WO2023276457A1 - Method for manufacturing electrode catalyst for fuel cell - Google Patents

Method for manufacturing electrode catalyst for fuel cell Download PDF

Info

Publication number
WO2023276457A1
WO2023276457A1 PCT/JP2022/020068 JP2022020068W WO2023276457A1 WO 2023276457 A1 WO2023276457 A1 WO 2023276457A1 JP 2022020068 W JP2022020068 W JP 2022020068W WO 2023276457 A1 WO2023276457 A1 WO 2023276457A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
platinum complex
carbon black
nitric acid
catalyst
Prior art date
Application number
PCT/JP2022/020068
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 山下
一則 古閑
直也 青木
愛美 岡部
Original Assignee
石福金属興業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石福金属興業株式会社 filed Critical 石福金属興業株式会社
Priority to CN202280002917.8A priority Critical patent/CN115867380A/en
Priority to KR1020227035903A priority patent/KR20230006469A/en
Publication of WO2023276457A1 publication Critical patent/WO2023276457A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a method for producing a fuel cell electrode catalyst.
  • Platinum catalysts are used in applications such as catalysts for purifying exhaust gas from internal combustion engines and electrode catalysts for fuel cells.
  • a platinum catalyst is generally dispersed and supported on a carrier such as carbon, alumina or silica-alumina.
  • a platinum catalyst is produced by immersing a catalyst carrier in a solution of a platinum compound to reduce and support the catalyst.
  • a dinitrodiammine platinum complex or compound Pt(NO 2 ) 2 (NH 3 ) 2 ) is generally used because it does not contain chlorine and increases the activity of a platinum catalyst supported on a carrier.
  • Patent Document 1 an aqueous solution of dinitrodiammineplatinum nitrate is added to a carbon carrier, stirred, heated and dried to obtain a carbon carrier on which a platinum compound is supported. a heat treatment below the self-decomposition temperature of the catalyst, and contacting the carbon support with a reducing gas to reduce the platinum compound.
  • Patent Document 2 describes a dinitrodiammineplatinum nitrate solution characterized by a platinum concentration of 1 g/L and an absorbance at 420 nm of 1.5 to 3, and a carrier immersed in the dinitrodiammineplatinum nitrate solution.
  • a method for producing a platinum catalyst for an exhaust gas catalyst is described in which the platinum component is adsorbed on the carrier, the platinum component is adsorbed on the carrier surface, dried, calcined and reduced.
  • platinum is supported by conventional methods such as permeation of a nitric acid aqueous solution of dinitrodiammineplatinum into a porous substrate, drying by evaporation of the solvent, thermal decomposition or reduction.
  • the platinum derived from the platinum complex that is not adsorbed is also supported, which may result in coarsening and uneven distribution of the platinum particles.
  • a lower temperature is also preferable for the thermal decomposition temperature of the platinum complex.
  • the adsorption rate of the platinum complex to the carbon support is high, and the platinum complex adsorbed on the carbon support is thermally decomposed at a lower thermal decomposition temperature, and the fine platinum particles are supported on the carbon powder in a highly dispersed manner. ing.
  • Aspect 1 Dinitrodiammineplatinum complex or compound is dissolved in an aqueous nitric acid solution to a concentration of 100 ⁇ 20 g/L in terms of platinum and 220 ⁇ 40 g/L in nitric acid concentration, and heated at 100 to 110° C. for 18 to 24 hours.
  • an aqueous nitric acid solution containing a platinum complex in which the dinitrodiammine platinum is modified or denatured A step of mixing an aqueous dispersion of carrier carbon black and the platinum complex-containing nitric acid aqueous solution to adsorb the platinum complex on the surface of the carbon black to obtain a carbon black-containing liquid in which the platinum complex is adsorbed; A step of filtering the carbon black-containing liquid, washing and drying the filtered carbon black having the platinum complex adsorbed thereon, and obtaining a powder having the platinum complex adsorbed on the surface of the carbon black; A thermal decomposition step of the platinum complex by thermally decomposing the carbon black powder to which the platinum complex is adsorbed at 280 ° C.
  • a method for producing a platinum-supported carbon catalyst comprising: Aspect 2: The modified or denatured platinum complex-containing nitric acid aqueous solution is L * a * b * of the aqueous solution when the aqueous solution is diluted with pure water so that the platinum concentration becomes 1 wt% *chroma a * in the color system A method for producing a platinum-supported carbon catalyst according to aspect 1, wherein is 28 to 35. Aspect 3: The method for producing a platinum-supported carbon catalyst according to aspect 1 or 2, wherein the drying is performed at a temperature of 180°C to 230°C.
  • Aspect 4 In the thermal decomposition step, the powder having the platinum complex adsorbed on the surface of the carbon black is deposited in an appropriate container to a layer thickness (deposition thickness) in the range of 0.1 mm to 30 mm, and an inert gas or The method for producing a platinum-supported carbon catalyst according to any one of aspects 1 to 3, wherein the platinum complex is thermally decomposed at 280°C to 400°C in a nitrogen gas atmosphere.
  • Aspect 5 The method for producing a platinum-supported carbon catalyst according to any one of aspects 1 to 4, wherein the amount of platinum supported in the platinum-supported carbon catalyst is adjusted to 5 wt% to 20 wt% relative to the total weight of the catalyst. .
  • the adsorption rate of the platinum complex to carbon black is high, and the platinum complex adsorbed to carbon black can be thermally decomposed at a relatively low temperature, so even if the production amount is increased, uniform and fine platinum particles are highly dispersed. It is possible to produce a platinum-supported carbon catalyst supported on.
  • Example 1 is a graphical representation of the results of differential scanning calorimetry-mass spectrometry (DSC-Mass) performed on a dried sample of carbon black with adsorbed platinum complexes according to the present invention. Graphic representation of the results of similar measurements on dried samples under different conditions than in FIG. TEM image of catalyst particles of Example 3
  • the dinitrodiammine platinum complex or compound is added to the nitric acid aqueous solution so that the concentration is 100 ⁇ 20 g / L in terms of platinum and the nitric acid concentration is 220 ⁇ 40 g / L.
  • the ratio of platinum to nitric acid in the aqueous nitric acid solution is adjusted to approximately 1:2.2 on a weight basis.
  • the nitric acid aqueous solution thus prepared is heated at 100 to 110° C., preferably 101 to 107° C., more preferably 103 to 105° C., for 18 to 24 hours, preferably 19 to 22 hours, more preferably 20 to 21 hours. Heating causes a change in the color saturation of the solution prior to heat treatment.
  • the terms "platinum complex or compound” and “complex” are used interchangeably.
  • the change in chroma is L * a * b * in the aqueous solution when the nitric acid aqueous solution containing the platinum complex after the heating step is diluted with pure water so that the platinum concentration becomes 1 wt%. may be 28-35 , preferably 29-34, more preferably 30-33.
  • the chroma a * of the corresponding aqueous solution before said heat treatment is not limited, but can generally be between -3 and -1.
  • the temperature for drying the carbon black to which the platinum complex is adsorbed is not limited, but is generally 50 ° C. to 250 ° C., preferably 80 ° C. to 250 ° C., more preferably 180 °C to 230 °C.
  • the drying time can be determined as appropriate by referring to, for example, the results of DSC - Mass shown in FIG. 1 or FIG. , under the above temperature, 10 hours to 72 hours, preferably 12 hours to 60 hours, more preferably 14 hours to 48 hours.
  • the thermal decomposition step of the platinum complex can be generally carried out at 280 to 400°C, preferably 290 to 350°C, more preferably 300 to 320°C.
  • the thermal decomposition time is generally 0.25 hours to 3 hours, preferably 0.5 hours to 2 hours, more preferably 0.75 hours to 1.5 hours at the above heating temperature.
  • the pyrolysis process uses, but is not limited to, a vat with a flat bottom and a depth exceeding 30 mm, which is the normally assumed layer thickness (deposition thickness). You may Such a bat can be, for example, but not limited to, a carbon or titanium container measuring 250 mm x 250 mm x 50 mm deep or 325 mm x 530 mm x 60 mm deep.
  • the amount of platinum supported in the platinum-supported carbon catalyst is adjusted to 5 wt% to 20 wt%, 7.5 to 15 wt%, more preferably 8 to 13 wt%, based on the total weight of the catalyst. good too.
  • a dinitrodiammineplatinum complex or compound is dissolved in an aqueous nitric acid solution, and the solution is heated at a predetermined temperature for a predetermined time to obtain a modified or denatured nitric acid aqueous solution containing a dinitrodiammineplatinum complex. be done. This will cause the solution to ripen.
  • the platinum complex or compound is easily adsorbed to carbon black in an aqueous solution, and even if it is highly efficient and the production amount is increased, or the production scale is expanded, uniform and fine platinum particles are highly dispersed. It is understood that supported platinum on carbon catalysts can be produced.
  • the process or treatment of dissolving dinitrodiammineplatinum in an aqueous nitric acid solution to a platinum equivalent of 100 ⁇ 20 g/L and a nitric acid concentration of 220 ⁇ 40g/L is the same as the dinitrodiammineplatinum nitric acid in Patent Documents 1 and 2 above.
  • the ratio of platinum to nitric acid in the aqueous solution is 1:0.7 to 1 on a weight basis.
  • the heat treatment of the nitric acid aqueous solution is performed at 100 to 110.degree.
  • the reaction in which the valence of platinum in the solution increases from divalent to tetravalent progresses, and at the same time the ligand coordinated to the platinum complex changes, and the adsorption of the platinum complex to carbon black increases.
  • the reaction proceeds with the heating time, if the heating time is shorter than 18 hours, the adsorption rate of the platinum complex decreases. On the other hand, if the heating time is longer than 24 hours, platinum precipitates are likely to be generated, which is not preferable. Therefore, generally, heating for 18-24 hours can adsorb 90% or more of the platinum complex and does not produce a precipitate of platinum.
  • the chroma is measured with a transmissive color measuring instrument (TZ6000) manufactured by Nippon Denshoku Industries Co., Ltd.
  • absorbance at 420 nm may be measured.
  • Absorbance at 420 nm can be measured using V-750 manufactured by JASCO Corporation by placing a sample adjusted with pure water to a concentration of 1 g/L in a quartz cell.
  • the absorbance at 420 nm of the sample with a chroma a * value of 30 was 1.06, and that of the sample with a chroma a * value of 35 was 1.07.
  • the alkali consumption of these samples was determined by the known method described in Patent Document 1, the alkali consumption was 1.2 g for each 1 g of platinum.
  • the platinum complex in order to prevent excessive deterioration of the platinum complex, as a result of aging at a relatively high nitric acid concentration (high alkali consumption) with respect to 1 g of platinum, the platinum complex has a small absorbance at 420 nm. ing.
  • the present invention includes a step of mixing a dispersion of carbon black in water with an aqueous nitric acid solution containing a platinum complex after the heating step to adsorb the platinum complex to the carbon powder.
  • the carbon black used in the present invention is not particularly limited as long as it has a functional group on its surface and is used for supporting platinum in the production of an electrode catalyst. Specific examples include carbon black such as furnace black, channel black, and acetylene black.
  • the water used here can be ion-exchanged pure water.
  • Adsorption of the platinum complex in the aqueous solution is carried out by dispersing carbon black in pure water, adding an aqueous nitric acid solution containing the platinum complex after the heating step to the dispersion, and stirring for several hours to mix.
  • An acidic solution may be added to the carbon black dispersion to make it acidic, and then the aqueous solution of the platinum complex after the heating step may be mixed.
  • the acid nitric acid which leaves little residue on the catalyst is preferable.
  • the adsorption of the platinum complex to carbon black reaches equilibrium in about one hour, it is desirable to set the adsorption time to about several hours.
  • the platinum complex By adsorbing the platinum complex in an aqueous solution after the heating step having the characteristics described above, the platinum complex is highly dispersed and easily supported on the carbon black, and the desired catalyst particle size is uniform even if the production amount is increased.
  • a carbon catalyst supporting platinum can be produced.
  • another supporting method after mixing carbon powder with a solution containing a platinum complex, there is also a method of supporting the platinum complex on the carbon support by evaporating the solvent by evaporation to dryness. Since it is necessary to evaporate a large amount of solvent due to the fact that it tends to aggregate and become large, and that it tends to be unevenly distributed, it is necessary to evaporate a large amount of solvent, which incurs energy costs. is not preferred.
  • the platinum complex is adsorbed to the functional group on the surface of the carbon black, and the platinum complex that is not adsorbed is removed by filtration and washing, so that the coarsening and uneven distribution of the platinum particles can be suppressed. You can easily increase the amount.
  • the amount of platinum supported in the platinum-supported carbon catalyst can generally be from 5 wt% to 20 wt% based on the total weight of the catalyst. Specifically, the amount of carbon powder is adjusted with respect to the amount of dinitrodiammineplatinum nitric acid solution.
  • the present invention includes a step of obtaining a powder in which a platinum complex is adsorbed on carbon black by filtering, washing, and drying.
  • the filtration method used in the present invention is not particularly limited, and various means can be used. Specifically, it can be carried out using a belt filter, a drum filter, a centrifuge, a vacuum filter, a pressure filter, a filter press, or the like.
  • the dryer used in the present invention is not particularly limited, and various dryers can be used for drying. Specific examples include hot air dryers, vacuum dryers, inert ovens, and the like.
  • Drying can generally be carried out at 50°C to 250°C. Moisture is removed by the treatment, and some NOx components are also removed. For example, sample 1 after vacuum-drying the powder in which the platinum complex was adsorbed on the surface of carbon black at 100 ° C. for 19 hours, sample 2 after vacuum-drying at 100 ° C. for 19 hours and further vacuum-drying at 190 ° C. for 14 hours. Scanning calorimetry-mass spectrometry (DSC-Mass) was performed. STA 440F3 (manufactured by Netch Japan Co., Ltd.) was used as the DSC analyzer.
  • the drying temperature it is preferable to set the drying temperature to 180° C. to 230° C. to reduce the amount of heat generated during thermal decomposition.
  • the present invention includes a thermal decomposition step of thermally decomposing the powder having the platinum complex adsorbed on the carbon support generally at 280° C. to 400° C. in an inert gas or nitrogen gas atmosphere.
  • a powder having a platinum-containing complex supported on the surface of carbon black is generally heated to a relatively low temperature of 280° C. to 400° C. in an inert gas or nitrogen gas atmosphere. It is characterized by adopting a process of thermally decomposing at Moreover, by this process, a platinum-supported electrode catalyst with a small catalyst particle size of about 2 to 5 nm can be produced without using a reducing agent. A temperature of 280° C. or less is not preferable because thermal decomposition is insufficient. On the other hand, if the temperature is 400° C. or higher, the catalyst particles aggregate and become coarse, which is not preferable. In addition, from the fact that the decomposition peak of the platinum complex and the detection peak of CO 2 are almost the same from FIG. It is assumed that the platinum complex can be thermally decomposed at the temperature.
  • the thermal decomposition reaction of the platinum complex becomes significant from around 280.degree. Therefore, thermal decomposition can be accelerated by thermally decomposing at 280° C. or higher. On the other hand, if the thermal decomposition proceeds too rapidly, heat generation may cause problems such as agglomeration of the catalyst particles, which is not preferable.
  • the thermal decomposition temperature is generally 280°C to 400°C, preferably 290°C to 350°C. More preferably, it is 300°C to 320°C.
  • a container suitable for the pyrolysis step is a rectangular flat container (bat) made of carbon, and a layer thickness (deposition thickness) of 0.1 mm to 0.1 mm of powder in which a platinum complex is adsorbed on the surface of carbon black. It is deposited in a range of 30 mm and thermally decomposed at the above heating temperature in an inert gas or nitrogen gas atmosphere.
  • the catalyst particle size can be adjusted to a target size within 2 nm to 5 nm. If the layer thickness is higher than 30 mm, the catalyst particle size will be larger than 5 nm.
  • Dinitrodiammineplatinum was dissolved in an aqueous nitric acid solution to a concentration of 100 g/L in terms of platinum and a nitric acid concentration of 180 g/L.
  • the solution was heated with stirring at about 104° C. for 20 hours.
  • solution S1 was obtained.
  • this solution S1 was adjusted for each example.
  • Example 1 ⁇ Preparation of supported catalyst> (Example 1) 9.0 g of Vulcan XC-72R (manufactured by CABOT) was dispersed in 700 mL of pure water. Next, 4.9 g of nitric acid was added to this dispersion to acidify it. An amount of solution S1 corresponding to 1.0 g of platinum was added to the resulting acidic dispersion and then stirred for 4 hours. The dispersion was filtered to obtain a filter cake. After washing it with pure water, it was dried at 60° C. for 19 hours. Thus, a powder in which the platinum complex was adsorbed on the carbon support was obtained. This powder is hereinafter referred to as "powder P1".
  • the powder P1 was pulverized into powder, placed in a container so that the thickness (deposition thickness) of the powder P1 was 0.1 mm, and subjected to heat treatment at 310° C. for 1 hour under nitrogen gas flow. .
  • Example 1 A supported catalyst was produced as described above. Hereinafter, this will be referred to as "Example 1".
  • Example 2 1800 g of Vulcan XC-72R (manufactured by CABOT) was dispersed in 140 L of pure water. Next, 975 g of nitric acid was added to this dispersion to acidify it. A quantity of solution S1 corresponding to 208 g of platinum was added to the resulting acidic dispersion and then stirred for 4 hours. The dispersion was filtered to obtain a filter cake. After washing this with pure water, it was subjected to vacuum drying at 100° C. for 19 hours. Thus, a powder in which the platinum complex was adsorbed on the carbon support was obtained. This powder is hereinafter referred to as "powder P2".
  • Example 2 A supported catalyst was produced as described above. Hereinafter, this will be referred to as "Example 2".
  • Example 3 A supported catalyst was prepared in the same manner as in Example 2, except that the thickness of the powder during the pyrolysis process was 4 mm. Hereinafter, this will be referred to as "Example 3".
  • Example 4 A supported catalyst was prepared in the same manner as in Example 2, except that the thickness of the powder during the pyrolysis process was 6 mm. Hereinafter, this will be referred to as "Example 4".
  • Example 5 A supported catalyst was produced in the same manner as in Example 2, except that the vacuum drying was carried out at 200° C. for 46 hours and the powder thickness (deposition thickness) during the pyrolysis step was 7 mm. Hereinafter, this will be referred to as "Example 5".
  • Example 6 A supported catalyst was produced in the same manner as in Example 2, except that the vacuum drying was carried out at 200° C. for 46 hours and the powder thickness (deposition thickness) during the pyrolysis step was 10 mm. Hereinafter, this will be referred to as "Example 6".
  • Example 7 A supported catalyst was produced in the same manner as in Example 2, except that the thickness of the powder during the pyrolysis step was 4 mm and the temperature was 330°C. Hereinafter, this will be referred to as "Example 7".
  • Comparative example 1 A powder having a platinum complex adsorbed on a carbon support was produced in the same manner as in Example 1, except that the solution S1 was changed to the solution S2. Hereinafter, this is called “comparative example 1".
  • Table 1 below shows the average particle size and standard deviation of platinum in the platinum-supported carbon catalysts of Examples 1 to 7 and Comparative Examples 1 and 2.
  • chroma a* of dinitrodiammineplatinum nitric acid solution The chroma a * in the L * a * b * color system was measured for the platinum complex contained in each of the solutions S1 to S2. This measurement was performed as follows using a transmission color measuring instrument (TZ6000) manufactured by Nippon Denshoku Industries Co., Ltd.
  • the solution S1 was diluted with pure water so that the platinum concentration was 1 wt %, and used as a sample for measurement.
  • the light source was D65
  • the field of view was 2 degrees
  • the sample was placed in a quartz cell with a physical length of 10 mm
  • the L * a * b * values of transmitted light were measured.
  • the chroma a * of the platinum solution S1 used in Examples 1 to 7 was 30.
  • the platinum solution S2 used in Comparative Examples 1 and 2 had a saturation a * of 7.
  • the platinum particle size is larger than the desired particle size, which is not preferable.
  • the catalysts according to Examples 1 to 7 have high platinum adsorption rates. Further, by changing the layer thickness, the catalyst particle diameter can be adjusted to a specific size within 2 to 5 nm. In other words, these results suggest that a highly dispersed platinum catalyst can be efficiently produced by producing a catalyst by this production method.
  • the metal surface area (metal dispersity) of the catalyst particles of Example 3 was measured by the CO adsorption method. Specifically, using a metal dispersion measuring device (BEL-METAL-3 manufactured by Bell Japan), 25 mg of catalyst particles were pretreated at 130 ° C. with helium, hydrogen, and helium in this order, and then heated to 50 ° C. The amount of adsorbed CO was calculated from the number of pulses until the amount of CO in the exhaust gas became constant, and the metal surface area of the catalyst particles was obtained.
  • the metal surface area of Example 3 was 118 m 2 /g, which is higher than the level generally required.
  • Example 3 A TEM image of Example 3 is shown in FIG. From the TEM image, it can be seen that catalyst particles of about 3 nm are supported in a highly dispersed manner.
  • Example 3 In order to evaluate the performance as a fuel cell electrode catalyst, the oxygen reduction reaction (ORR) activity of Example 3 was evaluated by the rotating electrode method using a BAS potentiogalvanostat.
  • a catalyst ink was prepared by dispersing Example 3 and the perfluorosulfonic acid dispersion in a mixed solvent of 2-propanol and water. The prepared catalyst ink was applied to glassy carbon (diameter 6 mm) so that the amount of platinum was 18 ⁇ g/cm 2 to prepare an electrode for measurement.
  • the prepared measurement electrode is immersed in nitrogen gas-saturated 25 ° C., 0.1 mol / L perchloric acid, a reversible hydrogen electrode (RHE) is used as the reference electrode, a platinum wire is used as the counter electrode, and the potential range is 0.05 V ⁇
  • RHE reversible hydrogen electrode
  • a platinum wire is used as the counter electrode
  • the potential range is 0.05 V ⁇
  • a cyclic voltammogram was measured at 1.2 V (vs. RHE) and a potential sweep rate of 50 mV/sec.
  • ECSA electrochemically active surface area
  • the potential is 0.05 V to 1.2 V (vs.RHE) and the potential sweep rate is 10 mV/sec.
  • Polarization curves were measured. From the obtained polarization curve, the oxygen reduction current value (I) of 0.9 V and the oxygen reduction current value (Id) of 0.4 V as the diffusion limit current value are calculated by the following formula, the activation excluding the diffusion effect of oxygen
  • the specific activity was calculated by dividing this activation current value (Ik) by ECSA, and the mass activity was calculated by dividing the platinum weight on the glassy carbon electrode.
  • the ECSA of Catalyst C3 was 67.8 m 2 /g, and the specific activity and mass activity were 173 ⁇ A/cm 2 and 118 A/g, respectively, indicating catalytic performance above the generally required level. Therefore, the catalyst produced by this production method can be used as an electrode catalyst for fuel cells.
  • the catalyst produced by the production method of the present invention exhibits catalytic performance at or above the generally required level, it can be used, for example, in the production and use of fuel cell electrodes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

[Problem] To provide a method for manufacturing a highly active platinum-carrying carbon catalyst, which is an electrode catalyst for a fuel cell. [Solution] A method for manufacturing a platinum-carrying carbon catalyst, comprising: a step for dissolving a dinitrodiammine platinum complex or compound in a nitric acid aqueous solution so as to achieve a concentration of 100±20 g/L in terms of platinum and a nitric acid concentration of 220±40 g/L, and heating the solution for 18-24 hours at 100-110ºC, thereby obtaining a platinum complex-containing nitric acid aqueous solution in which dinitrodiammine platinum has been changed or modified; and a step for, by using the aqueous solution, causing the platinum complex to be adsorbed to the surface of carbon black, then cleaning the carbon black which is selectively separated and to which the platinum complex has been adsorbed, drying the carbon black, and thermally decomposing the carbon black.

Description

燃料電池用電極触媒の製造方法METHOD FOR MANUFACTURING FUEL CELL ELECTROCATALYST
本発明は、燃料電池用電極触媒の製造方法に関する。 The present invention relates to a method for producing a fuel cell electrode catalyst.
内燃機関からの排気ガスを浄化する触媒や燃料電池用電極触媒等の用途で、白金触媒が使用されている。白金触媒は、白金をカーボン、アルミナ、シリカ-アルミナ等の担体に分散担持させるのが一般的である。例えば、白金触媒は、白金属化合物溶液中に触媒用担体を浸漬して還元担持することによって製造される。中でもジニトロジアンミン白金錯体又は化合物(Pt(NO(NH)は、塩素を含まず、担体に担持した白金触媒の活性が高くなることより一般的に利用されている。 Platinum catalysts are used in applications such as catalysts for purifying exhaust gas from internal combustion engines and electrode catalysts for fuel cells. A platinum catalyst is generally dispersed and supported on a carrier such as carbon, alumina or silica-alumina. For example, a platinum catalyst is produced by immersing a catalyst carrier in a solution of a platinum compound to reduce and support the catalyst. Among them, a dinitrodiammine platinum complex or compound (Pt(NO 2 ) 2 (NH 3 ) 2 ) is generally used because it does not contain chlorine and increases the activity of a platinum catalyst supported on a carrier.
特許文献1には、炭素担体に、ジニトロジアンミン白金硝酸水溶液を加え、撹拌、加熱、乾燥させて、白金化合物を担持させた炭素担体を得た後、不活性ガス中、100℃以上、白金化合物の自己分解温度未満で加熱処理し、その炭素担体を還元ガスと接触させて、白金化合物を還元する還元工程と、を含む燃料電池用電極触媒の製造方法が記載されている。 In Patent Document 1, an aqueous solution of dinitrodiammineplatinum nitrate is added to a carbon carrier, stirred, heated and dried to obtain a carbon carrier on which a platinum compound is supported. a heat treatment below the self-decomposition temperature of the catalyst, and contacting the carbon support with a reducing gas to reduce the platinum compound.
特許文献2には、1g/Lの白金濃度で、420nmにおける吸光度が1.5~3であることを特徴とするジニトロジアンミン白金硝酸溶液、および、そのジニトロジアンミン白金硝酸溶液中に、担体を浸漬して白金成分を担体上に吸着させ、白金成分を担体表面に吸着させ、乾燥、焼成、還元することによって排気ガス触媒用白金触媒を製造する方法が記載されている。 Patent Document 2 describes a dinitrodiammineplatinum nitrate solution characterized by a platinum concentration of 1 g/L and an absorbance at 420 nm of 1.5 to 3, and a carrier immersed in the dinitrodiammineplatinum nitrate solution. A method for producing a platinum catalyst for an exhaust gas catalyst is described in which the platinum component is adsorbed on the carrier, the platinum component is adsorbed on the carrier surface, dried, calcined and reduced.
特開2010-167353JP 2010-167353 特開2005-306700JP 2005-306700
燃料電池触媒においては、2~5nmの微細白金粒子を高分散に担持した白金担持カーボン粉末が要望されている。 In fuel cell catalysts, carbon powder supporting platinum on which fine platinum particles of 2 to 5 nm are supported in a highly dispersed manner is desired.
上記2~5nmの微細白金粒子を高分散に担持するためには、従来手法の、ジニトロジアンミン白金の硝酸水溶液の多孔質基体への浸透、溶媒の蒸発乾燥、熱分解または還元により白金の担持を行うと、吸着していない白金錯体由来の白金をも担持するため、白金粒子の粗大化や偏在化が生じてしまうことがある。また、水溶液中でのカーボン担体への白金錯体の吸着反応のみを利用する場合、白金錯体のカーボン担体への吸着性を向上させる必要がある。白金錯体の熱分解温度についてもより低温が好ましい。
すなわち、白金錯体のカーボン担体への吸着率が高く、より低い熱分解温度でカーボン担体に吸着した白金錯体が熱分解し、微細な白金粒子をカーボン粉末に高分散に担持させることが課題となっている。
In order to support the above fine platinum particles of 2 to 5 nm in a highly dispersed manner, platinum is supported by conventional methods such as permeation of a nitric acid aqueous solution of dinitrodiammineplatinum into a porous substrate, drying by evaporation of the solvent, thermal decomposition or reduction. When this is done, the platinum derived from the platinum complex that is not adsorbed is also supported, which may result in coarsening and uneven distribution of the platinum particles. Moreover, when only the adsorption reaction of the platinum complex to the carbon support in the aqueous solution is used, it is necessary to improve the adsorption of the platinum complex to the carbon support. A lower temperature is also preferable for the thermal decomposition temperature of the platinum complex.
That is, the adsorption rate of the platinum complex to the carbon support is high, and the platinum complex adsorbed on the carbon support is thermally decomposed at a lower thermal decomposition temperature, and the fine platinum particles are supported on the carbon powder in a highly dispersed manner. ing.
ジニトロジアンミン白金錯体又は化合物含有硝酸水溶液における白金と硝酸の比率を、重量基準で、例えば1:2.2とし、そのジニトロジアンミン白金錯体又は化合物含有硝酸水溶液を一定の条件下で加熱すると従来技術文献に開示されたものとは異なる特性を有する又は状態のジニトロジアンミン白金錯体又は化合物含有硝酸水溶液が得られ、このような状態の前記水溶液を用いて白金錯体をカーボンブラックへ吸着させ、濾過、洗浄、乾燥させた後、熱分解することにより、白金錯体のカーボンブラックへの吸着率が高く均一で微細な白金粒子を高分散に担持できることが、いまや、見出された。
したがって、限定されるものでないが、本発明として、次の特徴又は態様の発明が提供される。
態様1: ジニトロジアンミン白金錯体又は化合物を硝酸水溶液に、白金換算で100±20g/L、硝酸濃度で220±40g/Lになるように溶解させ、100~110℃で18~24時間加熱することで前記ジニトロジアンミン白金を改変又は変成した白金錯体含有硝酸水溶液を得る工程と、
担体カーボンブラックの水分散液と前記白金錯体含有硝酸水溶液を混合し、前記白金錯体を前記カーボンブラックの表面上に吸着させて前記白金錯体が吸着したカーボンブラック含有液を得る工程と、
前記カーボンブラック含有液を濾過し、濾別された前記白金錯体が吸着したカーボンブラックを洗浄し、乾燥させて、前記カーボンブラックの表面上に前記白金錯体が吸着した粉末を得る工程と、
前記白金錯体が吸着したカーボンブラック粉末を不活性ガスまたは窒素ガス雰囲気中、280℃~400℃で熱分解することによる白金錯体の熱分解工程と、
を含むことを特徴とする白金担持カーボン触媒の製造方法。
態様2: 改変又は変成した前記白金錯体含有硝酸水溶液は、当該水溶液を1wt%の白金濃度となるように純水で希釈した場合の水溶液のL表色系における彩度aが28~35であることを特徴とする態様1の白金担持カーボン触媒の製造方法。
態様3: 前記乾燥は、180℃~230℃の温度下で行われることを特徴とする態様1又は2の白金担持カーボン触媒の製造方法。
態様4: 前記熱分解工程は、前記カーボンブラックの表面上に白金錯体が吸着した粉末を、適当な容器に、層厚(堆積厚)0.1mm~30mmの範囲に堆積させ、不活性ガスまたは窒素ガス雰囲気中、280℃~400℃で前記白金錯体を熱分解することを特徴とする態様1~3のいずれかの白金担持カーボン触媒の製造方法。
態様5: 白金担持カーボン触媒中の白金担持量は、前記触媒の総重量当たり、5wt%~20wt%に調整されることを特徴とする態様1~4のいずれかの白金担持カーボン触媒の製造方法。
When the ratio of platinum and nitric acid in the nitric acid aqueous solution containing the dinitrodiammine platinum complex or the compound is set to, for example, 1:2.2 on a weight basis and the dinitrodiammine platinum complex or the compound-containing nitric acid aqueous solution is heated under certain conditions, prior art documents An aqueous nitric acid solution containing a dinitrodiammineplatinum complex or compound having properties or states different from those disclosed in is obtained, and the aqueous solution in such a state is used to adsorb the platinum complex to carbon black, filtered, washed, It has now been found that by drying and then thermally decomposing, the adsorption rate of the platinum complex to carbon black is high, and uniform and fine platinum particles can be supported in a highly dispersed manner.
Accordingly, the invention provides, but is not limited to, the following features or aspects.
Aspect 1: Dinitrodiammineplatinum complex or compound is dissolved in an aqueous nitric acid solution to a concentration of 100±20 g/L in terms of platinum and 220±40 g/L in nitric acid concentration, and heated at 100 to 110° C. for 18 to 24 hours. obtaining an aqueous nitric acid solution containing a platinum complex in which the dinitrodiammine platinum is modified or denatured;
A step of mixing an aqueous dispersion of carrier carbon black and the platinum complex-containing nitric acid aqueous solution to adsorb the platinum complex on the surface of the carbon black to obtain a carbon black-containing liquid in which the platinum complex is adsorbed;
A step of filtering the carbon black-containing liquid, washing and drying the filtered carbon black having the platinum complex adsorbed thereon, and obtaining a powder having the platinum complex adsorbed on the surface of the carbon black;
A thermal decomposition step of the platinum complex by thermally decomposing the carbon black powder to which the platinum complex is adsorbed at 280 ° C. to 400 ° C. in an inert gas or nitrogen gas atmosphere;
A method for producing a platinum-supported carbon catalyst, comprising:
Aspect 2: The modified or denatured platinum complex-containing nitric acid aqueous solution is L * a * b * of the aqueous solution when the aqueous solution is diluted with pure water so that the platinum concentration becomes 1 wt% *chroma a * in the color system A method for producing a platinum-supported carbon catalyst according to aspect 1, wherein is 28 to 35.
Aspect 3: The method for producing a platinum-supported carbon catalyst according to aspect 1 or 2, wherein the drying is performed at a temperature of 180°C to 230°C.
Aspect 4: In the thermal decomposition step, the powder having the platinum complex adsorbed on the surface of the carbon black is deposited in an appropriate container to a layer thickness (deposition thickness) in the range of 0.1 mm to 30 mm, and an inert gas or The method for producing a platinum-supported carbon catalyst according to any one of aspects 1 to 3, wherein the platinum complex is thermally decomposed at 280°C to 400°C in a nitrogen gas atmosphere.
Aspect 5: The method for producing a platinum-supported carbon catalyst according to any one of aspects 1 to 4, wherein the amount of platinum supported in the platinum-supported carbon catalyst is adjusted to 5 wt% to 20 wt% relative to the total weight of the catalyst. .
本発明に従うと、白金錯体のカーボンブラックへの吸着率が高く、カーボンブラックに吸着した白金錯体を比較的低温で熱分解できるので、製造量を多くしても均一で微細な白金粒子を高分散に担持した白金担持カーボン触媒を製造することができる。 According to the present invention, the adsorption rate of the platinum complex to carbon black is high, and the platinum complex adsorbed to carbon black can be thermally decomposed at a relatively low temperature, so even if the production amount is increased, uniform and fine platinum particles are highly dispersed. It is possible to produce a platinum-supported carbon catalyst supported on.
本発明にしたがう白金錯体が吸着したカーボンブラックの乾燥後の一サンプルについて示走査熱量測定-質量分析(DSC-Mass)を行った結果のグラフ表示。1 is a graphical representation of the results of differential scanning calorimetry-mass spectrometry (DSC-Mass) performed on a dried sample of carbon black with adsorbed platinum complexes according to the present invention. 図1と異なる条件下での乾燥後のサンプルについて同様の測定を行った結果のグラフ表示。Graphic representation of the results of similar measurements on dried samples under different conditions than in FIG. 実施例3の触媒粒子のTEM像TEM image of catalyst particles of Example 3
発明の詳細な説明Detailed description of the invention
本明細書で使用する用語は、特記しない限り、当該技術分野で常用されている意味を有するものとして使用している。
さらに、以下、本発明について、具体的に説明する。
態様1における、改変又は変成した白金錯体含有硝酸水溶液を得る工程では、ジニトロジアンミン白金錯体又は化合物を硝酸水溶液に、白金換算で100±20g/L、硝酸濃度で220±40g/Lになるように溶解させ、100~110℃で18~24時間加熱することにより、当該硝酸水溶液における白金と硝酸の比率は、重量基準で、ほぼ1:2.2に調整される。こうして調整された硝酸水溶液は、100~110℃、好ましくは、101~107℃、より好ましくは、103~105℃で、18~24時間、好ましくは、19~22時間、より好ましくは20~21加熱することで、加熱処理前の溶液の彩度に変化がもたらされる。本明細書において、「白金錯体又は化合物」にいう、錯体と化合物は互換可能な用語として使用している。
本発明に従う、彩度の変化は、前記加熱工程後の白金錯体を含む硝酸水溶液を1wt%の白金濃度となるように純水で希釈した場合の水溶液における、L表色系における彩度aが28~35、好ましくは、29~34、より好ましくは30~33、となるようにしてもよい。前記加熱処理前の相当する水溶液の彩度aは、限定されるものでないが、一般的に、-3~-1であることができる。
Terms used herein have their meanings commonly used in the art unless otherwise specified.
Further, the present invention will be specifically described below.
In the step of obtaining the modified or denatured platinum complex-containing nitric acid aqueous solution in aspect 1, the dinitrodiammine platinum complex or compound is added to the nitric acid aqueous solution so that the concentration is 100 ± 20 g / L in terms of platinum and the nitric acid concentration is 220 ± 40 g / L. By dissolving and heating at 100-110° C. for 18-24 hours, the ratio of platinum to nitric acid in the aqueous nitric acid solution is adjusted to approximately 1:2.2 on a weight basis. The nitric acid aqueous solution thus prepared is heated at 100 to 110° C., preferably 101 to 107° C., more preferably 103 to 105° C., for 18 to 24 hours, preferably 19 to 22 hours, more preferably 20 to 21 hours. Heating causes a change in the color saturation of the solution prior to heat treatment. As used herein, the terms "platinum complex or compound" and "complex" are used interchangeably.
According to the present invention, the change in chroma is L * a * b * in the aqueous solution when the nitric acid aqueous solution containing the platinum complex after the heating step is diluted with pure water so that the platinum concentration becomes 1 wt%. may be 28-35 , preferably 29-34, more preferably 30-33. The chroma a * of the corresponding aqueous solution before said heat treatment is not limited, but can generally be between -3 and -1.
態様1の発明において、白金錯体が吸着したカーボンブラックを乾燥するための温度は、限定されるものでないが、一般的には50℃~250℃、好ましくは80℃~250℃、より好ましくは180℃~230℃としてもよい。乾燥時間は、例えば、図1又は図2に示されるDSC-Massの結果を参照に、サンプルから適度に水分、NO、COが除かれる挙動等を参照し適宜決定することができるが、一般に、上記温度下で、10時間~72時間、好ましくは12時間~60時間、より好ましくは14時間~48時間であることができる。
また、前記白金錯体の熱分解工程は、一般的には、280~400℃、好ましくは290℃~350℃、より好ましくは300℃~320℃で行うことができる。加熱分解時間は、一般に、上記加熱温度下で、0.25時間~3時間、好ましくは0.5時間~2時間、より好ましくは0.75時間~1.5時間とすることができる。
当該熱分解工程は、適当な容器は、限定されるものではないが、底面が平らであり、かつ、通常想定されている層厚(堆積厚)である30mmを超える深さを有するバットを使用してもよい。かようなバットは、限定されるものでないが、例えば、250mm×250mm×深さ50mm又は325mm×530mm×深さ60mmのカーボン製又はチタン製容器であることができる。
In the invention of aspect 1, the temperature for drying the carbon black to which the platinum complex is adsorbed is not limited, but is generally 50 ° C. to 250 ° C., preferably 80 ° C. to 250 ° C., more preferably 180 °C to 230 °C. The drying time can be determined as appropriate by referring to, for example, the results of DSC - Mass shown in FIG. 1 or FIG. , under the above temperature, 10 hours to 72 hours, preferably 12 hours to 60 hours, more preferably 14 hours to 48 hours.
Further, the thermal decomposition step of the platinum complex can be generally carried out at 280 to 400°C, preferably 290 to 350°C, more preferably 300 to 320°C. The thermal decomposition time is generally 0.25 hours to 3 hours, preferably 0.5 hours to 2 hours, more preferably 0.75 hours to 1.5 hours at the above heating temperature.
The pyrolysis process uses, but is not limited to, a vat with a flat bottom and a depth exceeding 30 mm, which is the normally assumed layer thickness (deposition thickness). You may Such a bat can be, for example, but not limited to, a carbon or titanium container measuring 250 mm x 250 mm x 50 mm deep or 325 mm x 530 mm x 60 mm deep.
態様1の発明において、白金担持カーボン触媒中の白金担持量は、当該触媒の総重量当たり、5wt%~20wt%、7.5~15wt%、より好ましくは8~13wt%に調整するようにしてもよい。 In the invention of aspect 1, the amount of platinum supported in the platinum-supported carbon catalyst is adjusted to 5 wt% to 20 wt%, 7.5 to 15 wt%, more preferably 8 to 13 wt%, based on the total weight of the catalyst. good too.
本発明が採用する特徴のある工程又は処理について、以下、さらに具体的に説明するが、本発明の範囲は、これらの説明又は理論に拘束されるものでない。 The characteristic steps or processes adopted by the present invention are described in more detail below, but the scope of the present invention is not bound by these descriptions or theories.
<ジニトロジアンミン白金硝酸水溶液の加熱処理>
本発明に従えば、上述のとおり、ジニトロジアンミン白金錯体又は化合物を硝酸水溶液に溶解させ、当該溶解液を所定の温度で所定時間加熱することで改変又は変成したジニトロジアンミン白金錯体含有硝酸水溶液が得られる。これは、当該溶解液に熟成させることになる。これにより、白金錯体又は化合物が水溶液中でカーボンブラックに吸着されやすくなり、高効率で且つ製造量を多くしても、又製造スケールを拡大しても、均一で微細な白金粒子を高分散に担持した白金担持カーボン触媒を製造することができるものと理解される。
<Heat treatment of dinitrodiammineplatinum nitric acid aqueous solution>
According to the present invention, as described above, a dinitrodiammineplatinum complex or compound is dissolved in an aqueous nitric acid solution, and the solution is heated at a predetermined temperature for a predetermined time to obtain a modified or denatured nitric acid aqueous solution containing a dinitrodiammineplatinum complex. be done. This will cause the solution to ripen. As a result, the platinum complex or compound is easily adsorbed to carbon black in an aqueous solution, and even if it is highly efficient and the production amount is increased, or the production scale is expanded, uniform and fine platinum particles are highly dispersed. It is understood that supported platinum on carbon catalysts can be produced.
ジニトロジアンミン白金を硝酸水溶液に、白金換算で100±20g/L、硝酸濃度で220±40g/Lになるように溶解させる工程又は処理は、前記の特許文献1及び特許文献2におけるジニトロジアンミン白金硝酸水溶液における白金と硝酸の比率が重量基準で、1:0.7~1であるのと大きく異なり、ジニトロジアンミン白金硝酸水溶液における白金と硝酸の比率を、ほぼ1:2.2としている。そして、前記硝酸水溶液の加熱処理は、100~110℃で行う。当該処理段階において、溶液中の白金の価数が2価から4価へと増大する反応が進行すると同時に白金錯体に配位する配位子が変化し、白金錯体のカーボンブラックへの吸着性が改善する。当該反応は加熱時間とともに進行するため、加熱時間が18時間よりも短いと白金錯体の吸着率が低下する。一方、加熱時間が24時間よりも長くなると白金の沈殿が生成されやすくなり好ましくない。したがって、一般的に、18~24時間加熱することで白金錯体の90%以上を吸着でき、かつ白金の沈殿を生成しない。 The process or treatment of dissolving dinitrodiammineplatinum in an aqueous nitric acid solution to a platinum equivalent of 100±20 g/L and a nitric acid concentration of 220±40g/L is the same as the dinitrodiammineplatinum nitric acid in Patent Documents 1 and 2 above. The ratio of platinum to nitric acid in the aqueous solution is 1:0.7 to 1 on a weight basis. The heat treatment of the nitric acid aqueous solution is performed at 100 to 110.degree. In the treatment step, the reaction in which the valence of platinum in the solution increases from divalent to tetravalent progresses, and at the same time the ligand coordinated to the platinum complex changes, and the adsorption of the platinum complex to carbon black increases. Improve. Since the reaction proceeds with the heating time, if the heating time is shorter than 18 hours, the adsorption rate of the platinum complex decreases. On the other hand, if the heating time is longer than 24 hours, platinum precipitates are likely to be generated, which is not preferable. Therefore, generally, heating for 18-24 hours can adsorb 90% or more of the platinum complex and does not produce a precipitate of platinum.
本発明によれば、上述したように、加熱工程後の白金錯体を含む硝酸水溶液を1wt%の白金濃度となるように純水で希釈した場合の水溶液における、L表色系における彩度aは一般的に28~35である。加熱工程後の白金錯体を含む硝酸水溶液がそのような特性を有するか又は状態にあれば、次工程において白金錯体の90%以上を担体に吸着でき、かつ白金の沈殿を生成しない。そのため、彩度aの確認を行い、加熱処理時間を微調整しながら生産することが望ましい。なお、彩度は、日本電色工業株式会社製の透過色測定器(TZ6000)で測定される。 According to the present invention, as described above, the L * a * b * color system in the aqueous solution when the nitric acid aqueous solution containing the platinum complex after the heating step is diluted with pure water so that the platinum concentration becomes 1 wt%. The saturation a * at is typically 28-35. If the nitric acid aqueous solution containing the platinum complex after the heating step has such properties or is in such a state, 90% or more of the platinum complex can be adsorbed on the carrier in the next step, and no platinum precipitates. Therefore, it is desirable to check the saturation a * and fine-tune the heat treatment time during production. The chroma is measured with a transmissive color measuring instrument (TZ6000) manufactured by Nippon Denshoku Industries Co., Ltd.
また、彩度aの他の指標として、420nmにおける吸光度の測定を行ってもよい。420nmにおける吸光度の測定は、日本分光製のV-750を用いて、1g/L濃度になるように純水を用いて調整した試料を石英セル中に入れ行うことができる。彩度aの値が30のサンプルの420nmにおける吸光度は、1.06であり、彩度aの値が35のサンプルは、1.07であった。また、これらのサンプルのアルカリ消費量を特許文献1記載の公知の方法で求めたところ、白金量1gに対してアルカリ消費量は共に1.2gであった。本発明では、過度な白金錯体の変質を防止するために、白金量1gに対し比較的高い硝酸濃度(高アルカリ消費量)で熟成を行った結果、420nmにおける吸光度が小さい形の白金錯体となっている。 Also, as another index of chroma a * , absorbance at 420 nm may be measured. Absorbance at 420 nm can be measured using V-750 manufactured by JASCO Corporation by placing a sample adjusted with pure water to a concentration of 1 g/L in a quartz cell. The absorbance at 420 nm of the sample with a chroma a * value of 30 was 1.06, and that of the sample with a chroma a * value of 35 was 1.07. Further, when the alkali consumption of these samples was determined by the known method described in Patent Document 1, the alkali consumption was 1.2 g for each 1 g of platinum. In the present invention, in order to prevent excessive deterioration of the platinum complex, as a result of aging at a relatively high nitric acid concentration (high alkali consumption) with respect to 1 g of platinum, the platinum complex has a small absorbance at 420 nm. ing.
<前記加熱処理以外の処理>
また、本発明は、カーボンブラックを水に分散させた分散液に前記加熱工程後の白金錯体を含む硝酸水溶液を混合し、前記白金錯体を前記カーボン粉末に吸着させる工程を含む。
<Treatments other than the heat treatment>
Further, the present invention includes a step of mixing a dispersion of carbon black in water with an aqueous nitric acid solution containing a platinum complex after the heating step to adsorb the platinum complex to the carbon powder.
本発明で用いるカーボンブラックは特に限定されるものではなく、電極触媒の製造において白金を担持させるために用いられる表面に官能基を有するカーボンブラックであればよい。具体的には、ファーネスブラック、チャンネルブラック、アセチレンブラック等のカーボンブラックが挙げられる。なお、ここで用いる水はイオン交換した純水とすることができる。 The carbon black used in the present invention is not particularly limited as long as it has a functional group on its surface and is used for supporting platinum in the production of an electrode catalyst. Specific examples include carbon black such as furnace black, channel black, and acetylene black. The water used here can be ion-exchanged pure water.
白金錯体の水溶液中での吸着は、純水中にカーボンブラックを分散させた後、この分散液に加熱工程後の白金錯体を含む硝酸水溶液を加えて数時間撹拌して混合することで行う。カーボンブラックの分散液に酸性の溶液を添加して酸性とした後に加熱工程後の白金錯体の水溶液を混合してもよい。この際、酸としては触媒への残留の少ない硝酸が好ましい。また、白金錯体のカーボンブラックへの吸着は1時間程度で平衡となるため、吸着時間は数時間程度とすることが望ましい。 Adsorption of the platinum complex in the aqueous solution is carried out by dispersing carbon black in pure water, adding an aqueous nitric acid solution containing the platinum complex after the heating step to the dispersion, and stirring for several hours to mix. An acidic solution may be added to the carbon black dispersion to make it acidic, and then the aqueous solution of the platinum complex after the heating step may be mixed. At this time, as the acid, nitric acid which leaves little residue on the catalyst is preferable. Moreover, since the adsorption of the platinum complex to carbon black reaches equilibrium in about one hour, it is desirable to set the adsorption time to about several hours.
上記記載の特徴を有する加熱工程後に、水溶液中で白金錯体を吸着させることにより、白金錯体がカーボンブラックに高分散で担持されやすくなり、製造量を多くしても均一な所望の触媒粒径の白金を担持させたカーボン触媒を製造することができる。また、他の担持方法として、白金錯体を含む溶液にカーボン粉末を混合した後、蒸発乾固により、溶媒を蒸発させることで白金錯体を前記カーボン担体上に担持する手法もあるが、白金粒子が凝集し大きくなり易い点、偏在化が進みやすい点、等のため、大量の溶媒を蒸発する必要がありエネルギーコストがかかるので、特に製造量を多くするか又はスケールアップを図る場合の製造方法としては好ましくない。
すなわち、本発明の製造方法では、白金錯体をカーボンブラック表面の官能基に吸着させ、吸着していない白金錯体を濾過、洗浄で除去するので、白金粒子の粗大化や偏在化を抑制でき、製造量を容易に増やすことができる。
By adsorbing the platinum complex in an aqueous solution after the heating step having the characteristics described above, the platinum complex is highly dispersed and easily supported on the carbon black, and the desired catalyst particle size is uniform even if the production amount is increased. A carbon catalyst supporting platinum can be produced. Further, as another supporting method, after mixing carbon powder with a solution containing a platinum complex, there is also a method of supporting the platinum complex on the carbon support by evaporating the solvent by evaporation to dryness. Since it is necessary to evaporate a large amount of solvent due to the fact that it tends to aggregate and become large, and that it tends to be unevenly distributed, it is necessary to evaporate a large amount of solvent, which incurs energy costs. is not preferred.
That is, in the production method of the present invention, the platinum complex is adsorbed to the functional group on the surface of the carbon black, and the platinum complex that is not adsorbed is removed by filtration and washing, so that the coarsening and uneven distribution of the platinum particles can be suppressed. You can easily increase the amount.
白金担持カーボン触媒中の白金担持量は、一般的に、当該触媒の総重量当たり5wt%~20wt%とすることができる。具体的には、ジニトロジアンミン白金硝酸溶液の量に対して、カーボン粉末量を調整することで行う。 The amount of platinum supported in the platinum-supported carbon catalyst can generally be from 5 wt% to 20 wt% based on the total weight of the catalyst. Specifically, the amount of carbon powder is adjusted with respect to the amount of dinitrodiammineplatinum nitric acid solution.
また、本発明は、濾過、洗浄、乾燥させて、カーボンブラックに白金錯体が吸着した粉末を得る工程を含む。 Moreover, the present invention includes a step of obtaining a powder in which a platinum complex is adsorbed on carbon black by filtering, washing, and drying.
本発明で用いる濾過方法としては特に限定されるものではなく、種々の手段によって行うことができる。具体的には、ベルトフィルター、ドラムフィルター、遠心分離機、真空濾過器、加圧濾過器、フィルタープレスなどを用いて行うことができる。 The filtration method used in the present invention is not particularly limited, and various means can be used. Specifically, it can be carried out using a belt filter, a drum filter, a centrifuge, a vacuum filter, a pressure filter, a filter press, or the like.
本発明で用いる洗浄方法としては、上記濾過で得られた濾過ケーキに純水を加圧しながら均一に通過させることで行った。 As a washing method used in the present invention, pure water was uniformly passed through the filter cake obtained by the above filtration while pressurizing it.
本発明で用いる乾燥器としては特に限定されるものではなく、さまざまな乾燥器を用いて乾燥を行うことができる。具体的には、熱風乾燥器、真空乾燥器、イナートオーブンなどが挙げられる。 The dryer used in the present invention is not particularly limited, and various dryers can be used for drying. Specific examples include hot air dryers, vacuum dryers, inert ovens, and the like.
乾燥は、上述したように、一般的に、50℃~250℃で行うことができる。当該処理により、水分が除かれると共に、一部のNOx成分も除去される。例えば、カーボンブラックの表面に白金錯体が吸着した粉末を100℃で19時間真空乾燥した後のサンプル1、100℃で19時間真空乾燥後さらに190℃で14時間真空乾燥した後のサンプル2の示差走査熱量測定-質量分析(DSC-Mass)を行った。DSC分析計は、STA 440F3(ネッチ・ジャパン株式会社製)を用いた。前記DSC分析計にはガスクロマトグラフ質量分析計JMS-Q1500GC(日本電子株式会社製)が接続され、DSC分析計で発生したガス成分のマススペクトルを測定した。試料約10mgを試料台にのせた後、ヘリウム雰囲気において、20℃/分の昇温速度で500℃まで昇温し、DSC及びm/e=18(HO)、30(NO)、44(CO)成分のシグナル強度を測定した。得られた結果の一例を図1、図2に示した。図1、図2から高温での乾燥処理を行うことで、水分の除去に加えて一部のNOx成分が除去され、それにともなってDSCの発熱ピークが小さくなることが示唆される。熱分解時に発熱量が大きくなりすぎると触媒粒子の凝集などの不具合を生じる恐れがあり好ましくないため、乾燥温度を180℃~230℃とし、熱分解時の発熱量を小さくすることが好ましい。 Drying, as described above, can generally be carried out at 50°C to 250°C. Moisture is removed by the treatment, and some NOx components are also removed. For example, sample 1 after vacuum-drying the powder in which the platinum complex was adsorbed on the surface of carbon black at 100 ° C. for 19 hours, sample 2 after vacuum-drying at 100 ° C. for 19 hours and further vacuum-drying at 190 ° C. for 14 hours. Scanning calorimetry-mass spectrometry (DSC-Mass) was performed. STA 440F3 (manufactured by Netch Japan Co., Ltd.) was used as the DSC analyzer. A gas chromatograph mass spectrometer JMS-Q1500GC (manufactured by JEOL Ltd.) was connected to the DSC analyzer, and the mass spectrum of gas components generated by the DSC analyzer was measured. After placing about 10 mg of the sample on the sample stage, the temperature was raised to 500°C at a rate of 20°C/min in a helium atmosphere, and DSC and m/e = 18 (H 2 O), 30 (NO), 44 The signal intensity of the (CO 2 ) component was measured. An example of the obtained results is shown in FIGS. From FIGS. 1 and 2, it is suggested that the high-temperature drying treatment removes some of the NOx components in addition to the removal of moisture, and accordingly reduces the exothermic peak of the DSC. If the amount of heat generated during thermal decomposition becomes too large, problems such as aggregation of the catalyst particles may occur, which is not preferable. Therefore, it is preferable to set the drying temperature to 180° C. to 230° C. to reduce the amount of heat generated during thermal decomposition.
また、高温での乾燥を行う場合は、真空乾燥器、イナートオーブン等を使用し、酸素が存在しない条件下で乾燥を行うことが望ましい。また、発生したNOxガスが直ちに除去できる真空度、不活性ガスまたは窒素ガスのガス流通下とすることがさらに望ましい。 When drying at a high temperature, it is desirable to use a vacuum dryer, an inert oven, or the like, and dry under oxygen-free conditions. Further, it is more desirable to set the vacuum to be able to immediately remove the generated NOx gas, and to be under the flow of an inert gas or nitrogen gas.
また、本発明は、上述したとおり、不活性ガスまたは窒素ガス雰囲気中、一般的に、280℃~400℃で前記カーボン担体上に白金錯体が吸着した粉末を熱分解する熱分解工程を含む。 In addition, as described above, the present invention includes a thermal decomposition step of thermally decomposing the powder having the platinum complex adsorbed on the carbon support generally at 280° C. to 400° C. in an inert gas or nitrogen gas atmosphere.
本発明の電極触媒の製造方法は、カーボンブラックの表面上に白金を含んだ錯体が担持された粉末を不活性ガスまたは窒素ガス雰囲気中、一般的に、280℃~400℃という比較的低い温度で熱分解する工程を採用することに特徴がある。また、この工程により、還元剤を使用することなく2~5nm程度の小さい触媒粒径の白金担持電極触媒を製造することができる。280℃以下では、熱分解が不十分であり好ましくない。また、400℃以上では、触媒粒子が凝集により粗大化し好ましくない。
なお、図1より白金錯体の分解ピークとCOの検出ピークがほぼ一致していることより、白金錯体が吸着しているカーボンブラックの官能基の分解時に発生するエネルギーを利用し、比較的低い温度で白金錯体が熱分解できると考える。
In the method for producing an electrode catalyst of the present invention, a powder having a platinum-containing complex supported on the surface of carbon black is generally heated to a relatively low temperature of 280° C. to 400° C. in an inert gas or nitrogen gas atmosphere. It is characterized by adopting a process of thermally decomposing at Moreover, by this process, a platinum-supported electrode catalyst with a small catalyst particle size of about 2 to 5 nm can be produced without using a reducing agent. A temperature of 280° C. or less is not preferable because thermal decomposition is insufficient. On the other hand, if the temperature is 400° C. or higher, the catalyst particles aggregate and become coarse, which is not preferable.
In addition, from the fact that the decomposition peak of the platinum complex and the detection peak of CO 2 are almost the same from FIG. It is assumed that the platinum complex can be thermally decomposed at the temperature.
上記図1、図2に例示したDSCピークから、白金錯体の熱分解反応は280℃付近から顕著になることが分かる。従って、280℃以上で熱分解することで、熱分解を促進することができる。一方、あまりにも熱分解を急激に進めすぎると発熱によって触媒粒子の凝集などの不具合を生じる恐れがあり好ましくない。以上の点から、上述したとおり、熱分解温度は、一般的には280℃~400℃とし、290℃~350℃とすることが好ましく。より好ましくは、300℃~320℃である。 From the DSC peaks exemplified in FIGS. 1 and 2 above, it can be seen that the thermal decomposition reaction of the platinum complex becomes significant from around 280.degree. Therefore, thermal decomposition can be accelerated by thermally decomposing at 280° C. or higher. On the other hand, if the thermal decomposition proceeds too rapidly, heat generation may cause problems such as agglomeration of the catalyst particles, which is not preferable. From the above points, as described above, the thermal decomposition temperature is generally 280°C to 400°C, preferably 290°C to 350°C. More preferably, it is 300°C to 320°C.
また、他の方法として、水素を還元剤として使用し気相還元する方法や、エタノールを還元剤として使用し、事前に液相還元する方法などが報告されているが、還元反応の制御が難しいため触媒粒子の凝集を招き易い点、還元剤が触媒へ残留する点、工程が増える点等から特に製造量を多くした製造方法としては好ましくない。 In addition, as other methods, a method of gas phase reduction using hydrogen as a reducing agent and a method of prior liquid phase reduction using ethanol as a reducing agent have been reported, but control of the reduction reaction is difficult. Therefore, it is not preferable as a production method that requires a particularly large production volume because it tends to cause agglomeration of the catalyst particles, the reducing agent remains in the catalyst, and the number of steps increases.
熱分解工程については上述したが、さらに説明すると、カーボン担体上に白金錯体が吸着した粉末を、容器に、層厚(堆積厚)0.1mm~30mmの範囲に堆積させ、不活性ガスまたは窒素ガス雰囲気中、280℃~400℃で熱分解することができる。熱分解工程に適する容器は、より具体的には、カーボン製の角型の平たい容器(バット)に、カーボンブラックの表面上に白金錯体が吸着した粉末を層厚(堆積厚)0.1mm~30mmの範囲に堆積させ、不活性ガスまたは窒素ガス雰囲気中、前記加熱温度下で熱分解する。 The pyrolysis step has been described above, but to explain further, the powder with the platinum complex adsorbed on the carbon support is deposited in a container in a layer thickness (deposition thickness) range of 0.1 mm to 30 mm, and an inert gas or nitrogen It can be thermally decomposed at 280°C to 400°C in a gas atmosphere. More specifically, a container suitable for the pyrolysis step is a rectangular flat container (bat) made of carbon, and a layer thickness (deposition thickness) of 0.1 mm to 0.1 mm of powder in which a platinum complex is adsorbed on the surface of carbon black. It is deposited in a range of 30 mm and thermally decomposed at the above heating temperature in an inert gas or nitrogen gas atmosphere.
後に示す表1の実施例2ないし実施例4で示すように同じ温度で熱分解した場合であっても、層厚を高くすると、触媒粒径は大きくなる。この傾向を利用することで、触媒粒径を2nm~5nmの中の狙った大きさに調整することができる。層厚を30mmより高くすると、触媒粒径は5nmよりも大きくなる。 As shown in Examples 2 to 4 in Table 1 below, even when pyrolysis is performed at the same temperature, increasing the layer thickness increases the catalyst particle size. By utilizing this tendency, the catalyst particle size can be adjusted to a target size within 2 nm to 5 nm. If the layer thickness is higher than 30 mm, the catalyst particle size will be larger than 5 nm.
また、後に示す表1の実施例5ないし実施例6において、200℃で46時間真空乾燥した粉末を熱分解した際も、触媒粒径は、層厚を高くすると大きくなる傾向にある。一方、層厚と触媒粒径の関係は、表1の実施例2ないし実施例4とは異なっている。これは、前記のとおり高温での乾燥処理を行うことで、触媒中の水分の除去に加えて触媒中のNOx成分の一部が除去された結果、熱分解の反応が温和となったためであると考えられる。また、NOx成分の一部が除去される効果を利用することで、不活性ガス雰囲気中での熱分解において、一度により多くの粉末を処理することが可能となる。 Further, in Examples 5 and 6 in Table 1 shown later, when the powder vacuum-dried at 200° C. for 46 hours was thermally decomposed, the catalyst particle size tended to increase as the layer thickness increased. On the other hand, the relationship between layer thickness and catalyst particle size is different from that of Examples 2 to 4 in Table 1. This is because, as a result of removing some of the NOx components in the catalyst in addition to removing the moisture in the catalyst by performing the drying treatment at a high temperature as described above, the thermal decomposition reaction was mild. it is conceivable that. Moreover, by utilizing the effect of removing a part of the NOx component, it becomes possible to process more powder at one time in thermal decomposition in an inert gas atmosphere.
以下、本発明の具体的な実施態様について説明するが、本発明は、それらに限定されるものではない。 Specific embodiments of the present invention will be described below, but the present invention is not limited to them.
<ジニトロジアンミン白金硝酸溶液の調製>
(溶液S1の調製)
1wt%の白金濃度及び透過色測定の彩度a*が30~35であるジニトロジアンミン白金硝酸溶液S1を、以下のようにして調製した。
<Preparation of dinitrodiammineplatinum nitric acid solution>
(Preparation of solution S1)
A dinitrodiammineplatinum nitrate solution S1 having a platinum concentration of 1 wt % and a chroma a* of 30 to 35 in transmission color measurement was prepared as follows.
ジニトロジアンミン白金を硝酸水溶液に、白金換算で100g/L、硝酸濃度で180g/Lになるように、溶解させた。この溶液を攪拌しながら、約104℃で20時間に亘って加熱した。このようにして、溶液S1を得た。なお、この溶液S1は実施例毎に調整した。 Dinitrodiammineplatinum was dissolved in an aqueous nitric acid solution to a concentration of 100 g/L in terms of platinum and a nitric acid concentration of 180 g/L. The solution was heated with stirring at about 104° C. for 20 hours. Thus, solution S1 was obtained. In addition, this solution S1 was adjusted for each example.
(溶液S2の調製)
ジニトロジアンミン白金を硝酸水溶液に、白金換算で100g/L、硝酸濃度で180g/Lになるように、溶解させた。この溶液を攪拌しながら、約104℃で4時間に亘って加熱した。このようにして、溶液S2を得た。
(Preparation of solution S2)
Dinitrodiammineplatinum was dissolved in an aqueous nitric acid solution to a concentration of 100 g/L in terms of platinum and a nitric acid concentration of 180 g/L. The solution was heated with stirring at about 104° C. for 4 hours. Thus, solution S2 was obtained.
<担持触媒の調製>
(実施例1)
9.0gのVulcan XC-72R(CABOT製)を、純水700mL中に分散させた。次に、この分散液に硝酸を4.9g添加し、酸性とした。得られた酸性の分散液に、1.0gの白金に相当する量の溶液S1を添加し、その後4時間に亘って撹拌した。該分散液を濾過して、濾過ケーキを得た。これを純水で洗浄した後、60℃で19時間に亘って、乾燥に供した。このようにして、カーボン担体上に白金錯体が吸着した粉末を得た。以下、この粉末を「粉末P1」と呼ぶ。
<Preparation of supported catalyst>
(Example 1)
9.0 g of Vulcan XC-72R (manufactured by CABOT) was dispersed in 700 mL of pure water. Next, 4.9 g of nitric acid was added to this dispersion to acidify it. An amount of solution S1 corresponding to 1.0 g of platinum was added to the resulting acidic dispersion and then stirred for 4 hours. The dispersion was filtered to obtain a filter cake. After washing it with pure water, it was dried at 60° C. for 19 hours. Thus, a powder in which the platinum complex was adsorbed on the carbon support was obtained. This powder is hereinafter referred to as "powder P1".
次いで、粉末P1を、粉末状に粉砕した後、粉末P1の厚さ(堆積厚)が0.1mmとなるように容器に入れ、窒素ガス流通下、310℃で1時間に亘る熱処理に供した。 Next, the powder P1 was pulverized into powder, placed in a container so that the thickness (deposition thickness) of the powder P1 was 0.1 mm, and subjected to heat treatment at 310° C. for 1 hour under nitrogen gas flow. .
以上のようにして、担持触媒を製造した。以下、これを「実施例1」と呼ぶ。 A supported catalyst was produced as described above. Hereinafter, this will be referred to as "Example 1".
(実施例2)
1800gのVulcan XC-72R(CABOT製)を、純水140L中に分散させた。次に、この分散液に硝酸を975g添加し、酸性とした。得られた酸性の分散液に、208gの白金に相当する量の溶液S1を添加し、その後4時間に亘って撹拌した。該分散液を濾過して、濾過ケーキを得た。これを純水で洗浄した後、100℃で19時間に亘って、真空乾燥に供した。このようにして、カーボン担体上に白金錯体が吸着した粉末を得た。以下、この粉末を「粉末P2」と呼ぶ。
(Example 2)
1800 g of Vulcan XC-72R (manufactured by CABOT) was dispersed in 140 L of pure water. Next, 975 g of nitric acid was added to this dispersion to acidify it. A quantity of solution S1 corresponding to 208 g of platinum was added to the resulting acidic dispersion and then stirred for 4 hours. The dispersion was filtered to obtain a filter cake. After washing this with pure water, it was subjected to vacuum drying at 100° C. for 19 hours. Thus, a powder in which the platinum complex was adsorbed on the carbon support was obtained. This powder is hereinafter referred to as "powder P2".
次いで、粉末P2を、粉末状に粉砕した後、粉末P2の厚さ(堆積厚)が0.7mmとなるように容器に入れ(堆積させ)、窒素雰囲気中、310℃で1時間に亘る熱処理に供した。 Next, after pulverizing the powder P2 into a powder form, it is placed (deposited) in a container so that the thickness (deposition thickness) of the powder P2 is 0.7 mm, and heat treatment is performed at 310 ° C. for 1 hour in a nitrogen atmosphere. served to
以上のようにして、担持触媒を製造した。以下、これを「実施例2」と呼ぶ。 A supported catalyst was produced as described above. Hereinafter, this will be referred to as "Example 2".
(実施例3)
熱分解工程時の粉末の厚さを4mmとしたことを除いては、実施例2と同様にして、担持触媒を製造した。以下、これを「実施例3」と呼ぶ。
(Example 3)
A supported catalyst was prepared in the same manner as in Example 2, except that the thickness of the powder during the pyrolysis process was 4 mm. Hereinafter, this will be referred to as "Example 3".
(実施例4)
熱分解工程時の粉末の厚さを6mmとしたことを除いては、実施例2と同様にして、担持触媒を製造した。以下、これを「実施例4」と呼ぶ。
(Example 4)
A supported catalyst was prepared in the same manner as in Example 2, except that the thickness of the powder during the pyrolysis process was 6 mm. Hereinafter, this will be referred to as "Example 4".
(実施例5)
真空乾燥を200℃で46時間としたことと、熱分解工程時の粉末の厚さ(堆積厚)を7mmとしたことを除いては、実施例2と同様にして、担持触媒を製造した。以下、これを「実施例5」と呼ぶ。
(Example 5)
A supported catalyst was produced in the same manner as in Example 2, except that the vacuum drying was carried out at 200° C. for 46 hours and the powder thickness (deposition thickness) during the pyrolysis step was 7 mm. Hereinafter, this will be referred to as "Example 5".
(実施例6)
真空乾燥を200℃で46時間としたことと、熱分解工程時の粉末の厚さ(堆積厚)を10mmとしたことを除いては、実施例2と同様にして、担持触媒を製造した。以下、これを「実施例6」と呼ぶ。
(Example 6)
A supported catalyst was produced in the same manner as in Example 2, except that the vacuum drying was carried out at 200° C. for 46 hours and the powder thickness (deposition thickness) during the pyrolysis step was 10 mm. Hereinafter, this will be referred to as "Example 6".
(実施例7)
熱分解工程時の粉末の厚さを4mmとしたこと、温度を330℃としたことを除いては、実施例2と同様にして、担持触媒を製造した。以下、これを「実施例7」と呼ぶ。
(Example 7)
A supported catalyst was produced in the same manner as in Example 2, except that the thickness of the powder during the pyrolysis step was 4 mm and the temperature was 330°C. Hereinafter, this will be referred to as "Example 7".
(比較例1)
溶液S1を溶液S2に変えたことを除いては、実施例1と同様にして、カーボン担体上に白金錯体が吸着した粉末を製造した。以下、これを「比較例1」と呼ぶ。
(Comparative example 1)
A powder having a platinum complex adsorbed on a carbon support was produced in the same manner as in Example 1, except that the solution S1 was changed to the solution S2. Hereinafter, this is called "comparative example 1".
(比較例2)
2.7gのVulcan XC-72R(CABOT製)を、純水210mL中に分散させた。得られた分散液に、0.3gの白金に相当触媒する量の溶液S1を添加し、その後、撹拌しながら60℃で蒸発乾固した。次いで、粉末状に粉砕した後、粉末P1の厚さ(堆積厚)が0.1mmとなるように容器に入れ、窒素ガス流通下、450℃で1時間に亘る熱処理に供した。以上のようにして製造触媒を「比較例2」と呼ぶ。なお、吸着していない白金錯体も含めて全て熱分解させるため、450℃とした。
(Comparative example 2)
2.7 g of Vulcan XC-72R (manufactured by CABOT) was dispersed in 210 mL of pure water. A catalytic amount of solution S1 corresponding to 0.3 g of platinum was added to the resulting dispersion, which was then evaporated to dryness at 60° C. with stirring. After pulverizing into powder, the powder P1 was placed in a container so that the thickness (deposition thickness) of the powder P1 was 0.1 mm, and subjected to heat treatment at 450° C. for 1 hour under nitrogen gas flow. The catalyst thus produced is called "Comparative Example 2". In addition, the temperature was set to 450° C. in order to thermally decompose all the platinum complexes including the unadsorbed platinum complex.
下記表1に、実施例1~7と比較例1~2の白金担持カーボン触媒の白金の平均粒子径と標準偏差を示す。 Table 1 below shows the average particle size and standard deviation of platinum in the platinum-supported carbon catalysts of Examples 1 to 7 and Comparative Examples 1 and 2.
  表1
Figure JPOXMLDOC01-appb-I000001
Table 1
Figure JPOXMLDOC01-appb-I000001
<ジニトロジアンミン白金硝酸溶液の彩度a*の測定>
溶液S1乃至S2の各々が含んでいる白金錯体について、L表色系における彩度aの測定を行った。この測定は、日本電色工業株式会社製の透過色測定器(TZ6000)を用いて、以下のようにして行った。
<Measurement of chroma a* of dinitrodiammineplatinum nitric acid solution>
The chroma a * in the L * a * b * color system was measured for the platinum complex contained in each of the solutions S1 to S2. This measurement was performed as follows using a transmission color measuring instrument (TZ6000) manufactured by Nippon Denshoku Industries Co., Ltd.
まず、溶液S1を、白金濃度で1wt%となるように純水を用いて希釈し、測定用試料とした。光源はD65、視野は2度とし、試料を物理長10mmの石英セル中に入れ、透過光のLの値を測定した。 First, the solution S1 was diluted with pure water so that the platinum concentration was 1 wt %, and used as a sample for measurement. The light source was D65, the field of view was 2 degrees, the sample was placed in a quartz cell with a physical length of 10 mm, and the L * a * b * values of transmitted light were measured.
表1に示す通り、実施例1~実施例7に使用した白金溶液S1の彩度aは、30であった。他方、比較例1、比較例2に使用した白金溶液S2の彩度aは7であった。 As shown in Table 1, the chroma a * of the platinum solution S1 used in Examples 1 to 7 was 30. On the other hand, the platinum solution S2 used in Comparative Examples 1 and 2 had a saturation a * of 7.
上記表1の比較例1では、白金吸着率が低く、好ましくない。 In Comparative Example 1 in Table 1 above, the platinum adsorption rate is low, which is not preferable.
比較例2では、所望の粒径より大きい白金粒径となっており、好ましくない。 In Comparative Example 2, the platinum particle size is larger than the desired particle size, which is not preferable.
上記表1から分かるように、実施例1~実施例7に係る触媒は、高い白金吸着率となっている。また、層厚を変更することで、触媒粒子径は2~5nmの中の特定の大きさに調整出来ている。即ち、これらの結果から、本製造方法で触媒を製造することにより、効率的に高分散形の白金触媒を製造できることができることが示唆された。 As can be seen from Table 1 above, the catalysts according to Examples 1 to 7 have high platinum adsorption rates. Further, by changing the layer thickness, the catalyst particle diameter can be adjusted to a specific size within 2 to 5 nm. In other words, these results suggest that a highly dispersed platinum catalyst can be efficiently produced by producing a catalyst by this production method.
<触媒粒子の金属表面積の測定>
実施例3の触媒粒子の金属表面積(金属分散度)は、CO吸着法によって測定した。具体的には、金属分散度測定装置(BEL-METAL-3 日本ベル製)を用い、25mgの触媒粒子を130℃でヘリウム、水素、ヘリウムの順に流通ガスで前処理を施した後、50℃でヘリウムをキャリアガスとしてCOをパルス状に供給し、排出ガス中のCO量が一定になるまでのパルス数から吸着CO量を計算して、触媒粒子の金属表面積を求めた。実施例3の金属表面積は118m/gであり、一般的に求められる水準以上の金属表面積を有していた。
<Measurement of metal surface area of catalyst particles>
The metal surface area (metal dispersity) of the catalyst particles of Example 3 was measured by the CO adsorption method. Specifically, using a metal dispersion measuring device (BEL-METAL-3 manufactured by Bell Japan), 25 mg of catalyst particles were pretreated at 130 ° C. with helium, hydrogen, and helium in this order, and then heated to 50 ° C. The amount of adsorbed CO was calculated from the number of pulses until the amount of CO in the exhaust gas became constant, and the metal surface area of the catalyst particles was obtained. The metal surface area of Example 3 was 118 m 2 /g, which is higher than the level generally required.
<TEM像>
実施例3のTEM像を図3に示す。TEM像から、3nm程度の触媒粒子が高分散に担持されていることが分かる。
<TEM image>
A TEM image of Example 3 is shown in FIG. From the TEM image, it can be seen that catalyst particles of about 3 nm are supported in a highly dispersed manner.
<電気化学的評価>
燃料電池用電極触媒としての性能を評価するために、実施例3の酸素還元反応(ORR)活性を、ビー・エー・エス製ポテンショガルバノスタットを用いて回転電極法によって評価した。実施例3及びパーフルオロスルホン酸分散液を2-プロパノール及び水の混合溶媒に分散させて、触媒インクを調製した。前記調整した触媒インクをガラス状カーボン(直径6mm)に、白金量が18μg/cmになるように塗布し、測定用電極を作製した。作製した測定用電極を窒素ガス飽和した25℃、0.1mol/L過塩素酸に浸漬し、参照電極に可逆水素電極(RHE)、対極に白金線を使用し、電位範囲を0.05V~1.2V(vs.RHE)、電位掃引速度50mV/secでサイクリックボルタモグラムを測定した。得られたサイクリックボルタモグラムの水素脱離波から、ECSA(電気化学的活性表面積)を算出した。その後、セル内に酸素ガスを導入し、酸素ガス飽和雰囲気下で、測定用電極を1600rpmで回転させながら、電位を0.05V~1.2V(vs.RHE)、電位掃引速度10mV/secで分極曲線を測定した。得られた分極曲線から、0.9Vの酸素還元電流値(I)および拡散限界電流値として0.4Vの酸素還元電流値(Id)から、下式にて酸素の拡散影響を排除した活性化支配電流値(Ik)を算出した。
Ik=(Id・I)/(Id-I)
この活性化支配電流値(Ik)をECSAで除することで比活性を、前記ガラス状カーボン電極上の白金重量で除することで質量活性を算出した。触媒C3のECSAは67.8m/gであり、比活性及び質量活性はそれぞれ173μA/cm、118A/gであり、一般的に求められる水準以上の触媒性能を示した。従って、本製造方法で製造した触媒は、燃料電池用電極触媒として使用できる。
<Electrochemical evaluation>
In order to evaluate the performance as a fuel cell electrode catalyst, the oxygen reduction reaction (ORR) activity of Example 3 was evaluated by the rotating electrode method using a BAS potentiogalvanostat. A catalyst ink was prepared by dispersing Example 3 and the perfluorosulfonic acid dispersion in a mixed solvent of 2-propanol and water. The prepared catalyst ink was applied to glassy carbon (diameter 6 mm) so that the amount of platinum was 18 μg/cm 2 to prepare an electrode for measurement. The prepared measurement electrode is immersed in nitrogen gas-saturated 25 ° C., 0.1 mol / L perchloric acid, a reversible hydrogen electrode (RHE) is used as the reference electrode, a platinum wire is used as the counter electrode, and the potential range is 0.05 V ~ A cyclic voltammogram was measured at 1.2 V (vs. RHE) and a potential sweep rate of 50 mV/sec. ECSA (electrochemically active surface area) was calculated from the hydrogen desorption wave of the obtained cyclic voltammogram. After that, oxygen gas is introduced into the cell, and in an atmosphere saturated with oxygen gas, while rotating the measuring electrode at 1600 rpm, the potential is 0.05 V to 1.2 V (vs.RHE) and the potential sweep rate is 10 mV/sec. Polarization curves were measured. From the obtained polarization curve, the oxygen reduction current value (I) of 0.9 V and the oxygen reduction current value (Id) of 0.4 V as the diffusion limit current value are calculated by the following formula, the activation excluding the diffusion effect of oxygen The dominant current value (Ik) was calculated.
Ik=(Id・I)/(Id−I)
The specific activity was calculated by dividing this activation current value (Ik) by ECSA, and the mass activity was calculated by dividing the platinum weight on the glassy carbon electrode. The ECSA of Catalyst C3 was 67.8 m 2 /g, and the specific activity and mass activity were 173 μA/cm 2 and 118 A/g, respectively, indicating catalytic performance above the generally required level. Therefore, the catalyst produced by this production method can be used as an electrode catalyst for fuel cells.
本発明の製造方法で製造した触媒は、般的に求められる水準以上の触媒性能を示すので、例えば、燃料電池用電極の製造、使用業において利用可能である。 Since the catalyst produced by the production method of the present invention exhibits catalytic performance at or above the generally required level, it can be used, for example, in the production and use of fuel cell electrodes.

Claims (5)

  1. ジニトロジアンミン白金錯体又は化合物を硝酸水溶液に、白金換算で100±20g/L、硝酸濃度で220±40g/Lになるように溶解させ、100~110℃で18~24時間加熱することで前記ジニトロジアンミン白金を改変又は変成した白金錯体含有硝酸水溶液を得る工程と、
    担体カーボンブラックの水分散液と前記白金錯体含有硝酸水溶液を混合し、前記白金錯体を前記カーボンブラックの表面上に吸着させて前記白金錯体が吸着したカーボンブラック含有液を得る工程と、
    前記カーボンブラック含有液を濾過し、濾別された前記白金錯体が吸着したカーボンブラックを洗浄し、乾燥させて、前記カーボンブラックの表面上に前記白金錯体が吸着した粉末を得る工程と、
    前記白金錯体が吸着したカーボンブラック粉末を不活性ガスまたは窒素ガス雰囲気中、280℃~400℃で熱分解することによる白金錯体の熱分解工程と、
    を含むことを特徴とする白金担持カーボン触媒の製造方法。
    A dinitrodiammine platinum complex or compound is dissolved in an aqueous nitric acid solution to a platinum conversion of 100 ± 20 g / L and a nitric acid concentration of 220 ± 40 g / L, and the dinitro is heated at 100 to 110 ° C. for 18 to 24 hours. obtaining a platinum complex-containing nitric acid aqueous solution in which diammine platinum is modified or denatured;
    A step of mixing an aqueous dispersion of carrier carbon black and the platinum complex-containing nitric acid aqueous solution to adsorb the platinum complex on the surface of the carbon black to obtain a carbon black-containing liquid in which the platinum complex is adsorbed;
    A step of filtering the carbon black-containing liquid, washing and drying the filtered carbon black having the platinum complex adsorbed thereon, and obtaining a powder having the platinum complex adsorbed on the surface of the carbon black;
    A thermal decomposition step of the platinum complex by thermally decomposing the carbon black powder to which the platinum complex is adsorbed at 280 ° C. to 400 ° C. in an inert gas or nitrogen gas atmosphere;
    A method for producing a platinum-supported carbon catalyst, comprising:
  2. 改変又は変成した前記白金錯体含有硝酸水溶液は、当該水溶液を1wt%の白金濃度となるように純水で希釈した場合の水溶液のL表色系における彩度aが28~35であることを特徴とする請求項1記載の白金担持カーボン触媒の製造方法。 The modified or denatured platinum complex-containing nitric acid aqueous solution has an L * a * b * saturation a * in the color system of the aqueous solution when the aqueous solution is diluted with pure water to a platinum concentration of 1 wt%. 35, the method for producing a platinum-supported carbon catalyst according to claim 1.
  3. 前記乾燥は、180℃~230℃の温度下で行われることを特徴とする請求項2記載の白金担持カーボン触媒の製造方法。 The method for producing a platinum-supported carbon catalyst according to claim 2, wherein the drying is performed at a temperature of 180°C to 230°C.
  4. 前記熱分解工程は、前記カーボンブラックの表面上に白金錯体が吸着した粉末を、適当な容器に、層厚(堆積厚)0.1mm~30mmの範囲に堆積させ、不活性ガスまたは窒素ガス雰囲気中、280℃~400℃で前記白金錯体を熱分解することを特徴とする請求項2記載の白金担持カーボン触媒の製造方法。 In the thermal decomposition step, the powder having the platinum complex adsorbed on the surface of the carbon black is deposited in an appropriate container to a layer thickness (deposition thickness) in the range of 0.1 mm to 30 mm, and an inert gas or nitrogen gas atmosphere The method for producing a platinum-supported carbon catalyst according to claim 2, wherein the platinum complex is thermally decomposed at a temperature of 280°C to 400°C.
  5. 白金担持カーボン触媒中の白金担持量は、前記触媒の総重量当たり、5wt%~20wt%に調整されることを特徴とする請求項1~4のいずれか一項記載の白金担持カーボン触媒の製造方法。 Manufacture of the platinum-supported carbon catalyst according to any one of claims 1 to 4, wherein the amount of platinum supported in the platinum-supported carbon catalyst is adjusted to 5 wt% to 20 wt% relative to the total weight of the catalyst. Method.
PCT/JP2022/020068 2021-07-01 2022-05-12 Method for manufacturing electrode catalyst for fuel cell WO2023276457A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002917.8A CN115867380A (en) 2021-07-01 2022-05-12 Method for preparing electrode catalyst for fuel cell
KR1020227035903A KR20230006469A (en) 2021-07-01 2022-05-12 Manufacturing method of electrode catalyst for fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021109870A JP7178127B1 (en) 2021-07-01 2021-07-01 METHOD FOR MANUFACTURING FUEL CELL ELECTROCATALYST
JP2021-109870 2021-07-01

Publications (1)

Publication Number Publication Date
WO2023276457A1 true WO2023276457A1 (en) 2023-01-05

Family

ID=84191667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020068 WO2023276457A1 (en) 2021-07-01 2022-05-12 Method for manufacturing electrode catalyst for fuel cell

Country Status (4)

Country Link
JP (1) JP7178127B1 (en)
KR (1) KR20230006469A (en)
CN (1) CN115867380A (en)
WO (1) WO2023276457A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851940A (en) * 1981-09-24 1983-03-26 Kiyataraa Kogyo Kk Preparation of solution containing platinum to be supported as catalyst
JPH05123574A (en) * 1991-11-05 1993-05-21 Ishifuku Kinzoku Kogyo Kk Manufacture of platinum carrying catalyst
JPH0631166A (en) * 1992-07-06 1994-02-08 Stonehard Assoc Inc Production of catalyst carrying highly diffused finely powdered platinum
JP2004121983A (en) * 2002-10-02 2004-04-22 Ishifuku Metal Ind Co Ltd Method for producing platinum-ruthenium alloy carrying catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315857B2 (en) 2004-04-26 2009-08-19 株式会社キャタラー Platinum solution and method for producing catalyst using the same
JP5123574B2 (en) 2007-06-14 2013-01-23 甲陽ケミカル株式会社 Hyaluronic acid production enhancer
JP2010167353A (en) 2009-01-21 2010-08-05 Kansai Coke & Chem Co Ltd Method for manufacturing electrode catalyst and electrode obtained by using electrode catalyst obtained by the manufacturing method
JP2013034937A (en) * 2011-08-08 2013-02-21 Nagoya Institute Of Technology Method for producing platinum particle, method for producing platinum particle carrying catalyst, and purifying catalyst
JP6411770B2 (en) * 2014-04-15 2018-10-24 トヨタ自動車株式会社 Fuel cell electrode catalyst and method for producing fuel cell electrode catalyst
JP6040954B2 (en) * 2014-04-16 2016-12-07 トヨタ自動車株式会社 Method for producing fuel cell catalyst
JP6031166B1 (en) 2015-09-11 2016-11-24 富士重工業株式会社 Vehicle automatic operation control device
JP6670386B2 (en) * 2016-08-17 2020-03-18 三井金属鉱業株式会社 Methane oxidation catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851940A (en) * 1981-09-24 1983-03-26 Kiyataraa Kogyo Kk Preparation of solution containing platinum to be supported as catalyst
JPH05123574A (en) * 1991-11-05 1993-05-21 Ishifuku Kinzoku Kogyo Kk Manufacture of platinum carrying catalyst
JPH0631166A (en) * 1992-07-06 1994-02-08 Stonehard Assoc Inc Production of catalyst carrying highly diffused finely powdered platinum
JP2004121983A (en) * 2002-10-02 2004-04-22 Ishifuku Metal Ind Co Ltd Method for producing platinum-ruthenium alloy carrying catalyst

Also Published As

Publication number Publication date
KR20230006469A (en) 2023-01-10
JP7178127B1 (en) 2022-11-25
CN115867380A (en) 2023-03-28
JP2023006967A (en) 2023-01-18

Similar Documents

Publication Publication Date Title
Charreteur et al. Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction
CN1964782B (en) Platinum catalysts obtained by reducing in-situ formed platinum dioxide
JP4938165B2 (en) Fuel cell electrode catalyst
JP5822834B2 (en) Catalyst with metal oxide doping for fuel cells
Cheng et al. Ultrathin carbon layer stabilized metal catalysts towards oxygen reduction
JP5456797B2 (en) Fuel cell electrode catalyst
Odetola et al. Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier
KR20170100581A (en) Carbon-supported catalysts containing modifiers and methods for their preparation
JPH05129023A (en) Improved catalyst material
JP2008041253A (en) Electrocatalyst and power generation system using the same
JP2007311026A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the catalyst
CN113889629A (en) Preparation method of platinum-ruthenium alloy catalyst for fuel cell anode
KR102345326B1 (en) Preparation method of carbon-supported alloy nanoparticles catalyst using physical vapour deposition
KR101932612B1 (en) Preparing method of nitrogen-iron doped porous carbon nanoparticle catalyst for oxygen reduction reaction
JP7178127B1 (en) METHOD FOR MANUFACTURING FUEL CELL ELECTROCATALYST
WO2017208742A1 (en) Carbon for supporting catalyst and production process therefor
KR102234245B1 (en) Catalyst for solid polymer fuel cell and method for manufacturing same
JP2006210314A (en) Electrode catalyst for fuel cell and its manufacturing method
JP4939005B2 (en) Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell
Choi et al. Iron-tetracyanobenzene complex derived non-precious catalyst for oxygen reduction reaction
JPH04141235A (en) Electrode catalyst for an anode pole
WO2007072739A1 (en) Method for producing manganese oxide nanoparticle dispersed material and electrode
JP4082800B2 (en) Catalyst production method
JP5531313B2 (en) Composite electrode catalyst and method for producing the same
JPS62168545A (en) Production of platinum supported catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22832616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE