center of the adsorption area as the stress balance point, tends to stress balance in a certain area, and the area of the area tending to stress balance It is related to the area of the adsorption area, the larger the area of the adsorption area, the larger the area tending to the stress balance; if the pumping module absorbs the wafer through multiple discrete areas, the wafer 14 has multiple corresponding stress balance areas.
  • the stress balance area refers to that the stress at any position in a certain area is less than a preset value and the stress range at different positions is less than a preset value. When the relative value is large, damage such as cracking occurs.
  • absorbing the wafer 14 through multiple discrete areas is beneficial to expand the stress balance area of the wafer 14 and realize the overall stress balance of the wafer 14 faster; at the same time, due to the second
  • the carrying surface surrounds the first air extraction port 13. If the air extraction module absorbs the wafer 14 through a plurality of discrete regions, the carrying module 12 carries the wafer 14 through a plurality of discrete carrying surfaces. Multiple discrete bearing surfaces carry out bearing, which is beneficial to shorten the distance between the bearing point and the edge of the wafer 14, and prevent the edge of the wafer 14 from being subject to greater stress due to the distance from the supporting point.
  • setting the second bearing surface around the first suction port 13 is beneficial to suppress the deformation of the wafer 14 caused by the adsorption force, thereby suppressing the stress concentration problem caused by the deformation of the wafer 14, so that the wafer 14 has a good stress state .
  • the bearing module 12 includes a plurality of discrete bearing units 123, the bearing surfaces of the multiple bearing units 123 form the second bearing surface, the air extraction module has a plurality of first air extraction ports 13, and the load bearing of each bearing unit 123 The surface surrounds at least one first air suction port 13 .
  • the bearing module 12 includes a plurality of second bearing units 122, the second bearing unit 122 has a fourth bearing surface, and the plurality of fourth bearing surfaces constitute the second bearing surface, Multiple centers corresponding to multiple fourth bearing surfaces are on the same circle.
  • the carrying module includes three second carrying units 122, and the line connecting the three centers corresponding to the fourth carrying surface forms an equilateral triangle.
  • the overlapping area of the adsorption regions corresponding to different first suction ports 13 is relatively small, and the overlap of the stress balance regions corresponding to the adsorption regions is relatively small, which is conducive to maximizing the stress on the wafer 14 Balance the area to optimize the stress state of the wafer 14; at the same time, because the connection of the three centers forms an equilateral triangle, the three second carrying units 122 can support the wafer 14 more firmly, and the air pumping module is applied to the wafer 14.
  • the adsorption force of the circle 14 has a symmetrical characteristic, which is beneficial to make the stress states of different symmetrical positions in the wafer 14 similar, and the stress balance of the wafer 14 is better.
  • the bearing module 12 further includes a first bearing unit 121, the first bearing unit 121 has a third bearing surface, and the third bearing surface and the fourth bearing surface together form a second bearing surface.
  • Bearing surface, multiple centers corresponding to multiple fourth bearing surfaces are on the same circle, the center of the third bearing surface coincides with the center of the above-mentioned circle, and the third bearing surface and each fourth bearing surface respectively surround at least one first Air extraction port 13.
  • the pumping module is also used to control the pumping rate of the first pumping port 13, so that the first pressure from the first pumping port 13 received by the wafer carried by the carrier module 12 is 1KPa-30KPa, for example 5KPa, 10KPa, 15KPa or 25KPa.
  • controlling the first pressure below 30KPa is beneficial to avoid stress deformation of the wafer 14 due to excessive first pressure, thereby ensuring that the wafer 14 has a good stress state and functional properties.
  • the wafer adjustment device further includes: a substrate 20, the top surface of the substrate 20 is used as a reference surface 20a, and the reference surface 20a is lower than or at a preset lowest position, and the air extraction module also has a The second suction port 232 facing the wafer 24 surrounded by the reference surface 20a, the suction module is also used to absorb the wafer 24 through the second suction port 232, and the multiple centers corresponding to the first suction ports 231 are on the same circle, The orthographic projection of the center of the circle on the reference plane 20 a coincides with the center of the second air suction port 232 .
  • the pumping module is used to simultaneously adsorb the wafer 24 through the first pumping port 231 and the second pumping port 232, and the pumping module is also used to control the pumping rate of the second pumping port 232, so that the wafer 24 is sucked through the second pumping port 232.
  • the suction force exerted by the circle 24 is smaller than the suction force applied to the wafer 24 through the plurality of first suction ports 231 . Since there is no load to support in the adsorption area corresponding to the second suction port 232, the adsorption force of the second suction port 232 is set to be smaller than the adsorption force of the first suction port 231, which is beneficial to avoid the wafer 24 being damaged due to excessive suction force. Stress deformation occurs, so as to ensure that the wafer 24 has a good stress state, and ensure that the first air extraction port 231 and the second air extraction port 232 can release the stress in the wafer 24 within a short period of time.
  • the air pumping module is used to control the second pressure from the second air pumping port 232 on the wafer 24 carried by the carrier module 12 to be 1KPa ⁇ 2KPa, such as 1.3KPa, 1.5KPa and 1.7KPa.
  • the air extraction module further has a third air extraction port 15 disposed on the reference plane 10 a, and the air extraction module can supply or extract air through the third air extraction port 15 .
  • the third air extraction port 15 can take away the heat on the surface of the wafer 14, thereby achieving the purpose of regulating the temperature of the wafer 14; in addition, if it is necessary to further absorb the wafer 14 or accelerate The stress of the wafer 14 is released, and the wafer 14 can be suctioned through the third suction port 15 .
  • the air suction pipe with the first air suction port 13 is arranged in the carrying module 12, the second carrying surface exposes the first air suction port 13, and in the direction perpendicular to the reference plane 10a, the first air suction port 13 is at the The orthographic projection on the plane where the second bearing surface is located is surrounded by the second bearing surface.
  • the carrying module includes a fixed part 12b and a supporting part 12a, the supporting part 12a has a columnar structure, the air suction pipe with the first air suction port 13 is arranged in the columnar structure, and the fixed part 12b is arranged on the edge of the top surface of the columnar structure
  • the top surface of the ring structure serves as the bearing surface of the bearing module, and the material of the ring structure is elastic material, such as rubber material.
  • the support part 12a is generally made of a material with higher hardness to maintain stability.
  • the fixed part 12b is arranged above the support part 12a, which is beneficial to isolate the wafer and the support part 12a, and avoid friction damage between the support part 12a and the wafer; at the same time, Setting the fixing part 12b on the top edge is beneficial to enlarging the area of the adsorption area corresponding to the first suction port 13 and shortening the time required for stress release and temperature control, compared to setting the plane where the first suction port 13 is located as the second bearing surface.
  • the material of the fixing part 12b is set to elastic material, which helps to avoid the damage of the wafer caused by the fixing part 12b under the action of the adsorption force; preferably, the material of the fixing part 12b is set to be a rubber material, which is beneficial to increase the fixing
  • the coefficient of friction between the portion 12b and the wafer can prevent the wafer from shifting, so as to ensure that the adsorption force of the first suction port 13 can be evenly applied to the wafer, and ensure the uniform release of wafer stress.
  • the carrier module also includes a buffer portion 12c, which is used for buffering the momentary stress when the carrier module transfers wafers.
  • the buffer part 12c may be an elastic structure, such as a spring.
  • the first pumping port 13 is composed of at least two sub-pumping ports, and the pumping module is used to absorb wafers through at least two sub-pumping ports, and the geometric center of the combined pattern formed by all sub-pumping ports is used as the first pumping port 13
  • the sum of the suction forces of all the sub-pumps is the suction force of the first suction port 13.
  • Splitting the first air extraction port 13 into multiple sub-air extraction ports is beneficial to improve the force uniformity of the adsorption area corresponding to the first air extraction port 13, and further avoid stress deformation of the wafer due to a large adsorption force.
  • the first air suction port 13 is composed of three sub-air suction ports, and the line connecting the centers of the three sub-air suction ports forms an equilateral triangle, and the center of the equilateral triangle serves as the center of the first air suction port 13 .
  • a lifting module that can adjust the vertical position of the wafer and a first suction port surrounded by the second carrying surface are provided.
  • the first suction port absorbs the wafer by suction and fixes the wafer on the carrying module.
  • the second The adsorption effect of a suction port can release or homogenize the concentrated stress of the wafer, and can reduce the temperature of the wafer.
  • the wafer adjustment device can not only adjust the vertical height of the wafer relative to the reference plane, but also improve the stress of the wafer at the same time. In this way, there is no need to install multiple devices to separately adjust the position, stress or temperature of the wafer, which is beneficial to shorten the wafer adjustment time and increase the output of the scanning exposure device.
  • An embodiment of the present disclosure also provides a reaction chamber, including: a glue coating and developing device for coating photoresist on a wafer carried by a wafer conditioning device; a wafer conditioning device as described above, the wafer conditioning device Apparatus for conditioning photoresist-coated wafers.
  • the temperature of the wafer is adjusted in advance and the stress of the wafer is released by the wafer adjustment device, which is beneficial to shorten or even eliminate the temperature adjustment time and stress release time required for subsequent entry into the scanning exposure chamber, thereby improving the scanning exposure device. output.
  • An embodiment of the present disclosure also provides a wafer adjustment method, including: providing a wafer adjustment device as described above; controlling the first loading surface of the lifting module to rise to a preset highest position; providing wafers and controlling wafer loading On the first carrying surface; control the first carrying surface to drop to the preset lowest position, so that the second carrying surface of the carrying module transfers the wafer; open the suction module to absorb the wafer through the first suction port.
  • the air extraction module before controlling the lifting module to descend, the air extraction module is turned on. In this way, it is beneficial to fix the wafer on the lifting module through the suction force, and avoid the deviation of the wafer when it starts to descend and during the descending process.
  • the bearing module includes a plurality of bearing units, the bearing surfaces of the multiple bearing units form the second bearing surface of the bearing module, the air extraction module has a plurality of first air inlets, and the bearing surface of each bearing unit surrounds a first bearing surface.
  • the opening time of the air extraction module is 5-50s, such as 10s, 20s, 30s or 40s.
  • the opening time of the pumping module can be adjusted according to actual needs, so as to effectively shorten the adjustment time of the wafer and avoid the double helix phenomenon of the photoresist at the same time.
  • the setting of the first bearing surface can adjust the relative position of the wafer, the adsorption of the first air inlet can release or even out the concentrated stress of the wafer, and the temperature of the wafer can be adjusted, that is to say, the wafer
  • the circle adjustment device can not only adjust the vertical height of the wafer relative to the reference plane, but also improve the stress of the wafer and reduce the temperature of the wafer at the same time. In this way, there is no need to set up multiple devices to adjust the position, stress or temperature of the wafer respectively. It is beneficial to shorten the wafer adjustment time and improve the output of the scanning exposure device.
  • the wafer adjusting device, reaction chamber, and wafer adjusting method provided by the embodiments of the present disclosure are provided with a lifting module capable of adjusting the vertical position of the wafer and a first air inlet surrounded by the second carrying surface.
  • the first air inlet passes through Suction absorbs the wafer and fixes the wafer on the carrier module.
  • the adsorption of the first suction port can release or even out the concentrated stress of the wafer, and can reduce the temperature of the wafer. That is to say, the wafer adjusting device is both The vertical height of the wafer relative to the reference plane can be adjusted, and the stress of the wafer can be improved and the temperature of the wafer can be adjusted at the same time.
  • the bearing surfaces of the multiple bearing units constitute the second bearing surface. Compared with a single bearing surface, having multiple bearing surfaces is beneficial to ensure uniform stress on the wafer, avoid stress damage to the wafer and accelerate the release of wafer stress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

本公开实施例提供一种晶圆调节装置、反应腔室及晶圆调节方法,晶圆调节装置包括:升降模块,所述升降模块具有用于承载晶圆的第一承载面,所述第一承载面可相对于基准面上升至预设最高位置或下降至预设最低位置;承载模块,所述承载模块具有第二承载面,所述第二承载面的位置高于所述预设最低位置且低于所述预设最高位置,所述第二承载面用于转接所述第一承载面承载的所述晶圆;抽气模块,所述抽气模块具有被所述第二承载面环绕的朝向所述晶圆的第一抽气口,所述抽气模块用于通过所述第一抽气口吸附所述晶圆。本公开实施例有利于缩短晶圆的调节时长。

Description

晶圆调节装置、反应腔室以及晶圆调节方法
本公开要求在2021年07月07日提交中国专利局、申请号为202110767466.4、发明名称为“晶圆调节装置、反应腔室以及晶圆调节方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开包括但不限于一种晶圆调节装置、反应腔室以及晶圆调节方法。
背景技术
现有技术中,晶圆在完成一工艺制程之后及在进行下一工艺制程之前,需要进行中间调节,以保证晶圆的状态能够满足下一工艺制程的要求,不同工艺制程的要求可能不同,不同反应腔室内的同一工艺制程的要求也可能不同。中间调节包括对晶圆的位置、温度以及应力进行调控。
晶圆的中间调节时长较长会导致半导体结构的制作时长较长,半导体结构的产量较低。在保证晶圆状态满足工艺制程要求的情况,如何缩短调节时长成为当前研究的重点。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种晶圆调节装置、反应腔室以及晶圆调节方法,有利于缩短晶圆的调节时长。
本公开实施例提供一种晶圆调节装置,包括:升降模块,所述升降模块具有用于承载晶圆的第一承载面,所述第一承载面可相对于基准面上升至预设最高位置或下降至预设最低位置;承载模块,所述承载模块具有第二承载面,所述第二承载面的位置高于所述预设最低位置且低于所述预设最高位置,所述第二承载面用于转接所述第一承载面承载的所述晶圆;抽气模块,所述抽气模块具有被所述第二承载面环绕的朝向所述晶圆的第一抽气口,所 述抽气模块用于通过所述第一抽气口吸附所述晶圆。
在其中一个实施例中,所述抽气模块还用于控制所述第一抽气口的抽气速率,以使所述承载模块承载的所述晶圆受到的来源于所述第一抽气口的第一压强为1KPa~30KPa。
在其中一个实施例中,所述承载模块包括多个承载单元,多个所述承载单元的承载面构成所述第二承载面,所述抽气模块具有多个所述第一抽气口,每一所述承载单元的承载面环绕一所述第一抽气口。
在其中一个实施例中,所述承载模块包括第一承载单元和多个第二承载单元,所述第一承载单元的第三承载面和所述第二承载单元的第四承载面构成所述第二承载面,多个所述第四承载面对应的多个中心处于同一圆上,所述第三承载面的中心与所述圆的圆心重合,所述第三承载面和每一所述第四承载面各环绕一所述第一抽气口。
在其中一个实施例中,晶圆调节装置还包括:基盘,所述基盘的顶面作为所述基准面,所述基准面低于或处于所述预设最低位置,所述抽气模块还具有被所述基准面环绕的朝向所述晶圆的第二抽气口,所述抽气模块还用于通过所述第二抽气口吸附所述晶圆,多个所述第一抽气口对应的多个中心处于同一圆上,所述第二抽气口的中心与所述圆的圆心重合。
在其中一个实施例中,所述抽气模块用于通过所述第一抽气口和所述第二抽气口同时吸附所述晶圆,所述抽气模块还用于控制所述第二抽气口的抽气速率,以使通过所述第二抽气口向所述晶圆施加的吸附力小于通过所述第一抽气口向所述晶圆施加的吸附力。
在其中一个实施例中,所述抽气模块用于控制所述承载模块承载的所述晶圆受到的来源于所述第二抽气口的第二压强为1KPa~2Kpa。
在其中一个实施例中,具有所述第一抽气口的抽气管道设置于所述承载模块内,所述第二承载面暴露所述第一抽气口,在垂直于所述基准面的方向上,所述第一抽气口在所述第二承载面所在平面上的正投影被所述第二承载面环绕。
