JPS62168545A - Production of platinum supported catalyst - Google Patents

Production of platinum supported catalyst

Info

Publication number
JPS62168545A
JPS62168545A JP61010621A JP1062186A JPS62168545A JP S62168545 A JPS62168545 A JP S62168545A JP 61010621 A JP61010621 A JP 61010621A JP 1062186 A JP1062186 A JP 1062186A JP S62168545 A JPS62168545 A JP S62168545A
Authority
JP
Japan
Prior art keywords
platinum
catalyst
added
carrier
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61010621A
Other languages
Japanese (ja)
Other versions
JPH0463730B2 (en
Inventor
Yoshinori Nishihara
啓徳 西原
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61010621A priority Critical patent/JPS62168545A/en
Publication of JPS62168545A publication Critical patent/JPS62168545A/en
Publication of JPH0463730B2 publication Critical patent/JPH0463730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To produce a platinum supported catalyst within a short time, by a method wherein protective colloid is added to a contact system of a catalyst carrier under hydrophilic treatment with a platinum salt and, after said contact system is made alkaline, a reducing agent having an aldehyde group is added thereto. CONSTITUTION:After a carrier under hydrophilic treatment is sufficiently contacted with a platinum salt, a protective colloid agent for protecting colloid of metal particles is added to the contact system to be sufficiently mixed therewith. pH of this mixing system is increased and a reducing agent having a substitutent corresponding to an aldehyde group is added to said mixing system to reduce the platinum salt at reaction temp. capable of allowing sufficient reduction. At the same time, reduced platinum is adsorbed by the carrier to obtain a highly dispersed high surface area platinum supported catalyst having a finer crystal size. By this method, a catalyst of a predetermined support amount can be obtained safely and surely within a short time without repeating a platinum supporting process.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、白金と担体から成る高分散白金担持触媒の
調製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a method for preparing a highly dispersed supported platinum catalyst comprising platinum and a carrier.

〔従来技術とその問題点〕[Prior art and its problems]

従来、電気化学セルに用いる白金触媒としては、周知の
方法にて調製した白金黒を用いる方法が知られている。
Conventionally, as a platinum catalyst used in an electrochemical cell, a method using platinum black prepared by a well-known method is known.

ところが触媒として白金黒を用いた場合にはその比表面
積が小さい(約20〜Z5 m2/g−Pt )ために
満足しうる特性が得られなかった。
However, when platinum black was used as a catalyst, satisfactory characteristics could not be obtained because its specific surface area was small (approximately 20 to Z5 m2/g-Pt).

そこで大きい比表面積を有する白金触媒を得るためにカ
ーボンプラ、りなどの比較的高表面積を有する導電性多
孔質微粉体を担体として用い、これに白金微粒子を担持
させる方法がとられてきた。
Therefore, in order to obtain a platinum catalyst having a large specific surface area, a method has been adopted in which a conductive porous fine powder having a relatively high surface area, such as carbon plastic, is used as a carrier, and platinum fine particles are supported on the carrier.

この白金担持触媒の調製方法の従来方法としては大別し
て次の三種類の方法がある。
Conventional methods for preparing this platinum-supported catalyst can be broadly classified into the following three types.

(1)気相還元法 この方法は、一般的には担体に塩化白金酸水溶液などの
白金塩を含浸させた後に水分を除去し、これを水素気流
中で所定の温度において直接水素還元を行う方法である
。ところが、この方法においては、使用する担体の種類
によっては、白金塩が充分に担体の表面に吸着できない
ものがありこのような系では白金塩は単に担体間の細孔
あるいは担体内に存在する細孔内に吸収されているにす
ぎず、これを乾燥することにより白金塩水溶液が徐々に
濃縮され、この事により白金の粒子径が大きくなり(こ
れは白金の比表面積が減少した事に対応する)期待する
程の高表面積白金触媒が得られなかった。また、白金塩
が徐々に濃縮されることにより、白金粒子が集落を形成
し、このために担体の表面に均一に白金粒子を分散させ
ることが困難であった。
(1) Gas-phase reduction method In this method, the carrier is generally impregnated with a platinum salt such as an aqueous solution of chloroplatinic acid, water is removed, and then the carrier is directly reduced with hydrogen at a predetermined temperature in a hydrogen stream. It's a method. However, in this method, depending on the type of carrier used, the platinum salt may not be sufficiently adsorbed onto the surface of the carrier, and in such systems, the platinum salt simply absorbs into the pores between the carriers or within the carrier. The platinum salt aqueous solution is simply absorbed into the pores, and by drying it, the platinum salt aqueous solution gradually becomes concentrated, which increases the particle size of platinum (this corresponds to a decrease in the specific surface area of platinum). ) The expected high surface area platinum catalyst could not be obtained. Furthermore, as the platinum salt is gradually concentrated, the platinum particles form clusters, making it difficult to uniformly disperse the platinum particles on the surface of the carrier.

さらに他の問題点としては、水素ガスを用いて還元を行
い白金担持触媒を得るためには、通常100〜400℃
の高温にさらさなければならない。
Another problem is that in order to obtain a platinum-supported catalyst by performing reduction using hydrogen gas, the temperature is usually 100 to 400°C.
must be exposed to high temperatures.

ところがこの様な条件下で処理を行うと白金粒子のシフ
タ11ング(融点以下での白金粒子径の増大)が起きさ
らに白金比表面積が減少するという欠点があった。
However, when the treatment is carried out under such conditions, shifter 11 (increase in platinum particle diameter below the melting point) of the platinum particles occurs and furthermore, the platinum specific surface area is reduced.

また、現在では、触媒の活性を向上させるために白金単
独の担持触媒にかわって、白金担持触媒を出発物質とし
て用い、これにバナジウム等の第2成分を添加し、白金
−第2成分(あるいは第3成分)の合金担持触媒を調製
、使用する傾向にある。ところが、この場合には一般的
に約900℃の温度において触媒を熱処理をする必要が
あり、この際に分散性の悪い平均結晶子径の大きい白金
担持触媒を出発物質乏して用いると、熱処理により触媒
の結晶子径の大きい活性の低い触媒しか調製できないと
いう欠点があった。
Currently, in order to improve the activity of the catalyst, a supported platinum catalyst is used as a starting material instead of a supported catalyst containing only platinum, and a second component such as vanadium is added to this, and a platinum-second component (or There is a tendency to prepare and use alloy-supported catalysts of the third component). However, in this case, it is generally necessary to heat-treat the catalyst at a temperature of about 900°C, and if a platinum-supported catalyst with poor dispersibility and a large average crystallite diameter is used with insufficient starting material, the heat treatment This method has the disadvantage that only catalysts with large crystallite sizes and low activity can be prepared.

(2)熱分解法 特公昭50−56545に開示されているように、白金
塩として、ジニトロジアンミン白金(pt(NHs )
2(NO2)z )を用い、これをよ)%硝酸に溶解し
た後にカーボンブラ、りと接触させ充分になじませた後
に、乾燥しその後これを260℃空気気流中で処理し白
金塩を熱的に分解して白金担持触媒を得る方法がある。
(2) Pyrolysis method As disclosed in Japanese Patent Publication No. 50-56545, dinitrodiammine platinum (pt(NHs)) is used as a platinum salt.
2(NO2)z), dissolve it in 1% nitric acid, bring it into contact with carbon bran, and blend it thoroughly, dry it, and then treat it in an air stream at 260°C to heat the platinum salt. There is a method of obtaining a supported platinum catalyst by decomposing the catalyst.

しかしながら、この場合にも白金塩を担体に吸収させて
いるために気相還元法と同様な欠点があると考えられる
However, this method is also considered to have the same drawbacks as the gas phase reduction method because the platinum salt is absorbed into the carrier.

(3)液相還元法 特公昭54.−92588に開示されているように水に
分散させたカーボンブラックに塩化白金酸水溶液を添加
し、充分に接触させたのちに、ニチオン酸すl−IIウ
ムを用いて塩化白金酸を還元する方法がある。しかしな
がら、この方法においては所定の白金を担体上に担持さ
せることが困難であり、実用的でないことがわかった。
(3) Liquid phase reduction method Special Publication 1973. A method of adding an aqueous solution of chloroplatinic acid to carbon black dispersed in water, bringing them into sufficient contact with each other, and then reducing the chloroplatinic acid using sulfur dithionate as disclosed in No. 92588. There is. However, it has been found that this method is difficult to support a predetermined amount of platinum on the carrier and is not practical.

このような従来技術の背景にあって、本発明者は先に特
願昭60−38128により、担体を白金塩水溶液と接
触させた後に系のPHを調整し、この後に蟻酸等の還元
剤を用いて白金塩を還元し、担体上に白金を析出させる
方法を提案しているが、この方法において得られる白金
粒子はその結晶子径がまだ大きく、電子顕微鏡での観察
においては白金粒子の集落が観察され白金担持触媒とし
て充分な物性を有しているとは言いがたいことがわかっ
た。
Against the background of such prior art, the present inventor previously disclosed in Japanese Patent Application No. 60-38128 that the pH of the system was adjusted after bringing the carrier into contact with an aqueous platinum salt solution, and then a reducing agent such as formic acid was added. However, the crystallite size of the platinum particles obtained by this method is still large, and when observed with an electron microscope, platinum particles are concentrated. was observed, indicating that it cannot be said to have sufficient physical properties as a platinum-supported catalyst.

〔発明の目的〕[Purpose of the invention]

この発明は従来の欠点を除去して、従来より微細な結晶
子径を有する高分散で高表面積な白金担持触媒が短時間
に、安全に、しかも確実に調製できる方法を提供するこ
とを目的とする。
The purpose of this invention is to eliminate the conventional drawbacks and provide a method for preparing a highly dispersed and high surface area platinum-supported catalyst having a finer crystallite size than the conventional method, in a short time, safely, and reliably. do.

〔発明の要点〕[Key points of the invention]

この発明は、親水処理を施した担体と白金塩を充分に接
触させた後に、金属微粒子のコロイドを保護する保護コ
ロイド剤を添加し充分に混合して、その後糸のPHをア
ルカリ側にして、アルデヒド基に相補する置換基を有す
る還元剤を用いて還元が充分におこりうる反応温度で白
金塩の還元を行い、同時番こ還元された白金を担体上に
吸着させることにより、より微細な結晶子径を有する高
分散高表面積白金担持触媒が、確実に安全にしかも短時
間で調製できるようにしたものである。
In this invention, after sufficiently contacting the hydrophilically treated carrier with the platinum salt, a protective colloid agent for protecting the colloid of metal fine particles is added and thoroughly mixed, and then the pH of the thread is adjusted to the alkaline side. By reducing the platinum salt using a reducing agent having a substituent complementary to the aldehyde group at a reaction temperature that allows sufficient reduction to occur, and simultaneously adsorbing the reduced platinum onto a carrier, finer crystals can be formed. A highly dispersed, high surface area platinum-supported catalyst having a particle diameter can be prepared reliably, safely, and in a short time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づきより具体的に説明する。 Hereinafter, the present invention will be explained in more detail based on Examples.

アセチレンブラ、り9gに10 wt%硝酸水溶液40
0cr、を添加しこれを攪はんしながら、60℃まで昇
温しこの温度で約2時間攪はんを続けた。この後にこれ
をろ過しケーキのPHが7になるまで充分に洗浄した。
10 wt% nitric acid aqueous solution 40 to 9 g of acetylene brane
0 cr was added, and while stirring, the temperature was raised to 60°C, and stirring was continued at this temperature for about 2 hours. After that, this was filtered and thoroughly washed until the pH of the cake became 7.

次にこのケーキを2.1 mg−P t /ccの塩化
白金酸水溶液500工に充分に分散させ、さらに1時間
攪はんを続けた。これに30wt%の鍋酸化水素水11
.2CCを添加した。次にこれに0.1M炭酸ナト11
ウム水溶液を添加し系のPHを9.5に調整した。その
後0.1M蟻酸水溶液213 C1l:を約10分間か
けて徐々に添加した。添加完了後反応物を攪はんしなが
ら50 ℃まで昇温した。さらにこの温度で2時間攪は
んを続けた。反応完了後、反応物をろ別しケーキを60
℃の温水で充分洗浄した。このケーキを(資)℃で加熱
真空乾燥して白金担持触媒を得た。得られた触媒の物性
を評価した結果白金比表面積は180 m2/g−P 
t 、白金担持量は10.5%であることがわかった。
Next, this cake was thoroughly dispersed in a 2.1 mg-P t /cc aqueous solution of chloroplatinic acid, and stirring was continued for an additional hour. Add to this 30wt% pot hydrogen oxide water 11
.. 2CC was added. Next, add 0.1M sodium carbonate 11 to this
The pH of the system was adjusted to 9.5 by adding an aqueous solution of aluminum. Thereafter, 213 Cl: of a 0.1M aqueous formic acid solution was gradually added over about 10 minutes. After the addition was complete, the reaction mixture was heated to 50° C. with stirring. Stirring was further continued at this temperature for 2 hours. After the reaction is completed, the reaction product is filtered and the cake is
Thoroughly washed with warm water at ℃. This cake was heated and dried under vacuum at 100°C to obtain a platinum-supported catalyst. As a result of evaluating the physical properties of the obtained catalyst, the platinum specific surface area was 180 m2/g-P.
t, the amount of platinum supported was found to be 10.5%.

なお、この実施例において、担体と白金を接触させた系
に添加する保護コロイド剤としての過酸化水素水の量を
22.3CCとしても同様の効果が得られた。また、上
記実施例において、塩化白金酸水溶液に前処理した担体
を徐々に分散させるかわりに、前処理した担体を脱イオ
ン本釣500cr、に充分に分散させた後に50■74
の塩化白金酸水溶液21頭を攪はんしながら滴下して触
媒を調製してもよい。更に、10wt%硝酸のかわりに
過マンガン酸力11ウムやオゾン水溶液を用いても同様
の効果が得られる。
In this example, the same effect was obtained even when the amount of hydrogen peroxide water as a protective colloid added to the system in which the carrier and platinum were brought into contact was set to 22.3 CC. In the above example, instead of gradually dispersing the pretreated carrier in the chloroplatinic acid aqueous solution, the pretreated carrier was sufficiently dispersed in a deionized fishing rod of 500 cr, and then
The catalyst may be prepared by adding 21 heads of an aqueous chloroplatinic acid solution dropwise while stirring. Furthermore, the same effect can be obtained by using 11 um permanganate or an aqueous ozone solution instead of 10 wt% nitric acid.

次に比較のため、先に従来技術の項で述べた気相還元法
により、白金担持触媒を作成した結果を以下に述べる。
Next, for comparison, the results of producing a platinum-supported catalyst using the gas phase reduction method previously described in the prior art section will be described below.

アセチレンブラ、り9gを1.05gの白金を含有する
塩化白金酸水溶液5Qccと混合する。充分に混合しペ
ースト状になったものを5℃に保ち約加時間静置する。
9 g of acetylene chloride is mixed with 5 Qcc of an aqueous chloroplatinic acid solution containing 1.05 g of platinum. Mix thoroughly to form a paste and leave to stand at 5°C for about an hour.

この後にペースト内置存在する水分を除去すべく充分に
乾燥する。乾燥の後にこれを250℃水素雰囲気で約2
時間遠元する。出来上った触媒の物性を評価したところ
、CO化学吸着法による白金比表面積は、約90 m2
/g−Pt 、白金担持(illo、4%、X線回折法
による平均結晶子径約1艶オングストロームであった。
After this, the paste is sufficiently dried to remove any moisture present within the paste. After drying, it was heated at 250℃ in a hydrogen atmosphere for about 2 hours.
Time goes far away. When the physical properties of the finished catalyst were evaluated, the platinum specific surface area measured by CO chemisorption method was approximately 90 m2.
/g-Pt, platinum supported (Illo, 4%), average crystallite diameter was approximately 1 angstrom by X-ray diffraction method.

また、この触媒を電子顕微鏡で観察した結果、多くの白
金粒子の集落が観察された。さらにこの触媒の熱的安定
性を見るために、900℃,N2雰囲気で2時間熱処理
したところ、平均結晶子径が約250オングストローム
に増大した。
Furthermore, as a result of observing this catalyst using an electron microscope, many colonies of platinum particles were observed. Furthermore, in order to examine the thermal stability of this catalyst, it was heat treated at 900° C. in a N2 atmosphere for 2 hours, and the average crystallite diameter increased to about 250 angstroms.

r発明の効果〕 以上の説明から明らかなようにこの発明によれば、触媒
の調製にあたり保護コロイド剤を添加したことにより、
従来の方法と比較して白金微粒子の集落がなくなり分散
性が向上し、より高性能の触媒が得られるようになった
。このことにより白金触媒としての特性が向上したのみ
ならず、これをベースとした白金−第二成分合金触媒の
調製においても、触媒粒子の分散性が向上し特性を向上
させることができる。
Effects of the Invention] As is clear from the above explanation, according to the present invention, by adding a protective colloid agent during the preparation of the catalyst,
Compared to the conventional method, there are no clusters of platinum fine particles, the dispersibility is improved, and a catalyst with higher performance can be obtained. This not only improves the properties as a platinum catalyst, but also improves the dispersibility of catalyst particles and improves the properties in the preparation of a platinum-second component alloy catalyst based on this.

また、不発明によれば、基本的に触媒調製時に不必要な
熱がかからないために、調製時における白金のシフタ1
1ングを極力抑えることができる。
In addition, according to the invention, since no unnecessary heat is basically applied during catalyst preparation, the platinum shifter 1 during catalyst preparation is
1 ring can be suppressed as much as possible.

更に、白金が担体に吸収されるのではなく白金塩の還元
と同時に白金微粒子が担体上に吸着されるため従来の方
法と比較して白金の分散性、担体と白金の担持強度が強
くより安定な白金担持触媒が得られる。更にまた、本発
明によれば白金担持工程をくりかえすことなく、所定の
担持量の触媒が短時間に安全にしかも確実に得られる。
Furthermore, platinum particles are adsorbed onto the carrier at the same time as platinum salt is reduced, rather than platinum being absorbed by the carrier, resulting in stronger and more stable dispersion of platinum and stronger support between the carrier and platinum compared to conventional methods. A platinum-supported catalyst is obtained. Furthermore, according to the present invention, a predetermined amount of supported catalyst can be obtained safely and reliably in a short time without repeating the platinum supporting step.

Claims (1)

【特許請求の範囲】 1)親水処理を施した触媒担体と白金塩を充分に接触さ
せた系に保護コロイド剤を添加し、更にこの系のPHを
アルカリ側にして、液相においてアルデヒド基を有する
還元剤を添加した後、白金塩の還元が充分に起りうる反
応温度で還元を行うことを特徴とする白金担持触媒の調
製方法。 2)特許請求の範囲第1項の方法において、保護コロイ
ド剤は過酸化水素水であることを特徴とする白金担持触
媒の調製方法。 3)特許請求の範囲第1項の方法において反応温度は4
0℃から90℃、好ましくは50℃から60℃であるこ
とを特徴とする白金担持触媒の調製方法。
[Claims] 1) A protective colloid agent is added to a system in which a hydrophilically treated catalyst carrier and a platinum salt are brought into sufficient contact with each other, and the pH of this system is made alkaline to remove aldehyde groups in the liquid phase. 1. A method for preparing a supported platinum catalyst, which comprises adding a reducing agent containing a platinum salt, and then carrying out the reduction at a reaction temperature at which sufficient reduction of the platinum salt can occur. 2) A method for preparing a supported platinum catalyst according to claim 1, wherein the protective colloid agent is a hydrogen peroxide solution. 3) In the method of claim 1, the reaction temperature is 4
A method for preparing a supported platinum catalyst, characterized in that the temperature is from 0°C to 90°C, preferably from 50°C to 60°C.
JP61010621A 1986-01-21 1986-01-21 Production of platinum supported catalyst Granted JPS62168545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010621A JPS62168545A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010621A JPS62168545A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Publications (2)

Publication Number Publication Date
JPS62168545A true JPS62168545A (en) 1987-07-24
JPH0463730B2 JPH0463730B2 (en) 1992-10-12

Family

ID=11755294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010621A Granted JPS62168545A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Country Status (1)

Country Link
JP (1) JPS62168545A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362550A (en) * 1986-08-29 1988-03-18 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of catalyst
KR100229133B1 (en) * 1996-12-14 1999-11-01 윤종용 Magnetron
JP2002110180A (en) * 2000-07-29 2002-04-12 Dmc 2 Degussa Metals Catalysts Cerdec Ag Film-electrode unit for polyelectrolyte fuel cell, method for making the same, and ink for making the same
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362550A (en) * 1986-08-29 1988-03-18 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Production of catalyst
KR100229133B1 (en) * 1996-12-14 1999-11-01 윤종용 Magnetron
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
JP2002110180A (en) * 2000-07-29 2002-04-12 Dmc 2 Degussa Metals Catalysts Cerdec Ag Film-electrode unit for polyelectrolyte fuel cell, method for making the same, and ink for making the same

Also Published As

Publication number Publication date
JPH0463730B2 (en) 1992-10-12

Similar Documents

Publication Publication Date Title
US4028274A (en) Support material for a noble metal catalyst and method for making the same
CN1964782B (en) Platinum catalysts obtained by reducing in-situ formed platinum dioxide
JP2879649B2 (en) Method for producing platinum-based catalyst
JPH0857317A (en) Platinum alloy catalyst and its manufacturing process
KR20170100581A (en) Carbon-supported catalysts containing modifiers and methods for their preparation
KR102407669B1 (en) Method for preparing supported platinum particles
CN111569868A (en) Method for preparing catalyst loaded on carbon
JPS6346958B2 (en)
US4054687A (en) Method for making a fuel cell electrode
JPH02303541A (en) Production of high-surface area metal-deposited catalyst
JPS62168545A (en) Production of platinum supported catalyst
JPS61197034A (en) Preparation of catalyst supporting platinum
WO2023276456A1 (en) Method for producing platinum cobalt chromium alloy-loaded carbon catalyst for fuel cells
JP3053414B2 (en) New or old graphite powder processing method to improve its effectiveness as metal catalyst support
CN114931946A (en) Pt/C composite catalyst and preparation method and application thereof
JPS62168546A (en) Production of platinum supported catalyst
JP3516734B2 (en) Method for producing platinum-supported catalyst
JP7178127B1 (en) METHOD FOR MANUFACTURING FUEL CELL ELECTROCATALYST
JP4773622B2 (en) Method for producing catalyst for solid polymer electrolyte fuel cell
JP4082800B2 (en) Catalyst production method
JP3683623B2 (en) Method for producing platinum-supported catalyst
JPH02114452A (en) Manufacture of fuel electrode catalyst for liquid fuel battery
JPH0572711B2 (en)
CN112517001B (en) Preparation method of platinum black catalyst and platinum black catalyst
JPH07112543B2 (en) Method for manufacturing exhaust gas purifying catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees