WO2023277190A1 - 保護カバー部材、部材供給用シート及び微小電気機械システム - Google Patents

保護カバー部材、部材供給用シート及び微小電気機械システム Download PDF

Info

Publication number
WO2023277190A1
WO2023277190A1 PCT/JP2022/026516 JP2022026516W WO2023277190A1 WO 2023277190 A1 WO2023277190 A1 WO 2023277190A1 JP 2022026516 W JP2022026516 W JP 2022026516W WO 2023277190 A1 WO2023277190 A1 WO 2023277190A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover member
protective cover
protective film
adhesive layer
film
Prior art date
Application number
PCT/JP2022/026516
Other languages
English (en)
French (fr)
Inventor
栄作 田中
健郎 井上
恭子 石井
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202280047211.3A priority Critical patent/CN117651746A/zh
Priority to KR1020247003572A priority patent/KR20240031338A/ko
Priority to US18/573,110 priority patent/US20240286389A1/en
Priority to JP2023532096A priority patent/JPWO2023277190A1/ja
Priority to DE112022003389.4T priority patent/DE112022003389T5/de
Publication of WO2023277190A1 publication Critical patent/WO2023277190A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/065Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0061Packages or encapsulation suitable for fluid transfer from the MEMS out of the package or vice versa, e.g. transfer of liquid, gas, sound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/737Dimensions, e.g. volume or area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0257Microphones or microspeakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/18Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet characterized by perforations in the adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a protective cover member to be placed on a surface of an object having an opening, a member supply tape for supplying the protective cover member, and a micro-electromechanical system comprising the protective cover member.
  • a protective cover member is known that is placed on a surface of an object having an opening to prevent foreign matter from entering the opening.
  • a porous membrane that has polytetrafluoroethylene (hereinafter referred to as PTFE) as a main component and that prevents the penetration of foreign matter such as water droplets while allowing the transmission of sound, and the porous membrane are separated.
  • a component is disclosed that includes a heat-resistant double-sided adhesive sheet, which is an adhesive layer disposed on a limited area on at least one major surface of a porous membrane for fixing to a component.
  • Patent Document 1 attempts to secure the heat resistance of the member against high temperatures during solder reflow by paying attention to the base material of the double-sided pressure-sensitive adhesive sheet that fixes the member to the surface of the target circuit board.
  • MEMS Micro Electro Mechanical Systems
  • An object of the present invention is to provide a protective cover member that includes a protective film and an adhesive layer and that is suitable for reducing the area of the adhesive layer.
  • the present invention A protective cover member to be placed on a surface of an object having a surface with an opening, A laminate comprising a protective film having a shape that covers the opening when the protective cover member is placed on the surface, and an adhesive layer,
  • a protective cover member to be placed on a surface of an object having a surface with an opening
  • a laminate comprising a protective film having a shape that covers the opening when the protective cover member is placed on the surface, and an adhesive layer
  • the portion of the protective film that coincides with the adhesive layer when viewed from the direction perpendicular to the main surface of the protective film is defined as the fixed portion of the protective film
  • the side of the protective film that faces the adhesive layer is The exposed surface on the opposite side is A region A that overlaps with the fixed portion when viewed from the vertical direction and has a contact angle of 55 degrees or more with respect to methanol; a protective cover member having I will provide a.
  • the present invention provides comprising a base sheet and one or more protective cover members disposed on the base sheet, the protective cover member is a member supply sheet that is the protective cover member of the present invention; I will provide a.
  • the present invention provides a micro-electromechanical system comprising the protective cover member of the present invention; I will provide a.
  • a protective cover member that includes a protective film and an adhesive layer and is suitable for reducing the area of the adhesive layer is achieved.
  • FIG. 1A is a cross-sectional view schematically showing an example of the protective cover member of the present invention.
  • FIG. 1B is a plan view of the protective cover member 1 of FIG. 1A viewed from the protective film 2 side.
  • FIG. 1C is a plan view of the protective cover member 1 of FIG. 1A viewed from the adhesive layer 3 side.
  • FIG. 2A is a schematic diagram for explaining the overflow of fluid when the exposed surface of the protective film does not have region A.
  • FIG. FIG. 2B is a schematic diagram showing an example of a state that the fluid can take when the exposed surface of the protective film has a region A.
  • FIG. FIG. 3 is a cross-sectional view schematically showing an example of the protective cover member of the present invention.
  • FIG. 1A is a cross-sectional view schematically showing an example of the protective cover member of the present invention.
  • FIG. 1B is a plan view of the protective cover member 1 of FIG. 1A viewed from the protective film 2 side.
  • FIG. 4 is a cross-sectional view schematically showing an example of the arrangement of the protective cover member of the present invention on the object.
  • FIG. 5 is a cross-sectional view schematically showing an example of the arrangement of the protective cover member of the present invention on the object.
  • FIG. 6 is a cross-sectional view schematically showing an example of the protective cover member of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing an example of the protective cover member of the present invention.
  • FIG. 8 is a plan view schematically showing an example of the member-supplying sheet of the present invention.
  • the protective cover member according to the first aspect of the present invention includes A protective cover member to be placed on a surface of an object having a surface with an opening, A laminate comprising a protective film having a shape that covers the opening when the protective cover member is placed on the surface, and an adhesive layer,
  • a protective cover member to be placed on a surface of an object having a surface with an opening
  • a laminate comprising a protective film having a shape that covers the opening when the protective cover member is placed on the surface, and an adhesive layer
  • the portion of the protective film that coincides with the adhesive layer when viewed from the direction perpendicular to the main surface of the protective film is defined as the fixed portion of the protective film
  • the side of the protective film that faces the adhesive layer is The exposed surface on the opposite side is A region A that overlaps with the fixed portion when viewed from the vertical direction and has a contact angle of 55 degrees or more with respect to methanol;
  • the entire exposed surface on the opposite side of the fixing portion has a contact angle with respect to methanol of 55 degrees or more.
  • the fixing portion is positioned at the peripheral edge portion of the protective film when viewed from the vertical direction.
  • the adhesive layer is in contact with the protective film.
  • the adhesive layer is attached to the protective film against the object on the protective cover member. Located on the face placement side.
  • the adhesive layer includes a layer formed from a thermosetting adhesive composition.
  • thermosetting pressure-sensitive adhesive composition has a storage elastic modulus of 1.0 ⁇ 10 3 Pa or more at 130 to 170°C.
  • the storage elastic modulus of the thermosetting adhesive composition after heat curing is 1.0 ⁇ at 130 to 170° C. It is 10 8 Pa or less.
  • the adhesive layer when viewed from a direction perpendicular to the main surface of the protective film, the adhesive layer includes the protective It is arranged at the periphery of the film, and overlaps the adhesive layer in the shortest line segment with respect to the length L 1 of the shortest line segment among the line segments from the center of the protective film to the outer periphery of the protective film.
  • the ratio L 2 /L 1 of the length L 2 of the portion to be connected is 0.5 or less.
  • the protective film has air permeability in the thickness direction.
  • the protective film includes a porous film or a microporous film, and the porous film and the microporous film are The average pore size of the porous membrane is 0.01 ⁇ m or more and less than 3 ⁇ m.
  • the protective film includes a polytetrafluoroethylene film.
  • the area of the protective film is 175 mm 2 or less.
  • the laminate includes a base material positioned on the adhesive layer side with respect to the protective film Further includes a film.
  • the protective cover member according to any one of the first to fourteenth aspects is for micro-electro-mechanical systems (MEMS).
  • MEMS micro-electro-mechanical systems
  • the protective cover member according to the fifteenth aspect is placed inside the MEMS and used.
  • the member supply sheet according to the seventeenth aspect of the present invention includes: comprising a base sheet and one or more protective cover members disposed on the base sheet,
  • the protective cover member is a protective cover member according to any one of the first to sixteenth modes.
  • a micro-electromechanical system according to an eighteenth aspect of the present invention comprises: A protective cover member according to any one of the first to sixteenth aspects is provided.
  • FIGS. 1A, 1B and 1C An example of the protective cover member of this embodiment is shown in FIGS. 1A, 1B and 1C.
  • FIG. 1B is a plan view of the protective cover member 1 of FIG. 1A viewed from the protective film 2 side.
  • FIG. 1C is a plan view of the protective cover member 1 of FIG. 1A viewed from the adhesive layer 3 side.
  • FIG. 1A shows section 1A-1A of FIGS. 1B and 1C. 1B and 1C, the protective cover member 1 is viewed from a direction perpendicular to the main surface of the protective film 2.
  • the protective cover member 1 is a member arranged on a surface (arrangement surface) of an object having a surface with an opening.
  • a protective cover member 1 is composed of a laminate 4 including a protective film 2 and an adhesive layer 3 .
  • the protective film 2 has a shape that covers the opening when the protective cover member 1 is placed on the placement surface.
  • the adhesive layer 3 is bonded to the protective film 2 .
  • the protective cover member 1 can be fixed to the placement surface of the object with the adhesive layer 3 .
  • a portion of the protective film 2 that coincides with the adhesive layer 3 when viewed from a direction perpendicular to the main surface of the protective film 2 can be defined as a fixing portion 21 of the protective film 2 .
  • the exposed surface 22 of the protective film 2 on the side opposite to the side facing the adhesive layer 3 overlaps with the fixing portion 21 when viewed from the direction perpendicular to the main surface of the protective film 2, and has a contact angle ⁇ M with respect to methanol. is greater than or equal to 55 degrees.
  • the fluid 5 spreads from the fixing portion 21 of the protective film 2 to the ventilation/sound transmission region 23 and blocks the region 23 (see FIG. 2A).
  • the protective cover member 1 of the present embodiment since the exposed surface 22 has the region A, it is possible to suppress the fluid 5 from protruding from the fixing portion 21 to the ventilation/sound transmission region 23 (see FIG. 2B).
  • the surface tension (20° C.) of the organic solvent usually contained in the pressure-sensitive adhesive or the like is usually in the range of about 20-40 mN/m. Taking this into consideration, the contact angle ⁇ M for methanol having a surface tension near the lower limit of the above range (22.5 mN/m; 20° C.) is determined.
  • the contact angle ⁇ M of the region A may be 58 degrees or more, 60 degrees or more, 63 degrees or more, 65 degrees or more, 68 degrees or more, 70 degrees or more, 73 degrees or more, or even 75 degrees or more.
  • the upper limit of the contact angle ⁇ M of the region A is, for example, 130 degrees or less, 120 degrees or less, 110 degrees or less, 100 degrees or less, 90 degrees or less, 85 degrees or less, 80 degrees or less, 75 degrees or less, and further 73 degrees. It may be less than degree.
  • the contact angle ⁇ M can be evaluated in conformity with the sessile drop method defined in Japanese Industrial Standards (hereinafter referred to as JIS) R3257 (however, instead of water drops, methanol drops with a volume of 2 ⁇ L are used).
  • JIS Japanese Industrial Standards
  • the evaluation temperature is 25°C.
  • the contact angle ⁇ M of the region A depends on, for example, the material and properties of the protective film 2 (thickness, average pore diameter, porosity, state of the exposed surface 22, surface free energy, surface roughness, etc.), various Presence or absence of treatment, properties of the adhesive layer 3 (thickness, storage modulus, surface free energy, etc.), composition and properties of the adhesive composition used to form the adhesive layer 3 (storage elastic modulus, surface free energy, etc.) , and the bonding conditions between the protective film 2 and the adhesive layer 3 .
  • region A is not limited as long as it overlaps with fixing portion 21 when viewed from the direction perpendicular to the main surface of protective film 2 . If the contact angle ⁇ M of the portion of the region A that overlaps with the fixing portion 21 is greater than or equal to a certain angle ⁇ 1 (for example, 55 degrees), the contact angle ⁇ M of the region A is assumed to be greater than or equal to ⁇ 1 .
  • a certain angle ⁇ 1 for example, 55 degrees
  • the entire exposed surface 22 on the opposite side of the fixing portion 21 in other words, when viewed from a direction perpendicular to the main surface of the protective film 2, the fixing on the exposed surface 22
  • the contact angle ⁇ M is 55 degrees or more in the entire portion corresponding to the portion 21 .
  • the fixing part 21 in FIGS. 1A to 1C is positioned at the peripheral edge of the protective film 2 when viewed from the direction perpendicular to the main surface of the protective film 2. As shown in FIG. 1A to 1C has a frame shape when viewed from the vertical direction. However, the shape of the fixing portion 21 and the position on the protective film 2 are not limited to the above examples. When viewed from the vertical direction, the area 23 of the protective film 2 surrounded by the fixing portions 21 can serve as a ventilation/sound-permeable area of the protective cover member 1 through which gas and/or sound can mainly pass.
  • the area of the region 23 is, for example, 20 mm 2 or less, 15 mm 2 or less, 12.5 mm 2 or less, 10 mm 2 or less, 7.5 mm 2 or less, 5 mm 2 or less, 2.5 mm 2 or less, 2 mm 2 or less, or even 1 mm 2 or less. 0.5 mm 2 or less.
  • the protective cover member 1 in which the area of the region 23 is within the above range is suitable for placement on, for example, a circuit board or MEMS normally having small-diameter openings.
  • the lower limit of the area of the region 23 is, for example, 0.008 mm 2 or more. However, the area of the region 23 may be larger depending on the type of object on which the protective cover member 1 is placed.
  • the region A and the region 23 may overlap when viewed from the direction perpendicular to the main surface of the protective film 2 .
  • the adhesive layer 3 in FIGS. 1A to 1C is in contact with the protective film 2. More specifically, the adhesive layer 3 is bonded to the protective film 2 . However, another layer may be arranged between the adhesive layer 3 and the protective film 2 . For bonding the adhesive layer 3 and the protective film 2, heat press treatment such as hot press may be used.
  • the components contained in the adhesive layer 3 may or may not permeate the inside of the protective film 2.
  • the permeation does not have to reach the exposed surface 22 of the protective film 2 .
  • the fact that the permeation does not reach the exposed surface 22 can contribute to the fact that the exposed surface 22 has the region A.
  • the permeation of the components of the adhesive layer 3 occurs when the adhesive layer 3 and the protective film 2 are joined together, especially in a layer in which the adhesive layer 3 is formed from a thermosetting adhesive composition. This is likely to occur in some cases or when the adhesive layer 3 and the protective film 2 are joined using heat and pressure treatment.
  • the degree of penetration of the components of the adhesive layer 3 into the protective film 2 can be expressed, for example, by the maximum penetration depth of the components into the protective film 2 .
  • the maximum penetration depth may be less than the thickness of the protective film 2, 95% or less, 90% or less, 70% or less, 50% or less, 30% or less, or even 10% of the protective film 2 thickness. It may be below.
  • the adhesive layer 3 in FIGS. 1A to 1C is arranged in a partial area of the protective film 2 when viewed from the direction perpendicular to the main surface of the protective film 2.
  • the shape of the adhesive layer 3 is the shape of the peripheral portion of the protective film 2 when viewed from the above-mentioned vertical direction, and more specifically, it is frame-shaped. In the area 23 of the protective film 2 where the adhesive layer 3 is not arranged, better ventilation and/or sound transmission is possible compared to the area where the adhesive layer 3 is arranged.
  • the shape of the adhesive layer 3 is not limited to the above example.
  • the adhesive layer 3 may have a ring shape when viewed from the perpendicular direction.
  • the thickness of the adhesive layer 3 is, for example, 3-200 ⁇ m, and may be 5-100 ⁇ m, 10-50 ⁇ m, or even 20-40 ⁇ m.
  • the total area of the adhesive layer 3 is, for example, 0.1 to 10 mm 2 , and may be 0.5 to 5 mm 2 , 0.8 to 4 mm 2 , or even 1 to 3 mm 2 .
  • the width of the frame-shaped adhesive layer 3 (corresponding to the width of the fixing portion 21) is, for example, 50 to 3000 ⁇ m, and may be 100 to 1000 ⁇ m, 150 to 800 ⁇ m, and further 200 to 500 ⁇ m.
  • the adhesive layer 3 in FIGS. 1A to 1C is arranged on the peripheral portion of the protective film 2 when viewed from the direction perpendicular to the main surface of the protective film 2 .
  • the adhesive layer at the line segment S min for the length L 1 of the shortest line segment S min among the line segments from the center O of the protective film 2 to the outer periphery of the protective film 2 The ratio L 2 /L 1 of the length L 2 of the portion overlapping 3 may be 0.5 or less, 0.3 or less, 0.2 or less, or even 0.1 or less. .
  • the lower limit of the ratio L 2 /L 1 is, for example, 0.05 or more.
  • the center O of the protective film 2 can be defined as the center of gravity of the shape of the protective film 2 when viewed from the direction perpendicular to the main surface of the protective film 2 .
  • the adhesive layer 3 includes a layer (hereinafter referred to as layer B) formed from an adhesive composition.
  • the adhesive layer 3 may have a single layer structure consisting of the layer B, or may have a laminated structure including the layer B.
  • the laminate structure may have two or more layers B.
  • the adhesive layer 3 may include a substrate and a layer B arranged on at least one surface of the substrate. An example of this aspect is shown in FIG.
  • the adhesive layer 3 of FIG. 3 has a substrate 32 and layers B31 provided on both surfaces of the substrate 32, respectively.
  • One layer B31 is in contact with the protective film 2 .
  • the other layer B31 constitutes the joint surface 11 of the protective cover member 1 with respect to the placement surface of the object.
  • the configuration of each layer B31 may be the same or different.
  • Examples of the base material 32 are films, non-woven fabrics and foams of resins, metals or composite materials thereof.
  • resins are polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate (PET), silicone resins, polycarbonates, polyimides, polyamideimides, polyphenylene sulfides, polyetheretherketones (PEEK) and fluororesins.
  • fluororesins examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-ethylene copolymer. coalescence (ETFE).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETDFE tetrafluoroethylene-ethylene copolymer.
  • metals are stainless steel and aluminum. However, the resin and metal are not limited to the above examples.
  • the base material 32 may contain a heat-resistant material.
  • the protective cover member 1 provided with the base material 32 containing a heat-resistant material is suitable for use under high temperatures depending on the materials of the other layers that constitute the protective cover member 1 .
  • heat resistant materials are metals and heat resistant plastics.
  • a heat resistant resin typically has a melting point of 150° C. or higher.
  • the melting point of the heat-resistant resin may be 160° C. or higher, 200° C. or higher, 220° C. or higher, 240° C. or higher, 250° C. or higher, 260° C. or higher, or even 300° C. or higher.
  • heat-resistant resins are silicone resins, polyimides, polyamideimides, polyphenylene sulfides, PEEK and fluororesins.
  • the fluororesin may be PTFE. PTFE is particularly excellent in heat resistance.
  • the layer B31 may be formed from a thermosetting adhesive composition, in other words, the adhesive layer 3 is a layer formed from a thermosetting adhesive composition (hereinafter referred to as a thermosetting adhesive layer). may contain.
  • the adhesive layer 3 containing a thermosetting adhesive layer is more suitable for bonding with the protective film 2 by heat press treatment.
  • the thermosetting adhesive layer is formed, for example, by applying the thermosetting adhesive composition C and drying it.
  • the storage modulus G' of the pressure-sensitive adhesive composition C may be 1.0 ⁇ 10 3 Pa or more at 130 to 170°C. 130 to 170° C. corresponds to a typical curing temperature of a thermosetting resin composition and a typical temperature of heat and pressure treatment.
  • the storage modulus G′ of the pressure-sensitive adhesive composition C is 3.0 ⁇ 10 3 Pa or higher, 5.0 ⁇ 10 3 Pa or higher, 7.0 ⁇ 10 3 Pa or higher, 1.0 ⁇ 10 3 Pa or higher at 130 to 170° C.
  • the upper limit of the storage elastic modulus G ′ in the same temperature range is, for example, 5.0 ⁇ 10 6 Pa or less.
  • the adhesive layer 3 including the layer formed from the adhesive composition C is excellent in shape retention during heating, and thus is more suitable for bonding to the protective film 2 by heat and pressure treatment. Further, the fact that the storage elastic modulus G 1 ′ of the adhesive composition C at 130 to 170° C. is within the above range can contribute to suppressing penetration of the components of the adhesive layer 3 into the protective film 2 .
  • the storage elastic modulus G' after heat curing of the pressure-sensitive adhesive composition C may be 1.0 ⁇ 10 8 Pa or less at 130 to 170°C.
  • the adhesive layer 3 including the layer formed from the adhesive composition C is not too hard and has excellent bondability.
  • the storage elastic modulus G′ after heat curing is 5.0 ⁇ 10 7 Pa or less, 3.0 ⁇ 10 7 Pa or less, 1.8 ⁇ 10 7 Pa or less, 1.7 ⁇ 10 7 at 130 to 170° C. Pa or less, 1.0 ⁇ 10 7 Pa or less, 5.0 ⁇ 10 6 Pa or less, 2.0 ⁇ 10 6 Pa or less, 1.0 ⁇ 10 6 Pa or less, further 9.6 ⁇ 10 5 Pa or less There may be.
  • the lower limit of the storage elastic modulus G′ after thermosetting in the same temperature range is, for example, 5.0 ⁇ 10 4 Pa or more.
  • the PSA composition C may have a storage elastic modulus G′ of 1.0 ⁇ 10 5 Pa or more at 250° C. after thermosetting.
  • the adhesive layer 3 including the layer formed from the adhesive composition C has excellent durability in high-temperature treatment such as solder reflow even when the area is reduced.
  • the storage elastic modulus G′ after thermosetting is 3.0 ⁇ 10 5 Pa or more, 5.0 ⁇ 10 5 Pa or more, 7.0 ⁇ 10 5 Pa or more, 1.0 ⁇ 10 6 Pa or more at 250° C. , 1.1 ⁇ 10 6 Pa or more, 5.0 ⁇ 10 6 Pa or more, 1.0 ⁇ 10 7 Pa or more, 2.0 ⁇ 10 7 Pa or more, further 2.2 ⁇ 10 7 Pa or more, good too.
  • the upper limit of the storage elastic modulus G ′ after thermosetting in the same temperature range is, for example, 5.0 ⁇ 10 8 Pa or less, 1.0 ⁇ 10 8 Pa or less, and further 5.0 ⁇ 10 7 Pa or less. may
  • the storage elastic modulus G' of the pressure-sensitive adhesive composition C was measured by using a film of the pressure-sensitive adhesive composition C or a film after heat curing (length 22.5 mm and width 10 mm) as a test piece, and using a forced vibration solid viscoelasticity measuring device. It can be evaluated by heating the test piece at a heating rate of 10° C./min. However, the measurement direction (vibration direction) of the test piece shall be the longitudinal direction, and the vibration frequency shall be 1 Hz.
  • the adhesive composition C is, for example, an acrylic composition containing an acrylic polymer.
  • the acrylic composition usually contains an acrylic polymer (hereinafter referred to as acrylic polymer D) as a base polymer of the pressure-sensitive adhesive composition.
  • the content of the acrylic polymer D in the acrylic composition is, for example, 35% by weight or more, 40% by weight or more, 50% by weight or more, 60% by weight or more, 70% by weight or more, 80% by weight or more, and further 90% by weight. % or more.
  • the upper limit of the content of acrylic polymer D is, for example, 100% by weight or less, and may be 95% by weight or less, or even 90% by weight or less.
  • the weight average molecular weight of acrylic polymer D is preferably 200,000 or more, and may be 400,000 or more, 600,000 or more, 800,000 or more, or even 1,000,000 or more.
  • the upper limit of the weight average molecular weight of acrylic polymer D is, for example, 5,000,000 or less.
  • the pressure-sensitive adhesive composition C may contain an acrylic polymer D having a weight average molecular weight of 200,000 or more at a content of 35% by weight or more.
  • the adhesive composition C is thermosetting and contains a thermosetting group.
  • thermosetting groups are at least one selected from epoxy groups, hydroxyphenyl groups, carboxy groups, hydroxy groups, carbonyl groups, aziridinyl groups and amino groups.
  • the thermosetting group may be at least one selected from an epoxy group, a hydroxyphenyl group and a carboxy group, and may be an epoxy group and/or a hydroxyphenyl group.
  • Epoxy groups include glycidyl groups.
  • the acrylic polymer D may have a thermosetting group.
  • the crosslinked structure after thermosetting becomes more uniform, and the heat resistance of the cured adhesive layer after thermosetting can be improved.
  • the thermosetting group that the acrylic polymer D may have are at least one selected from an epoxy group, a carboxy group, a hydroxy group, a carbonyl group, an aziridinyl group and an amino group.
  • the thermosetting group that the acrylic polymer D may have may be an epoxy group and/or a carboxy group, or may be an epoxy group.
  • the glass transition temperature (Tg) of the acrylic polymer D is, for example, -15 to 40°C, -10 to 30°C, and may be -5 to 20°C.
  • the pressure-sensitive adhesive composition C may further contain a thermosetting resin, and in this case, the content of the thermosetting resin in the pressure-sensitive adhesive composition C is preferably the content of the acrylic polymer D in the pressure-sensitive adhesive composition C. small compared to the rate.
  • the storage elastic modulus G' of the pressure-sensitive adhesive composition C at 130 to 170°C can be improved as the content of the acrylic polymer D is increased.
  • a thermosetting resin may have a thermosetting group, and a thermosetting resin having a thermosetting group can function as a cross-linking agent. Examples of thermosetting groups are given above.
  • the content of the thermosetting resin in the adhesive composition C is, for example, 50% by weight or less, 40% by weight or less, 35% by weight or less, 30% by weight or less, 20% by weight or less, 15% by weight or less, and further It may be 10% by weight or less.
  • the lower limit of the thermosetting resin content is, for example, 0% by weight or more, and may be 5% by weight or more.
  • the adhesive composition C does not have to contain a thermosetting resin.
  • thermosetting resins are phenolic resins, epoxy resins, urea resins, melamine resins and unsaturated polyester resins.
  • the thermosetting resin is not limited to the above examples.
  • the thermosetting resin is a phenol resin and/or an epoxy resin, particularly when it is a phenol resin, the heat resistance of the cured adhesive layer after thermosetting can be improved.
  • phenolic resins are novolac-type phenolic resins such as phenol novolac resin, phenol biphenyl resin, phenol aralkyl resin, cresol novolac resin, tert-butylphenol novolak resin and nonylphenol novolac resin, and phenol resins such as resol-type phenol resin.
  • the phenol resin is not limited to the above examples.
  • the hydroxyl value of the phenol resin is, for example, 100-500 g/eq, and may be 100-400 g/eq.
  • the weight average molecular weight of the thermosetting resin is, for example, 100-3000, and may be 150-2000.
  • thermosetting resin can be formed by a known manufacturing method.
  • acrylic polymer D An example of the composition of acrylic polymer D will be explained. However, acrylic polymer D is not limited to those having the following composition.
  • the acrylic polymer D may have a structural unit E derived from at least one monomer selected from the following monomers: methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, pentyl acrylate and hexyl.
  • Preferred examples of structural unit E are units derived from at least one monomer selected from alkyl acrylate having an alkyl group having 1 to 4 carbon atoms, alkyl methacrylate having an alkyl group having 1 to 4 carbon atoms, and acrylonitrile.
  • a more preferred example is a unit derived from at least one monomer selected from ethyl acrylate, butyl acrylate and acrylonitrile.
  • the acrylic polymer D preferably has, as structural units, all units derived from ethyl acrylate, units derived from butyl acrylate, and units derived from acrylonitrile.
  • the structural unit E does not have a thermosetting group.
  • the content of the structural unit E in the acrylic polymer D is, for example, 70% by weight or more, and may be 80% by weight or more, or even 90% by weight or more.
  • the acrylic polymer D may be composed of structural units E.
  • the content of the unit in the acrylic polymer D is, for example, 5% by weight or more, 10% by weight or more, 15% by weight or more, or even 20% by weight. % or more.
  • the upper limit of the content of the unit is, for example, 40% by weight or less.
  • the acrylic polymer D may have a structural unit F having a thermosetting group.
  • the structural unit F are units derived from an alkyl acrylate into which a thermosetting group has been introduced and an alkyl methacrylate into which a thermosetting group has been introduced. Specific examples of thermosetting groups, alkyl acrylates and alkyl methacrylates are given above. More specific examples of building block F are glycidylmethyl acrylate, glycidylethyl acrylate, glycidyl 2-ethylhexyl acrylate, carboxymethyl acrylate and aziridinylmethyl acrylate.
  • the acrylic polymer D may not have the structural unit F, but in this case, the pressure-sensitive adhesive composition C usually contains a thermosetting resin having a thermosetting group.
  • the content of the structural unit F in the acrylic polymer D is, for example, 30 to 95% by weight, and may be 40 to 90% by weight.
  • the content of the structural unit E may not be within the range exemplified above, and the total of the content of the structural unit E and the content of the structural unit F is, for example, 70% by weight or more, 80% by weight or more. Furthermore, it may be 90% by weight or more.
  • Acrylic polymer D may be composed of structural unit E and structural unit F.
  • the epoxy value of the acrylic polymer D is, for example, 0.15 to 0.65 eq/kg, and may be 0.20 to 0.50 eq/kg. .
  • the acrylic polymer D can be formed by known polymerization methods such as solution polymerization, bulk polymerization, suspension polymerization and emulsion polymerization.
  • the adhesive composition C may contain a filler.
  • fillers are inorganic fillers and organic fillers. Inorganic fillers are preferable from the viewpoints of improving handleability of the pressure-sensitive adhesive composition C, adjusting the melt viscosity, imparting thixotropic properties, and the like.
  • inorganic fillers are silica, aluminum hydroxide, calcium hydroxide, magnesium hydroxide, antimony trioxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate and boron nitride.
  • Silica may be crystalline silica or amorphous silica.
  • organic fillers are polyimides, polyamideimides, polyetheretherketones, polyetherimides, polyesterimides, nylons and silicones.
  • the average particle size of the filler is, for example, 0.005 to 10 ⁇ m, and may be 0.05 to 1 ⁇ m. Fillers having mutually different average particle diameters may be combined.
  • the average particle size of the filler can be determined by a photometric particle size distribution analyzer (eg, LA-910 manufactured by HORIBA).
  • filler shapes are spherical and ellipsoidal.
  • the adhesive composition C may contain other components than those mentioned above.
  • other ingredients are additives such as flame retardants, silane coupling agents, ion trapping agents and thermosetting accelerator catalysts.
  • Examples of flame retardants are antimony trioxide, antimony pentoxide and brominated epoxy resins.
  • silane coupling agents are ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -glycidoxypropylmethyldiethoxysilane.
  • Examples of ion trapping agents are hydrotalcites and bismuth hydroxide.
  • Examples of thermosetting accelerating catalysts are salts having a triphenylphosphine skeleton, an amine skeleton, a triphenylborane skeleton or a trihalogenborane skeleton.
  • Examples of pressure-sensitive adhesive compositions that can form the layer B31 are acrylic, silicone, urethane and rubber adhesive compositions.
  • the protective film 2 may be air-impermeable in the thickness direction or air-permeable in the thickness direction.
  • the arrangement of the protective cover member 1 can prevent foreign matter from entering through the opening of the object and ensure the air permeability of the opening. Ensuring air permeability enables, for example, adjustment of pressure and reduction of fluctuations in pressure through the opening of the object. An example of mitigating pressure fluctuations is shown below.
  • Heat treatment such as solder reflow may be performed in a state where the semiconductor element is arranged so as to cover one opening of the through hole provided in the circuit board.
  • the protective cover member 1 so as to cover the other opening, it is possible to prevent foreign matter from entering the element through the through-hole during heat treatment.
  • the protective film 2 When the protective film 2 has air permeability in the thickness direction, the pressure rise in the through-hole due to heating is mitigated, and damage to the element due to the pressure rise can be prevented.
  • semiconductor devices are MEMS such as microphones, pressure sensors and acceleration sensors. These elements have openings through which air and/or sound can pass, and can be arranged on the circuit board such that the openings face the through-holes.
  • the protective cover member 1 may be placed on the semiconductor device after manufacture so as to cover the opening of the device. It can also be placed inside the device.
  • the disposed protective cover member 1 is, for example, a ventilation member that secures air permeability through the opening while preventing foreign matter from entering through the opening of the object.
  • the protective cover member 1 after placement can function as a sound-permeable member.
  • the air permeability of the protective film 2 having air permeability in the thickness direction is indicated by the air permeability (Gurley air permeability) obtained in accordance with the air permeability measurement method B (Gurley type method) specified in JIS L1096. , for example, 0.1 seconds/100 mL or more and 10,000 seconds/100 mL or less.
  • the lower limit of the Gurley air permeability may be 0.15 seconds/100 mL or more, 0.3 seconds/100 mL or more, 0.5 seconds/100 mL or more, and further 0.6 seconds/100 mL or more.
  • the upper limit of the Gurley air permeability may be 5000 seconds/100 mL or less, 1000 seconds/100 mL or less, 300 seconds/100 mL or less, 200 seconds/100 mL or less, or even less than 100 seconds/100 mL. In addition, it can be judged that the protective film 2 exceeding 10,000 seconds/100 mL is impermeable in the thickness direction.
  • the protective film 2 may be waterproof.
  • the protective cover member 1 provided with the waterproof protective film 2 can function, for example, as a waterproof air-permeable member and/or a waterproof sound-permeable member after placement on the object.
  • the water pressure resistance of the waterproof protective film 2 is a value obtained in accordance with the water resistance test method A (low water pressure method) or B method (high water pressure method) specified in JIS L1092, and is, for example, 5 kPa or more. be.
  • Examples of materials that make up the protective film 2 are metals, resins, and composite materials thereof.
  • Examples of resins and metals that can constitute the protective film 2 are the same as examples of resins and metals that can constitute the base material 32 of the adhesive layer 3 .
  • the resin and metal are not limited to the above examples.
  • the protective film 2 may be made of a heat-resistant material. Examples of heat-resistant materials are described above in the description of substrate 32 .
  • the protective film 2 may contain a PTFE film.
  • the protective film 2 may contain a porous film or a microporous film.
  • the protective film 2 having air permeability in the thickness direction may include a porous film or a microporous film.
  • the air permeability in the thickness direction expressed by the Gurley number is judged to be a porous membrane if it is 20 seconds/100 mL or less, and a microporous membrane if it is more than 20 seconds/100 mL and 10,000 seconds/100 mL or less. can.
  • the average pore size of the porous membrane and the microporous membrane may be 0.01 ⁇ m or more and less than 3 ⁇ m.
  • the lower limit of the average pore size may be 0.01 ⁇ m or more, 0.05 ⁇ m or more, or even 0.1 ⁇ m or more.
  • the upper limit of the average pore size may be 3 ⁇ m or less, less than 3 ⁇ m, 2.5 ⁇ m or less, 2 ⁇ m or less, 1.5 ⁇ m or less, or even 1 ⁇ m or less.
  • the protective film 2 containing a porous film or a microporous film having an average pore size of less than 3 ⁇ m suppresses permeation of the components of the adhesive layer 3 during bonding with the adhesive layer 3, especially during bonding using heat and pressure treatment.
  • the protective film 2 containing a porous film or a microporous film having an average pore size of 0.01 ⁇ m or more is bonded to the adhesive layer 3, especially when bonding using heat and pressure treatment. It is suitable for suppressing protrusion to 23 and deformation of the adhesive layer 3 .
  • the average pore size of the protective film can be evaluated according to ASTM F316-86.
  • the porous membrane may be a stretched porous membrane.
  • the expanded porous membrane may be a fluororesin expanded porous membrane, particularly a PTFE expanded porous membrane.
  • PTFE expanded porous membranes are typically formed by stretching a paste extrudate or cast membrane containing PTFE particles. Expanded porous PTFE membranes are composed of fine fibrils of PTFE and may have nodes in which the PTFE is in an aggregated state compared to the fibrils. According to the stretched porous PTFE membrane, it is possible to achieve both the ability to prevent the intrusion of foreign matter and the air permeability at a high level.
  • a known stretched porous film can be used for the protective film 2 .
  • the protective film 2 having air permeability in the thickness direction may include a perforated film in which a plurality of through-holes connecting both main surfaces are formed.
  • a perforated membrane may be a membrane in which a plurality of through-holes are provided in an original membrane having a non-porous matrix structure, such as a non-porous membrane.
  • the perforated membrane may not have ventilation paths in the thickness direction other than the plurality of through holes.
  • the through-hole may extend in the thickness direction of the perforated membrane, or may be a straight hole extending linearly in the thickness direction.
  • the shape of the opening of the through-hole may be circular or elliptical when viewed perpendicularly to the main surface of the perforated membrane.
  • the perforated membrane can be formed, for example, by subjecting the original membrane to laser processing or ion beam irradiation followed by chemical etching to form holes.
  • the protective film 2 having breathability in the thickness direction may include nonwoven fabric, woven fabric, mesh, and net.
  • the protective film 2 is not limited to the above examples.
  • the shape of the protective film 2 in FIGS. 1A to 1C is rectangular when viewed from a direction perpendicular to its main surface.
  • the shape of the protective film 2 is not limited to the above example, and may be, for example, a polygon including a square and a rectangle, a circle, and an ellipse when viewed from the above-mentioned vertical direction.
  • the polygon may be a regular polygon.
  • the corners of the polygon may be rounded.
  • the thickness of the protective film 2 is, for example, 1 to 100 ⁇ m.
  • the area of the protective film 2 is, for example, 175 mm 2 or less, 150 mm 2 or less, 125 mm 2 or less, 100 mm 2 or less, 75 mm 2 or less, 50 mm 2 or less, 25 mm 2 or less, 20 mm 2 or less, 15 mm 2 or less, 10 mm 2 or less. , 7.5 mm 2 or less, 5 mm 2 or less, or even 2.5 mm 2 or less.
  • the protective cover member 1 in which the area of the protective film 2 is within the above range is suitable for placement on, for example, a circuit board or MEMS normally having small-diameter openings.
  • the lower limit of the area of the protective film 2 is, for example, 0.20 mm 2 or more. However, the area of the protective film 2 may be larger than the above range depending on the type of object on which the protective cover member 1 is arranged.
  • the basis weight (weight per unit area) of the protective film 2 is, for example, 1 to 30 g/m 2 .
  • the lower limit of basis weight is 0.5 g/m 2 or more, 0.8 g/m 2 or more, 1.0 g/m 2 or more, 1.2 g/m 2 or more, 1.4 g/m 2 or more, 1.5 g/m 2 or more, 1.7 g/m 2 or more, 2.0 g/m 2 or more, 2.5 g/m 2 or more, or even more than 3.0 g/m 2 .
  • the upper limit of basis weight is 25 g/m 2 or less, 22 g/m 2 or less, 20 g/m 2 or less, 18 g/m 2 or less, 15 g/m 2 or less, 13 g/m 2 or less, 10 g/m 2 or less, 8 g/m 2 or less, 6 g/m 2 or less, 5 g/m 2 or less, 4 g/m 2 or less, 3 g/m 2 or less, 2.5 g/m 2 or less, 2 g/m 2 or less, or even 1.8 g/m 2 or less may be
  • the protective film 2 may be subjected to various treatments such as water-repellent treatment, liquid-repellent treatment, and coloring treatment. Various treatments can be carried out based on known methods.
  • a film having a contact angle ⁇ M with respect to methanol of 75 degrees or more may be used.
  • the inherent contact angle ⁇ M of the protective film 2 may be 75 degrees or more.
  • the inherent contact angle ⁇ M of the protective film 2 may be 77 degrees or more, 80 degrees or more, 82 degrees or more, 85 degrees or more, 87 degrees or more, 89 degrees or more, or even 90 degrees or more.
  • the protective film 2 having a specific contact angle ⁇ M in the above range is particularly effective in suppressing the permeation of the components of the adhesive layer 3 during bonding with the adhesive layer 3, particularly during bonding using heat and pressure treatment. Are suitable.
  • the specific contact angle ⁇ M of the protective film 2 depends on, for example, the material and characteristics of the protective film 2 (thickness, average pore diameter, porosity, surface free energy, surface roughness, etc.) and various treatments for the protective film 2. It changes depending on the presence or absence of Depending on the material of the protective film 2, for example, a small average pore size, a low porosity, and water-repellent treatment or liquid-repellent treatment contribute to increasing the inherent contact angle ⁇ M of the protective film 2. sell.
  • the inherent contact angle ⁇ M of the protective film 2 in the state of being incorporated in the protective cover member 1 is, for example, (I) the exposed surface 22, which coincides with the fixing portion 21 when viewed perpendicularly to the main surface of the protective film 2. It can be identified by evaluating the contact angle ⁇ M with respect to a portion (for example, ventilation/sound transmission region 23 ) excluding the portion where the contact is made, or (II) the exposed surface of the protective film 2 facing the adhesive layer 3 .
  • a preferred example of the protective cover member 1 has at least one feature selected from features I to III below. Preferred examples may have at least two features selected from features I to III, or may have all of features I to III. However, the protective cover member 1 is not limited to the preferred example.
  • the inherent contact angle ⁇ M of the protective film 2 is 75 degrees or more.
  • the protective film 2 is a porous film or a microporous film, and its average pore size is less than 3 ⁇ m or within the preferred range described above.
  • III: The adhesive layer 3 includes a thermosetting adhesive layer, the thermosetting adhesive layer is a layer formed from the thermosetting adhesive composition C, and the storage elastic modulus of the adhesive composition C at 130 to 170 ° C.
  • G ′ is 1.0 ⁇ 10 3 Pa or more or within the preferred range described above.
  • the shape of the protective cover member 1 in FIGS. 1A to 1C is rectangular when viewed from the direction perpendicular to the main surface of the protective film 2.
  • the shape of the protective cover member 1 is not limited to the above example.
  • the shape may be polygonal, including squares and rectangles, circles, ellipses when viewed from the above directions.
  • the polygon may be a regular polygon. Polygon corners may be rounded.
  • the area of the protective cover member 1 (the area when viewed from the direction perpendicular to the main surface of the protective film 2) is, for example, 175 mm 2 or less, 150 mm 2 or less, 125 mm 2 or less, 100 mm 2 or less, 75 mm 2 or less, It may be 50 mm 2 or less, 25 mm 2 or less, 20 mm 2 or less, 15 mm 2 or less, 10 mm 2 or less, 7.5 mm 2 or less, 5 mm 2 or less, or even 2.5 mm 2 or less.
  • a protective cover member 1 having an area within the above range is suitable for placement on, for example, a circuit board or MEMS that normally has small-diameter openings.
  • the lower limit of the area of the protective cover member 1 is, for example, 0.20 mm 2 or more. However, the area of the protective cover member 1 may be a larger value depending on the type of object to be arranged.
  • the protective cover member 1 may be a member for a semiconductor device, a circuit board, or a MEMS whose object is a semiconductor device, a circuit board, or a MEMS.
  • MEMS may be non-hermetic devices with vents on the surface of the package. Examples of non-sealed MEMS are various sensors for detecting atmospheric pressure, humidity, gas, airflow, etc., and electroacoustic transducers such as speakers and microphones.
  • the object is not limited to semiconductor elements and circuit boards after manufacture, and may be intermediate products of these elements and boards in the manufacturing process. In this case, the protective cover member 1 can protect the intermediate product in the manufacturing process.
  • Examples of manufacturing processes are a solder reflow process, a dicing process, a bonding process and a mounting process.
  • the manufacturing process may be a process performed at high temperature, including a solder reflow process.
  • the high temperature is, for example, 200° C. or higher, and may be 220° C. or higher, 240° C. or higher, or even 260° C. or higher.
  • a solder reflow process is usually performed at about 260.degree.
  • the target object is not limited to the above example.
  • FIG. 4 shows an example of the arrangement of the protective cover member 1 of FIGS. 1A to 1C with respect to the object.
  • the protective cover member 1 is arranged on the surface 53 of the object 51 having the surface 53 with the opening 52 .
  • the opening 52 is covered with the protective film 2 due to the placement of the protective cover member 1 .
  • the adhesive layer 3 in FIG. 4 is located on the side of the protective cover member 1 on which the object 51 is placed on the surface 53 with respect to the protective film 2 .
  • the protective cover member 1 is fixed to the surface 53 via the adhesive layer 3 .
  • the adhesive layer 3 constitutes the joint surface 11 with the surface 53 of the object 51 .
  • heat press treatment such as heat press may be used for fixing to the surface 53.
  • the surface of the object on which the protective cover member 1 can be arranged is, for example, the outer surface of the object.
  • the surface may be an interior surface of the object.
  • the surface may be flat or curved.
  • the opening of the object may be the opening of a concave portion or the opening of a through hole.
  • the protective cover member 1 may be used by arranging it inside a semiconductor element such as MEMS or a circuit board.
  • An example of arrangement inside the MEMS is shown in FIG.
  • FIG. 5 shows an example of MEMS including the protective cover member 1 of this embodiment.
  • the MEMS 61 in FIG. 5 is a bottom port (lower opening) type microphone element.
  • the MEMS 61 includes a substrate 62 having an opening 69 , a MEMS die 63 having a diaphragm 64 and a cap (cover) 66 .
  • the opening 69 functions as a sound vent.
  • protective cover member 1 is arranged with inner surface 68 of substrate 62 as an arrangement surface such that opening 69 is covered with protective film 2 .
  • the protective cover member 1 is fixed to the inner surface 68 via the adhesive layer 3 .
  • heat press treatment such as heat press may be used.
  • the MEMS die 63 is bonded to the protective cover member 1 , more specifically to the protective film 2 via an adhesive layer 65 .
  • the adhesive layer 65 is located on the side opposite to the adhesive layer 3 with respect to the protective film 2 and is in contact with the protective film 2 . Also, the adhesive layer 65 overlaps the fixed portion 21 of the protective film 2 when viewed from the direction perpendicular to the main surface of the protective film 2 (in the example of FIG. 5, it coincides with the fixed portion 21).
  • the adhesive layer 65 is formed by applying an adhesive composition, which is the fluid 5, to the exposed surface 22 of the protective film 2, for example.
  • the adhesive composition forming the adhesive layer 65 may be selected from the adhesive compositions described above capable of forming the adhesive layer 3 . Since the MEMS die 63 is a fine member, the adhesive layer 65 may be made of an adhesive composition particularly suitable for coating on a minute area, such as a liquid adhesive.
  • a liquid adhesive is, for example, a low-viscosity adhesive composition using an alcohol such as methanol as a solvent.
  • the viscosity (25° C.) of the liquid adhesive is, for example, 0.1 to 500 Pa ⁇ s.
  • the viscosity of the liquid adhesive can be evaluated, for example, with a Brookfield Brookfield viscometer.
  • the liquid pressure-sensitive adhesive may contain an inorganic compound such as alumina as a main component, and may not substantially contain a polymer component contained in general pressure-sensitive adhesives.
  • the protective cover member 1 of this embodiment with the protective film 2 having the area A is suitable for bonding with the MEMS die 63 via the adhesive layer 65 made of liquid adhesive.
  • the main component means the component with the highest content.
  • the content of the main component may be 50% by weight or more, 60% by weight or more, or even 70% by weight or more.
  • the MEMS 61 can be provided with arbitrary parts other than those explained above.
  • the laminate 4 of the protective cover member 1 may include layers other than the protective film 2 and the adhesive layer 3.
  • An example of a protective cover member 1 with additional layers is shown in FIG.
  • the laminate 4 in FIG. 6 further includes a base film 6 positioned on the adhesive layer 3 side with respect to the protective film 2 .
  • the base film 6 can increase the rigidity of the protective cover member 1, for example. Further, when the protective cover member 1 is supplied by the member supply sheet, the pick-up property of the protective cover member 1 from the member supply sheet can be improved.
  • the base film 6 in FIG. 6 is arranged on the side opposite to the protective film 2 with respect to the adhesive layer 3 .
  • the base film 6 and the adhesive layer 3 are in contact with each other.
  • the position of the base film 6 is not limited to the above example.
  • the base film 6 may be arranged between the protective film 2 and the adhesive layer 3 .
  • a laminate 4 in FIG. 6 includes one base film 6 .
  • the laminate 4 may contain two or more base films 6 .
  • Two or more base films 6 may be arranged between the protective film 2 and the adhesive layer 3 and on the side opposite to the protective film 2 with respect to the adhesive layer 3 .
  • the protective cover member 1 of FIG. 6 can be placed on the surface 53 of the object 51 by means of a further adhesive layer provided on the opposite side of the base film 6 to the adhesive layer 3 side.
  • the adhesive composition forming the additional adhesive layer can be selected from the adhesive compositions described above.
  • a further adhesive layer may be included in the laminate 4 .
  • the material of the base film 6 can be selected from the materials exemplified as the material of the protective film 2.
  • the base film 6 may be made of a heat resistant material. Examples of heat-resistant materials are described above in the description of substrate 32 .
  • FIG. 7 Another example of a protective cover member 1 with additional layers is shown in FIG.
  • the laminate 4 of FIG. 7 further includes a cover film 7 located on the side opposite to the adhesive layer 3 side with respect to the protective film 2 .
  • a cover film 7 is arranged on the protective film 2 .
  • Other layers may be arranged between the cover film 7 and the protective film 2 .
  • the cover film 7 functions, for example, as a protective film that protects the protective film 2 until the protective cover member 1 is placed on the object.
  • the cover film 7 may be peeled off after placement of the protective cover member 1 on the object.
  • the cover film 7 may cover the entire protective film 2 or a part of the protective film 2 when viewed from the direction perpendicular to the main surface of the protective film 2 .
  • the cover film 7 can be placed on the protective film 2 via, for example, an adhesive layer provided on the surface of the cover film 7 on the protective film 2 side. This adhesive layer is preferably weakly adhesive.
  • the cover film 7 in FIG. 7 has a tab 71 which is a portion projecting outward from the outer periphery of the protective film 2 when viewed from the direction perpendicular to the main surface of the protective film 2 .
  • the tab 71 can be used for peeling off the cover film 7 .
  • the shape of the cover film 7 is not limited to the above example.
  • Examples of materials that make up the cover film 7 are metals, resins, and composite materials thereof. Specific examples of materials that can constitute the cover film 7 are the same as specific examples of materials that can constitute the base material 32 .
  • the thickness of the cover film 7 is, for example, 200-1000 ⁇ m.
  • the protective cover member 1 can be manufactured, for example, by arranging an adhesive composition in a predetermined pattern on the main surface of the protective film 2 and forming the adhesive layer 3 from the arranged adhesive composition.
  • the adhesive composition to be placed may be a thermosetting adhesive composition or may be the adhesive composition C.
  • a hot pressurization process may be used to form the adhesive layer 3 .
  • the heat-pressing treatment is suitable for forming the adhesive layer 3 having a reduced area.
  • the heat-pressing treatment can be performed with the pressure-sensitive adhesive composition placed on the main surface of the protective film 2 .
  • the temperature of the heat-pressing treatment is, for example, 50 to 300.degree. C., and may be 50 to 250.degree.
  • the pressure is, for example, 1-500 kPa, and may be 1-100 kPa. Examples of heat-pressing treatments are heat pressing and heat lamination.
  • FIG. 8 An example of the member supply sheet of the present invention is shown in FIG.
  • a member supply sheet 81 in FIG. 8 includes a base sheet 82 and a plurality of protective cover members 1 arranged on the base sheet 82 .
  • the member supply sheet 81 is a sheet for supplying the protective cover member 1 .
  • the protective cover member 1 can be efficiently supplied to the process of arranging it on the surface of the object.
  • two or more protective cover members 1 are arranged on the base sheet 82 .
  • the number of protective cover members 1 arranged on the base sheet 82 may be one.
  • two or more protective cover members 1 are regularly arranged on the base sheet 82 . More specifically, the protective cover members 1 are arranged so that the center of each protective cover member 1 is positioned at the intersection (lattice point) of the rectangular lattice when viewed perpendicularly to the surface of the base sheet 82.
  • the arrangement of the regularly arranged protective cover members 1 is not limited to the above example.
  • the centers of the respective protective cover members 1 may be arranged regularly so as to be positioned at intersections of various grids such as square grids, orthorhombic grids, and rhombic grids.
  • the arrangement of the protective cover member 1 is not limited to the above example.
  • the protective cover members 1 may be arranged in a zigzag pattern when viewed perpendicularly to the surface of the base sheet 82 .
  • the center of the protective cover member 1 can be defined as the center of gravity of the shape of the member 1 when viewed from the direction perpendicular to the surface of the base sheet 82 .
  • Examples of materials that make up the base sheet 82 are paper, metal, resin, and composite materials thereof.
  • Examples of metals are stainless steel and aluminum.
  • Examples of resins are polyesters such as PET, polyolefins such as polyethylene and polypropylene, and vinyl chloride (preferably soft vinyl chloride).
  • the material forming the base sheet 82 is not limited to the above examples.
  • the protective cover member 1 may be arranged on the base sheet 82 via an adhesive layer (for example, the adhesive layer 3) included in the member 1. At this time, the surface of the base sheet 82 on which the protective cover member 1 is arranged may be subjected to a release treatment for improving the releasability from the base sheet 82 .
  • the release treatment can be carried out by a known method.
  • the protective cover member 1 may be arranged on the base sheet 82 via an adhesive layer, typically a weak adhesive layer, provided on the surface of the base sheet 82 on which the protective cover member 1 is arranged.
  • the thickness of the base sheet 82 is, for example, 1 to 200 ⁇ m.
  • the base sheet 82 in FIG. 8 is in the shape of a sheet having a rectangular shape.
  • the shape of the leaf-shaped base sheet 82 is not limited to the above example, and may be a polygon including squares and rectangles, a circle, an ellipse, and the like.
  • the member supplying sheet 81 can be distributed and used in a single leaf state.
  • the base sheet 82 may be strip-shaped, and in this case, the member supplying sheet 81 is also strip-shaped.
  • the strip-shaped member supply sheet 81 can be distributed as a roll wound around a roll core.
  • the member supply sheet 81 can be manufactured by arranging the protective cover member 1 on the surface of the base sheet 82 .
  • the weight average molecular weight of the acrylic polymer was evaluated by gel permeation chromatography (GPC). GPC was performed by connecting four columns of TSK G2000H HR, G3000H HR, G4000H HR and GMH-H HR (all manufactured by Tosoh) in series, using tetrahydrofuran as a solvent, flow rate 1 mL/min, temperature 40. °C, a sample concentration of 0.1% by weight, and a tetrahydrofuran solution and sample injection amount of 500 ⁇ L. A differential refractometer was used as a detector.
  • Tg Glass transition temperature
  • Epoxy value The epoxy value of the acrylic polymer was evaluated according to JIS K7236. Specifically, it is as follows. 4 g of the acrylic polymer to be evaluated was weighed into a 100 mL conical flask, and 10 mL of chloroform was added thereto to dissolve. Furthermore, 30 mL of acetic acid, 5 mL of tetraethylammonium bromide and 5 drops of crystal violet indicator were added, and titration was performed with a normal perchloric acid-acetic acid solution having a concentration of 0.1 mol/L while stirring with a magnetic stirrer. A blank test was performed in the same manner, and the epoxy value was calculated according to the following formula.
  • Epoxy value [(V-V B ) x 0.1 x F]/4 (g)
  • V B Volume (mL) of perchloric acid normal solution required for blank test
  • V Volume (mL) of perchloric acid normal solution required for sample titration
  • F Factor of perchloric acid acetic acid normal solution
  • thermosetting resin composition the storage elastic modulus G ' at 130 to 170°C was evaluated as follows. First, the prepared thermosetting resin composition is applied to the surface of a PET sheet (thickness of 50 ⁇ m) whose surface has been subjected to mold release treatment with silicone to form a coating film (thickness of 25 ⁇ m), and the composition The coating film was dried by heating at 130° C. for a short period of time (2 minutes), which is a condition in which thermosetting of the material hardly progresses, to form a film. Next, the obtained film was peeled off from the PET film and cut into a test piece having a length of 22.5 mm and a width of 10 mm.
  • the test piece was heated from 0 ° C. to 260 ° C. at a temperature increase rate of 10 ° C./min.
  • the storage modulus G ′ at ⁇ 170 °C was evaluated.
  • the measurement direction (vibration direction) of the test piece was the length direction, and the vibration frequency was 1 Hz.
  • thermosetting resin composition the storage elastic modulus G′ at 130 to 170°C or 250°C after thermosetting was evaluated as follows. First, a coating film of a thermosetting resin composition was formed on a PET film in the same manner as in the evaluation of the storage modulus G ' . Next, the coating film was made into a cured film by curing at 170° C. for 60 minutes, which is the condition for thermal curing of the composition. Next, the obtained cured film was peeled from the PET film and cut into a test piece having a length of 22.5 mm and a width of 10 mm. Next, the test piece is heated from 0 ° C.
  • the measurement direction (vibration direction) of the test piece was the length direction, and the vibration frequency was 1 Hz.
  • the air permeability in the thickness direction of the protective film was determined as the air permeability (Gurley air permeability) in accordance with the air permeability measurement method B (Gurley type method) defined in JIS L1096:2010.
  • the average pore size of the protective film is available from Porous Materials Inc., which can be measured according to ASTM F316-86. was determined using an automated perm porometer manufactured by
  • the contact angle ⁇ M against methanol is , Contact Angle System OCA 30 manufactured by Data Physics Instruments, which enables evaluation based on the sessile drop method defined in JIS R3257. However, the evaluation was performed using methanol droplets with a volume of 2 ⁇ L instead of water droplets. The evaluation temperature was 25°C.
  • protective film As protective films, the following PTFE films a to f were prepared.
  • PTFE membrane a 100 parts by weight of PTFE fine powder (Fluon CD123E, manufactured by AGC Co., Ltd.) and 20 parts by weight of a liquid lubricant (n-dodecane, manufactured by Japan Energy Co., Ltd.) are uniformly mixed, and the mixture is compressed with a cylinder and then ram-extruded. It was extruded by a machine to obtain a sheet-like molding extending in the longitudinal direction. This sheet-like formed body containing a liquid lubricant was passed between metal rolling rolls and rolled to a thickness of 0.2 mm. Thereafter, the sheet-shaped compact was heated to 150° C. to remove the liquid lubricant, and the sheet-shaped compact was dried.
  • the sheet-shaped molding is stretched at 300° C. in the longitudinal direction at a magnification of 2.5 times, and then stretched at 200° C. in the width direction at a magnification of 20 times, and then at 400° C., which is a temperature higher than the melting point of PTFE.
  • a PTFE membrane a having a film thickness of 15 ⁇ m, a surface density of 5 g/m 2 , air permeability in the thickness direction of 1.3 sec/100 mL, and an average pore diameter of 1 ⁇ m was obtained.
  • the PTFE film a was subjected to a liquid-repellent treatment to obtain a PTFE film b.
  • the liquid-repellent treatment is a liquid-repellent treatment liquid (solution obtained by diluting X-70-029C manufactured by Shin-Etsu Chemical Co., Ltd., a liquid-repellent agent, with FS thinner manufactured by Shin-Etsu Chemical Co., Ltd. so that the concentration is 1.5% by weight), and PTFE film a is applied for 3 seconds. After being immersed and pulled out, it was dried by being left at room temperature for 30 minutes.
  • the film thickness, surface density, air permeability in the thickness direction and average pore size of the PTFE membrane b were 15 ⁇ m, 5.5 g/m 2 , 4.0 sec/100 mL and 1 ⁇ m, respectively.
  • PTFE membrane c A fluorosurfactant (DIC 1 part by mass of Megafac F-142D) was added to 100 parts by mass of PTFE.
  • a coating film (thickness: 20 ⁇ m) of the above-described PTFE dispersion to which a fluorine-based surfactant was added was formed on the surface of a strip-shaped polyimide substrate (thickness: 125 ⁇ m).
  • the coating film was formed by immersing the polyimide substrate in the PTFE dispersion and then pulling it out. Next, the entire substrate and coating film were heated to form a PTFE cast film. Heating was carried out in two stages, first heating (100° C., 1 minute) and subsequent second heating (390° C., 1 minute).
  • the first heating proceeded to remove the dispersion medium contained in the coating film, and the second heating promoted the formation of a cast film based on the binding of the PTFE particles contained in the coating film.
  • the formed PTFE cast film (thickness: 25 ⁇ m) was peeled off from the polyimide substrate.
  • the peeled cast film was rolled in the MD direction (longitudinal direction) and further stretched in the TD direction (width direction). Rolling in the MD direction was performed by roll rolling.
  • the rolling magnification area magnification
  • the stretching ratio in the TD direction was 2.0 times, and the temperature (the temperature of the stretching atmosphere) was 300°C.
  • a PTFE membrane c having a film thickness of 10 ⁇ m, a surface density of 14 g/m 2 , air permeability in the thickness direction of 100 sec/100 mL, and an average pore diameter of 0.1 ⁇ m was obtained.
  • PTFE membrane d NTF1033 manufactured by Nitto Denko Corporation was prepared as the PTFE membrane d.
  • the PTFE membrane d had a film thickness of 20 ⁇ m, an area density of 4.4 g/m 2 , an air permeability in the thickness direction of 0.6 sec/100 mL, and an average pore size of 3 ⁇ m.
  • PTFE membrane e 100 parts by weight of PTFE fine powder (Polyflon F101HE, manufactured by Daikin Industries, Ltd.) is uniformly mixed with 20 parts by weight of a liquid lubricant (n-dodecane, manufactured by Japan Energy Co., Ltd.). It was extruded by an extruder to obtain a sheet-like molding extending in the longitudinal direction. This sheet-like formed body containing a liquid lubricant was passed between metal rolling rolls and rolled to a thickness of 0.2 mm. Thereafter, the sheet-shaped compact was heated to 150° C. to remove the liquid lubricant, and the sheet-shaped compact was dried.
  • the sheet-shaped compact was stretched at 290°C in the longitudinal direction at a magnification of 9 times, stretched in the width direction at 150°C at a magnification of 53 times, and then baked at 400°C, which is a temperature higher than the melting point of PTFE.
  • a PTFE membrane e having a film thickness of 3 ⁇ m, a surface density of 1.5 g/m 2 , air permeability in the thickness direction of 1.5 sec/100 mL, and an average pore diameter of 0.35 ⁇ m was obtained.
  • the PTFE film e was subjected to a liquid-repellent treatment to obtain a PTFE film f.
  • the liquid-repellent treatment is performed by applying a PTFE film e to a liquid-repellent treatment liquid (solution obtained by diluting a liquid-repellent agent X-70-043 manufactured by Shin-Etsu Chemical Co., Ltd. with FS thinner manufactured by Shin-Etsu Chemical Co., Ltd. to a concentration of 1.5% by weight) for 3 seconds. It was carried out by immersing, pulling out, and drying at room temperature.
  • the film thickness, surface density, air permeability in the thickness direction, and average pore size of the PTFE membrane f were 3 ⁇ m, 1.7 g/m 2 , 2.0 sec/100 mL, and 0.38 ⁇ m, respectively.
  • Table 1 shows the evaluation results of the contact angle ⁇ M (specific contact angle ⁇ M of the PTFE film) with respect to the main surface of each PTFE film.
  • thermosetting adhesive composition for use in the adhesive layer.
  • thermosetting resin composition a having a concentration of 23.6% by weight was prepared by dispersing 40 parts by weight of spherical silica (SE2050 manufactured by Admatechs) having an average particle diameter of 500 nm.
  • composition b Butyl acrylate - ethyl acrylate - acrylonitrile - acrylic acid copolymer (manufactured by Negami Kogyo Co., Ltd., weight average molecular weight 400,000, acid value 5 mgKOH / g, Tg minus 15 ° C.) as acrylic polymer D, MEH7800H manufactured by Meiwa Kasei as phenol resin, Each material is blended so that the content of acrylic polymer D, phenolic resin, epoxy resin and silica in the prepared composition is 11% by weight, 32% by weight, 32% by weight and 25% by weight, respectively.
  • a thermosetting resin composition b having a concentration of 23.6% by weight was prepared in the same manner as composition a except that
  • composition c Butyl acrylate-ethyl acrylate-acrylonitrile-glycidyl methyl acrylate copolymer (manufactured by Negami Kogyo Co., Ltd., weight average molecular weight 800,000, epoxy value 0.4 eq/kg, Tg 0 ° C.) was used as acrylic polymer D, and no epoxy resin was used. , In the same manner as composition a, except that each material was blended so that the contents of acrylic polymer D, phenolic resin and silica in the prepared composition were 52% by weight, 6% by weight and 42% by weight, respectively. , a thermosetting resin composition c having a concentration of 23.6% by weight was prepared.
  • Laminates (Samples 1 to 14) of a protective film and an adhesive layer were produced as follows, assuming a fixing portion of a protective film provided in a protective cover member. A heat press was used for the fabrication. Specifically, it is as follows.
  • Example 1 First, the composition a was applied to the surface of a PET sheet (50 ⁇ m thick) whose surface was subjected to release treatment with silicone to form a coating film (20 ⁇ m thick). Next, the coating film was dried by heating at 130° C. for 2 minutes to form a film. Next, after bonding together the obtained film and a PTFE film a as a protective film, the formed laminate was cut into a square of 20 mm ⁇ 20 mm. Next, the entire laminate is sandwiched between a pair of polyimide films (thickness 25 ⁇ m), and heated in the thickness direction using a hot press machine (manufactured by Tester Sangyo, high precision hot press SA-401-M). pressed. The hot press conditions were a temperature of 130° C., a pressure of 20 kPa, and a time of 13 seconds. After completion of hot pressing, the polyimide film was peeled off to obtain a laminate of the protective film and the adhesive layer.
  • a hot press machine manufactured by Tester San
  • Samples 2 to 14 which are laminates of a protective film and an adhesive layer, were obtained in the same manner as Sample 1, except that the PTFE film as the protective film and the adhesive composition were selected as shown in Table 3 below. rice field.
  • the protective cover member of the present invention can be used, for example, in the manufacture of semiconductor elements such as MEMS and/or circuit boards equipped with such elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

提供される保護カバー部材は、開口を有する面を持つ対象物の前記面に配置される部材であって、前記保護カバー部材が前記面に配置されたときに前記開口を覆う形状を有する保護膜と、粘着層と、を含む積層体から構成される。前記保護膜の主面に垂直な方向から見て前記粘着層と一致する前記保護膜の部分を前記保護膜の固定部として定めたときに、前記保護膜における前記粘着層に面する側とは反対側の露出面は、前記垂直な方向から見たときに前記固定部と重複すると共に、メタノールに対する接触角が55度以上である領域Aを有する。上記保護カバー部材は、保護膜と粘着層とを含む部材であって、粘着層の面積を縮小することに適している。

Description

保護カバー部材、部材供給用シート及び微小電気機械システム
 本発明は、開口を有する面を持つ対象物の当該面に配置される保護カバー部材と、保護カバー部材を供給するための部材供給用テープ及び保護カバー部材を備える微小電気機械システムと、に関する。
 開口を有する面を持つ対象物の当該面に配置されて上記開口への異物の侵入を防ぐ保護カバー部材が知られている。特許文献1には、ポリテトラフルオロエチレン(以下、PTFEと記載)を主成分とし、音の透過を許容しつつ水滴等の異物が透過することを阻止する多孔質膜と、多孔質膜を別部品に固定するために多孔質膜の少なくとも一方の主面上の制限された領域に配置された粘着層である耐熱性両面粘着シートと、を備える部材が開示されている。特許文献1では、対象物である回路基板の表面に部材を固定する両面粘着シートの基材に着目することで、ハンダリフロー時の高温に対する部材の耐熱性の確保が試みられている。
特開2007-81881号公報
 近年、微小電気機械システム(Micro Electro Mechanical Systems;以下、MEMSと記載)等の微細な製品の開口に対して保護カバー部材を配置する要請がある。また、外表面だけではなく、製品内部の面に保護カバー部材を配置する要請もあり、対応のために、保護膜の小面積化が進む状況にある。この状況では、保護膜を介した通気性及び/又は通音性をできるだけ確保するためには、通気及び通音の妨げとなる粘着層の面積を縮小する、例えば保護膜の周縁部に配置された粘着層の幅を狭くする、ことが余儀なくされる。
 本発明は、保護膜と粘着層とを含む保護カバー部材であって、粘着層の面積を縮小することに適した保護カバー部材の提供を目的とする。
 本発明は、
 開口を有する面を持つ対象物の前記面に配置される保護カバー部材であって、
 前記保護カバー部材が前記面に配置されたときに前記開口を覆う形状を有する保護膜と、粘着層と、を含む積層体から構成され、
 前記保護膜の主面に垂直な方向から見て前記粘着層と一致する前記保護膜の部分を前記保護膜の固定部として定めたときに、前記保護膜における前記粘着層に面する側とは反対側の露出面は、
 前記垂直な方向から見たときに前記固定部と重複すると共に、メタノールに対する接触角が55度以上である領域A、
 を有する、保護カバー部材、
 を提供する。
 別の側面から、本発明は、
 基材シートと、前記基材シート上に配置された1又は2以上の保護カバー部材と、を備え、
 前記保護カバー部材は、上記本発明の保護カバー部材である部材供給用シート、
 を提供する。
 別の側面から、本発明は、
 上記本発明の保護カバー部材を備える微小電気機械システム、
 を提供する。
 本発明によれば、保護膜と粘着層とを含む保護カバー部材であって、粘着層の面積を縮小することに適した保護カバー部材が達成される。
図1Aは、本発明の保護カバー部材の一例を模式的に示す断面図である。 図1Bは、図1Aの保護カバー部材1を保護膜2の側から見た平面図である。 図1Cは、図1Aの保護カバー部材1を粘着層3の側から見た平面図である。 図2Aは、保護膜の露出面が領域Aを有さない場合の流動体のはみ出しを説明するための模式図である。 図2Bは、保護膜の露出面が領域Aを有する場合に流動体がとりうる状態の一例を示す模式図である。 図3は、本発明の保護カバー部材の一例を模式的に示す断面図である。 図4は、本発明の保護カバー部材の対象物への配置の態様の一例を模式的に示す断面図である。 図5は、本発明の保護カバー部材の対象物への配置の態様の一例を模式的に示す断面図である。 図6は、本発明の保護カバー部材の一例を模式的に示す断面図である。 図7は、本発明の保護カバー部材の一例を模式的に示す断面図である。 図8は、本発明の部材供給用シートの一例を模式的に示す平面図である。
 本発明の第1態様にかかる保護カバー部材は、
 開口を有する面を持つ対象物の前記面に配置される保護カバー部材であって、
 前記保護カバー部材が前記面に配置されたときに前記開口を覆う形状を有する保護膜と、粘着層と、を含む積層体から構成され、
 前記保護膜の主面に垂直な方向から見て前記粘着層と一致する前記保護膜の部分を前記保護膜の固定部として定めたときに、前記保護膜における前記粘着層に面する側とは反対側の露出面は、
 前記垂直な方向から見たときに前記固定部と重複すると共に、メタノールに対する接触角が55度以上である領域A、
 を有する。
 本発明の第2態様において、例えば、第1態様にかかる保護カバー部材では、前記固定部における前記反対側の露出面の全体において、メタノールに対する接触角が55度以上である。
 本発明の第3態様において、例えば、第1又は第2態様にかかる保護カバー部材では、前記固定部は、前記垂直な方向から見て前記保護膜の周縁部に位置する。
 本発明の第4態様において、例えば、第1から第3態様のいずれか1つの態様にかかる保護カバー部材では、前記粘着層は前記保護膜と接している。
 本発明の第5態様において、例えば、第1から第4態様のいずれか1つの態様にかかる保護カバー部材では、前記粘着層は、前記保護膜に対して、前記保護カバー部材における前記対象物の面への配置側に位置する。
 本発明の第6態様において、例えば、第1から第5態様のいずれか1つの態様にかかる保護カバー部材では、前記粘着層は、熱硬化性粘着剤組成物から形成された層を含む。
 本発明の第7態様において、例えば、第6態様にかかる保護カバー部材では、前記熱硬化性粘着剤組成物の貯蔵弾性率は、130~170℃において1.0×103Pa以上である。
 本発明の第8態様において、例えば、第6又は第7態様にかかる保護カバー部材では、前記熱硬化性粘着剤組成物の熱硬化後の貯蔵弾性率は、130~170℃において1.0×108Pa以下である。
 本発明の第9態様において、例えば、第1から第8態様のいずれか1つの態様にかかる保護カバー部材では、前記保護膜の主面に垂直な方向から見て、前記粘着層は、前記保護膜の周縁部に配置されており、前記保護膜の中心から前記保護膜の外周に至る線分のうち最短の前記線分の長さL1に対する、前記最短の線分における前記粘着層と重複する部分の長さL2の比L2/L1が0.5以下である。
 本発明の第10態様において、例えば、第1から第9態様のいずれか1つの態様にかかる保護カバー部材では、前記保護膜は厚さ方向の通気性を有する。
 本発明の第11態様において、例えば、第1から第10態様のいずれか1つの態様にかかる保護カバー部材では、前記保護膜は多孔質膜又は微多孔膜を含み、前記多孔質膜及び前記微多孔膜の平均孔径は0.01μm以上3μm未満である。
 本発明の第12態様において、例えば、第1から第11態様のいずれか1つの態様にかかる保護カバー部材では、前記保護膜はポリテトラフルオロエチレン膜を含む。
 本発明の第13態様において、例えば、第1から第12態様のいずれか1つの態様にかかる保護カバー部材では、前記保護膜の面積が175mm2以下である。
 本発明の第14態様において、例えば、第1から第13態様のいずれか1つの態様にかかる保護カバー部材では、前記積層体は、前記保護膜に対して前記粘着層の側に位置する基材フィルムを更に含む。
 本発明の第15態様において、例えば、第1から第14態様のいずれか1つの態様にかかる保護カバー部材は、微小電気機械システム(MEMS)用である。
 本発明の第16態様において、例えば、第15態様にかかる保護カバー部材は、前記MEMSの内部に配置して使用される。
 本発明の第17態様にかかる部材供給用シートは、
 基材シートと、前記基材シート上に配置された1又は2以上の保護カバー部材と、を備え、
 前記保護カバー部材は、第1から第16態様のいずれか1つの態様にかかる保護カバー部材である。
 本発明の第18態様にかかる微小電気機械システムは、
 第1から第16態様のいずれか1つの態様にかかる保護カバー部材を備える。
 以下、本発明の実施形態について、図面を参照しながら説明する。本発明は、以下の実施形態に限定されない。
 [保護カバー部材]
 本実施形態の保護カバー部材の一例を図1A、図1B及び図1Cに示す。図1Bは、図1Aの保護カバー部材1を保護膜2の側から見た平面図である。図1Cは、図1Aの保護カバー部材1を粘着層3の側から見た平面図である。図1Aには、図1B及び図1Cの断面1A-1Aが示されている。図1B及び図1Cでは、保護膜2の主面に垂直な方向から保護カバー部材1を見ている。保護カバー部材1は、開口を有する面を持つ対象物の当該面(配置面)に配置される部材である。配置面への保護カバー部材1の配置により、例えば、上記開口への及び/又は上記開口からの異物の侵入、換言すれば、上記開口を介した異物の侵入、を防止しうる。保護カバー部材1は、保護膜2と粘着層3とを含む積層体4から構成される。保護膜2は、保護カバー部材1が配置面に配置されたときに上記開口を覆う形状を有する。粘着層3は保護膜2と接合している。保護カバー部材1は、粘着層3により、対象物の配置面に固定できる。
 保護膜2の主面に垂直な方向から見て、粘着層3と一致する保護膜2の部分を保護膜2の固定部21として定めることができる。保護膜2における粘着層3に面する側とは反対側の露出面22は、保護膜2の主面に垂直な方向から見たときに固定部21と重複すると共に、メタノールに対する接触角θMが55度以上である領域Aを有する。
 粘着層3の面積を縮小すると、保護膜2と粘着層3との接合及び接合の維持が難しくなる。両者の接合をより確実とするためには、熱プレス等の熱加圧処理を利用することが考えられる。しかし、本発明者らの検討によれば、特に熱加圧処理を利用して両者を接合した場合には、保護膜2の粘着層3側ではなく、粘着層3側とは反対側に他の部材を組み合わせる際に、保護カバー部材1の通気性や通音性が損なわれる傾向にあることが判明した。更なる検討によれば、上記傾向は、典型的には、他の部材を保護カバー部材1に接合する粘着剤や他の部材を配置する前に保護膜2に施される表面処理の処理液等の流動体5が、保護膜2の固定部21から通気/通音領域23にまで拡がって当該領域23を塞ぐことに起因する(図2A参照)。本実施形態の保護カバー部材1では、露出面22が領域Aを有することにより、固定部21から通気/通音領域23への流動体5のはみ出しを抑制できる(図2B参照)。なお、粘着剤等に通常含まれる有機溶剤の表面張力(20℃)は、通常、20-40mN/m程度の範囲にある。これを考慮し、上記範囲の下限に近い表面張力(22.5mN/m;20℃)を有するメタノールに対する接触角θMを定める。
 領域Aの接触角θMは、58度以上、60度以上、63度以上、65度以上、68度以上、70度以上、73度以上、更には75度以上であってもよい。領域Aの接触角θMの上限は、例えば、130度以下であり、120度以下、110度以下、100度以下、90度以下、85度以下、80度以下、75度以下、更には73度未満であってもよい。接触角θMは、日本産業規格(以下、JISと記載)R3257に定められた静滴法(ただし、水滴の代わりに、体積2μLのメタノール滴を使用する)に準拠して評価できる。評価温度は、25℃とする。
 領域Aの接触角θMは、例えば、保護膜2の材質及び特性(厚さ、平均孔径、空孔率、露出面22の状態、表面自由エネルギー、表面粗さ等)、保護膜2に対する各種の処理の有無、粘着層3の特性(厚さ、貯蔵弾性率、表面自由エネルギー等)、粘着層3の形成に用いた粘着剤組成物の組成及び特性(貯蔵弾性率、表面自由エネルギー等)、並びに保護膜2と粘着層3との接合条件等によって変化する。
 領域Aの形状は、保護膜2の主面に垂直な方向から見たときに固定部21と重複する限り、限定されない。なお、領域Aにおける固定部21と重複する部分の接触角θMがある角度θ1(例えば55度)以上であれば、領域Aの接触角θMはθ1以上であるとする。
 図1A~図1Cの保護カバー部材1では、固定部21における上記反対側の露出面22の全体、換言すれば、保護膜2の主面に垂直な方向から見たときに露出面22における固定部21に一致する部分の全体、において、接触角θMが55度以上である。
 図1A~図1Cの固定部21は、保護膜2の主面に垂直な方向から見て、保護膜2の周縁部に位置している。また、図1A~図1Cの固定部21の形状は、上記垂直な方向から見て、額縁状である。ただし、固定部21の形状及び保護膜2における位置は、上記例に限定されない。なお、上記垂直な方向から見て、保護膜2における固定部21に囲まれた領域23は、保護カバー部材1において気体及び/又は音が主として透過可能な通気/通音領域となりうる。
 領域23の面積は、例えば20mm2以下であり、15mm2以下、12.5mm2以下、10mm2以下、7.5mm2以下、5mm2以下、2.5mm2以下、2mm2以下、更には1.5mm2以下であってもよい。領域23の面積が上記範囲にある保護カバー部材1は、例えば、小径の開口を通常有する回路基板やMEMSへの配置に適している。領域23の面積の下限は、例えば、0.008mm2以上である。ただし、領域23の面積は、保護カバー部材1が配置される対象物の種類によっては、より大きな範囲であってもよい。
 領域Aと領域23とは、保護膜2の主面に垂直な方向から見て、重複していてもよい。
 図1A~図1Cの粘着層3は、保護膜2と接している。より具体的には、粘着層3は保護膜2と接合している。ただし、粘着層3と保護膜2との間には、他の層が配置されていてもよい。粘着層3と保護膜2との接合には、熱プレス等の熱加圧処理を利用してもよい。
 粘着層3に含まれる成分(以下、粘着層3の成分と記載)は、保護膜2の内部に浸透していなくても、浸透していてもよい。粘着層3の成分が保護膜2の内部に浸透している場合、浸透は、保護膜2の露出面22に達していなくてもよい。保護膜2の内部に浸透していない態様を含め、浸透が露出面22に達していないことは、露出面22が領域Aを有することに寄与しうる。本発明者らの検討によれば、粘着層3の成分の浸透は、粘着層3と保護膜2との接合時に、とりわけ、粘着層3が熱硬化性粘着剤組成物から形成された層である場合や熱加圧処理を利用して粘着層3と保護膜2とを接合する場合に、生じやすい。
 保護膜2の内部への粘着層3の成分の浸透の程度は、例えば、保護膜2に対する上記成分の最大浸透深さにより表すことができる。最大浸透深さは、保護膜2の厚さ未満であってもよく、保護膜2の厚さの95%以下、90%以下、70%以下、50%以下、30%以下、更には10%以下であってもよい。
 図1A~図1Cの粘着層3は、保護膜2の主面に垂直な方向から見て、保護膜2の一部の領域に配置されている。粘着層3の形状は、上記垂直な方向から見て、保護膜2の周縁部の形状であり、より具体的には、額縁状である。粘着層3が配置されていない保護膜2の領域23において、粘着層3が配置されている領域に比べて良好な通気及び/又は通音が可能となる。ただし、粘着層3の形状は、上記例に限定されない。例えば、主面に垂直な方向から見た保護膜2の形状が円形である場合、粘着層3の形状は、上記垂直な方向から見てリング状であってもよい。
 粘着層3の厚さは、例えば3~200μmであり、5~100μm、10~50μm、更には20~40μmであってもよい。
 粘着層3の面積は、合計で、例えば0.1~10mm2であり、0.5~5mm2、0.8~4mm2、更には1~3mm2であってもよい。額縁状である粘着層3の幅(固定部21の幅にも相当)は、例えば50~3000μmであり、100~1000μm、150~800μm、更には200~500μmであってもよい。
 図1A~図1Cの粘着層3は、保護膜2の主面に垂直な方向から見て、保護膜2の周縁部に配置されている。このとき、上記垂直な方向から見て、保護膜2の中心Oから保護膜2の外周に至る線分のうち最短の線分Sminの長さL1に対する、当該線分Sminにおける粘着層3と重複する部分の長さL2の比L2/L1は、0.5以下であってもよく、0.3以下、0.2以下、更には0.1以下であってもよい。比L2/L1の下限は、例えば0.05以上である。なお、保護膜2の中心Oは、保護膜2の主面に垂直な方向から見たときの保護膜2の形状の重心として定めることができる。
 粘着層3は、粘着剤組成物から形成された層(以下、層Bと記載)を含む。粘着層3は、層Bからなる単層構造を有していても、層Bを含む積層構造を有していてもよい。積層構造は、2以上の層Bを有していてもよい。
 粘着層3は、基材と、基材の少なくとも一方の面に配置された層Bとを含んでいてもよい。当該態様の一例を図3に示す。図3の粘着層3は、基材32と、基材32の双方の面に各々設けられた層B31とを有する。一方の層B31は、保護膜2と接している。他方の層B31は、対象物の配置面に対する保護カバー部材1の接合面11を構成する。各々の層B31の構成は、互いに同一であっても異なっていてもよい。
 基材32の例は、樹脂、金属又はこれらの複合材料のフィルム、不織布及びフォームである。樹脂の例は、ポリエチレン及びポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート(PET)等のポリエステル、シリコーン樹脂、ポリカーボネート、ポリイミド、ポリアミドイミド、ポリフェニレンサルファイド、ポリエーテルエーテルケトン(PEEK)並びにフッ素樹脂である。フッ素樹脂の例は、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)及びテトラフルオロエチレン-エチレン共重合体(ETFE)である。金属の例は、ステンレス及びアルミニウムである。ただし、樹脂及び金属は、上記例に限定されない。
 基材32は、耐熱性材料を含んでいてもよい。耐熱性材料を含む基材32を備えた保護カバー部材1は、保護カバー部材1を構成する他の層の材料によっては、高温下での使用に適している。耐熱性材料の例は、金属及び耐熱性樹脂である。耐熱性樹脂は、典型的には、150℃以上の融点を有する。耐熱性樹脂の融点は、160℃以上、200℃以上、220℃以上、240℃以上、250℃以上、260℃以上、更には300℃以上であってもよい。耐熱性樹脂の例は、シリコーン樹脂、ポリイミド、ポリアミドイミド、ポリフェニレンサルファイド、PEEK及びフッ素樹脂である。フッ素樹脂は、PTFEであってもよい。PTFEは、耐熱性に特に優れている。
 層B31を形成しうる粘着剤組成物の例は、熱硬化性粘着剤組成物、感圧性粘着剤組成物及び紫外線(UV)硬化性粘着剤組成物である。層B31は熱硬化性粘着剤組成物から形成されていてもよく、換言すれば、粘着層3は熱硬化性粘着剤組成物から形成された層(以下、熱硬化性粘着層と記載)を含んでいてもよい。熱硬化性粘着層を含む粘着層3は、熱加圧処理による保護膜2との接合に、より適している。熱硬化性粘着層は、例えば、熱硬化性粘着剤組成物Cの塗布及び乾燥により形成される。
 粘着剤組成物Cの貯蔵弾性率G’は、130~170℃において1.0×103Pa以上であってもよい。130~170℃は、熱硬化性樹脂組成物の典型的な硬化温度及び熱加圧処理の典型的な温度に対応する。粘着剤組成物Cの貯蔵弾性率G’は、130~170℃において、3.0×103Pa以上、5.0×103Pa以上、7.0×103Pa以上、1.0×104Pa以上、4.6×104Pa以上、5.0×104Pa以上、6.0×104Pa以上、7.0×104Pa以上、1.0×105Pa以上、3.0×105Pa以上、5.0×105Pa以上、7.0×105Pa以上、更には9.0×105Pa以上であってもよい。同温度域における貯蔵弾性率Gの上限は、例えば5.0×106Pa以下である。当該粘着剤組成物Cから形成された層を含む粘着層3は、加熱時における形状の保持性に優れることから、熱加圧処理による保護膜2との接合に、より適している。また、130~170℃における粘着剤組成物Cの貯蔵弾性率Gが上記範囲にあることは、保護膜2の内部への粘着層3の成分の浸透を抑制することに寄与しうる。
 粘着剤組成物Cの熱硬化後の貯蔵弾性率G’は、130~170℃において1.0×108Pa以下であってもよい。当該粘着剤組成物Cから形成された層を含む粘着層3は、硬すぎず、接合性に優れる。熱硬化後の貯蔵弾性率G’は、130~170℃において、5.0×107Pa以下、3.0×107Pa以下、1.8×107Pa以下、1.7×107Pa以下、1.0×107Pa以下、5.0×106Pa以下、2.0×106Pa以下、1.0×106Pa以下、更には9.6×105Pa以下であってもよい。同温度域における熱硬化後の貯蔵弾性率G’の下限は、例えば5.0×104Pa以上である。
 粘着剤組成物Cの熱硬化後の貯蔵弾性率G’は、250℃において1.0×105Pa以上であってもよい。当該粘着剤組成物Cから形成された層を含む粘着層3は、面積が縮小された場合においても、ハンダリフロー等の高温処理における耐久性に優れる。熱硬化後の貯蔵弾性率G’は、250℃において、3.0×105Pa以上、5.0×105Pa以上、7.0×105Pa以上、1.0×106Pa以上、1.1×106Pa以上、5.0×106Pa以上、1.0×107Pa以上、2.0×107Pa以上、更には2.2×107Pa以上であってもよい。同温度域における熱硬化後の貯蔵弾性率Gの上限は、例えば5.0×108Pa以下であり、1.0×108Pa以下、更には5.0×107Pa以下であってもよい。
 粘着剤組成物Cの貯蔵弾性率G’は、粘着剤組成物Cのフィルム又は熱硬化後のフィルム(長さ22.5mm及び幅10mm)を試験片とし、強制振動型固体粘弾性測定装置を用いて昇温速度10℃/分で上記試験片を加熱して評価できる。ただし、試験片の測定方向(振動方向)は長さ方向とし、振動周波数は1Hzとする。
 上記各貯蔵弾性率G’を満たしうる粘着剤組成物Cの例を、以下に説明する。ただし、粘着剤組成物Cは、以下の例に限定されない。
 粘着剤組成物Cは、例えば、アクリルポリマーを含むアクリル系組成物である。アクリル系組成物は、通常、粘着剤組成物のベースポリマーとしてアクリルポリマー(以下、アクリルポリマーDと記載)を含む。アクリル系組成物におけるアクリルポリマーDの含有率は、例えば35重量%以上であり、40重量%以上、50重量%以上、60重量%以上、70重量%以上、80重量%以上、更には90重量%以上であってもよい。アクリルポリマーDの含有率の上限は、例えば100重量%以下であり、95重量%以下、更には90重量%以下であってもよい。
 アクリルポリマーDの重量平均分子量は、好ましくは20万以上であり、40万以上、60万以上、80万以上、更には100万以上であってもよい。アクリルポリマーDの重量平均分子量の上限は、例えば500万以下である。粘着剤組成物Cは、重量平均分子量20万以上のアクリルポリマーDを35重量%以上の含有率で含んでいてもよい。
 粘着剤組成物Cは、熱硬化性であり、熱硬化性基を含む。熱硬化性基の例は、エポキシ基、ヒドロキシフェニル基、カルボキシ基、ヒドロキシ基、カルボニル基、アジリジニル基及びアミノ基から選ばれる少なくとも1種である。熱硬化性基は、エポキシ基、ヒドロキシフェニル基及びカルボキシ基から選ばれる少なくとも1種であってもよく、エポキシ基及び/又はヒドロキシフェニル基であってもよい。なお、エポキシ基にはグリシジル基が含まれる。
 粘着剤組成物Cでは、アクリルポリマーDが熱硬化性基を有していてもよい。この場合、後述する熱硬化性樹脂が熱硬化性基を有する場合に比べて、熱硬化後の架橋構造がより均質となり、熱硬化後の硬化粘着層の耐熱性が向上しうる。アクリルポリマーDが有しうる熱硬化性基の例は、エポキシ基、カルボキシ基、ヒドロキシ基、カルボニル基、アジリジニル基及びアミノ基から選ばれる少なくとも1種である。アクリルポリマーDが有しうる熱硬化性基は、エポキシ基及び/又はカルボキシ基であってもよく、エポキシ基であってもよい。
 アクリルポリマーDのガラス転移温度(Tg)は、例えば-15~40℃であり、-10~30℃、更には-5~20℃であってもよい。
 粘着剤組成物Cは熱硬化性樹脂を更に含んでいてもよく、この場合、粘着剤組成物Cにおける熱硬化性樹脂の含有率は、好ましくは、粘着剤組成物CにおけるアクリルポリマーDの含有率に比べて小さい。アクリルポリマーDの含有率が大きいほど、130~170℃における粘着剤組成物Cの貯蔵弾性率G’は向上しうる。熱硬化性樹脂は熱硬化性基を有していてもよく、熱硬化性基を有する熱硬化性樹脂は架橋剤として機能しうる。熱硬化性基の例は上述のとおりである。
 粘着剤組成物Cにおける熱硬化性樹脂の含有量は、例えば50重量%以下であり、40重量%以下、35重量%以下、30重量%以下、20重量%以下、15重量%以下、更には10重量%以下であってもよい。熱硬化性樹脂の含有率の下限は、例えば0重量%以上であり、5重量%以上であってもよい。粘着剤組成物Cは、熱硬化性樹脂を含まなくてもよい。
 熱硬化性樹脂の例は、フェノール樹脂、エポキシ樹脂、ユリア樹脂、メラミン樹脂及び不飽和ポリエステル樹脂である。ただし、熱硬化性樹脂は、上記例に限定されない。熱硬化性樹脂がフェノール樹脂及び/又はエポキシ樹脂である場合、特にフェノール樹脂である場合、熱硬化後の硬化粘着層の耐熱性が向上しうる。
 フェノール樹脂の例は、フェノールノボラック樹脂、フェノールビフェニル樹脂、フェノールアラルキル樹脂、クレゾールノボラック樹脂、tert-ブチルフェノールノボラック樹脂及びノニルフェノールノボラック樹脂等のノボラック型フェノール樹脂、並びにレゾール型フェノール樹脂等のフェノール樹脂である。ただし、フェノール樹脂は、上記例に限定されない。
 フェノール樹脂の水酸基価は、例えば100~500g/eqであり、100~400g/eqであってもよい。
 熱硬化性樹脂の重量平均分子量は、例えば100~3000であり、150~2000であってもよい。
 熱硬化性樹脂は、公知の製法により形成できる。
 アクリルポリマーDの組成の例について説明する。ただし、アクリルポリマーDは、以下の組成を有するものに限定されない。
 アクリルポリマーDは、以下の単量体から選ばれる少なくとも1種の単量体に由来する構成単位Eを有していてもよい:メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ペンチルアクリレート及びヘキシルアクリレート等の炭素数1~8のアルキル基を有するアルキルアクリレート;メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、ブチルメタクリレート、ペンチルメタクリレート及びヘキシルメタクリレート等の炭素数1~8のアルキル基を有するアルキルメタクリレート;アクリロニトリル;スチレン;アクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸及びクロトン酸等のカルボキシル基含有モノマー;無水マレイン酸及び無水イタコン酸等の酸無水物モノマー;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル及び(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等のヒドロキシル基含有モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート及び(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;並びに2-ヒドロキシエチルアクリロイルホスフェート等のリン酸基含有モノマー。構成単位Eの好ましい例は、炭素数1~4のアルキル基を有するアルキルアクリレート、炭素数1~4のアルキル基を有するアルキルメタクリレート及びアクリロニトリルから選ばれる少なくとも1種の単量体に由来する単位であり、より好ましい例は、エチルアクリレート、ブチルアクリレート及びアクリロニトリルから選ばれる少なくとも1種の単量体に由来する単位である。アクリルポリマーDは、エチルアクリレートに由来する単位、ブチルアクリレートに由来する単位及びアクリロニトリルに由来する単位の全てを構成単位として有することが好ましい。なお、構成単位Eは、熱硬化性基を有さない。
 アクリルポリマーDにおける構成単位Eの含有率は、例えば70重量%以上であり、80重量%以上、更には90重量%以上であってもよい。アクリルポリマーDは、構成単位Eから構成されていてもよい。
 アクリルポリマーDがアクリロニトリルに由来する単位(アクリロニトリル単位)を有する場合、アクリルポリマーDにおける当該単位の含有率は、例えば5重量%以上であり、10重量%以上、15重量%以上、更には20重量%以上であってもよい。当該単位の含有率の上限は、例えば40重量%以下である。
 アクリルポリマーDは、熱硬化性基を有する構成単位Fを有していてもよい。構成単位Fの例は、熱硬化性基が導入されたアルキルアクリレート及び熱硬化性基が導入されたアルキルメタクリレートに由来する単位である。熱硬化性基、アルキルアクリレート及びアルキルメタクリレートの具体例は、上述のとおりである。構成単位Fのより具体的な例は、グリシジルメチルアクリレート、グリシジルエチルアクリレート、グリシジル2-エチルヘキシルアクリレート、カルボキシメチルアクリレート及びアジリジニルメチルアクリレートである。アクリルポリマーDは構成単位Fを有さなくてもよいが、この場合は、通常、熱硬化性基を有する熱硬化性樹脂を粘着剤組成物Cが含む。
 アクリルポリマーDが構成単位Fを有する場合、アクリルポリマーDにおける構成単位Fの含有率は、例えば30~95重量%であり、40~90重量%であってもよい。この場合、構成単位Eの含有率は上記例示した範囲になくてもよく、構成単位Eの含有率と構成単位Fの含有率との合計は、例えば70重量%以上であり、80重量%以上、更には90重量%以上であってもよい。アクリルポリマーDは、構成単位E及び構成単位Fから構成されていてもよい。
 アクリルポリマーDがエポキシ基を有する構成単位Fを有する場合、アクリルポリマーDのエポキシ価は、例えば0.15~0.65eq/kgであり、0.20~0.50eq/kgであってもよい。
 アクリルポリマーDは、溶液重合、塊状重合、懸濁重合及び乳化重合等の公知の重合法により形成できる。
 粘着剤組成物Cは、フィラーを含んでいてもよい。フィラーの例は、無機フィラー及び有機フィラーである。粘着剤組成物Cについて取り扱い性の向上、溶融粘度の調整及びチキソトロピック性の付与等の観点からは、無機フィラーが好ましい。
 無機フィラーの例は、シリカ、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム、三酸化アンチモン、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミニウム及び窒化ホウ素である。シリカは、結晶質シリカであっても非晶質シリカであってもよい。有機フィラーの例は、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエステルイミド、ナイロン及びシリコーンである。
 フィラーの平均粒径は、例えば0.005~10μmであり、0.05~1μmであってもよい。平均粒径が相互に異なるフィラー同士を組み合わせてもよい。フィラーの平均粒径は、光度式の粒度分布計(例えば、HORIBA製、装置名;LA-910)により求めることができる。
 フィラーの形状の例は、球状及び楕円体状である。
 粘着剤組成物Cは、上述した以外の他の成分を含んでもよい。他の成分の例は、難燃剤、シランカップリング剤、イオントラップ剤及び熱硬化促進触媒等の添加剤である。
 難燃剤の例は、三酸化アンチモン、五酸化アンチモン及び臭素化エポキシ樹脂である。シランカップリング剤の例は、β-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン及びγ-グリシドキシプロピルメチルジエトキシシランである。イオントラップ剤の例は、ハイドロタルサイト類及び水酸化ビスマスである。熱硬化促進触媒の例は、トリフェニルフォスフィン骨格、アミン骨格、トリフェニルボラン骨格又はトリハロゲンボラン骨格を有する塩である。
 層B31を形成しうる感圧性粘着剤組成物の例は、アクリル系、シリコーン系、ウレタン系及びゴム系の各粘着剤組成物である。
 保護膜2は、厚さ方向に非通気性であっても、厚さ方向の通気性を有していてもよい。保護膜2が厚さ方向の通気性を有する場合、保護カバー部材1の配置により、対象物の開口を介した異物の侵入を防ぎながら上記開口の通気性を確保できる。通気性の確保により、例えば、対象物の開口を介した圧力の調整や圧力の変動の緩和が可能となる。圧力の変動を緩和する一例を以下に示す。回路基板に設けられた貫通孔の一方の開口を覆うように半導体素子を配置した状態で、ハンダリフロー等の加熱処理を施すことがある。ここで、他方の開口を覆うように保護カバー部材1を配置することで、加熱処理時における貫通孔を介した素子への異物の侵入を抑制できる。保護膜2が厚さ方向の通気性を有すると、加熱による貫通孔内の圧力上昇が緩和されて、圧力上昇による素子の損傷を防ぐことができる。半導体素子の例は、マイクロフォン、圧力センサー及び加速度センサー等のMEMSである。これらの素子は、通気及び/又は通音可能な開口を有しており、当該開口が上記貫通孔に面するように回路基板に配置しうる。保護カバー部材1は、製造後の半導体素子の開口を覆うように当該素子に配置されてもよい。素子の内部に配置することもできる。保護膜2が厚さ方向の通気性を有する場合、配置された保護カバー部材1は、例えば、対象物の開口を介した異物の侵入を防ぎながら当該開口を介した通気性を確保する通気部材、及び/又は、対象物の開口を介した異物の侵入を防ぎながら当該開口を介した通音性を確保する通音部材として機能しうる。なお、保護膜2が厚さ方向に非通気性である場合にも、保護膜2の振動による音の伝達が可能であることから、配置後の保護カバー部材1は通音部材として機能しうる。
 厚さ方向の通気性を有する保護膜2の通気度は、JIS L1096に定められた通気性測定B法(ガーレー形法)に準拠して求めた空気透過度(ガーレー通気度)により表示して、例えば0.1秒/100mL以上1万秒/100mL以下である。ガーレー通気度の下限は0.15秒/100mL以上であってもよく、0.3秒/100mL以上、0.5秒/100mL以上、更には0.6秒/100mL以上であってもよい。ガーレー通気度の上限は、5000秒/100mL以下、1000秒/100mL以下、300秒/100mL以下、200秒/100mL以下、更には100秒/100mL未満であってもよい。なお、1万秒/100mLを超える保護膜2は、厚さ方向に非通気性の膜であると判断できる。
 保護膜2は、防水性を有していてもよい。防水性を有する保護膜2を備える保護カバー部材1は、対象物への配置後に、例えば防水通気部材及び/又は防水通音部材として機能しうる。防水性を有する保護膜2の耐水圧は、JIS L1092に定められた耐水度試験A法(低水圧法)又はB法(高水圧法)に準拠して求めた値にして、例えば5kPa以上である。
 保護膜2を構成する材料の例は、金属、樹脂及びこれらの複合材料である。
 保護膜2を構成しうる樹脂及び金属の例は、粘着層3の基材32を構成しうる樹脂及び金属の例と同じである。ただし、樹脂及び金属は、上記例に限定されない。
 保護膜2は、耐熱性材料から構成されてもよい。耐熱性材料の例は、基材32の説明において上述したとおりである。
 保護膜2は、PTFE膜を含んでいてもよい。
 保護膜2は多孔質膜又は微多孔膜を含んでいてもよい。厚さ方向の通気性を有する保護膜2は、多孔質膜又は微多孔膜を含みうる。なお、厚さ方向の通気度がガーレー数により表示して20秒/100mL以下の膜を多孔質膜と、20秒/100mLを超え1万秒/100mL以下の膜を微多孔膜と、それぞれ判断できる。
 多孔質膜及び微多孔膜の平均孔径は、0.01μm以上3μm未満であってもよい。平均孔径の下限は、0.01μm以上、0.05μm以上、更には0.1μm以上であってもよい。平均孔径の上限は、3μm以下、3μm未満、2.5μm以下、2μm以下、1.5μm以下、更には1μm以下であってもよい。3μm未満の平均孔径を有する多孔質膜又は微多孔膜を含む保護膜2は、粘着層3との接合時、特に熱加圧処理を利用した接合時、における粘着層3の成分の浸透を抑制することに特に適している。0.01μm以上の平均孔径を有する多孔質膜又は微多孔膜を含む保護膜2は、粘着層3との接合時、特に熱加圧処理を利用した接合時、における粘着層3の成分の領域23へのはみ出しや粘着層3の変形を抑制することに適している。保護膜の平均孔径は、ASTM F316-86に準拠して評価できる。
 多孔質膜は、延伸多孔質膜であってもよい。延伸多孔質膜は、フッ素樹脂の延伸多孔質膜、特にPTFE延伸多孔質膜、であってもよい。PTFE延伸多孔質膜は、通常、PTFE粒子を含むペースト押出物又はキャスト膜を延伸して形成される。PTFE延伸多孔質膜は、PTFEの微細なフィブリルにより構成され、フィブリルに比べてPTFEが凝集した状態にあるノードを有することもある。PTFE延伸多孔質膜によれば、異物の侵入を防ぐ性能及び通気性を高いレベルで両立させることが可能である。保護膜2には、公知の延伸多孔質膜を使用できる。
 厚さ方向の通気性を有する保護膜2は、双方の主面を接続する複数の貫通孔が形成された穿孔膜を含んでいてもよい。穿孔膜は、非多孔質の基質構造を有する原膜、例えば無孔膜、に複数の貫通孔が設けられた膜であってもよい。穿孔膜は、上記複数の貫通孔以外に、厚さ方向の通気経路を有していなくてもよい。貫通孔は、穿孔膜の厚さ方向に延びていてもよく、厚さ方向に直線状に延びるストレート孔であってもよい。貫通孔の開口の形状は、穿孔膜の主面に垂直に見て、円又は楕円であってもよい。穿孔膜は、例えば、原膜に対するレーザー加工、又は、イオンビーム照射及びこれに続く化学エッチングによる孔開け加工により形成できる。
 厚さ方向の通気性を有する保護膜2は、不織布、織布、メッシュ、ネットを含んでいてもよい。
 保護膜2は、上記例に限定されない。
 図1A~図1Cの保護膜2の形状は、その主面に垂直な方向から見て、長方形である。ただし、保護膜2の形状は上記例に限定されず、例えば、上記垂直な方向から見て、正方形及び長方形を含む多角形、円、楕円であってもよい。多角形は、正多角形であってもよい。多角形の角は、丸められていてもよい。
 保護膜2の厚さは、例えば、1~100μmである。
 保護膜2の面積は、例えば、175mm2以下であり、150mm2以下、125mm2以下、100mm2以下、75mm2以下、50mm2以下、25mm2以下、20mm2以下、15mm2以下、10mm2以下、7.5mm2以下、5mm2以下、更には2.5mm2以下であってもよい。保護膜2の面積が上記範囲にある保護カバー部材1は、例えば、小径の開口を通常有する回路基板やMEMSへの配置に適している。保護膜2の面積の下限は、例えば、0.20mm2以上である。ただし、保護膜2の面積は、保護カバー部材1が配置される対象物の種類によっては、上記範囲より大きくてもよい。
 保護膜2の目付(単位面積あたりの重量)は、例えば1~30g/m2である。目付の下限は、0.5g/m2以上、0.8g/m2以上、1.0g/m2以上、1.2g/m2以上、1.4g/m2以上、1.5g/m2以上、1.7g/m2以上、2.0g/m2以上、2.5g/m2以上、更には3.0g/m2超であってもよい。目付の上限は、25g/m2以下、22g/m2以下、20g/m2以下、18g/m2以下、15g/m2以下、13g/m2以下、10g/m2以下、8g/m2以下、6g/m2以下、5g/m2以下、4g/m2以下、3g/m2以下、2.5g/m2以下、2g/m2以下、更には1.8g/m2以下であってもよい。
 保護膜2には、撥水処理、撥液処理、着色処理等の各種の処理がなされていてもよい。各種の処理は、公知の方法に基づき実施できる。
 保護膜2として、メタノールに対する接触角θMが75度以上の膜が使用されていてもよい。換言すれば、保護膜2の固有の接触角θMは75度以上であってもよい。保護膜2の固有の接触角θMは、77度以上、80度以上、82度以上、85度以上、87度以上、89度以上、更には90度以上であってもよい。上記範囲にある固有の接触角θMを有する保護膜2は、粘着層3との接合時、特に熱加圧処理を利用した接合時、における粘着層3の成分の浸透を抑制することに特に適している。保護膜2の固有の接触角θMは、例えば、保護膜2の材質及び特性(厚さ、平均孔径、空孔率、表面自由エネルギー、表面粗さ等)、及び保護膜2に対する各種の処理の有無により変化する。保護膜2の材質にもよるが、例えば、小さな平均孔径、低い空孔率、及び、撥水処理又は撥液処理の実施は、保護膜2の固有の接触角θMを高めることに寄与しうる。
 保護カバー部材1に組み込まれた状態における保護膜2の固有の接触角θMは、例えば、(I)露出面22における、保護膜2の主面に垂直に見たときに固定部21と一致する部分を除いた部分(例えば、通気/通音領域23)、又は(II)保護膜2における粘着層3に面する側の露出面、に対する接触角θMの評価により特定できる。
 保護カバー部材1の好ましい例は、以下の特徴I~IIIから選ばれる少なくとも1つの特徴を有している。好ましい例は、特徴I~IIIから選ばれる少なくとも2つの特徴を有していてもよく、特徴I~IIIの全てを有していてもよい。ただし、保護カバー部材1は、当該好ましい例に限定されない。
 I:保護膜2の固有の接触角θMが75度以上である。
 II:保護膜2が多孔質膜又は微多孔膜であり、かつ、その平均孔径は3μm未満又は上述した好ましい範囲にある。
 III:粘着層3が熱硬化性粘着層を含み、熱硬化性粘着層は熱硬化性粘着剤組成物Cから形成された層であり、130~170℃における粘着剤組成物Cの貯蔵弾性率Gは1.0×103Pa以上又は上述した好ましい範囲にある。
 図1A~図1Cの保護カバー部材1の形状は、保護膜2の主面に垂直な方向から見て、長方形である。ただし、保護カバー部材1の形状は、上記例に限定されない。形状は、上記方向から見て、正方形及び長方形を含む多角形、円、楕円であってもよい。多角形は正多角形であってもよい。多角形の角は丸められていてもよい。
 保護カバー部材1の面積(保護膜2の主面に垂直な方向から見たときの面積)は、例えば、175mm2以下であり、150mm2以下、125mm2以下、100mm2以下、75mm2以下、50mm2以下、25mm2以下、20mm2以下、15mm2以下、10mm2以下、7.5mm2以下、5mm2以下、更には2.5mm2以下であってもよい。面積が上記範囲にある保護カバー部材1は、例えば、小径の開口を通常有する回路基板やMEMSへの配置に適している。保護カバー部材1の面積の下限は、例えば、0.20mm2以上である。ただし、保護カバー部材1の面積は、配置される対象物の種類によっては、より大きな値であってもよい。
 保護カバー部材1を配置する対象物の例は、MEMS等の半導体素子、及び回路基板である。換言すれば、保護カバー部材1は、半導体素子、回路基板又はMEMSを対象物とする半導体素子用、回路基板用又はMEMS用の部材であってもよい。MEMSは、パッケージの表面に通気孔を有する非密閉系の素子であってもよい。非密閉系MEMSの例は、気圧、湿度、ガス、エアフロー等を検出する各種のセンサー及びスピーカーやマイクロフォン等の電気音響変換素子である。また、対象物は、製造後の半導体素子や回路基板に限られず、製造工程にあるこれらの素子や基板の中間製造物であってもよい。この場合、保護カバー部材1によって、製造工程における中間製造物の保護が可能となる。製造工程の例は、ハンダリフロー工程、ダイシング工程、ボンディング工程及び実装工程である。製造工程は、ハンダリフロー工程をはじめとして、高温下で実施される工程であってもよい。高温は、例えば200℃以上であり、220℃以上、240℃以上、更には260℃以上であってもよい。ハンダリフロー工程は、通常、260℃程度で実施される。ただし、対象物は上記例に限定されない。
 図1A~図1Cの保護カバー部材1の対象物に対する配置の態様の一例を図4に示す。図4の例では、開口52を有する面53を持つ対象物51の当該面53に、保護カバー部材1が配置されている。開口52は、保護カバー部材1の配置により、保護膜2によって覆われる。図4の粘着層3は、保護膜2に対して、保護カバー部材1における対象物51の面53への配置側に位置する。保護カバー部材1は、粘着層3を介して、面53に固定されている。この例では、粘着層3が、対象物51の面53との接合面11を構成する。面53への固定に、熱プレス等の熱加圧処理を利用してもよい。
 保護カバー部材1が配置されうる対象物の面は、例えば、対象物の外表面である。面は、対象物の内部の面であってもよい。面は、平面であっても曲面であってもよい。また、対象物の開口は、凹部の開口であっても、貫通孔の開口であってもよい。
 保護カバー部材1は、MEMS等の半導体素子又は回路基板の内部に配置して使用されてもよい。MEMSの内部への配置の一例を図5に示す。図5には、本実施形態の保護カバー部材1を備えるMEMSの一例が示されている。図5のMEMS61は、ボトムポート(下部開口)型マイクロフォン素子である。MEMS61は、開口69を有する基板62と、振動板64を有するMEMSダイ63と、キャップ(カバー)66とを備える。開口69は、通音口として機能する。MEMS61の内部67には、開口69が保護膜2によって覆われるように、基板62の内面68を配置面として保護カバー部材1が配置されている。保護カバー部材1は、粘着層3を介して、内面68に固定されている。内面68への固定には、熱プレス等の熱加圧処理を利用してもよい。MEMSダイ63は、粘着層65を介して保護カバー部材1に、より具体的には保護膜2に、接合されている。粘着層65は、保護膜2に対して粘着層3とは反対側に位置すると共に、保護膜2に接している。また、粘着層65は、保護膜2の主面に垂直な方向から見て、保護膜2の固定部21と重複している(図5の例では、固定部21と一致している)。
 粘着層65は、例えば、流動体5である粘着剤組成物を保護膜2の露出面22に塗布して形成される。粘着層65を形成する粘着剤組成物は、粘着層3を形成しうる上述の粘着剤組成物から選択してもよい。MEMSダイ63が微細な部材であることから、微小な面積の塗布に特に適した粘着剤組成物、例えば液状粘着剤、を粘着層65に使用してもよい。液状粘着剤は、例えば、メタノール等のアルコールを溶剤に使用した低粘度の粘着剤組成物である。液状粘着剤の粘度(25℃)は、例えば、0.1~500Pa・sである。液状粘着剤の粘度は、例えば、ブルックフィールドB型粘度計により評価できる。液状粘着剤は、アルミナ等の無機化合物を主成分として含んでいてもよく、一般的な粘着剤が含むポリマー成分を実質的に含んでいなくてもよい。領域Aを有する保護膜2を備えた本実施形態の保護カバー部材1は、液状粘着剤から形成された粘着層65を介するMEMSダイ63との接合に適している。本明細書において、主成分とは、含有率の最も大きな成分を意味する。主成分の含有率は、50重量%以上、60重量%以上、更には70重量%以上であってもよい。
 MEMS61は、上記説明した以外の任意の部品を備えうる。
 保護カバー部材1の積層体4は、保護膜2及び粘着層3以外の層を備えていてもよい。更なる層を備える保護カバー部材1の例を図6に示す。
 図6の積層体4は、保護膜2に対して粘着層3の側に位置する基材フィルム6を更に含む。基材フィルム6により、例えば、保護カバー部材1の剛性を高めることができる。また、保護カバー部材1を部材供給用シートにより供給する場合には、部材供給用シートからの保護カバー部材1のピックアップ性を向上できる。
 図6の基材フィルム6は、粘着層3に対して保護膜2側とは反対側に配置されている。基材フィルム6と粘着層3とは互いに接している。ただし、基材フィルム6の位置は上記例に限定されない。基材フィルム6は、保護膜2と粘着層3との間に配置されていてもよい。
 図6の積層体4は、1つの基材フィルム6を含む。積層体4は、2以上の基材フィルム6を含んでいてもよい。2以上の基材フィルム6が、それぞれ、保護膜2と粘着層3との間、及び粘着層3に対して保護膜2側とは反対側に配置されていてもよい。
 図6の保護カバー部材1は、基材フィルム6に対して粘着層3側とは反対側に設けられた更なる粘着層によって、対象物51の面53に配置できる。更なる粘着層を形成する粘着剤組成物は、上述の粘着剤組成物から選択できる。更なる粘着層は、積層体4に含まれていてもよい。
 基材フィルム6の材料は、保護膜2の材料として例示した材料から選択できる。基材フィルム6は、耐熱性材料から構成されていてもよい。耐熱性材料の例は、基材32の説明において上述したとおりである。
 更なる層を備える保護カバー部材1の別の例を図7に示す。図7の積層体4は、保護膜2に対して粘着層3側とは反対側に位置するカバーフィルム7を更に備える。カバーフィルム7は、保護膜2の上に配置されている。カバーフィルム7と保護膜2との間には、他の層が配置されていてもよい。カバーフィルム7は、例えば、対象物に保護カバー部材1が配置されるまでの間、保護膜2を保護する保護フィルムとして機能する。カバーフィルム7は、対象物への保護カバー部材1の配置後に剥離してもよい。カバーフィルム7は、保護膜2の主面に垂直な方向から見て、保護膜2の全体を覆っていても、一部を覆っていてもよい。カバーフィルム7は、例えば、カバーフィルム7における保護膜2の側の面に設けられた粘着層を介して保護膜2上に配置できる。この粘着層は、弱粘着性であることが好ましい。
 図7のカバーフィルム7は、保護膜2の主面に垂直な方向から見て、保護膜2の外周よりも外方に突出した部分であるタブ71を有する。タブ71は、カバーフィルム7の剥離に利用可能である。ただし、カバーフィルム7の形状は、上記例に限定されない。
 カバーフィルム7を構成する材料の例は、金属、樹脂及びこれらの複合材料である。カバーフィルム7を構成しうる材料の具体例は、基材32を構成しうる材料の具体例と同じである。
 カバーフィルム7の厚さは、例えば、200~1000μmである。
 保護カバー部材1は、例えば、保護膜2の主面に粘着剤組成物を所定のパターンで配置し、配置した粘着剤組成物から粘着層3を形成して製造できる。配置する粘着剤組成物は、熱硬化性粘着剤組成物であってもよく、粘着剤組成物Cであってもよい。粘着層3の形成には、熱加圧処理を利用してもよい。本発明者らの検討によれば、熱加圧処理は、縮小された面積を有する粘着層3の形成に適している。熱加圧処理は、保護膜2の主面に粘着剤組成物を配置した状態で実施できる。熱加圧処理の温度は、例えば50~300℃であり、50~250℃であってもよい。圧力は、例えば1~500kPaであり、1~100kPaであってもよい。熱加圧処理の例は、熱プレス、熱ラミネートである。
 [部材供給用シート]
 本発明の部材供給用シートの一例を図8に示す。図8の部材供給用シート81は、基材シート82と、基材シート82上に配置された複数の保護カバー部材1とを備える。部材供給用シート81は、保護カバー部材1を供給するためのシートである。部材供給用シート81によれば、例えば、対象物の面に配置する工程に対して、保護カバー部材1を効率的に供給できる。
 図8の例では、基材シート82上に2以上の保護カバー部材1が配置されている。基材シート82上に配置された保護カバー部材1の数は、1つであってもよい。
 図8の例では、基材シート82上に2以上の保護カバー部材1が規則的に配置されている。より具体的には、保護カバー部材1は、基材シート82の表面に垂直に見て、各々の保護カバー部材1の中心が長方格子の交点(格子点)に位置するように配置されている。ただし、規則的に配置された保護カバー部材1の配列は上記例に限定されない。各々の保護カバー部材1の中心が、正方格子、斜方格子、菱形格子等の種々の格子の交点に位置するように規則的に配置されていてもよい。また、保護カバー部材1の配置の態様は、上記例に限定されない。例えば、基材シート82の表面に垂直に見て、保護カバー部材1が千鳥状に配置されていてもよい。なお、保護カバー部材1の中心は、基材シート82の表面に垂直な方向から見たときの当該部材1の形状の重心として定めることができる。
 基材シート82を構成する材料の例は、紙、金属、樹脂及びこれらの複合材料である。金属の例は、ステンレス及びアルミニウムである。樹脂の例は、PET等のポリエステル、ポリエチレン及びポリプロピレン等のポリオレフィン、並びに塩化ビニル(好ましくは、軟質塩化ビニル)である。ただし、基材シート82を構成する材料は、上記例に限定されない。
 保護カバー部材1は、当該部材1が備える粘着層(例えば粘着層3)を介して基材シート82上に配置されていてもよい。このとき、基材シート82における保護カバー部材1の配置面には、基材シート82からの離型性を向上させる離型処理が施されていてもよい。離型処理は、公知の方法により実施できる。
 保護カバー部材1は、基材シート82における保護カバー部材1の配置面に設けられた粘着層、典型的には弱粘着層、を介して基材シート82上に配置されていてもよい。
 基材シート82の厚さは、例えば、1~200μmである。
 図8の基材シート82は、長方形の形状を有する枚葉状である。枚葉状である基材シート82の形状は上記例に限定されず、正方形及び長方形を含む多角形、円、楕円等であってもよい。基材シート82が枚葉状である場合、部材供給用シート81は枚葉の状態で流通及び使用できる。基材シート82は帯状であってもよく、この場合、部材供給用シート81も帯状となる。帯状の部材供給用シート81は、巻芯に巻回した巻回体として流通できる。
 部材供給用シート81は、基材シート82の表面に保護カバー部材1を配置して製造できる。
 以下、実施例により、本発明を更に詳細に説明する。本発明は、以下に示す実施例に限定されない。
 最初に、評価方法を記載する。
 [重量平均分子量]
 アクリルポリマーの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により評価した。GPCは、TSK G2000H HR、G3000H HR、G4000H HR及びGMH-H HRの4本のカラム(いずれも東ソー製)を直列に接続し、溶雛液にテトラヒドロフランを用いて、流速1mL/分、温度40℃、サンプル濃度0.1重量%、テトラヒドロフラン溶液及びサンプルの注入量500μLの条件で実施した。また、検出器には示差屈折計を用いた。
 [ガラス転移温度(Tg)]
 アクリルポリマーのTgは、粘弾性測定装置(レオメトリックサイエンティフィック製、RSA-III)を用い、昇温速度10℃/分及び周波数1MHzの測定条件により評価したtanδ(=損失弾性率/貯蔵弾性率)のピークから算出した。
 [エポキシ価]
 アクリルポリマーのエポキシ価は、JIS K7236の規定に準拠して評価した。具体的には次のとおりである。評価対象物であるアクリルポリマー4gを内容量100mLのコニカルフラスコに秤量し、これにクロロホルム10mLを加えて溶解させた。更に、酢酸30mL、テトラエチルアンモニウムブロマイド5mL及びクリスタルバイオレット指示薬5滴を加えて、マグネチックスターラーで撹拌しながら、濃度0.1mol/Lの過塩素酸酢酸規定液で滴定した。同様の方法でブランクテストを行い、下記式によりエポキシ価を算出した。
 式:エポキシ価=[(V-VB)×0.1×F]/4(g)
 VB:ブランクテストに要した過塩素酸酢酸規定液の体積(mL)
 V:試料の滴定に要した過塩素酸酢酸規定液の体積(mL)
 F:過塩素酸酢酸規定液のファクター
 [130~170℃における貯蔵弾性率G
 熱硬化性樹脂組成物について、130~170℃における貯蔵弾性率Gは、次のように評価した。最初に、作製した熱硬化性樹脂組成物を、シリコーンによる離型処理が表面になされたPETシート(厚さ50μm)の当該表面に塗布して塗布膜(厚さ25μm)を形成し、上記組成物の熱硬化がほぼ進行しない条件である130℃及び短時間(2分間)の加熱にて塗布膜を乾燥させてフィルムとした。次に、得られたフィルムをPETフィルムから剥離すると共に、長さ22.5mm及び幅10mmに切り出して試験片とした。次に、強制振動型固体粘弾性測定装置(レオメトリックサイエンティフィック製、RSA-III)を用いて、上記試験片を0℃から260℃まで昇温速度10℃/分で加熱して、130~170℃における貯蔵弾性率Gを評価した。試験片の測定方向(振動方向)は長さ方向とし、振動周波数は1Hzとした。
 [熱硬化後、130~170℃又は250℃における貯蔵弾性率G
 熱硬化性樹脂組成物について、熱硬化後の130~170℃又は250℃における貯蔵弾性率G’は、次のように評価した。最初に、貯蔵弾性率Gの評価と同様に、PETフィルム上に熱硬化性樹脂組成物の塗布膜を形成した。次に、上記組成物の熱硬化が進行する条件である170℃及び60分間のキュアにて、塗布膜を硬化フィルムとした。次に、得られた硬化フィルムをPETフィルムから剥離すると共に、長さ22.5mm及び幅10mmに切り出して試験片とした。次に、上記固体粘弾性測定装置を用いて試験片を0℃から260℃まで昇温速度10℃/分で加熱して、130~170℃における貯蔵弾性率G’及び250℃における貯蔵弾性率Gを評価した。試験片の測定方向(振動方向)は長さ方向とし、振動周波数は1Hzとした。
 [厚さ方向の通気度]
 保護膜の厚さ方向の通気度は、JIS L1096:2010に定められた通気性測定B法(ガーレー形法)に準拠して、空気透過度(ガーレー通気度)として求めた。
 [平均孔径]
 保護膜の平均孔径は、ASTM F316-86に準拠した測定が可能であるPorous Materials Inc.製、Automated perm porometerを使用して求めた。
 [メタノールに対する接触角θM
 準備した保護膜の主面、及び保護膜と粘着層との積層体における保護膜の露出面(保護カバー部材が備える保護膜の固定部における露出面に相当)について、メタノールに対する接触角θMは、JIS R3257に定められた静滴法に準拠した評価が可能であるデータフィジックスインストゥルメンツ製、Contact Angle System OCA 30により評価した。ただし、評価は、体積2μLのメタノール滴を水滴の代わりに使用して実施した。評価温度は25℃とした。
 [流動体5の拡がり評価]
 保護膜と粘着層との積層体における保護膜の露出面について流動体5が拡がる程度は、以下のように評価した。流動体5として、粘着剤(スリーボンド製、TB3732)及びメタノールを重量比3:5で混合して得た液状粘着剤を準備した。次に、液状粘着剤を保護膜の露出面に2μL滴下し、滴下した直後の液滴の高さを上記Contact Angle System OCA 30により評価した。液滴の高さ(露出面から液滴の頂部までの距離に相当)が0.05mm超を維持している場合を優(〇)、0.05mm以下となった場合を劣(×)と判断した。評価は25℃で実施した。
 [保護膜の準備]
 保護膜として、以下のPTFE膜a~fを準備した。
 (PTFE膜a)
 PTFE微粉末(AGC株式会社製、Fluon CD123E)100重量部に対して液状潤滑剤(n-ドデカン、株式会社ジャパンエナジー製)20重量部を均一に混合し、これをシリンダーにより圧縮した後にラム押出機により押出して、長手方向に延びるシート状成形体を得た。このシート状成形体を、液状潤滑剤が含まれた状態で金属製圧延ロール間に通し、厚さ0.2mmとなるように圧延した。その後、シート状成形体を150℃に加熱することにより液状潤滑剤を除去し、シート状成形体を乾燥させた。その後、シート状成形体を、300℃において長手方向に2.5倍の倍率で延伸し、200℃において幅方向に20倍の倍率で延伸した後、PTFEの融点以上の温度である400℃で焼成して、膜厚15μm、面密度5g/m2、厚さ方向の通気度1.3秒/100mL、平均孔径1μmのPTFE膜aを得た。
 (PTFE膜b)
 PTFE膜aに対して撥液処理を実施して、PTFE膜bを得た。撥液処理は、撥液処理液(撥液剤である信越化学製X-70-029Cを濃度1.5重量%となるように信越化学製FSシンナーにより希釈した溶液)にPTFE膜aを3秒間浸漬し、引き上げた後、常温で30分間放置して乾燥させることで実施した。PTFE膜bの膜厚、面密度、厚さ方向の通気度及び平均孔径は、それぞれ、15μm、5.5g/m2、4.0秒/100mL及び1μmであった。
 (PTFE膜c)
 PTFE粒子の分散液(PTFE粒子の濃度40質量%、PTFE粒子の平均粒径0.2μm、PTFE100質量部に対してノニオン性界面活性剤を6質量部含有)に、フッ素系界面活性剤(DIC製、メガファックF-142D)をPTFE100質量部に対して1質量部加えた。次に、フッ素系界面活性剤を加えた上記PTFE分散液の塗布膜(厚さ20μm)を、帯状のポリイミド基板(厚さ125μm)の表面に形成した。塗布膜は、ポリイミド基板をPTFE分散液に浸漬した後、引き上げることで形成した。次に、基板及び塗布膜の全体を加熱して、PTFEのキャスト膜を形成した。加熱は、第1の加熱(100℃、1分)と、その後の第2の加熱(390℃、1分)との2段階とした。第1の加熱によって、塗布膜に含まれる分散媒の除去が、第2の加熱によって、塗布膜に含まれるPTFE粒子の結着に基づくキャスト膜の形成が進行した。上記浸漬及びその後の加熱を更に2回繰り返した後、形成されたPTFEキャスト膜(厚さ25μm)をポリイミド基板から剥離した。次に、剥離したキャスト膜をMD方向(長手方向)に圧延し、さらにTD方向(幅方向)に延伸した。MD方向の圧延は、ロール圧延により実施した。圧延の倍率(面積倍率)は2.0倍、温度(ロール温度)は170℃とした。TD方向の延伸は、テンター延伸機により実施した。TD方向の延伸の倍率は2.0倍、温度(延伸雰囲気の温度)は300℃とした。このようにして、膜厚10μm、面密度14g/m2、厚さ方向の通気度100秒/100mL、平均孔径0.1μmのPTFE膜cを得た。
 (PTFE膜d)
 PTFE膜dとして、日東電工株式会社製NTF1033を準備した。PTFE膜dの膜厚は20μm、面密度は4.4g/m2、厚さ方向の通気度は0.6秒/100mL、平均孔径は3μmであった。
 (PTFE膜e)
 PTFE微粉末(ダイキン工業株式会社製、ポリフロン F101HE)100重量部に対して液状潤滑剤(n-ドデカン、株式会社ジャパンエナジー製)20重量部を均一に混合し、これをシリンダーにより圧縮した後にラム押出機により押出して、長手方向に延びるシート状成形体を得た。このシート状成形体を、液状潤滑剤が含まれた状態で金属製圧延ロール間に通し、厚さ0.2mmとなるように圧延した。その後、シート状成形体を150℃に加熱することにより液状潤滑剤を除去し、シート状成形体を乾燥させた。その後、シート状成形体を、290℃において長手方向に9倍の倍率で延伸し、150℃において幅方向に53倍の倍率で延伸した後、PTFEの融点以上の温度である400℃で焼成して、膜厚3μm、面密度1.5g/m2、厚さ方向の通気度1.5秒/100mL、平均孔径0.35μmのPTFE膜eを得た。
 (PTFE膜f)
 PTFE膜eに対して撥液処理を実施して、PTFE膜fを得た。撥液処理は、撥液処理液(撥液剤である信越化学製X-70-043を濃度1.5重量%となるように信越化学製FSシンナーにより希釈した溶液)にPTFE膜eを3秒間浸漬し、引き上げた後、常温で乾燥させることで実施した。PTFE膜fの膜厚、面密度、厚さ方向の通気度及び平均孔径は、それぞれ、3μm、1.7g/m2、2.0秒/100mL及び0.38μmであった。
 各PTFE膜の主面に対する接触角θM(PTFE膜の固有の接触角θM)の評価結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 [粘着剤組成物の準備]
 粘着層に使用する熱硬化性粘着剤組成物として、以下の組成物a~cを準備した。
 (組成物a)
 アクリルポリマーDとしてブチルアクリレート-エチルアクリレート-アクリロニトリル-アクリル酸共重合体(根上工業製、重量平均分子量80万、酸価5mgKOH/g、Tgマイナス15℃)9重量部、並びに熱硬化性樹脂として、フェノール樹脂(明和化成製MEH7851SS)26重量部及びエポキシ樹脂(三菱化学製YL980と、DIC製N-665-EXP-Sとの重量比1:1の混合物)25重量部をメチルエチルケトンに溶解させ、更に平均粒径500nmの球状シリカ(アドマテックス製SE2050)40重量部を分散させて、濃度23.6重量%の熱硬化性樹脂組成物aを調製した。
 (組成物b)
 アクリルポリマーDとしてブチルアクリレート-エチルアクリレート-アクリロニトリル-アクリル酸共重合体(根上工業製、重量平均分子量40万、酸価5mgKOH/g、Tgマイナス15℃)を、フェノール樹脂として明和化成製MEH7800Hを、それぞれ用いると共に、調製した組成物におけるアクリルポリマーD、フェノール樹脂、エポキシ樹脂及びシリカの含有率が、それぞれ、11重量%、32重量%、32重量%及び25重量%となるように各材料を配合した以外は組成物aと同様にして、濃度23.6重量%の熱硬化性樹脂組成物bを調製した。
 (組成物c)
 アクリルポリマーDとしてブチルアクリレート-エチルアクリレート-アクリロニトリル-グリシジルメチルアクリレート共重合体(根上工業製、重量平均分子量80万、エポキシ価0.4eq/kg、Tg0℃)を用いると共に、エポキシ樹脂を使用せず、調製した組成物におけるアクリルポリマーD、フェノール樹脂及びシリカの含有率が、それぞれ、52重量%、6重量%及び42重量%となるように各材料を配合した以外は組成物aと同様にして、濃度23.6重量%の熱硬化性樹脂組成物cを調製した。
 粘着剤組成物a~cについて、130~170℃における貯蔵弾性率G’、熱硬化後の130~170℃における貯蔵弾性率G’及び熱硬化後の250℃における貯蔵弾性率G’の評価結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 [保護膜と粘着層との積層体の作製]
 保護カバー部材が備える保護膜の固定部を想定して、保護膜と粘着層との積層体(サンプル1~14)を以下のように作製した。作製には、熱プレスを利用した。具体的には、次のとおりである。
 (サンプル1)
 最初に、シリコーンによる離型処理が表面になされたPETシート(厚さ50μm)の表面に組成物aを塗布して、塗布膜(厚さ20μm)を形成した。次に、130℃及び2分間の加熱にて塗布膜を乾燥させてフィルムとした。次に、得られたフィルムと保護膜としてPTFE膜aとを貼り合わせた後、形成された積層体を20mm×20mmの正方形に切り出した。次に、一対のポリイミドフィルム(厚さ25μm)によって積層体の全体を挟持し、ホットプレス機(テスター産業製、高精度ホットプレスSA-401-M)を用いて、これを厚さ方向に熱プレスした。熱プレスの条件は、温度130℃、圧力20kPa、時間13秒とした。熱プレスの完了後、ポリイミドフィルムを剥離して、保護膜と粘着層との積層体を得た。
 (サンプル2~14)
 保護膜であるPTFE膜と、粘着剤組成物とを以下の表3に示すように選択した以外はサンプル1と同様にして、保護膜と粘着層との積層体であるサンプル2~14を得た。
Figure JPOXMLDOC01-appb-T000003
 各サンプルに対する評価結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 本発明の保護カバー部材は、例えば、MEMS等の半導体素子及び/又は当該素子を備える回路基板の製造に利用できる。

Claims (18)

  1.  開口を有する面を持つ対象物の前記面に配置される保護カバー部材であって、
     前記保護カバー部材が前記面に配置されたときに前記開口を覆う形状を有する保護膜と、粘着層と、を含む積層体から構成され、
     前記保護膜の主面に垂直な方向から見て前記粘着層と一致する前記保護膜の部分を前記保護膜の固定部として定めたときに、前記保護膜における前記粘着層に面する側とは反対側の露出面は、
     前記垂直な方向から見たときに前記固定部と重複すると共に、メタノールに対する接触角が55度以上である領域A、
     を有する、保護カバー部材。
  2.  前記固定部における前記反対側の露出面の全体において、メタノールに対する接触角が55度以上である、請求項1に記載の保護カバー部材。
  3.  前記固定部は、前記垂直な方向から見て前記保護膜の周縁部に位置する、請求項1に記載の保護カバー部材。
  4.  前記粘着層は前記保護膜と接している、請求項1に記載の保護カバー部材。
  5.  前記粘着層は、前記保護膜に対して、前記保護カバー部材における前記対象物の面への配置側に位置する、請求項1に記載の保護カバー部材。
  6.  前記粘着層は、熱硬化性粘着剤組成物から形成された層を含む、請求項1に記載の保護カバー部材。
  7.  前記熱硬化性粘着剤組成物の貯蔵弾性率は、130~170℃において1.0×103Pa以上である、請求項6に記載の保護カバー部材。
  8.  前記熱硬化性粘着剤組成物の熱硬化後の貯蔵弾性率は、130~170℃において1.0×108Pa以下である、請求項6に記載の保護カバー部材。
  9.  前記保護膜の主面に垂直な方向から見て、
      前記粘着層は、前記保護膜の周縁部に配置されており、
      前記保護膜の中心から前記保護膜の外周に至る線分のうち最短の前記線分の長さL1に対する、前記最短の線分における前記粘着層と重複する部分の長さL2の比L2/L1が0.5以下である、請求項1に記載の保護カバー部材。
  10.  前記保護膜は厚さ方向の通気性を有する、請求項1に記載の保護カバー部材。
  11.  前記保護膜は多孔質膜又は微多孔膜を含み、
     前記多孔質膜及び前記微多孔膜の平均孔径は0.01μm以上3μm未満である、請求項1に記載の保護カバー部材。
  12.  前記保護膜はポリテトラフルオロエチレン膜を含む、請求項1に記載の保護カバー部材。
  13.  前記保護膜の面積が175mm2以下である請求項1に記載の保護カバー部材。
  14.  前記積層体は、前記保護膜に対して前記粘着層の側に位置する基材フィルムを更に含む、請求項1に記載の保護カバー部材。
  15.  微小電気機械システム(MEMS)用である、請求項1に記載の保護カバー部材。
  16.  前記MEMSの内部に配置して使用される、請求項15に記載の保護カバー部材。
  17.  基材シートと、前記基材シート上に配置された1又は2以上の保護カバー部材と、を備え、
     前記保護カバー部材は、請求項1~16のいずれかに記載の保護カバー部材である部材供給用シート。
  18.  請求項1~16のいずれかに記載の保護カバー部材を備える微小電気機械システム。
PCT/JP2022/026516 2021-07-02 2022-07-01 保護カバー部材、部材供給用シート及び微小電気機械システム WO2023277190A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202280047211.3A CN117651746A (zh) 2021-07-02 2022-07-01 保护罩构件、构件供给用片及微电子机械系统
KR1020247003572A KR20240031338A (ko) 2021-07-02 2022-07-01 보호 커버 부재, 부재 공급용 시트 및 미소 전기 기계 시스템
US18/573,110 US20240286389A1 (en) 2021-07-02 2022-07-01 Protective cover member, sheet for member supply, and microelectromechanical system
JP2023532096A JPWO2023277190A1 (ja) 2021-07-02 2022-07-01
DE112022003389.4T DE112022003389T5 (de) 2021-07-02 2022-07-01 Schutzabdeckungselement, elementzuführungslage und mikroelektromechanisches system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-111046 2021-07-02
JP2021111046 2021-07-02

Publications (1)

Publication Number Publication Date
WO2023277190A1 true WO2023277190A1 (ja) 2023-01-05

Family

ID=84692802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026516 WO2023277190A1 (ja) 2021-07-02 2022-07-01 保護カバー部材、部材供給用シート及び微小電気機械システム

Country Status (6)

Country Link
US (1) US20240286389A1 (ja)
JP (1) JPWO2023277190A1 (ja)
KR (1) KR20240031338A (ja)
CN (1) CN117651746A (ja)
DE (1) DE112022003389T5 (ja)
WO (1) WO2023277190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024195452A1 (ja) * 2023-03-23 2024-09-26 日東電工株式会社 粘着テープ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249737A (ja) * 2001-02-22 2002-09-06 Nitto Denko Corp 通気性接着シートの製造方法および通気性接着シート
JP2007081881A (ja) * 2005-09-14 2007-03-29 Nitto Denko Corp 通音膜、通音膜付き電子部品及びその電子部品を実装した回路基板の製造方法
JP2010000464A (ja) * 2008-06-20 2010-01-07 Japan Gore Tex Inc 通気フィルター及びその製造方法
JP2019122890A (ja) * 2018-01-12 2019-07-25 信越化学工業株式会社 粘着層付き通気フィルタ
JP2021501241A (ja) * 2017-11-01 2021-01-14 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Z強度を向上した保護カバーアセンブリ
WO2021010197A1 (ja) * 2019-07-12 2021-01-21 日東電工株式会社 保護カバー部材及びこれを備える部材供給用シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002249737A (ja) * 2001-02-22 2002-09-06 Nitto Denko Corp 通気性接着シートの製造方法および通気性接着シート
JP2007081881A (ja) * 2005-09-14 2007-03-29 Nitto Denko Corp 通音膜、通音膜付き電子部品及びその電子部品を実装した回路基板の製造方法
JP2010000464A (ja) * 2008-06-20 2010-01-07 Japan Gore Tex Inc 通気フィルター及びその製造方法
JP2021501241A (ja) * 2017-11-01 2021-01-14 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Z強度を向上した保護カバーアセンブリ
JP2019122890A (ja) * 2018-01-12 2019-07-25 信越化学工業株式会社 粘着層付き通気フィルタ
WO2021010197A1 (ja) * 2019-07-12 2021-01-21 日東電工株式会社 保護カバー部材及びこれを備える部材供給用シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024195452A1 (ja) * 2023-03-23 2024-09-26 日東電工株式会社 粘着テープ

Also Published As

Publication number Publication date
CN117651746A (zh) 2024-03-05
US20240286389A1 (en) 2024-08-29
JPWO2023277190A1 (ja) 2023-01-05
DE112022003389T5 (de) 2024-04-18
KR20240031338A (ko) 2024-03-07

Similar Documents

Publication Publication Date Title
US8828227B2 (en) Method for producing resin porous membrane with adhesive layer, resin porous membrane with adhesive layer, and filter member
WO2023277190A1 (ja) 保護カバー部材、部材供給用シート及び微小電気機械システム
TW201819570A (zh) 隔離件
US11969975B2 (en) Protective cover member and member supplying sheet including the same
JP2019069602A (ja) 積層体および巻回体
JP7247419B2 (ja) 保護カバー部材及び部材供給用シート
US20230108896A1 (en) Protective cover member and member supplying sheet
KR102429210B1 (ko) 반도체 장치의 제조 방법 및 필름형 접착제
CN214830077U (zh) 临时固定复合体
WO2022210435A1 (ja) 部材供給用シート
JP7570836B2 (ja) 保護カバー部材及びこれを備える部材供給用シート
KR20220160594A (ko) 발포 복합체
KR102602484B1 (ko) 점착 시트의 제조 방법, 다이싱·다이본딩 일체형 테이프의 제조 방법, 반도체 장치의 제조 방법, 점착제의 처리 방법, 피착체의 고정화 방법, 및 피착체의 박리 방법
CN113226752B (zh) 透气性粘合片和透气性产品
KR20200112828A (ko) 반도체 장치의 제조 방법, 및 필름형 접착제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22833335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023532096

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18573110

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280047211.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247003572

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112022003389

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22833335

Country of ref document: EP

Kind code of ref document: A1