在其中一个实施例中,所述承载模块包括固定部和支撑部,所述支撑部 具有柱状结构,所述抽气管道设置于所述柱状结构内,所述固定部为设置于所述柱状结构顶面边缘的环状结构,所述环状结构的材料为弹性材料。
在其中一个实施例中,所述第一抽气口由至少两个子抽气口组成,所述抽气模块用于通过至少两个所述子抽气口吸附所述晶圆。
在其中一个实施例中,所述第一抽气口由三个所述子抽气口组成,三个所述子抽气口的中心的连线构成等边三角形,在垂直于所述基准面的方向上,所述等边三角形的中心的正投影与所述第二承载面的中心的正投影重合。
本公开实施例还提供一种反应腔室,包括:涂胶显影装置,用于向所述晶圆调节装置承载的晶圆涂覆光刻胶;如上述任一项所述的晶圆调节装置,所述晶圆调节装置用于调节已涂覆所述光刻胶的所述晶圆。
,本公开实施例还提供一种晶圆调节方法,包括:提供如上述任一项所述的晶圆调节装置;控制升降模块的第一承载面上升至预设最高位置;提供晶圆并控制所述晶圆承载于所述第一承载面上;控制所述第一承载面下降至预设最低位置,以使承载模块的第二承载面转接所述晶圆;开启所述抽气模块,以通过所述第一抽气口吸附所述晶圆。
在其中一个实施例中,在控制所述升降模块下降之前,开启所述抽气模块。
在其中一个实施例中,所述承载模块包括多个承载单元,多个所述承载单元的承载面构成所述承载模块的第二承载面,所述抽气模块具有多个所述第一抽气口,每一所述承载单元的承载面环绕一所述第一抽气口;所述开启所述抽气模块,包括:控制所述第一抽气口的抽气速率,以使所述承载模块承载的所述晶圆受到的来源于所述第一抽气口的总压强为1KPa~30KPa。
在其中一个实施例中,所述抽气模块的开启时间为5~50s。
与现有技术相比,本发明实施例提供的技术方案具有以下优点:
上述技术方案中,设置有可调节晶圆垂直位置的升降模块和被第二承载面环绕的第一抽气口,第一抽气口通过吸气吸附晶圆并将晶圆固定在承载模块上,第一抽气口的吸附作用可释放或均匀化晶圆的集中应力,且可降低晶圆的温度,也就是说,晶圆调节装置既可以调节晶圆相对于基准面的垂直高 度,又可以同时改善晶圆的应力情况和调控晶圆的温度,如此,无需设置多个装置分别调节晶圆的位置、应力或温度,有利于缩短晶圆调节时长。
在其中一个实施例中,多个承载单元的承载面构成第二承载面,相对于单一承载表面,设置多个承载面有利于保证晶圆的均匀受力,避免晶圆受到应力损伤以及加速晶圆应力的释放。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
并入到说明书中并且构成说明书的一部分的附图示出了本公开的实施例,并且与描述一起用于解释本公开实施例的原理。在这些附图中,类似的附图标记用于表示类似的要素。下面描述中的附图是本公开的一些实施例,而不是全部实施例。对于本领域技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为相关技术中光刻胶的双螺旋现象示意图;
图2至图5为本公开实施例提供的晶圆调节装置的结构示意图。
具体实施方式
晶圆在涂胶显影装置内完成相应制程之后,传送至冷却盘(Interface Block Chill Plate Process Station,ICPL),以通过ICPL提前调控晶圆的温度;在传送至ICPL之后,基于温度控制单元(Temperature Stabilization Unit,TSU)的占用情况,进行晶圆的进一步转移。若TSU内已有其他晶圆或出现故障,则将晶圆传送至晶圆暂存缓冲区(Stationary Buffering Stage,SBU)内,以等待TSU的维修或空位,SBU没有针对晶圆的温度调节功能;若TSU内没有其他晶圆且处于正常状态,则将晶圆从ICPL或SBU传送至TSU内。
TSU与扫描曝光装置处于同一腔室,TSU用于释放晶圆的应力以及进一 步调控晶圆的温度,以为扫描曝光装置的光阻曝光做好准备。由于ICPL已提前进行晶圆温度的调控,因此TSU的温度调控时间会有所缩短。然而,基于现有ICPL和TSU的工艺参数,在经过温度调控和应力释放之后,技术人员发现经过扫描曝光装置曝光的光阻呈现双螺旋现象(参考图1),也就是说,晶圆14上的光阻受到沿图1中箭头方向的应力,晶圆14的应力释放并未达到要求。为抑制双螺旋现象,可选择延长TSU释放应力的时长,然而这一选择会导致半导体结构的制作时长延长,半导体结构的产能变低。
下面将结合附图对本公开的各实施例进行详细的阐述。然而,本领域的技术人员可以理解,在本公开各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
图2至图5为本公开实施例提供的晶圆调节装置的结构示意图,晶圆调节装置可以视为ICPL的改进;其中,图3为图2所示结构的平面示意图,图5为图2所示结构中承载单元的结构示意图。
参考图2和图3,晶圆调节装置包括:升降模块11,升降模块11具有用于承载晶圆14的第一承载面,第一承载面可相对于基准面10a上升至预设最高位置或下降至预设最低位置;承载模块12,承载模块12具有第二承载面,第二承载面的位置高于预设最低位置且低于预设最高位置,第二承载面用于转接第一承载面承载的晶圆14;抽气模块(未图示),抽气模块具有被第二承载面环绕的朝向晶圆14的第一抽气口13,抽气模块用于通过第一抽气口13吸附晶圆14。
本实施例中,升降模块11包括多个支撑杆,升降模块11用于承载机械手臂移送的晶圆14,为避免机械手臂因位置偏差与基准面10a所在结构发生碰撞,一般设置机械手臂相对基准面10a具有最小垂直高度,升降模块11可基于最小垂直高度设置预设最高位置。设置预设最高位置高于或平齐于最小垂直高度,从而保证机械手臂可以安全地将晶圆14移送至第一承载面;预设最低位置可处于基准面10a内。当升降模块11下降时,第一承载面由预设最高位置向预设最低位置移动,当第一承载面平齐于第二承载面时,第一承载面和第二承载面共同承载晶圆14;当第一承载面低于第二承载面时,第二承载面转接晶圆14。
由于升降模块11属于可移动结构,相较于固定的承载模块12,晶圆14因升降模块11发生故障而出现损毁的概率较高,因此,设置具有第二承载面的承载模块12,有利于降低晶圆14的损毁率。由于第二承载面相对于预设最高位置相距基准面10a较近,因此,来源于基准面10a的作用力能够更有效地影响第二承载面承载的晶圆14,从而达到预设目的。
本实施例中,抽气模块通过抽气吸附晶圆14,抽气动作不仅能够带走晶圆14表面的热量,以降低晶圆14的温度,还能够施加吸附力以平衡晶圆14不同位置的应力状态,避免晶圆14出现应力集中问题。其中若抽气模块仅对晶圆14背面的一块区域施加吸附力,则晶圆14以吸附区域的几何中心作为应力平衡点,在一定区域内趋于应力平衡,趋于应力平衡的区域的面积与吸附区域的面积有关,吸附区域的面积越大,趋于应力平衡的区域越大;若抽气模块通过多个分立的区域吸附晶圆,则晶圆14具有对应的多个应力平衡区域。应力平衡区域指的是某一区域内任一位置的应力小于预设值以及不同位置的应’力极差小于预设值,晶圆14不会因为某一位置的应力绝对值过大或应力相对值较大而发生崩裂等损伤。
相较于通过单一区域吸附晶圆14,通过分立的多个区域吸附晶圆14,有利于扩大晶圆14的应力平衡区域,更快地实现晶圆14的整体应力平衡;同时,由于第二承载面环绕第一抽气口13,若抽气模块通过分立的多个区域吸附晶圆14,则承载模块12通过多个分立的承载面承载晶圆14,在承载总面积相同的情况下,通过分立的多个承载面进行承载,有利于缩短承载点与晶圆14边缘的距离,避免晶圆14边缘位置因距离支撑点较远而受到较大的应力。在一个示例中,设置第二承载面环绕第一抽气口13,有利于抑制吸附力造成的晶圆14变形,进而抑制晶圆14变形造成的应力集中问题,使得晶圆14具有良好的应力状态。
本实施例中,承载模块12包括分立的多个承载单元123,多个承载单元123的承载面构成第二承载面,抽气模块具有多个第一抽气口13,每一承载单元123的承载面环绕至少一第一抽气口13。
在一些实施例中,如图2和图3所示,承载模块12包括多个第二承载单元122,第二承载单元122具有第四承载面,多个第四承载面构成第二承载面,多个第四承载面对应的多个中心处于同一圆上。示例性地,承载模块包 括3个第二承载单元122,第四承载面对应的3个中心的连线构成等边三角形。由于3个中心的两两间距相等,因此,不同第一抽气口13对应的吸附区域的重叠面积较小,吸附区域对应的应力平衡区域重叠较小,如此,有利于最大化晶圆14的应力平衡区域,优化晶圆14的应力状态;同时,由于3个中心的连线构成等边三角形,因此,3个第二承载单元122能够较为稳固地支撑晶圆14,且抽气模块施加于晶圆14的吸附力具有对称特性,如此,有利于使得晶圆14中对称的不同位置的应力状态相近,晶圆14的应力平衡性较好。
在一些实施例中,如图2和图3所示,承载模块12还包括第一承载单元121,第一承载单元121具有第三承载面,第三承载面和第四承载面共同构成第二承载面,多个第四承载面对应的多个中心处于同一圆上,第三承载面的中心与上述圆的圆心重合,第三承载面和每一第四承载面各环绕至少一第一抽气口13。在通过多个第二承载单元122上的多个第一抽气口13实现晶圆14的多个局部区域的应力平衡之后,设置位于中心的第一承载单元121,有利于提高不同局部区域之间的应力平衡,从而提升晶圆14的整体应力平衡。
本实施例中,抽气模块还用于控制第一抽气口13的抽气速率,以使承载模块12承载的晶圆受到的来源于第一抽气口13的第一压强为1KPa~30KPa,例如5KPa、10KPa、15KPa或25KPa。可以知晓的是,第一抽气口13的抽气速率越大,抽气模块施加于晶圆14上的吸附力越大,晶圆14承受的第一压强越大,将第一压强控制在1KPa以上,有利于避免因抽气速率过慢而导致应力释放时间过长,从而保证晶圆的温度调节时长和应力调节时长满足要求。在一个示例中,将第一压强控制在30KPa以下,有利于避免晶圆14因第一压强过大而发生应力变形,从而保证晶圆14具有良好的应力状态和功能特性。
在其他实施例中,参考图4,晶圆调节装置还包括:基盘20,基盘20的顶面作为基准面20a,基准面20a低于或处于预设最低位置,抽气模块还具有被基准面20a环绕的朝向晶圆24的第二抽气口232,抽气模块还用于通过第二抽气口232吸附晶圆24,多个第一抽气口231对应的多个中心处于同一圆上,该圆的圆心在基准面20a上的正投影与第二抽气口232的中心重合。
抽气模块用于通过第一抽气口231和第二抽气口232同时吸附晶圆24,抽气模块还用于控制第二抽气口232的抽气速率,以使通过第二抽气口232向晶圆24施加的吸附力小于通过多个第一抽气口231向晶圆24施加的吸附力。由于第二抽气口232对应的吸附区域内没有承载物进行支撑,因此,设置第二抽气口232的吸附力小于第一抽气口231的吸附力,有利于避免晶圆24因吸附力过大而发生应力变形,从而保证晶圆24具有良好的应力状态,以及保证第一抽气口231和第二抽气口232能够在较短的时间内释放晶圆24内的应力。
抽气模块用于控制承载模块12承载的晶圆24受到的来源于第二抽气口232的第二压强为1KPa~2KPa,例如为1.3KPa、1.5KPa以及1.7KPa。
本实施例中,参考图2,抽气模块还具有设置于基准面10a的第三抽气口15,抽气模块可通过第三抽气口15送气或抽气。可以知晓的是,无论第三抽气口15是送气还是抽气,都能够带走晶圆14表面的热量,从而起到调控晶圆14温度的目的;此外,若需要进一步吸附晶圆14或加速晶圆14的应力释放,可通过第三抽气口15抽气吸附晶圆14。
本实施例中,具有第一抽气口13的抽气管道设置于承载模块12内,第二承载面暴露第一抽气口13,在垂直于基准面10a的方向上,第一抽气口13在第二承载面所在平面上的正投影被第二承载面环绕。
参考图5,承载模块包括固定部12b和支撑部12a,支撑部12a具有柱状结构,具有第一抽气口13的抽气管道设置于柱状结构内,固定部12b为设置于柱状结构顶面边缘的环状结构,环状结构的顶面作为承载模块的承载面,环状结构的材料为弹性材料,例如橡胶材料。
支撑部12a一般选用硬度较高的材料,以保持稳定性,将固定部12b设置于支撑部12a上方,有利于隔离晶圆和支撑部12a,避免支撑部12a与晶圆发生摩擦损伤;同时,将固定部12b设置在顶部边缘,相较于设置第一抽气口13所在平面为第二承载面,有利于扩大第一抽气口13对应的吸附区域的面积,缩短应力释放以及温度调控所需要的时间;同时,将固定部12b的材料设置为弹性材料,有利于避免在吸附力作用下固定部12b对晶圆造成损伤;优选地,设置固定部12b的材料为橡胶材料,有利于增大固定部12b与晶圆之间的摩擦系数,避免晶圆发生偏移,从而保证第一抽气口13的吸附 力能够均匀施加在晶圆上,保证晶圆应力的均匀释放。
承载模块还包括缓冲部12c,缓冲部12c用于缓冲承载模块转接晶圆时的瞬间应力。缓冲部12c可以为弹性结构,例如弹簧。
本实施例中,第一抽气口13由至少两个子抽气口组成,抽气模块用于通过至少两个子抽气口吸附晶圆,所有子抽气口构成的组合图案的几何中心作为第一抽气口13的中心,所有子抽气口的吸附力之和作为第一抽气口13的吸附力。将第一抽气口13拆分为多个子抽气口,有利于提升第一抽气口13对应的吸附区域的受力均匀性,进一步避免晶圆因吸附力较大而发生应力变形。
示例性地,第一抽气口13由三个子抽气口组成,三个子抽气口的中心的连线构成等边三角形,等边三角形的中心作为第一抽气口13的中心。
本实施例中,设置有可调节晶圆垂直位置的升降模块和被第二承载面环绕的第一抽气口,第一抽气口通过吸气吸附晶圆并将晶圆固定在承载模块上,第一抽气口的吸附作用可释放或均匀化晶圆的集中应力,且可降低晶圆的温度,晶圆调节装置既可以调节晶圆相对于基准面的垂直高度,又可以同时改善晶圆的应力情况和调控晶圆的温度,如此,无需设置多个装置分别调节晶圆的位置、应力或温度,有利于缩短晶圆调节时长,提升扫描曝光装置的产量。
本公开实施例还提供一种反应腔室,包括:涂胶显影装置,用于向晶圆调节装置承载的晶圆涂覆光刻胶;如上述任一项的晶圆调节装置,晶圆调节装置用于调节已涂覆光刻胶的晶圆。
本实施例中,通过晶圆调节装置提前调控晶圆的温度和释放晶圆的应力,有利于缩短甚至免除后续进入扫描曝光腔室所需的温度调控时间和应力释放时间,从而提升扫描曝光装置的产量。
本公开实施例还提供一种晶圆调节方法,包括:提供如上述任一项的晶圆调节装置;控制升降模块的第一承载面上升至预设最高位置;提供晶圆并控制晶圆承载于第一承载面上;控制第一承载面下降至预设最低位置,以使承载模块的第二承载面转接晶圆;开启抽气模块,以通过第一抽气口吸附晶圆。
本实施例中,在控制升降模块下降之前,开启抽气模块。如此,有利于 通过吸附力将晶圆固定在升降模块上,避免晶圆在开始下降以及下降过程中发生偏移。
本实施例中,承载模块包括多个承载单元,多个承载单元的承载面构成承载模块的第二承载面,抽气模块具有多个第一抽气口,每个承载单元的承载面环绕一第一抽气口;开启抽气模块,包括:控制第一抽气口的抽气速率,以使承载模块承载的晶圆受到的来源于第一抽气口的总压强为1KPa~30KPa,例如5KPa、10KPa、15KPa或25KPa。
本实施例中,抽气模块的开启时间为5~50s,例如10s、20s、30s或40s。抽气模块的开启时间可以根据实际需要进行调整,以有效缩短晶圆的调节时长,同时避免光刻胶的双螺旋现象。
本实施例中,第一承载面的设置可调节晶圆的相对位置,第一抽气口的吸附作用可释放或均匀化晶圆的集中应力,且可调控晶圆的温度,也就是说,晶圆调节装置既可以调节晶圆相对于基准面的垂直高度,又可以同时改善晶圆的应力情况和降低晶圆的温度,如此,无需设置多个装置分别调节晶圆的位置、应力或温度,有利于缩短晶圆调节时长,提升扫描曝光装置的产量。
在本说明书的描述中,参考术语“实施例”、“示例性的实施例”、“一些实施方式”、“示意性实施方式”、“示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。
在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
本公开所使用的术语“第一”、“第二”等可在本公开中用于描述各种结构,但这些结构不受这些术语的限制。这些术语仅用于将第一个结构与另 一个结构区分。
在一个或多个附图中,相同的元件采用类似的附图标记来表示。为了清楚起见,附图中的多个部分没有按比例绘制。此外,可能未示出某些公知的部分。为了简明起见,可以在一幅图中描述经过数个步骤后获得的结构。在下文中描述了本公开的许多特定的细节,例如器件的结构、材料、尺寸、处理工艺和技术,以便更清楚地理解本公开。但正如本领域技术人员能够理解的那样,可以不按照这些特定的细节来实现本公开。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。
工业实用性
本公开实施例所提供的晶圆调节装置、反应腔室以及晶圆调节方法,设置有可调节晶圆垂直位置的升降模块和被第二承载面环绕的第一抽气口,第一抽气口通过吸气吸附晶圆并将晶圆固定在承载模块上,第一抽气口的吸附作用可释放或均匀化晶圆的集中应力,且可降低晶圆的温度,也就是说,晶圆调节装置既可以调节晶圆相对于基准面的垂直高度,又可以同时改善晶圆的应力情况和调控晶圆的温度,如此,无需设置多个装置分别调节晶圆的位置、应力或温度,有利于缩短晶圆调节时长。另外,多个承载单元的承载面构成第二承载面,相对于单一承载表面,设置多个承载面有利于保证晶圆的均匀受力,避免晶圆受到应力损伤以及加速晶圆应力的释放。

Claims (16)

  1. 一种晶圆调节装置,所述晶圆调节装置包括:
    升降模块,所述升降模块具有设置为承载晶圆的第一承载面,所述第一承载面可相对于基准面上升至预设最高位置或下降至预设最低位置;
    承载模块,所述承载模块具有第二承载面,所述第二承载面的位置高于所述预设最低位置且低于所述预设最高位置,所述第二承载面设置为转接所述第一承载面承载的所述晶圆;
    抽气模块,所述抽气模块具有被所述第二承载面环绕的朝向所述晶圆的第一抽气口,所述抽气模块设置为通过所述第一抽气口吸附所述晶圆。
  2. 根据权利要求1所述的晶圆调节装置,其中,所述抽气模块还设置为控制所述第一抽气口的抽气速率,以使所述承载模块承载的所述晶圆受到的来源于所述第一抽气口的第一压强为1KPa~30KPa。
  3. 根据权利要求1所述的晶圆调节装置,其中,所述承载模块包括多个承载单元,多个所述承载单元的承载面构成所述第二承载面,所述抽气模块具有多个所述第一抽气口,每一所述承载单元的承载面环绕一所述第一抽气口。
  4. 根据权利要求3所述的晶圆调节装置,其中,所述承载模块包括第一承载单元和多个第二承载单元,所述第一承载单元的第三承载面和所述第二承载单元的第四承载面构成所述第二承载面,多个所述第四承载面对应的多个中心处于同一圆上,所述第三承载面的中心与所述圆的圆心重合,所述第三承载面和每一所述第四承载面各环绕一所述第一抽气口。
  5. 根据权利要求3所述的晶圆调节装置,其中,所述晶圆调节装置还包括:基盘,所述基盘的顶面作为所述基准面,所述基准面低于或处于所述预设最低位置,所述抽气模块还具有被所述基准面环绕的朝向所述晶圆的第二抽气口,所述抽气模块还设置为通过所述第二抽气口吸附所述晶圆,多个所述第一抽气口对应的多个中心处于同一圆上,所述第二抽气口的中心与所述圆的圆心重合。
  6. 根据权利要求5所述的晶圆调节装置,其中,所述抽气模块设置为通过所述第一抽气口和所述第二抽气口同时吸附所述晶圆,所述抽气模块还设置为控制所述第二抽气口的抽气速率,以使通过所述第二抽气口向所述晶圆施加的吸附力小于通过所述第一抽气口向所述晶圆施加的吸附力。
  7. 根据权利要求6所述的晶圆调节装置,其中,所述抽气模块设置为控制所述承载模块承载的所述晶圆受到的来源于所述第二抽气口的第二压强为1KPa~2Kpa。
  8. 根据权利要求1所述的晶圆调节装置,其中,具有所述第一抽气口的抽气管道设置于所述承载模块内,所述第二承载面暴露所述第一抽气口,在垂直于所述基准面的方向上,所述第一抽气口在所述第二承载面所在平面上的正投影被所述第二承载面环绕。
  9. 根据权利要求8所述的晶圆调节装置,其中,所述承载模块包括固定部和支撑部,所述支撑部具有柱状结构,所述抽气管道设置于所述柱状结构内,所述固定部为设置于所述柱状结构顶面边缘的环状结构,所述环状结构的材料为弹性材料。
  10. 根据权利要求1所述的晶圆调节装置,其中,所述第一抽气口由至少两个子抽气口组成,所述抽气模块设置为通过至少两个所述子抽气口吸附所述晶圆。
  11. 根据权利要求10所述的晶圆调节装置,其中,所述第一抽气口由三个所述子抽气口组成,三个所述子抽气口的中心的连线构成等边三角形,所述等边三角形的中心作为所述第一抽气口的中心。
  12. 一种反应腔室,所述反应腔室包括:
    涂胶显影装置,设置为向所述晶圆调节装置承载的晶圆涂覆光刻胶;
    如权利要求1至11中任一项所述的晶圆调节装置,所述晶圆调节装置设置为调节已涂覆所述光刻胶的所述晶圆。
  13. 一种晶圆调节方法,所述晶圆调节方法包括:
    提供如权利要求1至11中任一项所述的晶圆调节装置;
    控制升降模块的第一承载面上升至预设最高位置;
    提供晶圆并控制所述晶圆承载于所述第一承载面上;
    控制所述第一承载面下降至预设最低位置,以使承载模块的第二承载面转接所述晶圆;
    开启所述抽气模块,以通过所述第一抽气口吸附所述晶圆。
  14. 根据权利要求13所述的晶圆调节方法,其中,在控制所述升降模块下降之前,开启所述抽气模块。
  15. 根据权利要求13所述的晶圆调节方法,其中,所述承载模块包括多个承载单元,多个所述承载单元的承载面构成所述承载模块的第二承载面,所述抽气模块具有多个所述第一抽气口,每一所述承载单元的承载面环绕一所述第一抽气口;所述开启所述抽气模块,包括:控制所述第一抽气口的抽气速率,以使所述承载模块承载的所述晶圆受到的来源于所述第一抽气口的总压强为1KPa~30KPa。
  16. 根据权利要求14所述的晶圆调节方法,其中,所述抽气模块的开启时间为5~50s。
PCT/CN2021/121033 2021-07-07 2021-09-27 晶圆调节装置、反应腔室以及晶圆调节方法 WO2023279546A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/648,727 US11892778B2 (en) 2021-07-07 2022-01-24 Device for adjusting wafer, reaction chamber, and method for adjusting wafer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110767466.4 2021-07-07
CN202110767466.4A CN115602591A (zh) 2021-07-07 2021-07-07 晶圆调节装置、反应腔室以及晶圆调节方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/648,727 Continuation US11892778B2 (en) 2021-07-07 2022-01-24 Device for adjusting wafer, reaction chamber, and method for adjusting wafer

Publications (1)

Publication Number Publication Date
WO2023279546A1 true WO2023279546A1 (zh) 2023-01-12

Family

ID=84801252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121033 WO2023279546A1 (zh) 2021-07-07 2021-09-27 晶圆调节装置、反应腔室以及晶圆调节方法

Country Status (2)

Country Link
CN (1) CN115602591A (zh)
WO (1) WO2023279546A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591356A (zh) * 2017-10-13 2018-01-16 深圳中科飞测科技有限公司 晶圆固定装置及其使用方法
CN209045524U (zh) * 2018-11-07 2019-06-28 上海精典电子有限公司 一种晶圆升降装置
CN209843684U (zh) * 2019-04-29 2019-12-24 深圳中科飞测科技有限公司 承载装置
CN110620074A (zh) * 2018-06-19 2019-12-27 北京北方华创微电子装备有限公司 基座组件及反应腔室
CN210743929U (zh) * 2019-09-30 2020-06-12 深圳中科飞测科技有限公司 承载装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107591356A (zh) * 2017-10-13 2018-01-16 深圳中科飞测科技有限公司 晶圆固定装置及其使用方法
CN110620074A (zh) * 2018-06-19 2019-12-27 北京北方华创微电子装备有限公司 基座组件及反应腔室
CN209045524U (zh) * 2018-11-07 2019-06-28 上海精典电子有限公司 一种晶圆升降装置
CN209843684U (zh) * 2019-04-29 2019-12-24 深圳中科飞测科技有限公司 承载装置
CN210743929U (zh) * 2019-09-30 2020-06-12 深圳中科飞测科技有限公司 承载装置

Also Published As

Publication number Publication date
CN115602591A (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
US8608885B2 (en) Substrate heat treatment apparatus
KR101515247B1 (ko) 기판 처리 장치
US9829802B2 (en) Conveying hand and lithography apparatus
KR102668071B1 (ko) 기판 처리 장치 및 기판 처리 방법
US20070128888A1 (en) Substrate heat treatment apparatus
US20090179366A1 (en) Apparatus for supporting a substrate during semiconductor processing operations
US10937681B2 (en) Wafer support system, wafer support device, system comprising a wafer and a wafer support device as well as mask aligner
US10811300B2 (en) Wafer table with dynamic support pins
KR20170132558A (ko) 웨이퍼 분리 장치
TWI822993B (zh) 基板貼合裝置及基板貼合方法
US10319623B2 (en) Conveyance hand, conveyance apparatus, lithography apparatus, manufacturing method of article, and holding mechanism
US11948816B2 (en) Transfer apparatus
KR20140136878A (ko) 접합 장치, 접합 시스템, 접합 방법 및 컴퓨터 기억 매체
WO2023279546A1 (zh) 晶圆调节装置、反应腔室以及晶圆调节方法
JP6362416B2 (ja) 保持装置、リソグラフィ装置、および物品の製造方法
US11892778B2 (en) Device for adjusting wafer, reaction chamber, and method for adjusting wafer
TW201939659A (zh) 基板處理裝置及基板處理方法
JP2020145438A (ja) 基板をボンディングする方法および装置
US9484243B2 (en) Processing chamber with features from side wall
US20230420285A1 (en) Substrate processing apparatus and method
KR20200119198A (ko) 장축 마스크 얼라이너용 레벨링장치
JP2011129674A (ja) 荷電粒子ビーム描画装置、荷電粒子ビーム描画方法及び基板ホルダ
KR20240043474A (ko) 열 처리 장치, 그 동작 방법, 및 포토 스피너 설비
JP2018207026A (ja) 保持装置、その制御方法、リソグラフィ装置、及び物品製造方法
CN111696888A (zh) 基板冷却装置和基板冷却方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE