JPS6344940A - Alloy supported catalyst - Google Patents

Alloy supported catalyst

Info

Publication number
JPS6344940A
JPS6344940A JP61189860A JP18986086A JPS6344940A JP S6344940 A JPS6344940 A JP S6344940A JP 61189860 A JP61189860 A JP 61189860A JP 18986086 A JP18986086 A JP 18986086A JP S6344940 A JPS6344940 A JP S6344940A
Authority
JP
Japan
Prior art keywords
platinum
supported catalyst
transition metal
catalyst
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61189860A
Other languages
Japanese (ja)
Inventor
Yoshinori Nishihara
啓徳 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61189860A priority Critical patent/JPS6344940A/en
Publication of JPS6344940A publication Critical patent/JPS6344940A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To enhance catalytic activity and activity retention, by forming an alloy supported catalyst by supporting platinum, a transition metal other than platinum and a third metal other than said metals in an alloy form by a carrier. CONSTITUTION:A highly dispersed platinum supported catalyst (usually, an average crystal diameter; 20-30Angstrom ) is used as a matrix and a transition metal other than platinum is added to said catalyst. Subsequently, in a process for alloy supported platinum and the transition metal other than platinum, both metals are further contacted with a chemical species becoming a third component to form an alloy supported catalyst composed of three-component system finally consisting of platinum, the transition metal other than platinum and the third component. As the transition metal other than platinum, iron is pref. and, as the third component, carbon is pref. The alloy supported catalyst obtained has a high initial output characteristic and an enhanced economical output characteristic.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、電気化学セ/I/(例えば燃料電池など)
の電極に用いる電気化学触媒に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] This invention relates to electrochemical cells (for example, fuel cells, etc.)
This invention relates to electrochemical catalysts used in electrodes.

〔従来技術とその問題点〕[Prior art and its problems]

この種の電気化学触媒としては、例えば燃料電池の場合
には、従来より実用的なレベルの出力を得るために白金
系の触媒がよく用いられている。
As this type of electrochemical catalyst, platinum-based catalysts are often used in fuel cells, for example, in order to obtain a more practical level of output.

特に燃料電池の分野において用いられる白金系の触媒と
しては、当初白金黒がよく用いられていたが、白金黒は
その比表面積が約zoi/gと小さいことから、実用的
なレベルの出力を取り出すことが困難であった。そこで
この白金黒にかわって、より白金の比表面積の大きい触
媒として、比較的大きな表面積を有する担体を用い、こ
れに白金を担持させた、いわゆる白金担持触媒がよく用
いられるようになってきた。しかしながら、開発が進む
につれてこの白金担持触媒でさえも十分な出力特性と寿
命特性を有しているとは言い難いことが明らかになって
きた。そこで現在においては、これらを改善するために
白金単独の担持触媒にかわって、白金を主成分とし、こ
れに第2あるいは第3成分を添加した合金系の担持触媒
が使用されるよう釦なってきている。
Initially, platinum black was often used as a platinum-based catalyst especially in the field of fuel cells, but platinum black has a small specific surface area of about zoi/g, so it is difficult to extract a practical level of output. It was difficult. Therefore, instead of this platinum black, so-called platinum-supported catalysts, in which platinum is supported on a carrier with a relatively large surface area, have come to be used as a catalyst with a larger specific surface area of platinum. However, as development progresses, it has become clear that even this platinum-supported catalyst cannot be said to have sufficient output characteristics and life characteristics. Therefore, in order to improve these problems, in place of supported catalysts made of platinum alone, there is now a trend to use supported catalysts based on alloys, which have platinum as the main component and a second or third component added thereto. ing.

そこで以下にこの合金系の担持触媒の従来技術について
、その問題点を述べる。
Therefore, the problems with the conventional technology of this alloy-based supported catalyst will be described below.

合金系の担持触媒については、種々の成分系が検討され
ている。その代表的な系としては特開昭55−2498
9に開示されている白金−バナジウム系、特開昭60−
7941に開示されている白金−鉄系、特開昭60−1
56551に開示されている白金−ガリウム系、あるい
は3成分系としては、特開昭59−141169に開示
されている白金−クロム−コバルト系、白金−バナシウ
ムーコバルト系などがある。これらの系はすべて触媒と
しての活性を向上させ、しかも触媒寿命を向上させるこ
とを目的としているが、まだこれらの諸物性を満足する
には至っていない。
Various component systems have been studied for alloy-based supported catalysts. A representative system is JP-A-55-2498.
Platinum-vanadium system disclosed in No. 9, JP-A-60-
Platinum-iron system disclosed in No. 7941, JP-A-60-1
Examples of the platinum-gallium system disclosed in No. 56551 or the three-component system include the platinum-chromium-cobalt system and the platinum-vanasium-cobalt system disclosed in JP-A-59-141169. All of these systems aim to improve the activity as a catalyst and also the life of the catalyst, but these physical properties have not yet been satisfied.

〔発明の目的〕[Purpose of the invention]

この発明は、これらの従来の欠点を除去して高活性であ
り、しかも長期間にわたって活性を維持できる電気化学
セル用の担持触媒を提供することを目的とする。
The object of the present invention is to eliminate these conventional drawbacks and provide a supported catalyst for electrochemical cells that is highly active and can maintain its activity for a long period of time.

〔発明の要点〕[Key points of the invention]

この発明は、高分散な白金担持触媒(通常平均結晶子径
が20〜30A)を母体とし、これに白金以外の遷移金
属を付加したのちに、担持された白金と白金以外の遷移
金属を合金化させる過程において、これをさらに第3の
成分となる化学種と接触させ、最終的に白金と白金以外
の遷移金属と第3の成分の合計3つの成分系からなる担
持触媒を形成するようにしたものである。I7たがって
、母体となる白金担持触媒は周知の方法で調製されてよ
く、とくにこの点にこだわるものではない。
This invention uses a highly dispersed platinum-supported catalyst (normally average crystallite diameter is 20 to 30A) as a matrix, adds a transition metal other than platinum to this, and then alloys the supported platinum with a transition metal other than platinum. In the process of oxidation, this is further brought into contact with a chemical species that will become a third component, and finally a supported catalyst consisting of a total of three components, platinum, a transition metal other than platinum, and a third component, is formed. This is what I did. I7 Therefore, the platinum-supported catalyst serving as the base may be prepared by a well-known method, and there is no particular restriction on this point.

〔発明の実施例〕[Embodiments of the invention]

(実施例 1) アセチレンブラックを担体とし、これに10%の白金を
担持した触媒10g(X線回折による白金の(111)
面での平均結晶子径i11.22X)を脱イオン水40
0m1に十分分散した。次いでこれに硝酸鉄Fe (N
Ox)3 ・9)(206,22gを含有する硝酸鉄水
溶液100m1を添加し十分攪拌した。この後に溶液を
攪拌しながら、系の温度を約50°Cに昇温しこの温度
にて約30分攪拌を続けた。この時点てて硝酸鉄の薄い
オレンジ色が消え、鉄が触媒−にに吸着したことが確認
できた。
(Example 1) 10 g of a catalyst with 10% platinum supported on acetylene black ((111) of platinum by X-ray diffraction)
The average crystallite diameter i11.22X) in deionized water 40
It was well dispersed in 0ml. Next, this was added with iron nitrate Fe (N
100 ml of iron nitrate aqueous solution containing 206.22 g of Ox)3 ・9) (206.22 g) was added and thoroughly stirred. After this, while stirring the solution, the temperature of the system was raised to about 50°C, and at this temperature the temperature of the system was increased to about 30°C. Stirring was continued for several minutes.At this point, the pale orange color of iron nitrate disappeared, confirming that iron had been adsorbed onto the catalyst.

次いで、系の温度を約20’Ctで下げ、この温度にて
系のPHが約8になるように水酸化アンモニウムを徐々
に添加した。添加完了後、この温度にて約30分間攪拌
を続けた後に反応液を濾過し脱イオン水にて十分洗浄し
た。洗浄の後、ケーキを50℃の温度にて約12時間真
空乾燥した。出来上がった触媒を粉砕した後に環状の熱
処理炉にセットし炉内の酸素を除去すべく約30分間窒
素にてパージをした。この後に350’C4で昇温の後
に炉内の 囲気を窒素から一酸化炭素に切り換えた。3
50℃の一酸化炭素の(囲気にて30分間処理した後に
再び炉内の殊囲気を窒素とした後に再び昇温を開始した
。炉の温度が約900℃に達した後にこの温度にて約1
時間処理した。この後炉の温度を窒素藪囲気にて室温ま
で下げ、試料を取り出した。出来上がった触媒の平均結
晶子径をX線回折法により測定した結果、平均結晶子径
は約4OAであった。さらにX線回折のデータを詳細に
検討した結果、白金単独での回折ピーク(2θ=、=3
9.7(111)、2e=46.2(200)、2θ=
67.5pt(220))および、鉄単独のピーク(2
θ=44.7 (110)、2θ: 65.0(200
)、2e=82.3 (211) )ハ観察すれず、白
金−鉄一炭素の3成分系(Fe3PtC)のピーク(2
θ=40.5(111)、2θ=47.1(200)、
2θ=68.0(220))が観察され合金化されてい
ることが確認された。
The temperature of the system was then lowered to about 20'Ct, and ammonium hydroxide was gradually added so that the pH of the system was about 8 at this temperature. After the addition was completed, stirring was continued at this temperature for about 30 minutes, and then the reaction solution was filtered and thoroughly washed with deionized water. After washing, the cake was vacuum dried at a temperature of 50° C. for about 12 hours. After the resulting catalyst was pulverized, it was placed in an annular heat treatment furnace, and the furnace was purged with nitrogen for about 30 minutes to remove oxygen. After this, the temperature was raised to 350'C4, and the atmosphere in the furnace was changed from nitrogen to carbon monoxide. 3
After treatment with carbon monoxide at 50°C for 30 minutes, the special surrounding atmosphere in the furnace was replaced with nitrogen and the temperature was started to rise again. After the temperature of the furnace reached approximately 900°C, at this temperature, the temperature was increased again. 1
Time processed. Thereafter, the temperature of the furnace was lowered to room temperature under a nitrogen blanket, and the sample was taken out. The average crystallite diameter of the finished catalyst was measured by X-ray diffraction, and the average crystallite diameter was approximately 4OA. Furthermore, as a result of detailed examination of X-ray diffraction data, the diffraction peak of platinum alone (2θ=,=3
9.7 (111), 2e=46.2 (200), 2θ=
67.5pt (220)) and the peak of iron alone (2
θ=44.7 (110), 2θ: 65.0 (200
), 2e=82.3 (211) ) C could not be observed, and the peak (2
θ=40.5 (111), 2θ=47.1 (200),
2θ=68.0 (220)) was observed, and it was confirmed that alloying occurred.

(実施例 2) 実施例1にて触媒の熱処理を以下の方法で行ったこと以
外は実施例1と同じである。炉内にセットした触媒をヘ
リウ佇チ囲気で約30分間パージした後に約370 ’
C″1で昇温した。この後に炉の檗囲気をヘリウムから
一酸化炭素に切り換えた後に、この温度にて約30分間
処理した。この後炉内の炉囲気を一酸化炭素からヘリウ
ムに切り換えた後に炉の温度を約920 ℃に昇温した
。昇温完了後、この温度にて約1時間保持した。この後
炉の温度を下げた。この触媒の物性をX線回折で評価し
た結果、その平均結晶子径は約42穴であった。また、
X線回折の回折ピークを解析した結果実施例1と同様な
効果が得られていることが確認できた。
(Example 2) The same as Example 1 except that the catalyst was heat-treated in the following manner. After purging the catalyst set in the furnace for about 30 minutes in the air surrounding the furnace, it was heated to about 370'.
The temperature was raised to C''1. After this, the atmosphere in the furnace was changed from helium to carbon monoxide, and the treatment was continued at this temperature for about 30 minutes. After this, the atmosphere in the furnace was changed from carbon monoxide to helium. After that, the temperature of the furnace was raised to about 920 °C. After the temperature was raised, it was held at this temperature for about 1 hour. After this, the temperature of the furnace was lowered. The physical properties of this catalyst were evaluated by X-ray diffraction. , the average crystallite diameter was about 42 holes.
As a result of analyzing the diffraction peaks of X-ray diffraction, it was confirmed that the same effects as in Example 1 were obtained.

第1図にこの発明にて調製した触媒(実施例1、実施例
2)と触媒調製の母体とした10%白金担持触媒の経時
的な出力特性の比較を示す。第1図よや明らかなように
10%白金担持触媒と比較して、本発明の方法により調
製j〜た触媒は初期における特性もよく、しかも経時的
な出力特性も優れていることがわかった。
FIG. 1 shows a comparison of the output characteristics over time of the catalysts prepared according to the present invention (Example 1 and Example 2) and the 10% platinum supported catalyst used as the base material for catalyst preparation. As is clear from Figure 1, compared to the 10% platinum-supported catalyst, the catalyst prepared by the method of the present invention had better initial characteristics and also showed superior output characteristics over time. .

〔発明の効果〕〔Effect of the invention〕

この発明によれば、白金−鉄一炭素の3成分の合金触媒
を担体に担持てきるために、従来と比較して、初期の出
力特性も高く、しかも経時的な出力特性も良い触媒が得
られ、電気化学セルの特性の向上が図れる。
According to this invention, since the three-component alloy catalyst of platinum-iron-carbon can be carried on a carrier, a catalyst with higher initial output characteristics and better output characteristics over time can be obtained compared to conventional catalysts. It is possible to improve the characteristics of the electrochemical cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で得られた触媒(実施例1,2)とその
母体の10%白金担持触媒における特性比較を示すグラ
フ。
FIG. 1 is a graph showing a comparison of characteristics between the catalysts obtained according to the present invention (Examples 1 and 2) and the base catalyst supported on 10% platinum.

Claims (1)

【特許請求の範囲】 1)電気化学セルに用いる触媒において、その触媒成分
が白金と白金以外の遷移金属とさらにこれら以外の第3
の成分を含有し、しかもこれらが合金として存在するこ
とを特徴とする合金担持触媒。 2)特許請求の範囲第1項に記載の合金担持触媒におい
て、白金以外の遷移金属として鉄を含有することを特徴
とする合金担持触媒。 3)特許請求の範囲第1項に記載の合金担持触媒におい
て、第3の成分として炭素を含有することを特徴とする
合金担持触媒。
[Claims] 1) A catalyst used in an electrochemical cell whose catalyst components include platinum, a transition metal other than platinum, and a third metal other than these.
An alloy-supported catalyst characterized by containing the following components and existing as an alloy. 2) The alloy supported catalyst according to claim 1, which contains iron as a transition metal other than platinum. 3) The alloy supported catalyst according to claim 1, which contains carbon as a third component.
JP61189860A 1986-08-13 1986-08-13 Alloy supported catalyst Pending JPS6344940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61189860A JPS6344940A (en) 1986-08-13 1986-08-13 Alloy supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61189860A JPS6344940A (en) 1986-08-13 1986-08-13 Alloy supported catalyst

Publications (1)

Publication Number Publication Date
JPS6344940A true JPS6344940A (en) 1988-02-25

Family

ID=16248392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61189860A Pending JPS6344940A (en) 1986-08-13 1986-08-13 Alloy supported catalyst

Country Status (1)

Country Link
JP (1) JPS6344940A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210035A (en) * 1988-02-18 1989-08-23 Tanaka Kikinzoku Kogyo Kk Platinum catalyst and its manufacture method
WO1994010715A1 (en) * 1992-10-23 1994-05-11 International Fuel Cells Corporation Platinum-rhodium-iron catalyst
JP2007268360A (en) * 2006-03-30 2007-10-18 Osaka Prefecture Catalyst and its manufacturing method
JP2012500720A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ ソシエタス・ヨーロピア Continuous production method of catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01210035A (en) * 1988-02-18 1989-08-23 Tanaka Kikinzoku Kogyo Kk Platinum catalyst and its manufacture method
WO1994010715A1 (en) * 1992-10-23 1994-05-11 International Fuel Cells Corporation Platinum-rhodium-iron catalyst
JP2007268360A (en) * 2006-03-30 2007-10-18 Osaka Prefecture Catalyst and its manufacturing method
JP2012500720A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ ソシエタス・ヨーロピア Continuous production method of catalyst

Similar Documents

Publication Publication Date Title
US4028274A (en) Support material for a noble metal catalyst and method for making the same
US4985386A (en) Carburized platinum catalysts and process for preparing the same employing acid amine salts
US4316944A (en) Noble metal-chromium alloy catalysts and electrochemical cell
US5079107A (en) Cathode alloy electrocatalysts
US4954474A (en) Process for preparing catalysts by alloying metals on supports
KR101270809B1 (en) Platinum alloy carbon-supported catalysts
EP0512713A1 (en) Catalyst material
JPH0724775B2 (en) Ternary alloy catalyst and method for producing the same
JPS6224908B2 (en)
JPH0636366B2 (en) Three-component metal alloy catalyst for fuel cells
EP0557674B1 (en) Platinum alloy catalyst and process of preparing same
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
WO1999066576A1 (en) Catalyst for polymer solid electrolyte type fuel-cell and method for producing catalyst for polymer solid electrolyte type fuel-cell
JPH09167620A (en) Electrode catalyst for fuel cell and its manufacture, and electrode and fuel cell using the catalyst
US4054687A (en) Method for making a fuel cell electrode
JPS618851A (en) Fuel battery and electrolyte catalyst therefor
JPS6344940A (en) Alloy supported catalyst
EP1565952B1 (en) Metal alloy for electrochemical oxidation reactions and method of production thereof
JPH04141235A (en) Electrode catalyst for an anode pole
JP2000323145A (en) Electrochemical catalyst and fuel cell using it
JPH03236160A (en) Electrode catalyst layer for fuel cell and manufacture thereof
JPH0629027A (en) Fuel cell and its manufacture
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JPH04700B2 (en)
JPH06132034A (en) Alloy catalyst for phosphoric acid fuel cell and manufacture of catalyst therefor