JP2775771B2 - Manufacturing method of fuel electrode catalyst for liquid fuel cell - Google Patents

Manufacturing method of fuel electrode catalyst for liquid fuel cell

Info

Publication number
JP2775771B2
JP2775771B2 JP63266345A JP26634588A JP2775771B2 JP 2775771 B2 JP2775771 B2 JP 2775771B2 JP 63266345 A JP63266345 A JP 63266345A JP 26634588 A JP26634588 A JP 26634588A JP 2775771 B2 JP2775771 B2 JP 2775771B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
platinum
tin
compound salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63266345A
Other languages
Japanese (ja)
Other versions
JPH02114452A (en
Inventor
伸行 柳原
邦夫 伊藤
美恵子 田辺
誠 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63266345A priority Critical patent/JP2775771B2/en
Publication of JPH02114452A publication Critical patent/JPH02114452A/en
Application granted granted Critical
Publication of JP2775771B2 publication Critical patent/JP2775771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液体燃料としてメタノール,ヒドラジン,ホ
ルマリンなどの還元剤を用い、空気・酸素を酸化剤とす
る液体燃料電池に使用する燃料極触媒の製造方法に関す
るものである。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a fuel electrode catalyst used in a liquid fuel cell using a reducing agent such as methanol, hydrazine or formalin as a liquid fuel and using air and oxygen as an oxidizing agent. It is about.

従来の技術 液体燃料電池には電解液としてカ性カリ水溶液を用い
るアルカリ型と硫酸水溶液を用いる酸性型とがあるが、
経済性を考慮すると酸化剤として空気を用いるのが一般
的である。この観点から空気を用いても電解液の変質の
ない酸性型液体燃料電池が多く研究されている。この種
の燃料電池の特性向上には、電極に用いる貴金属触媒の
製造方法に関与する所が大きく、とくに炭素粒子上に貴
金属触媒粒子を高分散に担持させる事が重要な技術とさ
れている。したがって、貴金属触媒の担持法に関しても
多くの研究がなされている。例えば、貴金属触媒の製造
方法において、白金錯化合物を酸化剤により酸化し、酸
化生成物のコロイド粒子を生成し、導電性カーボン基体
上にこれを沈析した後、カーボンを過,水洗,乾燥す
る。その後カーボン基体上に沈析した酸化白金を水素に
より還元させて触媒の白金粒子を高分散の状態に形成さ
せる事が提案されている(特公昭61−1869号公報)、し
かし、白金触媒単独では約10−20Å程度の微罪な触媒粒
子が高分散にカーボン基体上に担持されるが、白金触媒
単独では液体燃料電池のメタノール極の特性が悪く、実
用的でないために白金・ルテニウム2元系以上の合金触
媒が多く研究されている。この白金・ルテニウム2元系
触媒はリン酸型燃料電池の燃料極触媒にも検討されてい
るが、この燃料極触媒の調製方法をそのまま液体燃料電
池のメタノール極の触媒に用いる事は出来ない。
2. Description of the Related Art Liquid fuel cells include an alkaline type using a potassium hydroxide aqueous solution as an electrolyte and an acidic type using a sulfuric acid aqueous solution.
It is common to use air as an oxidizing agent in consideration of economy. From this point of view, many studies have been made on acidic liquid fuel cells in which the electrolyte does not deteriorate even when air is used. In order to improve the characteristics of this type of fuel cell, there is a great deal of involvement in the method of producing a noble metal catalyst used for an electrode. In particular, it is an important technology to carry noble metal catalyst particles in a highly dispersed state on carbon particles. Therefore, many studies have been made on a method for supporting a noble metal catalyst. For example, in a method for producing a noble metal catalyst, a platinum complex compound is oxidized with an oxidizing agent to produce colloidal particles of an oxidation product, which are precipitated on a conductive carbon substrate, and then the carbon is washed, washed and dried. . Thereafter, it has been proposed that platinum oxide precipitated on the carbon substrate is reduced with hydrogen to form platinum particles of the catalyst in a highly dispersed state (Japanese Patent Publication No. 61-1869), but the platinum catalyst alone is not used. Slightly fine catalyst particles of about 10-20 mm are supported on the carbon substrate in a highly dispersed state. However, the platinum catalyst alone is not practical because the properties of the methanol electrode of a liquid fuel cell are poor and impractical. Many alloy catalysts have been studied. Although this platinum-ruthenium binary catalyst has been studied for a fuel electrode catalyst of a phosphoric acid fuel cell, the method for preparing this fuel electrode catalyst cannot be used as it is for a methanol electrode catalyst of a liquid fuel cell.

例えば、親水処理した触媒担体(炭素微粒子)を水に
分散させた後に、これに塩化白金酸と塩化ルテニウム水
溶液を添加した後、PHをアルカリ側に調整し、反応可能
な温度でコロイド凝集防止剤(過酸化水素)を添加し、
さらに還元剤を徐々に添加して得られた白金・ルテニウ
ムの混合触媒を熱処理する事により白・ルテニウム合金
触媒を調製する方法が提案されている(特開昭63−4876
1号公報)。この触媒調製方法では、触媒担体(炭素微
粉末)の存在の中で白金とルテニウム触媒の均質混合,P
Hのアルカリ調整,還元剤による触媒塩の還元反応など
を進行させるために、触媒担体(炭素微粉末)の細孔部
表面に均質に沈析せず、高分散の状態で担持させる事が
困難である。したがって、触媒粒子の比表面積のバラツ
キが大きく、液体燃料電池のメタノール極に用いても優
れた特性が得られない場合がある。そこで、さらに改良
を加えるために、塩化白金酸と塩化ルテニウムを含む混
合水溶液に、反応可能な温度で還元剤(例えば亜硫酸水
素ナトリウム)を徐徐に添加し、PHを酸性側に調整した
後、過酸化水素水溶液を適量加え、白金・ルテニウムか
らなる均質な高分散したコロイド分散液を調製した。こ
の状態を保持している中に、触媒担体(炭素微粉末)を
加える事を提案し、炭素微粒子の表面に約10〜30Åの微
細なバラツキの少ない白金・ルテニウム触媒を高分散し
た状態で形成させる事が出来た。これは透過型電子顕微
鏡からも観察する事が出来た。しかし次の様な課題を生
じた。
For example, after dispersing a hydrophilically-treated catalyst carrier (fine carbon particles) in water, adding chloroplatinic acid and an aqueous ruthenium chloride solution thereto, adjusting the PH to the alkali side, and then using a colloid aggregation inhibitor at a temperature at which the reaction is possible. (Hydrogen peroxide)
Furthermore, there has been proposed a method for preparing a white-ruthenium alloy catalyst by heat-treating a mixed platinum-ruthenium catalyst obtained by gradually adding a reducing agent (Japanese Patent Application Laid-Open No. 63-4876).
No. 1). In this catalyst preparation method, homogeneous mixing of platinum and ruthenium catalyst in the presence of a catalyst carrier (carbon fine powder), P
It is difficult to support the catalyst carrier (fine carbon powder) in a highly dispersed state without uniform precipitation on the surface of the pores in order to advance the alkali adjustment of H, the reduction reaction of the catalyst salt by the reducing agent, etc. It is. Accordingly, the specific surface area of the catalyst particles varies greatly, and excellent characteristics may not be obtained even when used as a methanol electrode of a liquid fuel cell. Therefore, in order to make further improvements, a reducing agent (for example, sodium bisulfite) is gradually added to a mixed aqueous solution containing chloroplatinic acid and ruthenium chloride at a temperature at which the reaction is possible, and the pH is adjusted to an acidic side. An appropriate amount of aqueous hydrogen oxide solution was added to prepare a homogeneous and highly dispersed colloidal dispersion composed of platinum and ruthenium. While maintaining this state, we propose to add a catalyst carrier (fine carbon powder), and form a highly dispersed platinum-ruthenium catalyst with small variations of about 10 to 30 mm on the surface of fine carbon particles. I was able to make it. This could be observed from a transmission electron microscope. However, the following problems occurred.

発明が解決しようとする課題 この様な従来の触媒製造方法では、高分散な状態で炭
素微粒子の表面上に白金・ルテニウム触媒を担持しても
液体燃料電池のメタノール極に使用した所、優れた特性
が得られないと云う課題を有していた。前記引例の白金
触媒単独の場合と殆んど同じ特性を示した。この触媒を
X線回折法で調査すると白金とルテニウムのピークが現
われ、炭素微粒子表面上で白金とルテニウムが単独で存
在している事が判明した。しかもCO吸着法で触媒の粒子
径を測定すると約10〜20Å程度の粒子径を示し、単独で
非以上に高分散化している事がわかった。この様に白金
化合物塩とルテニウム化合物塩を同時に混合した状態
で、触媒を炭素微粒子上に担持させると両者が凝集せ
ず、単独で微粒子の状態で触媒が担持される事に着目
し、この触媒調整法に加えて、この高分散した状態にお
いて非酸化性雰囲気で熱処理する事によって、白金とル
テニウムの合金化が促進し、高活性になると考えた。
Problems to be Solved by the Invention In such a conventional method for producing a catalyst, even when a platinum / ruthenium catalyst is supported on the surface of carbon fine particles in a highly dispersed state, the catalyst is used for a methanol electrode of a liquid fuel cell. There was a problem that characteristics could not be obtained. It showed almost the same characteristics as the case of the platinum catalyst alone of the reference. When this catalyst was examined by X-ray diffraction, peaks of platinum and ruthenium appeared, and it was found that platinum and ruthenium were present alone on the surface of the carbon fine particles. Moreover, when the particle size of the catalyst was measured by the CO adsorption method, it showed a particle size of about 10 to 20 mm, indicating that the catalyst was highly dispersed alone. Focusing on the fact that when the catalyst is supported on carbon fine particles in a state where the platinum compound salt and the ruthenium compound salt are simultaneously mixed, the two do not aggregate, and the catalyst is supported alone in the form of fine particles. In addition to the preparation method, it was considered that by performing heat treatment in a non-oxidizing atmosphere in this highly dispersed state, alloying of platinum and ruthenium was promoted and high activity was obtained.

本発明は、この様な課題を解決するもので、とくに、
炭素微粒子表面上に白金,ルテニウム,錫のうち2種類
以上からなる混合触媒のコロイド分散液中に、懸濁状態
の炭素微粉末を加え、混合触媒を高分散に沈析させた
後、非酸化性雰囲気で熱処理して混合触媒を合金化さ
せ、高活性な触媒が担持される工程を有する液体燃料電
池用燃料極触媒の製造方法を得ることを目的とするもの
である。
The present invention solves such a problem, and in particular,
A carbon fine powder in a suspended state is added to a colloidal dispersion of a mixed catalyst comprising at least two of platinum, ruthenium and tin on the surface of the carbon fine particles to precipitate the mixed catalyst in a highly dispersed state, and then to perform non-oxidation. It is an object of the present invention to obtain a method for producing a fuel electrode catalyst for a liquid fuel cell, which has a step of supporting a highly active catalyst by heat treatment in a neutral atmosphere to alloy the mixed catalyst.

課題を解決するための手段 上記の目的達成のために、本発明は液体燃料電池用燃
料極の炭素微粒子上に高活性な合金触媒を担持させる方
法において、水溶媒体中に白金化合物塩,ルテニウム化
合物塩,錫化合物塩の少なくとも2種類の塩を溶解させ
た混合水溶液に、反応可能な温度で還元剤を徐々に添加
し、PHを調整した後、過酸化水素水溶液を加えて、白
金,ルテニウム,錫のうち2種類以上を含むコロイド分
散液に懸濁状態の炭素微粉末を加え、その後過,洗
浄,乾燥して得られる混合触媒担持炭素微粉末を、非酸
化性雰囲気下で700〜1000℃の温度により熱処理する液
体燃料電池用燃料極触媒の製造方法である。また、この
製造工程において、超音波分散機を用いて、高分散処理
しながら、白金化色物塩,ルテニウム化合物塩,錫化合
物塩のうち2種類以上を各々混合する工程、あるいは同
じく超音波分散機を用いて高分散処理中の白金,ルテニ
ウム,錫のうち2種以上からなるコロイド分散液中に懸
濁状態の炭素微粉末を添加する工程を有する液体燃料電
池用燃料極触媒の製造方法を得るものである。
Means for Solving the Problems In order to achieve the above object, the present invention provides a method for supporting a highly active alloy catalyst on carbon fine particles of a fuel electrode for a liquid fuel cell. To a mixed aqueous solution in which at least two kinds of salts of a salt and a tin compound are dissolved, a reducing agent is gradually added at a temperature at which the reaction can be performed to adjust the pH, and then an aqueous solution of hydrogen peroxide is added to form a mixture of platinum, ruthenium, A carbon fine powder in a suspended state is added to a colloidal dispersion liquid containing two or more types of tin, and then the mixture is washed, dried, and dried. This is a method for producing a fuel electrode catalyst for a liquid fuel cell, which is heat-treated at the temperature of In this manufacturing process, a step of mixing two or more of platinum-containing color salt, ruthenium compound salt and tin compound salt while performing high dispersion treatment using an ultrasonic disperser, For producing a fuel electrode catalyst for a liquid fuel cell, comprising a step of adding a carbon fine powder in a suspended state to a colloidal dispersion composed of at least two of platinum, ruthenium and tin during high dispersion treatment using a disperser. What you get.

つぎの発明として、白金化合物塩,ルテニウム化合物
塩,錫化合物塩のうち少なくとも2種類の塩が溶解して
いる混合水溶液に、反応可能な温度で亜硫酸水素ナトリ
ウム溶液を徐々に添加し、PHを調整した後、過酸化水素
水溶液を加え、白金,ルテニウム,錫のうち2種類以上
からなるコロイド分散液に懸濁状態の炭素微粉末を添加
する前後の少なくとも一方で還元剤を加え、その後
過,洗浄,乾燥して得られる混合触媒担持炭素微粉末を
非酸化性雰囲気下で700〜1000℃の温度により熱処理す
る液体燃料電池用燃料極触媒の製造方法であり、この製
造工程中に用いる還元剤が亜硫酸水素ナトリウム,炭酸
水素ナトリウム,ギ酸ナトリウム,ニチオン酸ナトリウ
ム,酒石酸ナトリウム,クエン酸ナトリウム,ヒドラジ
ン,ホルマリンまたはアルコールのいずれかである液体
燃料電池用燃料極触媒の製造方法を得るものである。
As the next invention, the pH is adjusted by gradually adding a sodium bisulfite solution at a reaction temperature to a mixed aqueous solution in which at least two salts of a platinum compound salt, a ruthenium compound salt, and a tin compound salt are dissolved. After that, an aqueous solution of hydrogen peroxide is added, and at least one of before and after adding the suspended carbon fine powder to the colloidal dispersion liquid comprising at least two of platinum, ruthenium, and tin, a reducing agent is added. A method for producing a fuel electrode catalyst for a liquid fuel cell in which a mixed catalyst-supported carbon fine powder obtained by drying is heat-treated at a temperature of 700 to 1000 ° C. in a non-oxidizing atmosphere at a temperature of 700 to 1000 ° C. Sodium bisulfite, sodium hydrogen carbonate, sodium formate, sodium dithionate, sodium tartrate, sodium citrate, hydrazine, formalin or alcohol Method of manufacturing a liquid fuel cell anode catalyst is either Le is intended to obtain.

作用 このような燃料極触媒の製造方法により、白金化合物
塩,ルテニウム化合物塩,錫化合物塩の少なくとも2種
類の塩を溶解させた混合水溶液に還元剤を徐々に加え、
各々の塩を還元状態にした後過酸化水素水溶液を加え
て、白金,ルテニウム,錫の2種以上からなるコロイド
分散液を調製する工程(I)と、触媒粒子が高分散状態
にあるコロイド分散液に懸濁状態の炭素微粉末を加、
え、炭素微粒子の表面に高分散の状態で触媒を単独に沈
析させる工程(II)と、この高分散に触媒を担持した炭
素微粉末を非酸化性雰囲気で熱処理する事(III)によ
り、高分散状態で単独で担持していた白金,ルテニウ
ム,錫触媒微粒子が焼結状態になり、白金,ルテニウ
ム,錫原子が接触した状態で相互に各金属原子が拡散し
合って合金化し、あるいは固溶体を形成して触媒の活性
が大きく向上する。白金−ルテニウム,白金−錫,ルテ
ニウム−錫,白金−ルテニウム−錫系触媒は各々単独よ
りも触媒活性が高い事も知られている。この様に炭素微
粒子上において高分散した状態で熱処理する過程で触媒
が高活性を示し、液体燃料電池用燃料極の特性を大きく
向上させる事となる。
According to such a method for producing an anode catalyst, a reducing agent is gradually added to a mixed aqueous solution in which at least two kinds of salts of a platinum compound salt, a ruthenium compound salt, and a tin compound salt are dissolved,
A step (I) of preparing a colloidal dispersion comprising at least two of platinum, ruthenium and tin by adding an aqueous solution of hydrogen peroxide after reducing each salt, and a colloidal dispersion in which the catalyst particles are in a highly dispersed state. Add suspended carbon fine powder to the liquid,
The step (II) of precipitating the catalyst alone in a highly dispersed state on the surface of the carbon fine particles, and the heat treatment of the finely divided carbon powder carrying the catalyst in a non-oxidizing atmosphere (III), The platinum, ruthenium, and tin catalyst particles supported alone in a highly dispersed state become sintered, and when the platinum, ruthenium, and tin atoms are in contact with each other, the metal atoms diffuse into one another to form an alloy or a solid solution. And the activity of the catalyst is greatly improved. It is also known that platinum-ruthenium, platinum-tin, ruthenium-tin, and platinum-ruthenium-tin catalysts each have higher catalytic activity than single catalysts. As described above, the catalyst exhibits high activity in the process of heat treatment in a state of being highly dispersed on the carbon fine particles, thereby greatly improving the characteristics of the fuel electrode for a liquid fuel cell.

実施例 以下に実施例によりさらに詳しく説明する。Examples Hereinafter, examples will be described in more detail.

実施例1 市販の炭素微粉末(アセチレン・ブラック,カーボン
・ブラック,活性炭など)を硝酸水溶液などに浸漬し、
親水化処理した後、この炭素微粉末を洗浄,乾燥して触
媒担持用カーボン担体とした。つぎに、市販の塩化白金
酸(H2PtCl6)10gを1の水に溶解させた溶液中に12g/
濃度の塩化ルテニウム(RuCl3)水溶液1を徐々に
加え混合溶液を作った。つぎにこの混合溶液中に亜硫酸
水素ナトリウム(NaHSO3)の100g/水溶液100mlを徐々
に且つ連続的に加え、カ性ソーダ(NaOH)水溶液などで
PHを4〜6に調整し、30vol%過酸化水素(H2O2)水溶
液を必要量の10倍以上の100mlを加え、白金とルテニウ
ムのコロイド分散液を形成させた。この分散液にあらか
じめ超音波分散機で水と炭素微粉末50gを高分散処理し
た懸濁状の炭素微粉末(例えばキャボット社製BP−200
0.カーボン・ブラック)を加え、白金・ルテニウム触媒
を炭素微粒子状に沈析させた。つぎにこれを過・洗浄
・乾燥して得られた白金・ルテニウム混合触媒担持炭素
微粉末を非酸化性雰囲気、例えば真空中で約800℃の温
度により熱処理し、触媒の合金化あるいは固溶体化を一
層促進させた。この白金・ルテニウム合金触媒担持炭素
微粉末にフッ素樹脂(ポリテトラフルオロエチレン)の
分散液を加えてペースト状とし、導電性のカーボンペー
パーを介して加圧,塗着し、乾燥して電極基板とした。
この電極基板にリードを取り付け、メタノール極を形成
した。このメタノール極の単極電位特性を評価するため
に、水素標準電極と組合わせ、水素極電位に対するメタ
ノール極の単極電位を測定した。本実施例1で製作した
メタノール極をAとする。
Example 1 A commercially available fine carbon powder (acetylene black, carbon black, activated carbon, etc.) was immersed in a nitric acid aqueous solution or the like.
After the hydrophilization treatment, this carbon fine powder was washed and dried to obtain a catalyst-supporting carbon carrier. Next, a solution of 10 g of commercially available chloroplatinic acid (H 2 PtCl 6 ) in 1 water was added with 12 g /
A ruthenium chloride (RuCl 3 ) aqueous solution 1 having a concentration of 1 was gradually added to form a mixed solution. Next, 100 g of an aqueous solution of sodium bisulfite (NaHSO 3 ) / 100 ml of an aqueous solution is gradually and continuously added to the mixed solution, and the solution is added with an aqueous solution of sodium hydroxide (NaOH) or the like.
The pH was adjusted to 4 to 6, and 100 ml of a 30 vol% aqueous hydrogen peroxide (H 2 O 2 ) solution, which was at least 10 times the required amount, was added to form a colloidal dispersion of platinum and ruthenium. Suspended carbon fine powder (for example, BP-200 manufactured by Cabot Corporation) in which 50 g of water and fine carbon powder were subjected to high dispersion treatment in advance using an ultrasonic disperser to this dispersion liquid.
0 carbon black) to precipitate the platinum-ruthenium catalyst into fine carbon particles. Next, the platinum fine-ruthenium mixed catalyst-supported carbon fine powder obtained by excess, washing and drying is heat-treated at a temperature of about 800 ° C. in a non-oxidizing atmosphere, for example, vacuum, to form an alloy or a solid solution of the catalyst. Further promoted. A dispersion of a fluororesin (polytetrafluoroethylene) is added to the platinum-ruthenium alloy catalyst-supported carbon fine powder to form a paste. The paste is applied via conductive carbon paper, dried and dried to form an electrode substrate. did.
A lead was attached to this electrode substrate to form a methanol electrode. In order to evaluate the monopolar potential characteristics of the methanol electrode, the monopolar potential of the methanol electrode with respect to the hydrogen electrode potential was measured in combination with a hydrogen standard electrode. The methanol electrode manufactured in the first embodiment is denoted by A.

実施例2 市販の塩化白金酸(H2PtCl6)10gを1の水に溶解さ
せた溶液中に12g/濃度の塩化ルテニウム(RuCl3)水
溶液1を超音波分散機を用いて超音波分散処理をしな
がら徐々に加え、つぎにこの混合溶液中に亜硫酸水素ナ
トリウム(NaHSO3)の100g/水溶液100mlを徐々に且つ
連続的に加え、カ性ソーダ(NaOH)水溶液などでPHを4
〜6に調整し30vol%待酸化水素(H2O2)水溶液を必要
量の10倍以上の100mlを加え、白金とルテニウムのコロ
イド分散液を形成させ、この分散液にあらかじめ超音波
分散機で水と炭素微粉末50gを高分散処理した懸濁状の
炭素微粉末(キャボット社製BP−2000カーボン・ブラッ
ク)を超音波分散機を用いて超音波分極処理をしながら
徐々に加え、白金・ルテニウム触媒を炭素微粒子状に沈
析させた。以下の製造工程は実施例1と全く同じ製造方
法でメタノール極を形成し、メタノール極の単極電位を
測定した。本実施例2で製作したメタノール極をBとす
る。
Example 2 A 12 g / concentration ruthenium chloride (RuCl 3 ) aqueous solution 1 in a solution of 10 g of commercially available chloroplatinic acid (H 2 PtCl 6 ) in 1 water was subjected to ultrasonic dispersion treatment using an ultrasonic disperser. And then gradually and continuously add 100 g of an aqueous solution of sodium bisulfite (NaHSO 3 ) / 100 ml of an aqueous solution to the mixed solution, and adjust the pH to 4 with an aqueous solution of sodium hydroxide (NaOH) or the like.
6 to adjust 30 vol% waiting hydrogen oxide (H 2 O 2) aqueous solution was added to 100ml of 10 times or more the necessary amount to form a colloidal dispersion of platinum and ruthenium, in advance ultrasonic disperser to the dispersion Suspended carbon fine powder (BP-2000 carbon black, manufactured by Cabot Corporation) obtained by highly dispersing 50 g of water and carbon fine powder is gradually added while performing ultrasonic polarization treatment using an ultrasonic disperser. The ruthenium catalyst was precipitated into fine carbon particles. In the following manufacturing steps, a methanol electrode was formed by the same manufacturing method as in Example 1, and the unipolar potential of the methanol electrode was measured. The methanol electrode produced in Example 2 is designated as B.

実施例3 市販の塩化白金酸(H1PtCl6)10gを1の水に溶解さ
せた溶液中に1g/濃度の塩化錫(SnCl2)水溶液1を
超音波分散機を用いて超音波分散処理をしながら徐々に
加える製造工程と、白金と錫の混合触媒担持微粉末を約
800℃の温度で熱処理する雰囲気条件が窒素ガス中であ
る製造工程以外は全く実施例1と同じ製造方法で、メタ
ノール極を形成し、メタノール極の単極電位を測定し
た。本実施例3で製作したメタノール極をCとする。
Example 3 A 1 g / concentration aqueous solution of tin chloride (SnCl 2 ) 1 in a solution of 10 g of commercially available chloroplatinic acid (H 1 PtCl 6 ) dissolved in 1 water was subjected to ultrasonic dispersion treatment using an ultrasonic disperser. Process and gradually add fine powder carrying platinum and tin mixed catalyst
A methanol electrode was formed and the unipolar potential of the methanol electrode was measured by the same manufacturing method as in Example 1, except that the heat treatment at a temperature of 800 ° C. was performed in a nitrogen gas atmosphere. The methanol electrode manufactured in the third embodiment is designated as C.

実施例4 市販のルテニウム(RuCl3)12gを1の水に溶解させ
た溶液中に1g/濃度の塩化錫(SnCl2)水溶液1を超
音波分散機を用いて超音波分散処理をしながら徐々に加
える製造工程と、ルテニウムと錫の混合触媒担持微粉末
を約800℃の温度で熱処理する雰囲気条件が2〜10%の
水素ガスを含むアルゴンガス中である製造工程以外は全
く実施例1と同じ製造方法でメタノール極を形成し、メ
タノール極の単極電位を測定した。本実施例4で製作し
たメタノール極をDとする。
Example 4 A 1 g / concentration aqueous solution of tin chloride (SnCl 2 ) 1 in a solution of 12 g of commercially available ruthenium (RuCl 3 ) dissolved in 1 water was gradually subjected to ultrasonic dispersion treatment using an ultrasonic disperser. Example 1 except that the manufacturing process added to the above and the manufacturing process in which the atmosphere conditions for heat-treating the mixed catalyst-supported fine powder of ruthenium and tin at a temperature of about 800 ° C. were in argon gas containing 2 to 10% hydrogen gas were used. A methanol electrode was formed by the same production method, and the unipolar potential of the methanol electrode was measured. The methanol electrode manufactured in Example 4 is denoted by D.

実施例5 市販の塩化白金酸(H2PtCl6)10gを1の水に溶解さ
せた溶液中に12g/濃度の塩化ルテニウム(RuCl3)水
溶液1と2g/濃度の塩化錫(SnCl3)水溶液1を超
音波分散機を用いて超音波分散処理をしながら徐々に加
え、混合触媒を形成させる製造工程以外は実施例2と同
じ製造方法でメタノール極を形成し、メタノール極の単
極電位を測定した。本実施例5で製作したメタノール極
をEとする。
Example 5 12 g / concentration of ruthenium chloride (RuCl 3 ) aqueous solution 1 and 2 g / concentration of tin chloride (SnCl 3 ) aqueous solution in a solution of 10 g of commercially available chloroplatinic acid (H 2 PtCl 6 ) in 1 water 1 was gradually added while performing ultrasonic dispersion treatment using an ultrasonic disperser, and a methanol electrode was formed by the same manufacturing method as in Example 2 except for the manufacturing step of forming a mixed catalyst. It was measured. The methanol electrode manufactured in the fifth embodiment is denoted by E.

実施例6 市販の塩化白金酸(H2PtCl6)10gを1の水に溶解さ
せた溶液中に12g/の塩化ルテニウム(RuCl3)水溶液
1を超音波分散機を用いて超音波をしながら徐々に加
え、つぎにこの混合溶液中に亜硫酸水素ナトリウム(Na
HSO3)の100g/水溶液100mlを徐々に且つ連続的に加
え、炭酸ナトリウム(Na2Co3)水溶液などでPHを4〜6
に調整し、30vol%過酸化水素(H2O2)水溶液を必要量
の10倍以上の100mlを加え、白金とルテニウムのコロイ
ド分散液を形成させた後に無機還元剤であるギ酸ナトリ
ウム水溶液(濃度100g/)を100ml程度加えた後、この
分散液にあらかじめ超音波分散機で水と炭素微粉末50g
を高分散処理した懸濁状態の炭素微粉末(キャボット社
製BP−2000カーボン ブラック)を超音波分散機を用い
て超音波処理をしながら徐々に加え、白金・ルテニウム
触媒を炭素微粒子上に沈析させる製造工程以後は実施例
1と同じ製造方法でメタノール極を形成し、メタノール
極の単極電位を測定した。本実施例6で製作したメタノ
ール極をFとする。
Example 6 In a solution of 10 g of commercially available chloroplatinic acid (H 2 PtCl 6 ) dissolved in 1 water, 12 g / aqueous ruthenium chloride (RuCl 3 ) aqueous solution 1 was subjected to ultrasonic waves using an ultrasonic disperser. Add slowly and then add sodium bisulfite (Na
100 g of an aqueous solution of HSO 3 ) / 100 ml of an aqueous solution is gradually and continuously added, and PH is adjusted to 4 to 6 with an aqueous solution of sodium carbonate (Na 2 Co 3 ).
After adding 100 ml of a 30 vol% hydrogen peroxide (H 2 O 2 ) aqueous solution at least 10 times the required amount to form a colloidal dispersion of platinum and ruthenium, an aqueous solution of sodium formate as an inorganic reducing agent (concentration After adding about 100 ml of 100 g /), 50 g of water and carbon fine powder were added to this dispersion in advance using an ultrasonic disperser.
Of carbon powder (BP-2000 carbon black, manufactured by Cabot) is gradually added while performing ultrasonic treatment using an ultrasonic disperser, and a platinum / ruthenium catalyst is precipitated on the carbon fine particles. A methanol electrode was formed by the same manufacturing method as in Example 1 after the manufacturing step of precipitation, and the unipolar potential of the methanol electrode was measured. The methanol electrode manufactured in Example 6 is denoted by F.

実施例7 市販の塩化白金酸(H2PtCl6)10gを1の水に溶解さ
せた溶液中に12g/濃度の塩化ルテニウム(RuCl3)水
溶液1と2g/濃度の塩化錫(SnCl3)水溶液1を超
音波分散機を用いて超音波分散処理をしながら徐々に加
える製造工程と白金・ルテニウム,錫のコロイド分散液
を形成させた後、この分散液にあらかじめ超音波分散機
で水と炭素微粉末50gを超音波処理した懸濁状態の炭素
微粉末(キャボット社製BP−2000カーボンブラック)を
超音波分散機を用いて超音波分散処理をしながら徐々に
加え、さらに有機還元剤であるホルマリン溶液を適量添
加させ白金・ルテニウム・錫触媒を炭素微粒子上に沈析
させる製造工程以外は全く実施例1と同じ製造方法でメ
タノール極を形成し、メタノール極の単極電位を測定し
た。本実施例7で製作したメタノール極をGとする。
Example 7 12 g / concentration of ruthenium chloride (RuCl 3 ) aqueous solution 1 and 2 g / concentration of tin chloride (SnCl 3 ) aqueous solution in a solution of 10 g of commercially available chloroplatinic acid (H 2 PtCl 6 ) dissolved in 1 water 1 and a colloidal dispersion of platinum, ruthenium and tin is formed by gradually adding ultrasonic dispersion while using an ultrasonic disperser, and then water and carbon are added to this dispersion in advance by an ultrasonic disperser. A suspension of fine carbon powder (BP-2000 carbon black, manufactured by Cabot Corporation) in which 50 g of the fine powder is ultrasonically treated is gradually added while performing ultrasonic dispersing treatment using an ultrasonic dispersing machine. A methanol electrode was formed in exactly the same manner as in Example 1, except that a formalin solution was added in an appropriate amount and a platinum / ruthenium / tin catalyst was precipitated on carbon fine particles, and the unipolar potential of the methanol electrode was measured. The methanol electrode manufactured in Example 7 is denoted by G.

比較例 実施例1,2,3,4,5,6,7の製造方法において、各触媒を
担持した炭素微粉末を非酸化性雰囲気中での熱処理を実
施せず、未熱処理の状態でメタノール極を製造し、比較
例とした。この比較例としてのメタノール極をa,b,c,d,
e,f,gとする。したがって、熱処理工程以外はすべて実
施例1,2,3,4,5,6,7の製造方法と同じである。
Comparative Example In the production method of Examples 1, 2, 3, 4, 5, 6, and 7, the carbon fine powder supporting each catalyst was not heat-treated in a non-oxidizing atmosphere, and methanol was left unheated. A pole was manufactured and used as a comparative example. The methanol electrode for this comparative example is a, b, c, d,
e, f, g. Therefore, except for the heat treatment step, all are the same as the manufacturing method of the first, second, third, fourth, fifth, sixth and seventh embodiments.

本実施例と比較例のメタノール極の特性を表1に示
す。測定条件としては、2MH2SO4水溶液の電解液,メタ
ノール濃度1.5M,作動温度60℃,電流密度60ma/cm2にお
けるメタノール極の電位である。但し、メタノール極の
電位はすべてIRフリーで表示したものである。
Table 1 shows the characteristics of the methanol electrode of this example and the comparative example. The measurement conditions were a 2MH 2 SO 4 aqueous electrolyte, a methanol concentration of 1.5 M, an operating temperature of 60 ° C., and a potential of the methanol electrode at a current density of 60 ma / cm 2 . However, the potentials of the methanol electrode are all IR-free.

表1より、本発明のメタノール極の特性は0.34〜0.39
Vに対して、従来のメタノール極の特性は0.38〜0.44Vで
ある。この電位はすべて標準水素電極電位に対する相対
電圧であるから、電位が小さい程優れた電極と云う事に
なる。したがって、本発明のA・B・C・D・E・F・
Gは従来のa・b・c・d・e・f・gより0.03〜0.05
V程特性が優れている。本発明では触媒の調製方法によ
って、電位範囲を生じているが、従来例と比較してすべ
て特性が向上しており、熱処理効果が大きい事がわか
る。また、本発明のメタノール極A・B・C・D・E・
F・Gと従来のメタノール極a・b・c・d・e・f・
gを各々60℃の温度で寿命試験を行なった。電池密度60
ma/cm2で連続的に5000時間動作した後の電位E1と初期電
位E0を測定し、その劣化率 でもって比較した。従来品の劣化率は10〜20%あったの
に対して本発明品の劣化率は1〜3%程度であり、本発
明品は耐久性の優れた長寿命の電極である事がわかる。
本発明で見られる様に700〜1000℃の温度により非酸化
性雰囲気中で熱処理する事により、各金属粒子間でさら
に合金化が進み、耐久性が増加したものと考えられる。
これに対し、従来例では触媒粒子が部分的にしか合金化
せず、単独の状態で存在しているので、触媒自体の活性
も低くく、触媒の耐食性もよくない。これは触媒の一部
が電解液中に溶出し、担持率が低下している事からも裏
付けされる。
From Table 1, the characteristics of the methanol electrode of the present invention are 0.34 to 0.39.
In contrast to V, the characteristic of the conventional methanol electrode is 0.38 to 0.44V. Since all of these potentials are relative to the standard hydrogen electrode potential, the smaller the potential, the better the electrode. Therefore, A, B, C, D, E, F,
G is 0.03 to 0.05 more than conventional a, b, c, d, e, f, g
The characteristics are as good as V. In the present invention, the potential range is generated depending on the method of preparing the catalyst. However, all the characteristics are improved as compared with the conventional example, and it is understood that the heat treatment effect is large. In addition, the methanol electrode A, B, C, D, E,
FG and conventional methanol electrode a, b, c, d, e, f,
g was subjected to a life test at a temperature of 60 ° C. Battery density 60
measuring the potential E 1 and the initial potential E 0 after operating continuously for 5000 hours at ma / cm 2, the deterioration rate I compared it. While the degradation rate of the conventional product was 10 to 20%, the degradation rate of the product of the present invention was about 1 to 3%, which indicates that the product of the present invention is a long-life electrode with excellent durability.
It is considered that by performing heat treatment in a non-oxidizing atmosphere at a temperature of 700 to 1000 ° C. as seen in the present invention, alloying further progresses between the metal particles and durability is increased.
On the other hand, in the conventional example, since the catalyst particles are only partially alloyed and exist in a single state, the activity of the catalyst itself is low and the corrosion resistance of the catalyst is not good. This is supported by the fact that a part of the catalyst is eluted in the electrolytic solution and the loading ratio is lowered.

本実施例A・B・C・D・E・F・G中においてもメ
タノール極電位,寿命にも差を生じている。例えばAと
Bを比較すると、AよりBの方が電位,寿命共優れてい
る。触媒同志の混合時,混合触媒と炭素微粉末との混合
時に高分散処理の工程を導入する事によって炭素微粒子
の表面に高分散で担持されるため、触媒の活性と耐久性
がより向上していると考えられる。つぎに、C・DとE
を比較するとC・DよりEの方が電位・寿命共優れてい
る。白金・錫系あるいはルテニウム・錫系の様な2元系
触媒よりは白金・ルテニウム・錫系からなる3元系触媒
の方が触媒活性が高く、耐久性も向上するために、メタ
ノール極の電位も優れ、寿命も伸長している。一方、B
とF及びEとGを比較してもBとFおよびEとGにおえ
る両者間の電位に大差はないが、寿命においてFとGの
方がBとEより優れている。これは触媒を炭素微粒子表
面に沈析させる前後に無機系あるいは有機系還元剤を添
加する事で、さらに触媒粒子間の接触・固溶体化,合金
化しやすい状態で熱処理するために、より強固に結合し
合い、FとGの方が触媒の機械的強度が高く、脱落現象
も殆んど見られなく、メタノール極の劣化率も1%程度
と低い値を示している。
Also in the examples A, B, C, D, E, F, and G, there are differences in the methanol electrode potential and the life. For example, comparing A and B, B is superior to A in both potential and lifetime. By introducing a process of high dispersion treatment when mixing the catalysts and mixing the mixed catalyst with the carbon fine powder, the catalyst is highly dispersed and supported on the surface of the carbon fine particles, thereby further improving the activity and durability of the catalyst. It is thought that there is. Next, CDD and E
In comparison, E is superior in both potential and life to C and D. A ternary catalyst composed of platinum, ruthenium, and tin has higher catalytic activity and a higher durability than a binary catalyst, such as platinum-tin or ruthenium-tin, in order to improve durability. And the life is extended. On the other hand, B
When comparing F, E, and G, there is no significant difference in the potential between B and F, and between E and G, but F and G are superior to B and E in life. This is achieved by adding an inorganic or organic reducing agent before and after precipitating the catalyst on the surface of carbon fine particles. However, F and G have higher mechanical strengths of the catalyst, hardly any falling off phenomenon, and a low degradation rate of the methanol electrode of about 1%.

この様に、白金,ルテニウム,錫系触媒を少なくとも
2種以上を同時に混合して触媒を調製する場合、触媒の
製造工程が簡易となり、触媒製造コストの低減が可能と
なると共に、メタノール極の性能が大きく向上する。
As described above, when a catalyst is prepared by simultaneously mixing at least two or more platinum, ruthenium, and tin-based catalysts, the catalyst manufacturing process is simplified, the catalyst manufacturing cost can be reduced, and the performance of the methanol electrode can be reduced. Is greatly improved.

本実施例の中で熱処理温度の一例として800℃を選択
したが、700℃〜1000℃の範囲が適切である。熱示差分
析法によって、触媒粒子の合金化あるいは固溶体化が非
酸化性雰囲気中において700〜1000℃の範囲内で進行す
る事を確認している。なお700℃よりも低温では触媒粒
子の合金化が進行せず、逆に1000℃よりも高温では触媒
粒子の凝集が促進して触媒の活性が低下する。触媒の活
性を最も高く保持するためにはこの範囲内が最適であ
る。不活性ガス雰囲気中では数%の水素ガスを含有する
事が望ましい。やや還元性雰囲気にして酸化を抑制する
とよい。
Although 800 ° C. was selected as an example of the heat treatment temperature in the present embodiment, a range of 700 ° C. to 1000 ° C. is appropriate. It has been confirmed by thermal differential analysis that alloying or solid solution formation of the catalyst particles proceeds in a non-oxidizing atmosphere within a range of 700 to 1000 ° C. When the temperature is lower than 700 ° C., alloying of the catalyst particles does not proceed. On the other hand, when the temperature is higher than 1000 ° C., aggregation of the catalyst particles is promoted and the activity of the catalyst is reduced. In order to maintain the activity of the catalyst at the highest level, the range is optimal. In an inert gas atmosphere, it is desirable to contain several percent of hydrogen gas. Oxidation may be suppressed by setting it in a slightly reducing atmosphere.

また、本実施例の中では白金化合物塩,ルテニウム化
合物塩,錫化合物塩の一例として塩化白金酸,塩化ルテ
ニウム,塩化錫を選んだが、他の各種化合物を選択して
も酸化,還元されやすい材料であれば、同様な効果が期
待できる。
In this embodiment, chloroplatinic acid, ruthenium chloride, and tin chloride are selected as examples of platinum compound salts, ruthenium compound salts, and tin compound salts, but materials that are easily oxidized and reduced even when various other compounds are selected. Then, a similar effect can be expected.

一方、触媒調製中に還元剤の一例としてギ酸ナトリウ
ム,ホルマリンを選択したが、亜硫酸水素ナトリウム,
炭酸水素ナトリウム,ニチオン酸ナトリウム,酒石酸ナ
トリウム,クエン酸ナトリウム,ヒドラジンの様な無機
還元剤またはアルコールの様な有機還元剤なども有効に
働く。
On the other hand, sodium formate and formalin were selected as examples of the reducing agent during the preparation of the catalyst.
Inorganic reducing agents such as sodium bicarbonate, sodium dithionate, sodium tartrate, sodium citrate, hydrazine or organic reducing agents such as alcohols also work effectively.

本実施例では液体燃料電池用電極の一例としてメタノ
ール燃料極を取り上げたが、ヒドラジン,ホルマリン燃
料極に適用することも可能である。
In the present embodiment, a methanol fuel electrode is taken as an example of an electrode for a liquid fuel cell, but the present invention can also be applied to a hydrazine or formalin fuel electrode.

発明の効果 以上の様に、本発明によれば高分散に炭素微粒子上に
白金,ルテニウム,錫触媒の少なくとも2種類以上を同
時に担持させ、非酸化性雰囲気中で700〜900℃の温度に
より熱処理を施す事によって、高性能な燃料極を作る事
が可能となると共に触媒製造工程も簡易化され、製造コ
ストの低減化を図る事ができる液体燃料電池電極用触媒
の製造方法を提供できると云う効果が得られる。
As described above, according to the present invention, at least two types of platinum, ruthenium, and tin catalysts are simultaneously supported on carbon fine particles in a highly dispersed state, and heat-treated at a temperature of 700 to 900 ° C. in a non-oxidizing atmosphere. It is possible to provide a method for manufacturing a catalyst for an electrode of a liquid fuel cell, which makes it possible to produce a high-performance fuel electrode and to simplify the catalyst manufacturing process and reduce the manufacturing cost. The effect is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 誠 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.6,DB名) H01M 4/88────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Makoto Uchida 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (58) Field surveyed (Int. Cl. 6 , DB name) H01M 4/88

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液体燃料電池用燃料極の炭素微粒子上に高
活性な合金触媒を担持させる方法であって、水溶媒体中
に白金化合物塩,ルテニウム化合物塩,錫化合物塩のう
ち少なくとも2種類の塩を溶解させた混合水溶液に、反
応可能な温度で還元剤を徐々に添加し、PHを調整した
後、過酸化水素水溶液を加えて、白金,ルテニウム,錫
のうち2種類以上を含むコロイド分散液に、懸濁状態の
炭素微粉末を加え、その後過,洗浄,乾燥して得られる
混合触媒担持炭素微粉末を、非酸化性雰囲気下で700〜1
000℃の温度により熱処理する事を特徴とする液体燃料
電池用燃料極触媒の製造方法。
1. A method for supporting a highly active alloy catalyst on carbon fine particles of a fuel electrode for a liquid fuel cell, wherein at least two of a platinum compound salt, a ruthenium compound salt and a tin compound salt are contained in an aqueous medium. A reducing agent is gradually added to the mixed aqueous solution in which the salt is dissolved at a temperature at which the reaction is possible to adjust the pH, and then an aqueous solution of hydrogen peroxide is added to disperse the colloid containing at least two of platinum, ruthenium, and tin. The suspended carbon fine powder is added to the liquid, and then the mixed catalyst-supported carbon fine powder obtained by excess, washing, and drying is mixed in a non-oxidizing atmosphere at 700 to 1 μm.
A method for producing a fuel electrode catalyst for a liquid fuel cell, comprising heat-treating at a temperature of 000 ° C.
【請求項2】白金化合物塩,ルテニウム化合物塩,錫化
合物塩が各々塩化白金酸,塩化ルテニウム,塩化錫であ
り、超音波分散機を用いて高分散処理させながら塩化白
金酸,塩化ルテニウム,塩化錫の各水溶液の状態で徐々
に混合する工程を有する特許請求の範囲第1項記載の液
体燃料電池用燃料極触媒の製造方法。
2. The platinum compound salt, the ruthenium compound salt and the tin compound salt are chloroplatinic acid, ruthenium chloride and tin chloride, respectively. 2. The method for producing a fuel electrode catalyst for a liquid fuel cell according to claim 1, further comprising a step of gradually mixing in a state of each aqueous solution of tin.
【請求項3】炭素微粒子上に白金,ルテニウム,錫のう
ち2種類以上の触媒を担持させる工程において、超音波
分散機を用いて高分散処理中の白金,ルテニウム,錫の
うち2種類以上を含むコロイド分散液中に、懸濁状態の
炭素微粉末を添加する工程を有する特許請求の範囲第1
項記載の液体燃料電池用燃料極触媒の製造方法。
3. A process for supporting two or more kinds of platinum, ruthenium and tin catalysts on carbon fine particles, wherein two or more kinds of platinum, ruthenium and tin undergoing high dispersion treatment using an ultrasonic disperser. 2. A method according to claim 1, further comprising the step of adding a carbon fine powder in a suspended state to the colloidal dispersion liquid containing the same.
13. The method for producing a fuel electrode catalyst for a liquid fuel cell according to claim 10.
【請求項4】白金化合物塩,ルテニウム化合物塩,錫化
合物塩のうち少なくとも2種類の塩を還元させるために
用いる還元剤が、亜硫酸水素ナトリウムである特許請求
の範囲第1項記載の液体燃料電池用燃料極触媒の製造方
法。
4. The liquid fuel cell according to claim 1, wherein the reducing agent used to reduce at least two of the platinum compound salt, the ruthenium compound salt and the tin compound salt is sodium bisulfite. For producing a fuel electrode catalyst for use.
【請求項5】白金化合物塩,ルテニウム化合物塩,錫化
合物塩のうち少なくとも2種類の塩が溶解している混合
水溶液に、反応可能な温度で亜硫酸水素ナトリウム溶液
を徐々に添加し、PHを調整した後、過酸化水素水溶液を
加え、白金,ルテニウム,錫のうち2種類以上を含むコ
ロイド分散液に、懸濁状態の炭素微粉末を添加する前後
の少なくとも一方で還元剤を加え、その後ろ過,洗浄,
乾燥して得られる混合触媒担持炭素微粉末を非酸化性雰
囲気下で700〜1000℃の温度により熱処理する事を特徴
とする液体燃料電池用燃料極触媒の製造方法。
5. The pH is adjusted by gradually adding a sodium bisulfite solution to a mixed aqueous solution in which at least two salts of a platinum compound salt, a ruthenium compound salt and a tin compound salt are dissolved at a temperature at which the reaction is possible. After that, an aqueous solution of hydrogen peroxide is added, and a reducing agent is added to at least one of before and after adding the suspended carbon fine powder to a colloidal dispersion containing at least two of platinum, ruthenium, and tin, followed by filtration, Washing,
A method for producing a fuel electrode catalyst for a liquid fuel cell, comprising subjecting a mixed catalyst-supported carbon fine powder obtained by drying to a heat treatment at a temperature of 700 to 1000 ° C. in a non-oxidizing atmosphere.
【請求項6】懸濁状態の炭素微粉末を白金,ルテニウ
ム,錫のうち2種類以上からなるコロイド分散液に加え
る工程の前後に用いる還元剤が亜硫酸水素ナトリウム,
炭酸水素ナトリウム,ギ酸ナトリウム,ニチオン酸ナト
リウム、酒石酸ナトリウム,クエン酸ナトリウム,ヒド
ラジン,ホルマリンまたはアルコールのいずれかである
特許請求の範囲第5項記載の液体燃料電池用燃料極触媒
の製造方法。
6. A reducing agent used before and after a step of adding a carbon fine powder in a suspended state to a colloidal dispersion liquid comprising at least two of platinum, ruthenium and tin is sodium bisulfite,
The method for producing a fuel electrode catalyst for a liquid fuel cell according to claim 5, wherein the catalyst is any one of sodium hydrogencarbonate, sodium formate, sodium dithionate, sodium tartrate, sodium citrate, hydrazine, formalin and alcohol.
JP63266345A 1988-10-21 1988-10-21 Manufacturing method of fuel electrode catalyst for liquid fuel cell Expired - Lifetime JP2775771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63266345A JP2775771B2 (en) 1988-10-21 1988-10-21 Manufacturing method of fuel electrode catalyst for liquid fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63266345A JP2775771B2 (en) 1988-10-21 1988-10-21 Manufacturing method of fuel electrode catalyst for liquid fuel cell

Publications (2)

Publication Number Publication Date
JPH02114452A JPH02114452A (en) 1990-04-26
JP2775771B2 true JP2775771B2 (en) 1998-07-16

Family

ID=17429645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63266345A Expired - Lifetime JP2775771B2 (en) 1988-10-21 1988-10-21 Manufacturing method of fuel electrode catalyst for liquid fuel cell

Country Status (1)

Country Link
JP (1) JP2775771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721310B1 (en) * 2005-11-29 2007-05-25 이덕열 Carbon supported electrocatalyst for polymer electrolyte membrane fuel cell and its fabrication method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746263B2 (en) * 2002-10-11 2011-08-10 勇 内田 Electrode catalyst for ethanol oxidation, direct ethanol fuel cell using the same, and electronic equipment
JP4575268B2 (en) * 2005-10-18 2010-11-04 株式会社東芝 Catalyst, electrode for fuel cell fuel electrode, and fuel cell
WO2015146454A1 (en) * 2014-03-28 2015-10-01 国立大学法人山梨大学 Electrode catalyst and method for producing electrode catalyst
CN112186207B (en) * 2020-10-29 2022-10-28 上海交通大学 Low platinum/non-platinum composite catalyst and preparation method thereof
CN117661024B (en) * 2024-01-30 2024-05-07 中国科学技术大学 Electrolytic water ruthenium antimony catalyst and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721310B1 (en) * 2005-11-29 2007-05-25 이덕열 Carbon supported electrocatalyst for polymer electrolyte membrane fuel cell and its fabrication method

Also Published As

Publication number Publication date
JPH02114452A (en) 1990-04-26

Similar Documents

Publication Publication Date Title
JP4463522B2 (en) Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
US6686308B2 (en) Supported nanoparticle catalyst
US8409659B2 (en) Nanowire supported catalysts for fuel cell electrodes
KR101363797B1 (en) Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell
JP5456797B2 (en) Fuel cell electrode catalyst
JP5209474B2 (en) Electrode catalyst, method for producing electrode catalyst, and method for suppressing coarsening of catalyst particles
JPH05129023A (en) Improved catalyst material
JP2001325964A (en) Electrode catalyst for solid polymer electrolyte fuel cell
JPWO2007119640A1 (en) Fuel cell electrode catalyst and method for producing the same
US20090142640A1 (en) Carbon-titanium oxide electrocatalyst supports for oxygen reduction in pem fuel cells
JPH06176766A (en) Platinoid electrode catalyst and its manufacture
JP2002289208A (en) Electrode catalyst for fuel cell and its manufacturing method
US4513094A (en) Single-batch process to prepare noble metal vanadium alloy catalyst on a carbon based support
JP2000003712A (en) Catalyst for high molecular solid electrolyte fuel cell
JP4797166B2 (en) Noble metal catalyst-supported conductive polymer composite and method for producing the same
JP2775771B2 (en) Manufacturing method of fuel electrode catalyst for liquid fuel cell
JP2890486B2 (en) Fuel electrode catalyst for liquid fuel cell and method for producing the same
JPWO2011136186A1 (en) Electrode material
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
KR20220058260A (en) Precious metal single atom-nanoparticle catalysts derived from single atom sites using hydrothermal method and Manufacturing method of the Same
JP2858329B2 (en) Fuel cell catalyst and electrode using the same
JP2775760B2 (en) Method for manufacturing fuel electrode for liquid fuel cell
KR20210121605A (en) Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same
JPWO2006112368A1 (en) Fuel cell electrode catalyst and method for producing the same
JP2002095969A (en) Method for producing platinum-cobalt alloy catalyst

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11