JPH0463731B2 - - Google Patents

Info

Publication number
JPH0463731B2
JPH0463731B2 JP61010627A JP1062786A JPH0463731B2 JP H0463731 B2 JPH0463731 B2 JP H0463731B2 JP 61010627 A JP61010627 A JP 61010627A JP 1062786 A JP1062786 A JP 1062786A JP H0463731 B2 JPH0463731 B2 JP H0463731B2
Authority
JP
Japan
Prior art keywords
platinum
catalyst
aqueous solution
carrier
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61010627A
Other languages
Japanese (ja)
Other versions
JPS62168546A (en
Inventor
Yoshinori Nishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61010627A priority Critical patent/JPS62168546A/en
Publication of JPS62168546A publication Critical patent/JPS62168546A/en
Publication of JPH0463731B2 publication Critical patent/JPH0463731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、白金と担体から成る高分散白金担
持触媒の調製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a method for preparing a highly dispersed supported platinum catalyst comprising platinum and a carrier.

〔従来技術とその問題点〕[Prior art and its problems]

従来、電気化学セルに用いる白金触媒として
は、周知の方法にて調製した白金黒を用いる方法
が知られている。ところが触媒として白金黒を用
いた場合にはその比表面積が小さい(約20〜
25m2/g−Pt)ために満足しうる特性が得られ
なかつた。そこで大きい比表面積を有する白金触
媒を得るためにカーボンブラツクなどの比較的高
表面積を有する導電性多孔質微粉体を担体として
用い、これに白金微粒子を担持させる方法がとら
れてきた。この白金担持触媒の調製方法の従来方
法としては大別して次の三種類の方法がある。
Conventionally, as a platinum catalyst used in an electrochemical cell, a method using platinum black prepared by a well-known method is known. However, when platinum black is used as a catalyst, its specific surface area is small (approx.
25 m2/g-Pt), so satisfactory properties could not be obtained. Therefore, in order to obtain a platinum catalyst having a large specific surface area, a method has been adopted in which a conductive porous fine powder having a relatively high surface area, such as carbon black, is used as a carrier and platinum fine particles are supported on the carrier. Conventional methods for preparing this platinum-supported catalyst can be broadly classified into the following three types.

(1) 気相還元法 この方法は、一般的には担体に塩化白金酸水溶
液などの白金塩を含浸させた後に水分を除去し、
これを水素気流中で所定の温度において直接水素
還元を行う方法である。ところが、この方法にお
いては、使用する担体の種類によつては、白金塩
が充分に担体の表面に吸着できないものがありこ
のような系では白金塩は単に担体間の細孔あるい
は担体内に存在する細孔内に吸収されているにす
ぎず、これを乾燥することにより白金塩水溶液が
徐々に濃縮され、この事により白金の粒子径が大
きくなり(これは白金の比表面積が減少した事に
対応する)期待する程の高表面積白金触媒が得ら
れなかつた。また、白金塩が徐々に濃縮されるこ
とにより、白金粒子が集落を形成し、このために
担体の表面に均一に白金粒子を分散させることが
困難であつた。さらに他の問題点としては、水素
ガスを用いて還元を行い白金担持触媒を得るため
には、通常100〜400℃の高温にさらさなければな
らない。ところがこの様な条件下で処理を行うと
白金粒子のシンタリング(融点以下での白金粒子
径の増大)が起きさらに白金比表面積が減少する
という欠点があつた。
(1) Gas-phase reduction method This method generally involves impregnating a carrier with a platinum salt such as an aqueous solution of chloroplatinic acid, and then removing water.
This is a method in which hydrogen reduction is performed directly at a predetermined temperature in a hydrogen stream. However, in this method, depending on the type of carrier used, the platinum salt may not be sufficiently adsorbed to the surface of the carrier, and in such systems, the platinum salt simply exists in the pores between the carriers or within the carrier. By drying the platinum salt aqueous solution, the platinum salt aqueous solution gradually becomes concentrated, which increases the particle size of the platinum (this is due to a decrease in the specific surface area of platinum). (corresponding) A platinum catalyst with a high surface area as expected could not be obtained. Furthermore, as the platinum salt is gradually concentrated, the platinum particles form clusters, making it difficult to uniformly disperse the platinum particles on the surface of the carrier. Another problem is that in order to obtain a platinum-supported catalyst by reduction using hydrogen gas, it is necessary to expose it to a high temperature of usually 100 to 400°C. However, when the treatment is carried out under such conditions, sintering of the platinum particles (increase in the platinum particle diameter below the melting point) occurs, and the specific surface area of the platinum decreases.

また、現在では、触媒の活性を向上させるため
に白金単独の担持触媒にかわつて、白金担持触媒
を出発物質として用い、これにバナジウム等の第
2成分を添加し、白金−第2成分(あるいは第3
成分)の合金担持触媒を調製、使用する傾向にあ
る。ところが、この場合には一般的に約900℃の
温度において触媒を熱処理をする必要があり、こ
の際に分散性の悪い平均結晶子径の大きい白金担
持触媒を出発物質として用いると、熱処理により
触媒の結晶子径の大きい活性の低い触媒した調製
できないという欠点があつた。
Currently, in order to improve the activity of the catalyst, a platinum-supported catalyst is used as a starting material instead of a supported platinum-only catalyst, and a second component such as vanadium is added to it, and a platinum-second component (or a platinum-second component) is used as a starting material. 3
There is a tendency to prepare and use alloy-supported catalysts of (components). However, in this case, it is generally necessary to heat-treat the catalyst at a temperature of about 900°C, and if a platinum-supported catalyst with a large average crystallite size and poor dispersibility is used as a starting material, the catalyst will be hardened by heat treatment. The drawback was that it was impossible to prepare a catalyst with a large crystallite size and low activity.

(2) 熱分解法 特開昭50−56545に開示されているように、白
金塩として、ジニトロジアンミン白金(Pt
(NH32(NO22)を用い、これを30%硝酸に溶解
した後にカーボンブラツクと接触させ充分になじ
ませた後に、乾燥しその後これを260℃空気気流
中で処理し白金塩を熱的に分解して白金担持触媒
を得る方法がある。しかしながら、この場合にも
白金塩を担体に吸収させているために気相還元法
と同様な欠点があると考えられる。
(2) Thermal decomposition method As disclosed in JP-A-50-56545, dinitrodiammine platinum (Pt
(NH 3 ) 2 (NO 2 ) 2 ) was dissolved in 30% nitric acid, brought into contact with carbon black and thoroughly blended, dried, and then treated in an air stream at 260°C to form a platinum salt. There is a method of thermally decomposing platinum to obtain a supported platinum catalyst. However, this method is also considered to have the same drawbacks as the gas phase reduction method because the platinum salt is absorbed into the carrier.

(3) 液相還元法 特開昭54−92588に開示されているように水に
分散させたカーボンブラツクに塩化白金酸水溶液
を添加し、充分に接触させたのちに、ニチオン酸
ナトリウムを用いて塩化白金酸を還元する方法が
ある。しかしながら、この方法においては所定の
白金を担体上に担持させることが困難であり、実
用的でないことがわかつた。
(3) Liquid phase reduction method As disclosed in JP-A-54-92588, an aqueous solution of chloroplatinic acid is added to carbon black dispersed in water, and after sufficient contact, a solution of chloroplatinic acid is added to the carbon black dispersed in water. There is a method to reduce chloroplatinic acid. However, it was found that this method was difficult to support a predetermined amount of platinum on the carrier and was not practical.

このような従来技術の背景にあつて、本発明者
は先に特願昭60−70435により、担体を白金塩水
溶液と接触させた後に系のPHを調整し、この後に
蟻酸等の還元剤を用いて白金塩を還元し、、担体
上に白金を析出させる方法を提案しているが、こ
の方法において得られる白金粒子はその結晶子径
がまだ大きく、電子顕微鏡での観察においては白
金粒子の集落が観察され白金担持触媒として、ま
たこれを白金−第2あるいは第3成分の出発物質
として用いる場合にも、充分な物性を有している
とは言いがたいことがわかつた。
Against the background of such prior art, the present inventor previously disclosed in Japanese Patent Application No. 60-70435 that the pH of the system was adjusted after bringing the carrier into contact with an aqueous platinum salt solution, and then a reducing agent such as formic acid was added. However, the crystallite size of the platinum particles obtained by this method is still large, and when observed with an electron microscope, the platinum particles are It was found that it could not be said to have sufficient physical properties when it was observed that clusters were observed and used as a supported platinum catalyst or as a starting material for a platinum second or third component.

〔発明の目的〕[Purpose of the invention]

この発明は従来の欠点を除去して、従来より微
細な結晶子径を有する高分散で高表面積な白金担
持触媒が短時間に、安全に、しかも確実に調製で
きる方法を提供することを目的とする。
The purpose of this invention is to eliminate the conventional drawbacks and provide a method for preparing a highly dispersed and high surface area platinum-supported catalyst having a finer crystallite size than the conventional method, in a short time, safely, and reliably. do.

〔発明の要点〕[Key points of the invention]

この発明は、カーボンブラツクやアセチレンブ
ラツク等の炭素粒子からなる触媒担体を酸水溶液
に接触させて親水処理を施した触媒担体と、白金
塩の酸水溶液とを充分に接触させた系に、保護コ
ロイド剤としての過酸化水素を添加し充分に混合
して、その後系のPHをアルカリ側にして、アルデ
ヒド基に相当する置換基を有する還元剤が十分に
作用する反応温度まで系の温度を上昇させた後に
還元剤を徐々に添加して、還元剤が添加された部
分のみ短時間で還元が完了し、同時に還元された
白金が担体上に吸着するようにした工程を連続的
に行うことにより、従来より微細な結晶子径を有
する高分散高表面積白金担持触媒が、確実に安全
にしかも短時間で調製できるようにしたものであ
る。
In this invention, a protective colloid is added to a system in which a catalyst carrier made of carbon particles such as carbon black or acetylene black is subjected to hydrophilic treatment by contacting it with an acid aqueous solution, and an acid aqueous solution of a platinum salt. Add hydrogen peroxide as an agent and mix thoroughly, then set the PH of the system to an alkaline side and raise the temperature of the system to a reaction temperature at which the reducing agent having a substituent group corresponding to an aldehyde group is sufficiently effective. After that, a reducing agent is gradually added, and the reduction is completed in a short time only in the area where the reducing agent has been added, and at the same time, the reduced platinum is adsorbed onto the carrier. A highly dispersed, high surface area platinum-supported catalyst having a finer crystallite size than conventional catalysts can be prepared reliably, safely, and in a short time.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づきより具体的に説明
する。
The present invention will be described in more detail below based on examples.

アセチレンブラツク9gに10wt%硝酸水溶液400
c.c.を添加しこれを撹はんしながら、60℃まで昇温
しこの温度にて約2時間撹はんを続けた。この後
にこれをろ過しケーキのPHが7になるまで、充分
に水洗した。次いで、このケーキを2.1mg−Pt/
c.c.の塩化白金酸水溶液500c.c.に十分に分散させ、
さらに約1時間撹はんを続けた。これに30%の過
酸化水素水11.2c.c.を添加した。次に0.1Mの炭酸
ナトリウム水溶液を添加し系のPHを9.5に調整し
た。その後、系の温度を50℃まで上昇させた。昇
温完了後、0.1Mの蟻酸水溶液213c.c.を約2時間か
けて撹はんしている系に徐々に添加した。添加完
了後さらに約10分間撹はんを続けた。反応完了
後、反応物をろ別しケーキを十分に洗浄した。次
にこのケーキを粉砕し50℃で加熱真空乾燥をして
触媒を得た。得られた触媒の物性を評価した結
果、白金比表面積は170m2/g−Pt、白金担持量
は約10.5%、平均結晶子径は約25オングストロー
ムであつた。この触媒の熱的安定性を評価するた
めに、900℃N2雰囲気で2時間熱処理した結果、
平均結晶子径は約40オングストロームであり、白
金担持触媒としても、白金−第2あるいは、白金
−第2、第3成分の合金担持触媒の出発物質とし
ても十分な物性を有していることがわかつた。
9g of acetylene black and 400ml of 10wt% nitric acid aqueous solution
cc was added, and while stirring, the temperature was raised to 60°C, and stirring was continued at this temperature for about 2 hours. Thereafter, the cake was filtered and thoroughly washed with water until the pH of the cake became 7. Next, this cake was mixed with 2.1mg-Pt/
Thoroughly disperse in 500 c.c. of chloroplatinic acid aqueous solution,
Stirring was continued for about an additional hour. To this was added 11.2 cc of 30% hydrogen peroxide solution. Next, 0.1M aqueous sodium carbonate solution was added to adjust the pH of the system to 9.5. Thereafter, the temperature of the system was raised to 50°C. After the temperature was raised, 213 c.c. of a 0.1 M formic acid aqueous solution was gradually added to the stirring system over about 2 hours. Stirring was continued for an additional approximately 10 minutes after the addition was complete. After the reaction was completed, the reaction product was filtered and the cake was thoroughly washed. Next, this cake was crushed and dried under vacuum at 50°C to obtain a catalyst. As a result of evaluating the physical properties of the obtained catalyst, the platinum specific surface area was 170 m2/g-Pt, the amount of platinum supported was about 10.5%, and the average crystallite diameter was about 25 angstroms. In order to evaluate the thermal stability of this catalyst, heat treatment was performed at 900℃ for 2 hours in a N2 atmosphere.
The average crystallite diameter is approximately 40 angstroms, and it has sufficient physical properties as a platinum-supported catalyst and as a starting material for a platinum-secondary or platinum-secondary or third-component alloy supported catalyst. I understand.

なお、この実施例において、担体と白金を接触
させた系に添加する保護コロイド剤としての過酸
化水素水の量を22.3c.c.としても同様の効果が得ら
れた。
In this example, the same effect was obtained even when the amount of hydrogen peroxide water as a protective colloid added to the system in which the carrier and platinum were brought into contact was 22.3 cc.

また、上記実施例において、塩化白金酸水溶液
に前処理した担体を徐々に分散させるかわりに、
前処理した担体を脱イオン水約500c.c.に充分に分
散させた後に50mg/c.c.の塩化白金酸水溶液21c.c.を
撹はんしながら滴下して触媒を調製してもよい。
Furthermore, in the above examples, instead of gradually dispersing the pretreated carrier in the chloroplatinic acid aqueous solution,
The catalyst may be prepared by thoroughly dispersing the pretreated support in about 500 c.c. of deionized water and then adding 21 c.c. of a 50 mg/cc aqueous solution of chloroplatinic acid dropwise with stirring.

次に比較のため、先に従来技術の項で述べた気
相還元法により、白金担持触媒を作成した結果を
以下に述べる。
Next, for comparison, the results of producing a platinum-supported catalyst using the gas phase reduction method previously described in the prior art section will be described below.

アセチレンブラツク9gを1.05gの白金を含有す
る塩化白金酸水溶液50c.c.と混合する。充分に混合
しペースト状になつたものを5℃に保ち約20時間
静置する。この後にペースト内に存在する水分を
除去すべく充分に乾燥する。乾燥の後にこれを
250℃水素雰囲気で約2時間還元する。出来上つ
た触媒の物性を評価したところ、CO化学吸着法
による白金比表面積は、約90m2/g−Pt、白金
担持量10.4%、X線回析法による平均結晶子径約
100オングストロームであつた。また、この触媒
を電子顕微鏡で観察した結果、多くの白金粒子の
集落が観察された。さらにこの触媒の熱的安定性
を見るために、900℃、N2雰囲気で2時間熱処理
したところ、平均結晶子径が約250オングストロ
ームに増大した。
9 g of acetylene black are mixed with 50 c.c. of an aqueous chloroplatinic acid solution containing 1.05 g of platinum. Mix thoroughly to form a paste and leave to stand at 5°C for about 20 hours. After this, the paste is sufficiently dried to remove any moisture present in the paste. Do this after drying
Reduce in a hydrogen atmosphere at 250°C for about 2 hours. When the physical properties of the finished catalyst were evaluated, the platinum specific surface area measured by CO chemisorption method was approximately 90 m2/g-Pt, the amount of platinum supported was 10.4%, and the average crystallite diameter was determined by X-ray diffraction method.
It was 100 angstroms thick. Furthermore, as a result of observing this catalyst using an electron microscope, many colonies of platinum particles were observed. Furthermore, in order to examine the thermal stability of this catalyst, it was heat treated at 900° C. in a N 2 atmosphere for 2 hours, and the average crystallite diameter increased to about 250 angstroms.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなようにこの発明によれ
ば、系の温度をあらかじめ上昇させて、還元剤が
有効に作用する条件を作つた後に徐々に還元剤を
添加するようにしたために、系の中で還元剤が添
加された部分のみの白金塩が短時間に還元され同
時に担体上に吸着される。したがつて、系全体で
ほぼ同時に白金塩の還元が起こる従来の方法と比
較して、白金微粒子の集落がなくなり分散性が向
上し、より高性能の触媒が得られるようになつ
た。このことにより、白金触媒としての特性が向
上したのみならず、これをベースとした白金−第
2成分合金触媒あるいは白金−第2成分−第3成
分合金触媒等の調製においても、触媒粒子を高分
散なままで維持することが出来、従来の合金触媒
と比較してより高分散な触媒つまり、活性の高い
触媒を調製することができるようになつた。
As is clear from the above explanation, according to the present invention, the temperature of the system is raised in advance to create conditions for the reducing agent to work effectively, and then the reducing agent is gradually added. The platinum salt in only the portion to which the reducing agent has been added is reduced in a short time and simultaneously adsorbed onto the carrier. Therefore, compared to the conventional method in which platinum salt is reduced almost simultaneously in the entire system, clusters of platinum fine particles are eliminated, dispersibility is improved, and a catalyst with higher performance can be obtained. This not only improves the properties of platinum catalysts, but also improves the catalyst particles in the preparation of platinum-second component alloy catalysts or platinum-second component-third component alloy catalysts based on this. It has become possible to maintain a dispersed state, and it has become possible to prepare a catalyst with higher dispersion, that is, a catalyst with higher activity, compared to conventional alloy catalysts.

また、本発明によれば、基本的に触媒調製時に
不必要な熱がかからないために、調製時における
白金のシンタリングを極力抑えることができる。
更に、白金が担体に吸収されるのではなく、白金
塩の還元と同時に白金微粒子が担体上に吸着され
るため従来の方法と比較して白金の分散性、担体
と白金の担持強度が強くより安定な白金担持触媒
が得られる。更にまた、本発明によれば白金担持
工程をくりかえすことなく、所定の担持量の触媒
が短時間に安全にしかも確実に得られる。
Furthermore, according to the present invention, since unnecessary heat is basically not applied during catalyst preparation, sintering of platinum during preparation can be suppressed as much as possible.
Furthermore, platinum is not absorbed by the carrier, but the platinum fine particles are adsorbed onto the carrier at the same time as the platinum salt is reduced, so the dispersibility of platinum and the strength of the support between the carrier and platinum are stronger than in conventional methods. A stable platinum supported catalyst is obtained. Furthermore, according to the present invention, a predetermined amount of supported catalyst can be obtained safely and reliably in a short time without repeating the platinum supporting step.

Claims (1)

【特許請求の範囲】 1 カーボンブラツクやアセチレンブラツク等の
炭素粒子からなる触媒担体を酸水溶液に接触させ
て親水処理を施した触媒担体と、白金塩の酸水溶
液とを充分に接触させた系に、保護コロイド剤と
しての過酸化水素を添加し、更にこの系のPHをア
ルカリ側にして、液相においてアルデヒド基を有
する還元剤が有効に作用する反応温度まで系の温
度を上昇させた後、この系に還元剤を徐々に添加
して還元を行うことを特徴とする電気化学セル用
白金担持触媒の調製方法。 2 特許請求の範囲第1項の方法において、反応
温度は40℃から90℃であることを特徴とする白金
担持触媒の調製方法。 3 特許請求の範囲第1項の方法において、反応
温度は50℃から60℃であることを特徴とする白金
担持触媒の調製方法
[Scope of Claims] 1. A system in which a catalyst carrier made of carbon particles such as carbon black or acetylene black is subjected to hydrophilic treatment by contacting it with an acid aqueous solution, and a catalyst carrier made of a catalyst carrier made of carbon particles such as carbon black or acetylene black, which is brought into sufficient contact with an acid aqueous solution of a platinum salt. , after adding hydrogen peroxide as a protective colloid agent, making the pH of this system alkaline, and raising the temperature of the system to the reaction temperature at which the reducing agent having an aldehyde group effectively acts in the liquid phase, A method for preparing a supported platinum catalyst for an electrochemical cell, which comprises gradually adding a reducing agent to the system to perform reduction. 2. A method for preparing a supported platinum catalyst according to claim 1, characterized in that the reaction temperature is from 40°C to 90°C. 3. A method for preparing a supported platinum catalyst according to claim 1, characterized in that the reaction temperature is from 50°C to 60°C.
JP61010627A 1986-01-21 1986-01-21 Production of platinum supported catalyst Granted JPS62168546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010627A JPS62168546A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010627A JPS62168546A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Publications (2)

Publication Number Publication Date
JPS62168546A JPS62168546A (en) 1987-07-24
JPH0463731B2 true JPH0463731B2 (en) 1992-10-12

Family

ID=11755451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010627A Granted JPS62168546A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Country Status (1)

Country Link
JP (1) JPS62168546A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169029A (en) * 1988-12-20 1990-06-29 Tanaka Kikinzoku Kogyo Kk Preparation of combustion catalyst
JP2007313423A (en) * 2006-05-25 2007-12-06 Sumitomo Electric Ind Ltd Metal catalyst, its manufacturing method and fuel cell

Also Published As

Publication number Publication date
JPS62168546A (en) 1987-07-24

Similar Documents

Publication Publication Date Title
CN1964782B (en) Platinum catalysts obtained by reducing in-situ formed platinum dioxide
JP5456797B2 (en) Fuel cell electrode catalyst
CN111569868A (en) Method for preparing catalyst loaded on carbon
JPS6346958B2 (en)
US4054687A (en) Method for making a fuel cell electrode
JPH0463730B2 (en)
JPH04700B2 (en)
JPH0463731B2 (en)
JP2775771B2 (en) Manufacturing method of fuel electrode catalyst for liquid fuel cell
JP3890653B2 (en) Methanol fuel cell
JP4082800B2 (en) Catalyst production method
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JPH04298238A (en) Production of platinum catalyst for fuel battery
JP2002095969A (en) Method for producing platinum-cobalt alloy catalyst
JP7178127B1 (en) METHOD FOR MANUFACTURING FUEL CELL ELECTROCATALYST
JPS62132548A (en) Production of catalyst
JPH01307445A (en) Preparation of catalyst
JPH0572711B2 (en)
CN112490452B (en) Fuel cell anode catalyst and preparation method and application thereof
JP2808867B2 (en) Method for producing fuel cell alloy catalyst
KR0144373B1 (en) Alloy catalyst for fuel cell
KR930001421B1 (en) Catalytic making method for drycell
JPS6344940A (en) Alloy supported catalyst
JPH0251865A (en) Manufacture of fuel electrode catalyser for liquid fuel cell
JPS6283040A (en) Preparation of platinum/vanadium alloy catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees