JPS61197034A - Preparation of catalyst supporting platinum - Google Patents

Preparation of catalyst supporting platinum

Info

Publication number
JPS61197034A
JPS61197034A JP60038128A JP3812885A JPS61197034A JP S61197034 A JPS61197034 A JP S61197034A JP 60038128 A JP60038128 A JP 60038128A JP 3812885 A JP3812885 A JP 3812885A JP S61197034 A JPS61197034 A JP S61197034A
Authority
JP
Japan
Prior art keywords
platinum
acid
preparing
supported
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60038128A
Other languages
Japanese (ja)
Other versions
JPH04700B2 (en
Inventor
Yoshinori Nishihara
啓徳 西原
Masahiro Sakurai
正博 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP60038128A priority Critical patent/JPS61197034A/en
Publication of JPS61197034A publication Critical patent/JPS61197034A/en
Publication of JPH04700B2 publication Critical patent/JPH04700B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8842Coating using a catalyst salt precursor in solution followed by evaporation and reduction of the precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To widen the specific surface area of platinum and to disperse platinum uniformly by contacting a hydropholically treated catalyst carrier with platinum salt, thereafter by adjusting the pH of its system to an alkaline side and by performing the reduction under the conditions where the reduction of platinum salt takes place. CONSTITUTION:The hydropholically treated catalyst carrier is made to react with platinum salt enough, the pH of its system is adjusted to the alkaline side and a reducing agent is added to its system. The catalyst supporting platinum is then formed by performing the reduction under the conditions where the reduction can take place. The aqueous solution of strong acids such as sulfuric acid, hydrochloric acid, nitric acid, etc. can be used for the hydropholic treatment of the catalyst carrier. The preferable platinum salt is chloroplatinic acid, and the preferable reducing agents are formic acid, formalin, sodium formate, etc. Also, the temperature at which the reduction of platinum salt can take place is about 40-90 deg.C, preferably 50-60 deg.C.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、白金と担体から成る高分散白金担持触媒の
調製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a method for preparing a highly dispersed supported platinum catalyst comprising platinum and a carrier.

〔従来技術とその問題点〕[Prior art and its problems]

従来、電気化学セルに用いる白金触媒としては、周知の
方法により調製した白金黒を用いる方法が知られている
。ところが、触媒として白金黒を使用した場合には白金
比表面積が小さく、満足し得る程の特性が得ら11.な
かった。そこで大きい比表面積を有する白金触媒を得る
ために、カーボンプラ、りなどの比較的高表面積を有す
る多孔性微粉体を担体として用いて、これに白金微粒子
を担持させる方法がとられてきた。この白金担持触媒の
調製方法の従来技術としては、大別して次の三種類の方
法がある。
Conventionally, as a platinum catalyst used in an electrochemical cell, a method using platinum black prepared by a well-known method is known. However, when platinum black is used as a catalyst, the specific surface area of platinum is small, and satisfactory characteristics cannot be obtained.11. There wasn't. Therefore, in order to obtain a platinum catalyst having a large specific surface area, a method has been adopted in which a porous fine powder having a relatively high surface area, such as carbon plastic, is used as a carrier and platinum fine particles are supported on the carrier. Conventional techniques for preparing this platinum-supported catalyst can be broadly classified into the following three types.

まず第1の方法(以下気相還元法と称する)としては、
担体に塩化白金酸水溶液などの白金塩を含浸させた後に
、水分を乾燥除去し、これを水素気流中で所定の温度に
おいて直接水素還元を行なう方法が知られている。しか
しながらこの方法においては、担体の種類によっては白
金塩が担体表面に吸着されず、単に担体間の細孔あるい
は担体内の細孔に白金塩が吸収されているにすぎず、こ
れ乞乾燥する一S−こより白金塩水溶液が徐々に細孔内
で濃縮さn、る。この事により、白金の結晶子径が大き
くなり(白金の比表面積が減少することに相当)、期待
する程の高表面積白金触媒が得られなかった。また、白
金塩水溶液の濃縮により担体の表面に均一に白金を分散
させる事が困耐であった。更に、他の問題点としては、
乾燥された白金塩含浸漬粉体を水素気流中で直接還元し
、白金担持触媒を得るためには通常100℃〜400℃
の高温にしなければならない。そこで、この条件下で処
理を行なうと白金のシンタリング(白金粒子の径の増加
)が起き、更に白金比表面積が減少するという欠点があ
った。
First, the first method (hereinafter referred to as gas phase reduction method) is as follows:
A method is known in which a carrier is impregnated with a platinum salt such as an aqueous solution of chloroplatinic acid, water is removed by drying, and then the carrier is directly subjected to hydrogen reduction at a predetermined temperature in a hydrogen stream. However, in this method, depending on the type of carrier, the platinum salt may not be adsorbed onto the carrier surface, but may simply be absorbed into the pores between the carriers or within the carrier, and this may require drying. The platinum salt aqueous solution is gradually concentrated within the pores. As a result, the crystallite diameter of platinum increased (corresponding to a decrease in the specific surface area of platinum), and a platinum catalyst with a high surface area as expected could not be obtained. Furthermore, it was difficult to uniformly disperse platinum on the surface of the carrier by concentrating the platinum salt aqueous solution. Furthermore, other problems include:
In order to directly reduce the dried platinum salt-impregnated powder in a hydrogen stream to obtain a platinum-supported catalyst, the temperature is usually 100°C to 400°C.
It must be heated to a high temperature. Therefore, if the treatment is carried out under these conditions, platinum sintering (increase in the diameter of platinum particles) will occur, and the platinum specific surface area will further decrease.

次に第2の方法(以下熱分解法と称する)としては、特
開昭50−56545に開示されているように、白金塩
としてジニトロジアンミン白金()’1(NHa)z(
NO2)2)を用い、これを30%硝酸に溶解した後に
カーボンプラ、りと接触させ、充分になじませた後に乾
燥し、その後これを260℃空気流中で処理し、白金塩
を熱的に分解して白金担持触媒を得る方法がある。しか
しながらこの場合にも、白金塩を粉体に吸収、乾燥させ
ているために、気相還元法と同様な濃縮による白金結晶
子径の増大ある℃1は白金の分散状態の不均一さがある
。また白金塩の熱分解時には、白金のシンタリング及び
担体であるカーボンプラ、りの消失(!!化)が予想さ
れ、必ずしも期待する特性の触媒が得られな℃・と考え
られる。
Next, as a second method (hereinafter referred to as thermal decomposition method), dinitrodiammine platinum()'1(NHa)z(
Using NO2)2), dissolve it in 30% nitric acid, bring it into contact with carbon plastic, let it blend well and dry it, then treat it in an air stream at 260°C to thermally remove the platinum salt. There is a method to obtain a platinum-supported catalyst by decomposing the platinum. However, in this case as well, because the platinum salt is absorbed into the powder and dried, the platinum crystallite diameter increases due to concentration similar to the gas phase reduction method. . Furthermore, during thermal decomposition of platinum salts, sintering of platinum and disappearance of carbon plastic as a carrier are expected, and it is thought that a catalyst with the expected characteristics cannot necessarily be obtained.

また第3の方法(以下気相還元法と称する)としては、
特開昭54−92588に開示されて(する様に、水に
分散させたカーボンブラックに塩化白金酸水溶液を添加
し、充分に接触させた後に、ニチオン酸ナトリウムを用
いて塩化白金酸な還元する方法がある。しかしながら、
この方法においては所定型の白金を担体上に担持させる
事が困難であり、実用的でないことが判った。
The third method (hereinafter referred to as gas phase reduction method) is as follows:
As disclosed in Japanese Patent Application Laid-Open No. 54-92588, a chloroplatinic acid aqueous solution is added to carbon black dispersed in water, and after sufficient contact, the chloroplatinic acid is reduced using sodium dithionate. There is a way. However,
It was found that this method was difficult to support a predetermined type of platinum on the carrier and was not practical.

〔発明の目的〕[Purpose of the invention]

この発明は従来の欠点を除去して、白金担持触媒の調車
段階で不必要に白金の結晶子径を増加させることなく、
均一に分散した白金担持触媒を短時間で安全に、しかも
要求される白金担持量を確実に担持させる方法を提供す
ること!目的とする。
This invention eliminates the conventional drawbacks, and eliminates unnecessary increases in platinum crystallite diameter at the pulley stage of platinum-supported catalysts.
To provide a method for safely supporting a uniformly dispersed platinum-supported catalyst in a short time, and moreover, reliably supporting the required amount of platinum! purpose.

〔発明の要点〕[Key points of the invention]

この発明は、白金塩の水浴液が担体表面とより良く充分
に接触出来る様に、親水処理を施した担体と白金塩を充
分に接触させた後に、系のpHをアルカ13 (ill
にして還元剤を用いて還元が充分起こり5る条件下にお
いて白金塩の還元を行ない、同時に担体表面上に還元さ
れた白金を吸着させる事により、白金結晶子径の小さい
高表面積高分散白金担持触媒が、確実に、安全に、しか
も短時間で調製出来るようにしたものである。
In this invention, after bringing the platinum salt into sufficient contact with a hydrophilically treated carrier so that the platinum salt water bath solution can contact the carrier surface better and more fully, the pH of the system is adjusted to an alkali level of 13 (ill).
By reducing the platinum salt using a reducing agent under conditions that allow sufficient reduction to occur, and at the same time adsorbing the reduced platinum onto the surface of the carrier, a high surface area and high dispersion of platinum with a small platinum crystallite diameter can be supported. The catalyst can be prepared reliably, safely, and in a short time.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

(実施例1) 触媒担体としてのアセチレンブラ、り9
tに10wt%硝酸水溶液360−を添加し、これを攪
拌しながらω℃まで昇温し、更にこの温度で3時間攪拌
を続げた。3時間経過後、博別し、pHニアになるまで
充分脱イオン水でケーキを洗浄した。次にこのケーキを
、  2.1 f−Pt/lの塩化白金酸水溶液500
Mに充分に分散させ、更にアセチレンブラ、りと塩化白
金酸が充分に接触する様に2時間室温で攪拌した。これ
に0.1M疑酸ナト11ウム水溶液を添加し、pHを9
.5に調整した。この後、0.1M蟻酸水溶液213d
を約10分間かけて攪拌している液に滴下した。滴下完
了後、反応物を攪拌しながら上昇し、(資)℃まで昇温
した。更に昇温後、2時間加熱攪拌を続けた。その後、
反応@を濾別し、ケーキをω℃の温水で洗浄した。洗浄
後、ケーキを50℃で10時間加熱真空乾燥して白金担
持触媒を得た。得られた触媒の物性を評価した結果、白
金比表面積は180’/7−Pt 、白金担持量は10
00%であった。
(Example 1) Acetylene resin as catalyst carrier 9
A 10 wt% nitric acid aqueous solution 360- was added to t, and the temperature was raised to ω°C while stirring, and stirring was continued at this temperature for 3 hours. After 3 hours, the cake was drained and thoroughly washed with deionized water until the pH was near. Next, this cake was mixed with 500 g of a 2.1 f-Pt/l aqueous solution of chloroplatinic acid.
The mixture was thoroughly dispersed in M and stirred at room temperature for 2 hours so that the acetylene chloride and chloroplatinic acid came into sufficient contact with each other. A 0.1M sodium chloride 11um aqueous solution was added to this, and the pH was adjusted to 9.
.. Adjusted to 5. After this, 213 d of 0.1M formic acid aqueous solution
was added dropwise to the stirring liquid over about 10 minutes. After the dropwise addition was completed, the reaction mixture was raised while stirring and the temperature was raised to (1)°C. After further raising the temperature, heating and stirring were continued for 2 hours. after that,
The reaction @ was filtered off and the cake was washed with warm water at ω°C. After washing, the cake was vacuum dried under heating at 50° C. for 10 hours to obtain a platinum-supported catalyst. As a result of evaluating the physical properties of the obtained catalyst, the platinum specific surface area was 180'/7-Pt, and the amount of platinum supported was 10
It was 00%.

なお、実施例1においては、触媒担体の親水処理に10
 wt%の硝酸水溶液を用いたが、硝酸水溶液のかわり
に1.6 moL’lの塩酸水溶液や、INの硫酸ある
いは0.INの酢酸を用いても同様の効果が得られ、他
にも本発明の要旨を逸脱しない範囲で変形がaJ能な実
施例が種々ある。以下に第1の実施例と同様な結果が得
らnた第1の実施例の変形例のいくつ7:J)ケ紹介す
る。
In addition, in Example 1, 10
wt% nitric acid aqueous solution was used, but instead of the nitric acid aqueous solution, a 1.6 moL'l hydrochloric acid aqueous solution, IN sulfuric acid, or 0.6 moL'l nitric acid aqueous solution was used. A similar effect can be obtained by using IN acetic acid, and there are various other embodiments that can be modified without departing from the gist of the present invention. Below, some modifications of the first embodiment that obtained the same results as the first embodiment will be introduced.

