WO2023276733A1 - ヒューズメモリ回路および半導体装置 - Google Patents
ヒューズメモリ回路および半導体装置 Download PDFInfo
- Publication number
- WO2023276733A1 WO2023276733A1 PCT/JP2022/024376 JP2022024376W WO2023276733A1 WO 2023276733 A1 WO2023276733 A1 WO 2023276733A1 JP 2022024376 W JP2022024376 W JP 2022024376W WO 2023276733 A1 WO2023276733 A1 WO 2023276733A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuse
- transistor
- memory circuit
- line
- circuit
- Prior art date
Links
- 230000015654 memory Effects 0.000 title claims description 116
- 239000004065 semiconductor Substances 0.000 title claims description 25
- 238000012360 testing method Methods 0.000 claims abstract description 51
- 241000932822 Tinaroo virus Species 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 33
- 238000000034 method Methods 0.000 description 11
- 238000009966 trimming Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 5
- 101150110971 CIN7 gene Proteins 0.000 description 4
- 101150110298 INV1 gene Proteins 0.000 description 4
- 101100397044 Xenopus laevis invs-a gene Proteins 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 101100286980 Daucus carota INV2 gene Proteins 0.000 description 2
- 101100397045 Xenopus laevis invs-b gene Proteins 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000007847 structural defect Effects 0.000 description 2
- HCUOEKSZWPGJIM-YBRHCDHNSA-N (e,2e)-2-hydroxyimino-6-methoxy-4-methyl-5-nitrohex-3-enamide Chemical compound COCC([N+]([O-])=O)\C(C)=C\C(=N/O)\C(N)=O HCUOEKSZWPGJIM-YBRHCDHNSA-N 0.000 description 1
- MZAGXDHQGXUDDX-JSRXJHBZSA-N (e,2z)-4-ethyl-2-hydroxyimino-5-nitrohex-3-enamide Chemical compound [O-][N+](=O)C(C)C(/CC)=C/C(=N/O)/C(N)=O MZAGXDHQGXUDDX-JSRXJHBZSA-N 0.000 description 1
- 101001109689 Homo sapiens Nuclear receptor subfamily 4 group A member 3 Proteins 0.000 description 1
- 101000598778 Homo sapiens Protein OSCP1 Proteins 0.000 description 1
- 101001067395 Mus musculus Phospholipid scramblase 1 Proteins 0.000 description 1
- 102100022673 Nuclear receptor subfamily 4 group A member 3 Human genes 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- KIWSYRHAAPLJFJ-DNZSEPECSA-N n-[(e,2z)-4-ethyl-2-hydroxyimino-5-nitrohex-3-enyl]pyridine-3-carboxamide Chemical compound [O-][N+](=O)C(C)C(/CC)=C/C(=N/O)/CNC(=O)C1=CC=CN=C1 KIWSYRHAAPLJFJ-DNZSEPECSA-N 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/16—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/16—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
- G11C17/165—Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C17/00—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
- G11C17/14—Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
- G11C17/18—Auxiliary circuits, e.g. for writing into memory
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/41—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
- G11C11/412—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger using field-effect transistors only
Definitions
- the present disclosure relates to fuse memory circuits.
- trimming is known as a technique for adjusting characteristics and changing configurations after manufacturing. Trimming can be performed continuously (analog) or discretely (digitally). In recent years, digital trimming is preferred because of its cost advantage.
- Non-volatile memory EEPROM, Flash memory, FeRAM, MRAM, PRAM, etc.
- Fuse polysilicon melting, metal wiring melting
- Antifuse zener zapping, gate oxide film breakdown
- fuse memory circuits using fuses and antifuses are used for the following purposes.
- fuses and antifuses hereinafter collectively referred to as fuse elements.
- ⁇ Analog or Mixed-Signal IC (Integrated Circuit) without reset/enable ⁇ Products that require defective product relief by redundant circuits
- ⁇ Applications where functions are switched on the same die to develop products ⁇ Conditions when power is turned on, such as the release voltage of the POR (Power On Reset) circuit and changing the startup sequence between different power supplies
- ⁇ Wide operating voltage range it is desired that the circuit to be controlled other than the fuse memory circuit can be operated in an operating voltage range with a sufficient margin for the entire operating voltage range.
- ⁇ High portability it is desired that peripheral circuits for complicated control and testing are not required.
- ⁇ Testability It is desired that virtual trimming before programming and failure detection before and after programming are possible.
- ⁇ High reliability it is desirable to have semi-permanent data retention characteristics, high environmental resistance characteristics (heat, radiation), and high static rupture resistance.
- the present disclosure has been made in this context, and one exemplary objective of certain aspects thereof is to provide a fuse memory circuit that simultaneously satisfies some of the multiple characteristics required of the fuse memory circuit.
- a fuse memory circuit includes a first line that is one of a power supply line and a ground line, a second line that is the other of the power supply line and the ground line, a first fuse unit, and a second fuse unit. , provided.
- the first fuse unit and the second fuse unit each have a test terminal, a program terminal, an output terminal, a fuse element whose first end is connected to the first line, and a rectifying element connected in parallel with the fuse element.
- a first transistor having a drain connected to the second end of the fuse element, a source connected to the second line, and a gate connected to the program terminal; and a source connected to the second end of the fuse element.
- a gate of the third transistor of the first fuse unit is connected to the output terminal of the second fuse unit, and a gate of the third transistor of the second fuse unit is connected to the output terminal of the first fuse unit.
- some of the multiple characteristics required for the fuse memory circuit can be satisfied at the same time.
- FIG. 1 is a circuit diagram of a fuse memory circuit according to a first embodiment.
- FIG. 2 is a diagram showing output waveforms of the fuse memory circuit of FIG. 1 when power is turned on after programming.
- FIG. 3 is a diagram for explaining soft error correction of the fuse memory circuit of FIG.
- FIG. 4 is an equivalent circuit diagram during an electrostatic test of the fuse memory circuit.
- FIG. 5 is an equivalent circuit diagram during an electrostatic test of the fuse memory circuit.
- FIG. 6 is a circuit diagram of a fuse memory circuit according to the second embodiment.
- FIG. 7 is a circuit diagram of a fuse memory circuit according to the third embodiment.
- FIG. 8 is a circuit diagram of a fuse memory circuit according to a fourth embodiment.
- FIG. 9 is a circuit diagram of a semiconductor device including a fuse memory circuit.
- FIG. 10 is a circuit diagram showing a configuration example of an output buffer.
- FIG. 11 is a circuit diagram showing a configuration example of a lock circuit.
- FIG. 12 is a circuit diagram showing another configuration example of the lock circuit.
- FIG. 13 is a block diagram showing a configuration example of a semiconductor device.
- FIG. 14 is a block diagram showing an example of a semiconductor device.
- FIG. 15 is a diagram showing another example of the semiconductor device.
- FIG. 16 is a diagram showing another example of the semiconductor device.
- a fuse memory circuit includes a first line that is one of a power supply line and a ground line, a second line that is the other of the power supply line and the ground line, a first fuse unit, a second fuse unit, Prepare.
- the first fuse unit and the second fuse unit each have a test terminal, a program terminal, an output terminal, a fuse element whose first end is connected to the first line, and a rectifying element connected in parallel with the fuse element.
- a first transistor having a drain connected to the second end of the fuse element, a source connected to the second line, and a gate connected to the program terminal; and a source connected to the second end of the fuse element.
- a gate of the third transistor of the first fuse unit is connected to the output terminal of the second fuse unit, and a gate of the third transistor of the second fuse unit is connected to the output terminal of the first fuse unit.
- This fuse memory circuit is provided with two fuse units having the same configuration and has a configuration for complementary writing.
- the third transistor of the first fuse unit and the third transistor of the second fuse unit are cross-coupled, and data can be latched by the two third transistors. Even if the data (state) of one of the first fuse unit and the second fuse unit is temporarily inverted (corrupted data), the uncut fuse element and the cross-coupled third transistor pair will ensure correct data. Guaranteed to return to state.
- the rectifying element can prevent current from flowing into the fuse element from the back gate of the first transistor in an electrostatic test in which a reverse bias is applied to the power supply line and the ground line, thereby protecting the fuse element.
- the second transistors of both the first fuse unit and the second fuse unit may be turned on before programming (fuse uncut state). In this case, current flows through all elements of the first fuse unit and the second fuse unit. Structural defects can be determined by measuring the circuit current at this time.
- the second transistor of one of the first fuse unit and the second fuse unit may be turned on and the second transistor of the other may be turned off before programming.
- the leak current also referred to as static current Iddq
- the rectifying element may include a fourth transistor having a source connected to the first end of the fuse element and a drain connected to the second end of the fuse element.
- a body diode of a MOSFET can be used as a rectifying element.
- the gate of the fourth transistor may be connected to the gate of the third transistor.
- the third transistor and the fourth transistor form a CMOS inverter, and the CMOS inverters of the first fuse unit and the second fuse unit are cross-coupled.
- the gain of the latch circuit is increased, and the state can be determined correctly even when the on/off ratio of the fuse element is small.
- the noise resistance is improved.
- the threshold voltage of the CMOS inverter circuit formed by the third transistor and the fourth transistor is V TINV
- the resistance value of the fuse element before blowing is R FUSE
- the power supply voltage is V DD
- the second transistor is turned on.
- V DD ⁇ R M13 /(R FUSE +R M12 +R M13 )>V TINV may be satisfied.
- the first line may be a power line and the second line may be a ground line.
- the first line may be a ground line and the second line may be a power line.
- the fuse element may be a fuse that is electrically cut off when current flows. In one embodiment, the fuse element may be an antifuse that becomes electrically conductive when a current flows.
- a state in which member A is connected to member B refers to a case in which member A and member B are physically directly connected, as well as a case in which member A and member B are electrically connected to each other. It also includes the case of being indirectly connected through other members that do not substantially affect the physical connection state or impair the functions and effects achieved by their combination.
- the state in which member C is connected (provided) between member A and member B refers to the case where member A and member C or member B and member C are directly connected. In addition, it also includes the case of being indirectly connected through other members that do not substantially affect their electrical connection state or impair the functions and effects achieved by their combination.
- FIG. 1 is a circuit diagram of a fuse memory circuit 100A according to the first embodiment.
- the fuse memory circuit 100A functions as a 1-bit nonvolatile memory element capable of holding a binary state.
- the fuse memory circuit 100A includes a first line 102, a second line 104, a first fuse unit 110 and a second fuse unit 120.
- the first line 102 is one of the power supply line VDD and ground line GND
- the second line 104 is the other of the power supply line VDD and ground line GND.
- the first line 102 is the power supply line VDD and the second line 104 is the ground line GND.
- the first fuse unit 110 and the second fuse unit 120 are connected between the first line 102 and the second line 104 and are similarly configured.
- the first fuse unit 110 includes a test terminal TEST1, a program terminal PROG1, an output terminal OUT1, a fuse element F11, a rectifying element 112, a first transistor M11, a second transistor M12, and a third transistor M13.
- a first end of the fuse element F11 is connected to the first line 102 (power supply line VDD).
- the fuse element F11 is a fuse that is electrically conductive before a current is passed therethrough, and is cut off when a prescribed current is passed therethrough.
- the rectifying element 112 is connected in parallel with the fuse element F11.
- the direction of the rectifying element 112 is such that it conducts from the ground line GND toward the power supply line VDD.
- the rectifying element 112 includes a P-channel fourth transistor M14.
- the source of the fourth transistor M14 is connected to the first end (that is, the first line 102) of the fuse element F11, and its drain is connected to the second end of the fuse element F11. That is, the body diode of the fourth transistor M14, which is a MOSFET, is used as a rectifying element.
- the first transistor M11 is a programming transistor.
- the first transistor M11 is an NMOS transistor having a drain connected to the second end of the fuse element F11 and a source connected to the second line 104 (ground line GND).
- a gate of the first transistor M11 is connected to the program terminal PROG1.
- the second transistor M12 is provided for testing the fuse memory circuit 100A.
- the second transistor M12 is a PMOS transistor, its source is connected to the second end of the fuse element F11 and the drain of the first transistor M11, and its gate is connected to the test terminal TEST1.
- the third transistor M13 is a latch transistor.
- the third transistor M13 is an NMOS transistor having a drain connected to the output terminal OUT1 and a source connected to the second line 104 (ground line GND).
- the above is the configuration of the first fuse unit 110 .
- the second fuse unit 120 is configured similarly to the first fuse unit 110.
- the second fuse unit 120 includes a test terminal TEST2, a program terminal PROG2, an output terminal OUT2, a fuse element F21, a rectifying element 122, It comprises a first transistor M21, a second transistor M22 and a third transistor M23.
- the gate of the third transistor M13 of the first fuse unit 110 is connected to the output terminal OUT2 of the second fuse unit 120. Also, the gate of the third transistor M23 of the second fuse unit 120 is connected to the output terminal OUT1 of the first fuse unit 110 .
- the third transistor M13 and the fourth transistor M14 of the first fuse unit 110 constitute a CMOS inverter circuit 114.
- the third transistor M23 and the fourth transistor M24 of the second fuse unit 120 also constitute a CMOS inverter circuit 124.
- FIG. These two CMOS inverter circuits 114 and 124 are cross-coupled and function as a latch circuit.
- the fourth transistor M14 (M24) may be biased to be off, in which case the configuration is equivalent to that of FIG.
- the two outputs OUT1 and OUT2 of the fuse memory circuit 100A are supplied to a trimming target circuit (not shown).
- the two outputs OUT1 and OUT2 take exclusive values, so the circuit to be trimmed may refer to only one of the two outputs.
- the fuse memory circuit 100A need not be subjected to all the tests described below, and may be subjected to only some of them.
- First Test The first test before programming (writing) will be described.
- a low voltage is applied to the test terminals TEST1 and TEST2 of the first fuse unit 110 and the second fuse unit 120 to turn on the second transistors M12 and M22.
- the first fuse unit 110 current is supplied from the power supply line VDD through the fuse element F11 to the second transistor M12 and the third transistor M13. A current is supplied from VDD to the second transistor M22 and the third transistor M23. As a result, the outputs OUT1 and OUT2 of the first fuse unit 110 and the second fuse unit 120 are balanced to the intermediate potential.
- the first test is also called the Ion test.
- Second Test The second test before programming (writing) will be described. In the second test, the second transistor M22 of the second fuse unit 120 of the second transistor M12 of the first fuse unit 110 is exclusively turned on one by one.
- the second transistor M12 is turned off and the second transistor M22 is turned on.
- the output OUT1 of the first fuse unit 110 becomes L.
- the output OUT2 of the CMOS inverter circuit 124 on the second fuse unit 120 side becomes H, which is input to the CMOS inverter circuit 114 of the first fuse unit 110 and latched.
- the output OUT2 of the second fuse unit 120 becomes L.
- the output OUT1 of the CMOS inverter circuit 114 on the first fuse unit 110 side becomes H, which is input to the CMOS inverter circuit 124 of the second fuse unit 120 and latched.
- the static current (leakage current Iddq) can be evaluated by measuring the circuit current at this time.
- Virtual trimming Generally, the outputs OUT1 and OUT2 of the fuse memory circuit 100 are referenced by a circuit to be trimmed (not shown), and the operation state (operation mode, operation parameters, circuit constants) of the circuit to be trimmed is determined according to the outputs OUT1 and OUT2. set. Virtual trimming is a function of giving arbitrary outputs OUT1 and OUT2 from the fuse memory circuit 100A to a circuit to be trimmed before the fuse memory circuit 100 is actually programmed.
- the second transistors (M12, M22) on the side of the fuse unit containing the fuse element to be cut should be turned off, and the second transistors on the side of the other fuse unit should be turned on.
- the second transistors M12 and M22 are fixed to be ON. After programming to cut the fuse element F11 on the first fuse unit 110 side, the output OUT2 is pulled up to the power supply voltage VDD by the fuse element F21 and the second transistor M22 of the second fuse unit 120, and the output OUT2 goes high. appears, and the output OUT1 becomes L.
- the output OUT1 is pulled up to the power supply voltage V DD by the fuse element F11 and the second transistor M12 of the first fuse unit 110, and the output OUT1 , and the output OUT2 becomes L.
- FIG. 2 is a diagram showing output waveforms of the fuse memory circuit 100A of FIG. 1 when power is turned on after programming.
- V TH is the threshold voltage of the transistor.
- This fuse memory circuit 100A can operate from a very low voltage because all transistors operate in two states of ON and OFF. This wide-range operation enables the circuit to be trimmed to refer to the correct value of the fuse memory circuit 100A immediately after the power is turned on.
- FIG. 3 is a diagram for explaining soft error correction of the fuse memory circuit 100A of FIG.
- FIG. 4 is an equivalent circuit diagram of the fuse memory circuit 100A during an electrostatic test.
- FIG. 4 shows an application test of electrostatic discharge in a reverse bias state to the power supply line VDD and the ground line GND. That is, the power supply line VDD side is grounded (VDD common), and electrostatic discharge is applied to the ground line GND side.
- the first fuse unit 110 side will be described, but the second fuse unit 120 side is the same.
- a current that flows through the body diode Db1 between the back gate and the drain of the first transistor M11 when the VDD common is reverse-biased becomes a problem.
- this current bypasses the body diode Db4 between the drain and back gate of the fourth transistor M14 functioning as the rectifying element 112, so that the fuse element F11 is unintentionally disconnected. can be prevented.
- This current can also flow through the body diode Db2 between the source and back gate of the second transistor M12, thereby suppressing the flow of current through the fuse element F11.
- FIG. 5 is an equivalent circuit diagram during an electrostatic test of the fuse memory circuit 100A.
- FIG. 5 shows a test of applying electrostatic discharge in a forward bias state to the power supply line VDD and the ground line GND. That is, the ground line GND side is grounded (GND common), and electrostatic discharge is applied to the power supply line VDD side. Forward biasing of the GND common requires the energy of the electrostatic discharge to escape from the power or ground pin before the first transistor M11 breaks down.
- the fourth transistor M14 is already turned on at the stage when the first transistor M11 begins to break down. Therefore, current flows between the source and the drain (channel) of the fourth transistor M14 instead of the fuse element F11, thereby protecting the fuse element F11.
- This fuse memory circuit 100A has the following characteristics.
- This fuse memory circuit 100A generates an output based on a program after power-on without preparatory operation. Therefore, no read or initialization operations are required.
- the steady current is substantially zero (leak current only), so there is an advantage that the steady current is small.
- the fuse memory circuit 100A can be configured with a small area, a small number of pins, a low test cost, and a small number of layers, so it is excellent in terms of cost.
- the fuse memory circuit 100A is capable of virtual trimming before programming and failure detection before and after programming, and is excellent in terms of testability.
- peripheral circuits for complex control and testing are not required. This point will be described later.
- FIG. 6 is a circuit diagram of a fuse memory circuit 100B according to the second embodiment.
- This fuse memory circuit 100B includes a diode D11 (D21) in place of the fourth transistor M14 (M24).
- the diode D11 is connected so that the high potential (power supply line VDD) side is the cathode and the low potential (ground line GND) side is the anode.
- Other configurations are the same as in FIG.
- the operation of the fuse memory circuit 100B is basically the same as that of the fuse memory circuit 100A, although the logical levels (H/L) of the signals applied to the terminals PROG1, PROG2, TEST1 and TEST are different from those of the first embodiment. be.
- the third transistor M13 and the fourth transistor M14 on the first fuse unit 110 side form a CMOS inverter circuit 114
- the third transistor M23 and the fourth transistor M24 on the second fuse unit 120 side form a CMOS inverter circuit.
- 124 and two CMOS inverter circuits 114 and 124 are cross-coupled to form a latch circuit, whereas in FIG. 6 the latch circuit is formed by cross-coupling the third transistors M13 and M23 It is Therefore, the gain of the latch circuit is smaller than that of the fuse memory circuit 100A of FIG.
- the first embodiment even if the on/off ratio of the fuse element is smaller than in the second embodiment, the state can be determined correctly, and the amplification speed is high, so that the noise resistance is high. It can be said that there are
- FIG. 7 is a circuit diagram of a fuse memory circuit 100C according to the third embodiment.
- This fuse memory circuit 100C has a configuration in which the top and bottom of the fuse memory circuit 100A of FIG. 1 are inverted, and the P-channel and N-channel are interchanged.
- the ground line GND is the first line 102 and the power supply line VDD is the second line 104 .
- This configuration also provides the same effect as the fuse memory circuit 100A of FIG.
- FIG. 8 is a circuit diagram of a fuse memory circuit 100D according to the fourth embodiment.
- This fuse memory circuit 100D replaces the fourth transistors M14 and M24 of the fuse memory circuit 100C of FIG. 7 with diodes D11 and D21.
- This configuration also provides the same effect as the fuse memory circuit 100A of FIG.
- peripheral circuits of the fuse memory circuits 100A to 100D (hereinafter collectively referred to as the fuse memory circuit 100) will be described.
- FIG. 9 is a circuit diagram of a semiconductor device 300 including the fuse memory circuit 100.
- a semiconductor device 300 includes a bit circuit 200 and an internal circuit 310 .
- Bit circuit 200 includes control circuit 210 and output buffer 220 in addition to fuse memory circuit 100 .
- Output buffer 220 receives outputs OUT1 and OUT2 of fuse memory circuit 100 .
- the internal circuit 310 to be trimmed refers to the outputs DO and DOB of the output buffer 220 .
- the B at the end of each signal indicates inverted logic.
- a plurality of control signals (lock signal LOCK, write enable signal WEN, write data WTD, TIONB signal) are input to the control circuit 210 .
- the lock signal LOCK is negated (eg L) before programming and asserted (eg H) after programming.
- the write enable signal WEN is mainly asserted (eg, high) when programming the fuse memory circuit 100 .
- the write data WTD is data specifying a value to be programmed or the state of the fuse memory circuit 100 during virtual trimming or failure detection.
- the TIONB signal is asserted (low because the last B indicates negative logic) when the first test is executed.
- the outputs OUT1 and OUT2 of the fuse memory circuit 100 are supplied to the internal circuit 310 via the output buffer 220.
- the state of the internal circuit 310 is trimmed (set) based on the outputs DO and DOB of the output buffer 220 .
- the outputs OUT1 and OUT2 of the fuse memory circuit 100 are balanced to the intermediate potential.
- a through current flows through the output buffer 220 .
- the output buffer 220 preferably has an enable configuration. By disabling the output buffer 220 during the first test, it is possible to prevent a through current from flowing through the output buffer 220 .
- the control circuit 210 generates control signals (PROG1, PROG2, TEST1, TEST2) for the fuse memory circuit 100 and an enable signal EN for the output buffer 220 based on the control signals LOCK, WEN, WTD, and TIONB.
- control signals TEST1, TEST2, PROG1, PROG2, and EN the level at which the transistor receiving each signal at its gate is turned on is called the on-level, and the level at which the transistor is turned off is called the off-level.
- the control signal TEST1 if the second transistor M12 is a PMOS transistor, the on level is L and the off level is H, and if the second transistor M12 is an NMOS transistor, the on level is H and the off level is L. .
- the control circuit 210 sets the control signals TEST1 and TEST2 to the ON level and fixes the second transistors M12 and M22 to the ON state.
- the control circuit 210 sets the control signals PROG1 and PROG2 to the off level to fix the first transistors M11 and M21 to the off state.
- control circuit 210 When the LOCK signal is negated (L) before programming, the control circuit 210 changes the control signals TEST1, TEST2, PROG1, and PROG2 according to the WEN signal, WTD signal, and TIONB signal.
- the control circuit 210 enters the first test mode and turns both the control signals TEST1 and TEST2 on level. , the second transistors M12 and M22 are turned on.
- the control circuit 210 sets the outputs OUT1 and OUT2 of the fuse memory circuit 100 in accordance with the WTD signal to enter the virtual trimming or failure detection mode. .
- the control circuit 210 sets one of the PROG1 signal and the PROG2 signal corresponding to the WTD signal to ON level and the other to OFF level, and writes to the fuse memory circuit 100 .
- Control circuit 210 shown in FIG. 9 assumes the fuse memory circuit 100A of FIG. 1 or the fuse memory circuit 100B of FIG.
- the control circuit 210 can be configured with a combinational circuit.
- Control circuit 210 includes, but is not limited to, four NOR gates NOR1-NOR4, inverters INV1 and INV2, and NAND gate NAND1.
- the inverter INV1 inverts the WEN signal.
- the NOR gate NOR1 takes the negative logical sum of the LOCK signal, the output of the inverter INV1, and the WTD signal, and outputs the PROG1 signal.
- the NOR gate NOR2 takes the negative logical sum of the LOCK signal and the WTD signal and outputs the TEST1 signal.
- a NAND gate NAND1 generates a NAND of the WTD signal and the TIONB signal.
- the NOR gate NOR3 takes the negative logical sum of the LOCK signal and the output of the NAND gate NAND1, and outputs the TEST2 signal.
- the NOR gate NOR4 takes a negative logical sum of the LOCK signal, the output of the inverter INV1, and the output of the NAND gate NAND1, and outputs the PROG2 signal.
- the inverter INV2 inverts the TIONB signal to generate an enable signal EN for the output buffer 220.
- the output buffer 220 is disabled when the TIONB signal is asserted (low), i.e., during the first test, and enabled when the TIONB signal is negated (high), i.e., other than the first test.
- control circuit 210 is not limited to that of FIG. 9, and a person skilled in the art can design a control circuit capable of giving an appropriate control signal to each of the fuse memory circuits 100A to 100D.
- FIG. 10 is a circuit diagram showing a configuration example of the output buffer 220.
- the output buffer 220 is of a cross-coupled type and includes PMOS transistors MP11-MP15 and NMOS transistors MN11-MN12.
- An enable signal ENB of inverted logic is input to the gate of the PMOS transistor MP15.
- the enable signal ENB is asserted (L)
- the output buffer 220 is enabled, and when the enable signal ENB is negated (H), the output buffer 220 is disabled.
- negating the enable signal ENB during the first test in which the input terminals DIN and DINB of the output buffer 220 are at an intermediate voltage, a through current in the output buffer 220 can be prevented.
- the output buffer 220 has hysteresis, which increases noise immunity.
- FIG. 11 is a circuit diagram showing a configuration example of the lock circuit 230. As shown in FIG. The lock circuit 230 is integrated in the semiconductor device 300 together with the fuse memory circuit 100 and the bit circuit 200 .
- Lock circuit 230 generates a lock signal LOCK.
- Lock circuit 230 includes a fuse memory circuit 100E and an output buffer 232.
- FIG. The fuse memory circuit 100E can be configured similarly to the fuse memory circuit 100A (or 100B to 100D) in FIG.
- nodes corresponding to the test terminals TEST1 and TEST2 in FIG. 1 are grounded, and the second transistors M12 and M22 are fixedly turned on.
- a node corresponding to the program terminal PROG1 in FIG. 1 is grounded, and the first transistor M11 is fixedly turned off.
- a lock enable signal LOCKEN is input to a node corresponding to the program terminal PROG2 in FIG.
- the lock enable signal LOCKEN is asserted (H) when programming to the bit circuit 200 is completed.
- the output buffer 232 receives the outputs OUT1 and OUT2 of the first fuse unit 110E and outputs them as the lock signal LOCK.
- Output buffer 232 may have the same configuration as output buffer 220 in FIG. In this case, the enable terminal EN in FIG. 10 may be grounded to fix the transistor MP15 on. Alternatively, transistor MP15 may be omitted.
- Both of the two fuse elements F11 and F12 of the first fuse unit 110E are conducting before programming the fuse memory circuit 100E. Therefore, the two outputs OUT1 and OUT2 have an intermediate potential. At this time, both of the two outputs (OUT, OUTB) of the output buffer 232 in the latter stage become L. Therefore, the lock signal LOCK becomes L.
- the lock signal LOCK which is the output of the output buffer 232, is asserted (H).
- the stationary current is zero after the fuse element F12 is disconnected (after programming), but the stationary current flows before programming. Therefore, when the first test (Ion test) of the semiconductor device 300 is performed before programming the semiconductor device 300, the steady-state current of the lock circuit 230 is included as an error.
- FIG. 12 is a circuit diagram showing another configuration example of the lock circuit 230.
- the fuse memory circuit 100F has two CMOS switches SW11 and SW21.
- the CMOS switch SW11 is fixed in the ON state.
- the CMOS switch SW22 can be switched between on and off according to the control signal swcnt.
- the through current of the fuse memory circuit 100F can be cut off by turning off the CMOS switch SW22.
- the control circuit 234 generates a lock enable signal LOCKEN and control signals SW and SWB based on the mode signal MODE.
- a mode signal MODE is a flag indicating whether the program is before completion or after completion.
- the configuration of the control circuit 234 is not particularly limited.
- the inverted lock enable signal lockenb is an internal signal based on at least the MODE signal.
- the control circuit 234 includes a NAND gate NAND31 and outputs the NAND of the inverted lock enable signal lockenb and the inverted lock signal lockb as the lock enable signal LOCKEN. After the lock signal lock becomes H, the LOCKEN signal is fixed at H. After the lock signal LOCK becomes H by the NAND gate NAND32, the TIONB signal is fixed to H.
- FIG. 13 is a block diagram showing a configuration example of the semiconductor device 300.
- the semiconductor device 300 includes a lock circuit 230 in addition to a plurality (two in this example) of bit circuits 200_1 and 200_2 and an internal circuit 310 .
- Bit circuits 200_1 and 200_2 and lock circuit 230 are referred to as fuse circuit 400 .
- FIG. 14 is a block diagram showing an example (300A) of the semiconductor device 300.
- the internal circuit 310A is a digital circuit and includes static random access memories (SRAM) 312, 314, a selector 316, and a microprocessor 318. Two SRAMs 312 and 314 are provided for redundancy, one of which is selected by selector 316 .
- SRAM static random access memories
- the fuse circuit 400 can be controlled via the control register 402, and the fuse circuit 400 can be programmed with control information for the selector 316.
- Microprocessor 318 can access one of the two SRAMs 312 and 314 depending on the value written to fuse circuit 400 . According to this configuration, when an abnormality is detected in one of the two SRAMs 312 and 314 in the inspection process of the semiconductor device 300A, by selecting the normal one, the yield can be improved.
- FIG. 15 is a diagram showing another example (300B) of the semiconductor device 300.
- the internal circuit 310 B includes a linear regulator (LDO: Low Drop Output) 320 .
- Linear regulator 320 includes transistor 322, operational amplifier 324, reference voltage source 326, and resistors R41 and R42.
- resistor R42 is a variable resistor
- fuse circuit 400 is programmed with a set value for the variable resistor. Thereby, the target value of the output voltage V OUT of the linear regulator 320 can be adjusted.
- FIG. 16 is a diagram showing another example (300C) of the semiconductor device 300.
- FIG. Internal circuit 310C includes interface circuit 330 .
- Interface circuit 330 includes input buffer 332 , pull-down resistor 336 and switch 334 .
- Fuse circuit 400 is programmed with ON/OFF settings for switch 334 . As a result, the input pin of the semiconductor device 300C can be switched between buffer receiving and pull-down.
- a first line that is one of a power line and a ground line; a second line that is the other of the power supply line and the ground line; a first fuse unit; a second fuse unit; with Each of the first fuse unit and the second fuse unit a test terminal; a program terminal; an output terminal; a fuse element having a first end connected to the first line; a rectifying element connected in parallel with the fuse element; a first transistor having a drain connected to the second end of the fuse element, a source connected to the second line, and a gate connected to the program terminal; a second transistor having a source connected to the second end of the fuse element, a drain connected to the output terminal, and a gate connected to the test terminal; a third transistor having a drain connected to the output terminal and a source connected to the second line; including a gate of the third transistor of the first fuse unit is connected to the output terminal of the second fuse unit; A fuse memory circuit, wherein the gate of the third transistor of the second fuse unit is connected to the output terminal of the first
- the rectifying element is 2.
- VTINV is the threshold voltage of the CMOS inverter circuit formed by the third transistor and the fourth transistor
- RFUSE is the resistance value of the fuse element before disconnection
- VDD is the power supply voltage
- RM12 is the on-resistance of the second transistor
- (Item 8) 8. The fuse memory circuit according to any one of items 1 to 7, wherein the fuse element is a fuse that is electrically cut off by applying a current.
- (Item 9) 8. The fuse memory circuit according to any one of items 1 to 7, wherein the fuse element is an antifuse that becomes electrically conductive when a current flows.
- the present disclosure relates to fuse memory circuits.
- REFERENCE SIGNS LIST 100 fuse memory circuit 102 first line 104 second line 110 first fuse unit 120 second fuse unit OUT1, OUT2 output terminals F11, F21 fuse elements M11, M21 first transistors M12, M22 second transistors M13, M23 third transistors M14, M24 fourth transistor D11, D21 diode 112 rectifier 114 CMOS inverter circuit 122 rectifier 124 CMOS inverter circuit 200 bit circuit 210 control circuit 220 output buffer 230 lock circuit 232 output buffer 234 control circuit 232 output buffer 234 control circuit 300 semiconductor Device 310 Internal circuit 312, 314 SRAM 316 selector 318 microprocessor 320 linear regulator 322 transistor 324 operational amplifier 326 reference voltage source 330 interface circuit 332 input buffer 334 switch 336 pull-down resistor 400 fuse circuit 402 control register
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Read Only Memory (AREA)
Abstract
Description
・不揮発性メモリ(EEPROM,Flashメモリ,FeRAM,MRAM,PRAMなど)
・ヒューズ(ポリシリコン溶断,メタル配線溶断)
・アンチヒューズ(ツェナーザッピング,ゲート酸化膜ブレークダウン)
コスト高となるプロセスの追加が必要である。また記憶素子自体やラッチ回路がノイズや放射線に晒されるとソフトエラーが起こり、リフレッシュや誤り訂正回路による対策が必要となる。係る事情から、アナログICに不向きである。
・リセット/イネーブルの無いアナログやMixed-SignalのIC(Integrated Circuit)
・冗長回路による不良品救済を必要とする製品
・同一ダイで機能を切り替えて製品展開する用途
・POR(Power On Reset)回路の解除電圧や異電源間の起動シーケンス変更など、電源投入時の条件をプログラマブルに変更する用途全般
・予備動作が不要であること。読み込み動作/初期化動作が不要であること。(=Power-Onリセット不要)
・高いノイズ耐性
すなわち外乱によるデータ化け(ソフトエラー)が発生した場合に、正しい状態に自動復帰できることが要求される。
・定常電流が小さいこと: ヒューズの切断/未切断によらず、定常電流は実質的にゼロ(リーク電流のみ)まで削減されることが望ましい。
・低コストであること
そのためには、小面積、少ピン数、低テストコスト、少レイヤ数であることが望まれる。
・動作電圧範囲が広いこと
具体的には、ヒューズメモリ回路以外の制御対象となる回路の全動作電圧範囲に対して十分なマージンを持った動作電圧範囲で動作できることが望まれる。
・高い可搬性
すなわち、複雑な制御やテストのための周辺回路が不要であることが望まれる。
・テスタビリティ
プログラム前の仮想トリミング及びプログラム前後の故障検出が可能であることが望まれる。
・高信頼
具体的には、半永久的なデータ保持特性、高い耐環境特性(熱、放射線)、高い静破耐性を有することが望まれる。
本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素または重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
VDD×RM13/(RFUSE+RM12+RM13)>VTINV
を満たしてもよい。これにより、ノイズによってヒューズメモリ回路の状態がプログラムしたそれと異なる状態に遷移した場合において、正しい状態に自動復帰することができる。
以下、好適な実施の形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、開示および発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
図1は、実施例1に係るヒューズメモリ回路100Aの回路図である。ヒューズメモリ回路100Aは、二値の状態を保持可能な1ビットの不揮発性メモリ素子として機能する。
プログラム(書き込み)前の第1試験について説明する。第1試験では、第1ヒューズユニット110、第2ヒューズユニット120それぞれのテスト端子TEST1,TEST2にローを印加し、第2トランジスタM12、M22をオン状態とする。
プログラム(書き込み)前の第2試験について説明する。第2試験では、第1ヒューズユニット110の第2トランジスタM12の第2ヒューズユニット120の第2トランジスタM22を、片方ずつ排他的にオンとする。
一般にヒューズメモリ回路100の出力OUT1,OUT2は、図示しないトリミング対象の回路によって参照され、出力OUT1,OUT2に応じて、トリミング対象の回路の動作状態(動作モードや動作パラメータ、回路定数)が設定される。仮想トリミングは、ヒューズメモリ回路100を実際にプログラムする前に、ヒューズメモリ回路100Aからトリミング対象の回路に対して、任意の出力OUT1,OUT2を与える機能である。
(i) OUT1=H,OUT2=Lの状態にプログラミングしたい場合、PROG1=H、PROG2=Lを入力する。PROG1=Hとすると、第1ヒューズユニット110の第1トランジスタM11がオンとなり、ヒューズ素子F11に電流が流れてヒューズ素子F11が切断される。
一旦、プログラム後が終了した後は、ヒューズメモリ回路100Aに対する全入力PROG1,PROG2,TEST1,TEST2をLに固定する。PROG1,PROG2がLに固定されることで、第1トランジスタM11,M12がオフに固定されるため、ヒューズ素子F11,F12のうち、切断されていないひとつが誤って切断されるのを防止できる。
図3は、図1のヒューズメモリ回路100Aのソフトエラー訂正を説明する図である。このヒューズメモリ回路100Aは、OUT1=H、OUT2=Lとなるようにプログラムされており、図3にはそのときの等価回路図が示される。その状態で、出力OUT1またはOUT2にノイズが発生し、その電位が反転したとする。
VN=VDD×RM13/(RFUSE+RM12+RM13)
に収束する。したがって、VNが、CMOSインバータ回路124のしきい値電圧VTINVより高くなるように、第3トランジスタM13の抵抗値RM13(すなわち、MOSFETのW/L比)を設計しておくことで、出力エラーは正常な値に自動復帰する。
プログラムされたヒューズメモリ回路100Aを備える半導体装置を出荷した後に、未切断側のヒューズ素子がダメージを受けるのを防ぐ必要がある。
図6は、実施例2に係るヒューズメモリ回路100Bの回路図である。このヒューズメモリ回路100Bは、第4トランジスタM14(M24)に変えて、ダイオードD11(D21)を備える。ダイオードD11は、高電位(電源ラインVDD)側がカソード、低電位(接地ラインGND)側がアノードとなる向きで接続されている。その他の構成は図1と同様である。
図7は、実施例3に係るヒューズメモリ回路100Cの回路図である。このヒューズメモリ回路100Cは、図1のヒューズメモリ回路100Aの天地を反転し、PチャンネルとNチャンネルを相互に入れ替えた構成を有する。
図8は、実施例4に係るヒューズメモリ回路100Dの回路図である。このヒューズメモリ回路100Dは、図7のヒューズメモリ回路100Cの第4トランジスタM14,M24を、ダイオードD11,D21に置換したものである。
図9は、ヒューズメモリ回路100を備える半導体装置300の回路図である。半導体装置300は、ビット回路200および内部回路310を備える。ビット回路200は、ヒューズメモリ回路100に加えて、制御回路210および出力バッファ220を備える。出力バッファ220は、ヒューズメモリ回路100の出力OUT1,OUT2を受ける。トリミング対象の内部回路310は、出力バッファ220の出力DO、DOBを参照する。各信号の末尾のBは、反転論理を示す。
本開示の一側面は以下のように把握できる。
電源ラインと接地ラインの一方である第1ラインと、
前記電源ラインと前記接地ラインの他方である第2ラインと、
第1ヒューズユニットと、
第2ヒューズユニットと、
を備え、
前記第1ヒューズユニットおよび前記第2ヒューズユニットはそれぞれ、
テスト端子と、
プログラム端子と、
出力端子と、
その第1端が前記第1ラインと接続されたヒューズ素子と、
前記ヒューズ素子と並列に接続された整流素子と、
そのドレインが前記ヒューズ素子の第2端と接続され、そのソースが前記第2ラインと接続され、そのゲートが前記プログラム端子と接続された第1トランジスタと、
そのソースが前記ヒューズ素子の第2端と接続され、そのドレインが前記出力端子と接続され、そのゲートが前記テスト端子と接続される第2トランジスタと、
そのドレインが前記出力端子と接続され、そのソースが前記第2ラインと接続された第3トランジスタと、
を含み、
前記第1ヒューズユニットの前記第3トランジスタのゲートは、前記第2ヒューズユニットの前記出力端子と接続され、
前記第2ヒューズユニットの前記第3トランジスタのゲートは、前記第1ヒューズユニットの前記出力端子と接続されている、ヒューズメモリ回路。
前記整流素子は、
そのソースが前記ヒューズ素子の前記第1端と接続され、そのドレインが前記ヒューズ素子の前記第2端と接続される第4トランジスタを含む、項目1に記載のヒューズメモリ回路。
前記第4トランジスタのゲートは、前記第3トランジスタの前記ゲートと接続される、項目2に記載のヒューズメモリ回路。
前記第3トランジスタと前記第4トランジスタが形成するCMOSインバータ回路のしきい値電圧をVTINV、切断前の前記ヒューズ素子の抵抗値をRFUSE、電源電圧をVDD、前記第2トランジスタのオン抵抗をRM12、前記第3トランジスタのオン抵抗をRM13とするとき、
VDD×RM13/(RFUSE+RM12+RM13)>VTINV
を満たす、項目3に記載のヒューズメモリ回路。
前記整流素子は、高電位側がカソード、低電位側がアノードとなる向きで接続されたダイオードを含む、項目1に記載のヒューズメモリ回路。
前記第1ラインは前記電源ラインであり、前記第2ラインは前記接地ラインである、項目1から5のいずれかに記載のヒューズメモリ回路。
前記第1ラインは前記接地ラインであり、前記第2ラインは前記電源ラインである、項目1から5のいずれかに記載のヒューズメモリ回路。
前記ヒューズ素子は、電流を流すことにより電気的に遮断状態となるヒューズである、項目1から7のいずれかに記載のヒューズメモリ回路。
前記ヒューズ素子は、電流を流すことにより電気的に導通状態となるアンチヒューズである、項目1から7のいずれかに記載のヒューズメモリ回路。
項目1から9のいずれかに記載のヒューズメモリ回路を備える、半導体装置。
102 第1ライン
104 第2ライン
110 第1ヒューズユニット
120 第2ヒューズユニット
OUT1,OUT2 出力端子
F11,F21 ヒューズ素子
M11,M21 第1トランジスタ
M12,M22 第2トランジスタ
M13,M23 第3トランジスタ
M14,M24 第4トランジスタ
D11,D21 ダイオード
112 整流素子
114 CMOSインバータ回路
122 整流素子
124 CMOSインバータ回路
200 ビット回路
210 制御回路
220 出力バッファ
230 ロック回路
232 出力バッファ
234 制御回路
232 出力バッファ
234 制御回路
300 半導体装置
310 内部回路
312,314 SRAM
316 セレクタ
318 マイクロプロセッサ
320 リニアレギュレータ
322 トランジスタ
324 オペアンプ
326 基準電圧源
330 インタフェース回路
332 入力バッファ
334 スイッチ
336 プルダウン抵抗
400 ヒューズ回路
402 制御レジスタ
Claims (10)
- 電源ラインと接地ラインの一方である第1ラインと、
前記電源ラインと前記接地ラインの他方である第2ラインと、
第1ヒューズユニットと、
第2ヒューズユニットと、
を備え、
前記第1ヒューズユニットおよび前記第2ヒューズユニットはそれぞれ、
テスト端子と、
プログラム端子と、
出力端子と、
その第1端が前記第1ラインと接続されたヒューズ素子と、
前記ヒューズ素子と並列に接続された整流素子と、
そのドレインが前記ヒューズ素子の第2端と接続され、そのソースが前記第2ラインと接続され、そのゲートが前記プログラム端子と接続された第1トランジスタと、
そのソースが前記ヒューズ素子の第2端と接続され、そのドレインが前記出力端子と接続され、そのゲートが前記テスト端子と接続される第2トランジスタと、
そのドレインが前記出力端子と接続され、そのソースが前記第2ラインと接続された第3トランジスタと、
を含み、
前記第1ヒューズユニットの前記第3トランジスタのゲートは、前記第2ヒューズユニットの前記出力端子と接続され、
前記第2ヒューズユニットの前記第3トランジスタのゲートは、前記第1ヒューズユニットの前記出力端子と接続されている、ヒューズメモリ回路。 - 前記整流素子は、
そのソースが前記ヒューズ素子の前記第1端と接続され、そのドレインが前記ヒューズ素子の前記第2端と接続される第4トランジスタを含む、請求項1に記載のヒューズメモリ回路。 - 前記第4トランジスタのゲートは、前記第3トランジスタの前記ゲートと接続される、請求項2に記載のヒューズメモリ回路。
- 前記第3トランジスタと前記第4トランジスタが形成するCMOSインバータ回路のしきい値電圧をVTINV、切断前の前記ヒューズ素子の抵抗値をRFUSE、電源電圧をVDD、前記第2トランジスタのオン抵抗をRM12、前記第3トランジスタのオン抵抗をRM13とするとき、
VDD×RM13/(RFUSE+RM12+RM13)>VTINV
を満たす、請求項3に記載のヒューズメモリ回路。 - 前記整流素子は、高電位側がカソード、低電位側がアノードとなる向きで接続されたダイオードを含む、請求項1に記載のヒューズメモリ回路。
- 前記第1ラインは前記電源ラインであり、前記第2ラインは前記接地ラインである、請求項1から5のいずれかに記載のヒューズメモリ回路。
- 前記第1ラインは前記接地ラインであり、前記第2ラインは前記電源ラインである、請求項1から5のいずれかに記載のヒューズメモリ回路。
- 前記ヒューズ素子は、電流を流すことにより電気的に遮断状態となるヒューズである、請求項1から5のいずれかに記載のヒューズメモリ回路。
- 前記ヒューズ素子は、電流を流すことにより電気的に導通状態となるアンチヒューズである、請求項1から5のいずれかに記載のヒューズメモリ回路。
- 請求項1から5のいずれかに記載のヒューズメモリ回路を備える、半導体装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023531802A JPWO2023276733A1 (ja) | 2021-06-28 | 2022-06-17 | |
CN202280041600.5A CN117529777A (zh) | 2021-06-28 | 2022-06-17 | 熔断器存储电路及半导体装置 |
US18/396,118 US20240233845A9 (en) | 2021-06-28 | 2023-12-26 | Fuse memory circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021107096 | 2021-06-28 | ||
JP2021-107096 | 2021-06-28 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/396,118 Continuation US20240233845A9 (en) | 2021-06-28 | 2023-12-26 | Fuse memory circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023276733A1 true WO2023276733A1 (ja) | 2023-01-05 |
Family
ID=84692362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/024376 WO2023276733A1 (ja) | 2021-06-28 | 2022-06-17 | ヒューズメモリ回路および半導体装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240233845A9 (ja) |
JP (1) | JPWO2023276733A1 (ja) |
CN (1) | CN117529777A (ja) |
WO (1) | WO2023276733A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07105685A (ja) * | 1993-10-08 | 1995-04-21 | Kawasaki Steel Corp | 半導体記憶回路 |
JP2014522134A (ja) * | 2011-03-31 | 2014-08-28 | アイシーティーケー カンパニー リミテッド | デジタル値生成装置及び方法 |
-
2022
- 2022-06-17 JP JP2023531802A patent/JPWO2023276733A1/ja active Pending
- 2022-06-17 WO PCT/JP2022/024376 patent/WO2023276733A1/ja active Application Filing
- 2022-06-17 CN CN202280041600.5A patent/CN117529777A/zh active Pending
-
2023
- 2023-12-26 US US18/396,118 patent/US20240233845A9/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07105685A (ja) * | 1993-10-08 | 1995-04-21 | Kawasaki Steel Corp | 半導体記憶回路 |
JP2014522134A (ja) * | 2011-03-31 | 2014-08-28 | アイシーティーケー カンパニー リミテッド | デジタル値生成装置及び方法 |
Also Published As
Publication number | Publication date |
---|---|
CN117529777A (zh) | 2024-02-06 |
US20240233845A9 (en) | 2024-07-11 |
US20240136004A1 (en) | 2024-04-25 |
JPWO2023276733A1 (ja) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7978549B2 (en) | Fuse circuit and semiconductor memory device including the same | |
KR100203606B1 (ko) | 불량 구제 판정 회로 | |
US7339848B1 (en) | Anti-fuse latch circuit and method including self-test | |
US8248871B2 (en) | Redundancy circuits and semiconductor memory devices | |
US20080247242A1 (en) | Method Using a One-Time Programmable Memory Cell | |
US20070133323A1 (en) | Repair circuit and method of repairing defects in a semiconductor memory device | |
KR20140078292A (ko) | 퓨즈 리페어 장치 및 그 방법 | |
US8193851B2 (en) | Fuse circuit of semiconductor device and method for monitoring fuse state thereof | |
US8174862B2 (en) | Fuse circuit and redundancy circuit | |
US8159894B2 (en) | One time programmable memory | |
KR100687042B1 (ko) | 안티퓨즈 회로 및 안티퓨즈 방법 | |
WO2023276733A1 (ja) | ヒューズメモリ回路および半導体装置 | |
KR101156030B1 (ko) | 안티퓨즈 회로 및 그를 포함하는 반도체 집적회로 | |
US7403432B2 (en) | Differential read-out circuit for fuse memory cells | |
US7274610B2 (en) | Semiconductor memory device | |
US7495472B2 (en) | Circuits/methods for electrically isolating fuses in integrated circuits | |
US9281082B1 (en) | Semiconductor memory device including redundancy circuit and fuse circuit | |
US8116163B2 (en) | Semiconductor memory device | |
KR100646575B1 (ko) | 반도체 메모리 장치의 리페어를 위한 퓨즈 프로그래밍방법 및 퓨즈의 프로그래밍 성공여부 판단회로 | |
US20240312545A1 (en) | Efuse unit and application circuit thereof | |
KR100632617B1 (ko) | 리페어 회로 | |
KR20040092738A (ko) | 반도체 메모리 장치 | |
KR100361531B1 (ko) | 리페어 회로 | |
KR20050003035A (ko) | 반도체 메모리 장치 | |
KR20050040350A (ko) | 프로그램어블 퓨즈 회로 및 그를 구비한 반도체메모리장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22832883 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023531802 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280041600.5 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22832883 Country of ref document: EP Kind code of ref document: A1 |