1、実施例1において、担体の前処理な関℃で2時間行
なった担体な用いる。
1. In Example 1, the carrier was pretreated at 50° C. for 2 hours.

2)実施例1において、pHを調整するためJこ0.I
N−へa(JH水溶液を用いる。
2) In Example 1, in order to adjust the pH, J 0. I
N-to a (using JH aqueous solution.

3、実施例1において、アンモニア水を用いてp)i=
9.5に調整した。
3. In Example 1, p) i=
Adjusted to 9.5.

4、実施例1において、0.1Ni−蟻酸水浴液のかわ
りに0.IN−シェラ酸水溶液を使用し、ω℃で1時間
還元をする。
4. In Example 1, 0.1Ni-formic acid water bath solution was replaced with 0.1Ni-formic acid water bath solution. Reduction is carried out at ω°C for 1 hour using an IN-Schelic acid aqueous solution.

5、夾施グ111においてso、tl’J−ホルムアル
デヒドを用いて加℃で1時間還元をする。
5. In the oxidation step 111, reduction is carried out using so,tl'J-formaldehyde at a temperature of 1 hour at °C.

6、実施例1で塩化白金酸水浴液に前処理した担体を序
々に分散させるかわりに、前処理した担体を脱イオン本
釣500dに分散させた後に、5o;V−P t/’y
の塩化白金酸水溶液を十分攪拌しながら序々に添加し、
担体と白金塩な充分に接触させる。
6. Instead of gradually dispersing the pretreated carrier in the chloroplatinic acid water bath solution in Example 1, after dispersing the pretreated carrier in a deionized fishing rod of 500 d, 5o;V-P t/'y
Gradually add the chloroplatinic acid aqueous solution with sufficient stirring,
Bring the carrier into sufficient contact with the platinum salt.

〔発明の効果〕 以上の説明から明らかなよう番こ、この発明番とよれば
、担体を白金塩水溶液と接触させる前に担体に親水処理
を施したために、従来より担体と白金塩との接触が良好
となり、より広−・白金比表[ffi積を有する均−分
散白金担持触媒が得られるよ54こなった。また、液相
還元法を採用して−するため白金塩の還元時に不必要な
熱がかからず、白金Q)シンタリングが改善された。更
に、還元時に白金力S担体表面に吸着するために、白金
の分散性及び担体上への担持強度が向上した。更番こま
た、要求される白金担持触媒が一遍の工程をくり返すこ
となく得られるという効果が得られた。
[Effects of the Invention] As is clear from the above explanation, according to this invention number, since the carrier was subjected to hydrophilic treatment before being brought into contact with the platinum salt aqueous solution, contact between the carrier and the platinum salt was more difficult than in the past. The results showed that a uniformly dispersed platinum-supported catalyst having a wider platinum ratio [ffi product] could be obtained. Furthermore, since a liquid phase reduction method is employed, unnecessary heat is not applied during the reduction of the platinum salt, and platinum Q) sintering is improved. Furthermore, since platinum was adsorbed onto the surface of the Platinum Power S carrier during reduction, the dispersibility of platinum and the strength of its support on the carrier were improved. Saraban also had the effect that the required platinum-supported catalyst could be obtained without repeating a single process.

Claims (1)

【特許請求の範囲】 1)親水処理を施した触媒担体と白金塩を充分に接触さ
せた後、系のpHをアルカリ側にして還元剤を加え、白
金塩の還元が起こりうる条件下で還元を行なうことを特
徴とする白金担持触媒の調製方法。 2)特許請求の範囲第1項記載の方法において、触媒担
体の親水処理に酸水溶液を用いることを特徴とする白金
担持触媒の調整方法。 3)特許請求の範囲第2項記載の方法において、酸水溶
液酸として硝酸、塩酸、硫酸等の強酸を用いることを特
徴とする白金担持触媒の調製方法。 4)特許請求の範囲第1項記載の方法において、処理温
度は40℃から90℃であることを特徴とする白金担持
触媒の調製方法。 5)特許請求の範囲第1項に記載の方法において、pH
は9以上、好ましくは9.5以上であることを特徴とす
る白金担持触媒の調製方法。 6)特許請求の範囲第1項記載の方法において、pH調
整試薬はNaOH、KOH、Na_2CO_3、K_2
CO_3またはアンモニア水を用いることを特徴とする
白金担持触媒の調製方法。 7)特許請求の範囲第1項に記載の方法において、白金
塩は塩化白金酸であることを特徴とする白金担持触媒の
調製方法。 8)特許請求の範囲第1項に記載の方法において、還元
剤は蟻酸、ホルマリン、キ酸ナトリウム等のアルデヒド
基に相当する置換基を有する試薬であることを特徴とす
る白金担持触媒の調製方法。 9)特許請求の範囲第1項に記載の方法において、還元
剤はヒドラジン、水素化ホウ素、ナトリウムまたはシュ
ウ酸であることを特徴とする白金担持触媒の調製方法。 10)特許請求の範囲第1項記載の方法において、白金
塩の還元が起こりうる温度は40℃から90℃、好まし
くは50℃から60℃であることを特徴とする白金担持
触媒の調製方法。
[Claims] 1) After sufficient contact between the hydrophilically treated catalyst carrier and the platinum salt, the pH of the system is brought to an alkaline level, a reducing agent is added, and the platinum salt is reduced under conditions that allow reduction of the platinum salt. A method for preparing a supported platinum catalyst, characterized by carrying out the following steps. 2) A method for preparing a platinum-supported catalyst according to claim 1, characterized in that an acid aqueous solution is used for the hydrophilic treatment of the catalyst carrier. 3) A method for preparing a supported platinum catalyst according to claim 2, characterized in that a strong acid such as nitric acid, hydrochloric acid, or sulfuric acid is used as the aqueous acid. 4) A method for preparing a supported platinum catalyst according to claim 1, characterized in that the treatment temperature is from 40°C to 90°C. 5) In the method according to claim 1, the pH
is 9 or more, preferably 9.5 or more. 6) In the method described in claim 1, the pH adjusting reagent is NaOH, KOH, Na_2CO_3, K_2
A method for preparing a supported platinum catalyst, characterized by using CO_3 or aqueous ammonia. 7) A method for preparing a supported platinum catalyst according to claim 1, wherein the platinum salt is chloroplatinic acid. 8) A method for preparing a platinum-supported catalyst according to claim 1, wherein the reducing agent is a reagent having a substituent corresponding to an aldehyde group, such as formic acid, formalin, or sodium oxate. . 9) A method for preparing a supported platinum catalyst according to claim 1, wherein the reducing agent is hydrazine, borohydride, sodium or oxalic acid. 10) A method for preparing a supported platinum catalyst according to claim 1, characterized in that the temperature at which reduction of the platinum salt can occur is from 40°C to 90°C, preferably from 50°C to 60°C.
JP60038128A 1985-02-27 1985-02-27 Preparation of catalyst supporting platinum Granted JPS61197034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60038128A JPS61197034A (en) 1985-02-27 1985-02-27 Preparation of catalyst supporting platinum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60038128A JPS61197034A (en) 1985-02-27 1985-02-27 Preparation of catalyst supporting platinum

Publications (2)

Publication Number Publication Date
JPS61197034A true JPS61197034A (en) 1986-09-01
JPH04700B2 JPH04700B2 (en) 1992-01-08

Family

ID=12516813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60038128A Granted JPS61197034A (en) 1985-02-27 1985-02-27 Preparation of catalyst supporting platinum

Country Status (1)

Country Link
JP (1) JPS61197034A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271838A (en) * 1988-03-31 1990-03-12 Res Assoc Util Of Light Oil Production of noble metal catalyst
JPH06296636A (en) * 1993-04-12 1994-10-25 Fukuji Kobayashi Sacroiliac joint adjuster
EP1320140A1 (en) * 2000-08-16 2003-06-18 Matsushita Electric Industrial Co., Ltd. Fuel cell
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
JP2008517426A (en) * 2004-12-17 2008-05-22 エルジー・ケム・リミテッド Fuel cell electrode catalyst
KR20140000715A (en) * 2011-04-25 2014-01-03 유나이티드 테크놀로지스 코포레이션 Catalyst material for fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089032A (en) * 2008-10-09 2010-04-22 Jgc Catalysts & Chemicals Ltd Metal-particle supporting catalyst, and method of producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842990A (en) * 1971-10-07 1973-06-21
JPS59120250A (en) * 1982-12-27 1984-07-11 Toyota Central Res & Dev Lab Inc Preparation of catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842990A (en) * 1971-10-07 1973-06-21
JPS59120250A (en) * 1982-12-27 1984-07-11 Toyota Central Res & Dev Lab Inc Preparation of catalyst

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271838A (en) * 1988-03-31 1990-03-12 Res Assoc Util Of Light Oil Production of noble metal catalyst
JPH06296636A (en) * 1993-04-12 1994-10-25 Fukuji Kobayashi Sacroiliac joint adjuster
JP2681864B2 (en) * 1993-04-12 1997-11-26 福治 小林 Sacroiliac joint adjuster
US6921604B2 (en) 2000-02-02 2005-07-26 Toyota Jidosha Kabushiki Kaisha Device and method for evaluating performance of fuel cells, device and method for evaluating specific surface area of fuel-cell electrode catalysts, fuel-cell electrode catalyst, and method of manufacturing the same
EP1320140A1 (en) * 2000-08-16 2003-06-18 Matsushita Electric Industrial Co., Ltd. Fuel cell
EP1320140A4 (en) * 2000-08-16 2007-10-10 Matsushita Electric Ind Co Ltd Fuel cell
JP2008517426A (en) * 2004-12-17 2008-05-22 エルジー・ケム・リミテッド Fuel cell electrode catalyst
KR20140000715A (en) * 2011-04-25 2014-01-03 유나이티드 테크놀로지스 코포레이션 Catalyst material for fuel cell
CN103608954A (en) * 2011-04-25 2014-02-26 联合工艺公司 Catalyst material for fuel cell
EP2702625A1 (en) * 2011-04-25 2014-03-05 United Technologies Corporation Catalyst material for fuel cell
EP2702625A4 (en) * 2011-04-25 2014-10-01 United Technologies Corp Catalyst material for fuel cell
US9755245B2 (en) 2011-04-25 2017-09-05 Audi Ag Catalyst material for fuel cell

Also Published As

Publication number Publication date
JPH04700B2 (en) 1992-01-08

Similar Documents

Publication Publication Date Title
US4028274A (en) Support material for a noble metal catalyst and method for making the same
CA2387379A1 (en) A process for preparing an anode catalyst for fuel cells and the anode catalyst prepared therewith
JP2007532288A (en) Platinum catalyst obtained by reducing platinum dioxide formed in situ
CN109962250A (en) A kind of Fe-N-C catalyst and its preparation method and application
CN111640956B (en) Method for preparing carbon-supported platinum electrocatalyst for fuel cell
EP1204477B1 (en) Procces for the production of supported metal catalyst containing a treatment step with aqueous solution containing brome and bromide ions.
CN113522279A (en) Gold palladium catalyst for hydrogen desorption of dodecahydroethylcarbazole and preparation method thereof
CN108963273B (en) Branch-shaped platinum electrocatalyst and preparation method and application thereof
JPS61197034A (en) Preparation of catalyst supporting platinum
CN114196970B (en) Oxygen evolution catalyst and preparation method thereof
US4054687A (en) Method for making a fuel cell electrode
KR870004728A (en) Silver catalyst and its manufacturing method
CN102133526A (en) Method for preparing ruthenium carbon catalyst
JP3053414B2 (en) New or old graphite powder processing method to improve its effectiveness as metal catalyst support
CN110152666A (en) A kind of porous carbon carried copper-base catalyst and preparation method thereof
JPS62168545A (en) Production of platinum supported catalyst
CN114210358A (en) Preparation method of nitrogen-containing carbon-supported platinum catalyst
JP4082800B2 (en) Catalyst production method
JPS633653B2 (en)
JPH0463731B2 (en)
JPH0572711B2 (en)
CN108927148A (en) A kind of preparation method of high activity hydroxide palladium carbon
CN111960824B (en) Ceramic microsphere and preparation method thereof
JP2808867B2 (en) Method for producing fuel cell alloy catalyst
CN114784296B (en) Preparation method of platinum-ruthenium doped rare earth element ternary alloy nano porous catalyst for efficiently catalyzing oxidation of methanol and ethanol