KR20210121605A - Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same - Google Patents

Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same Download PDF

Info

Publication number
KR20210121605A
KR20210121605A KR1020200038614A KR20200038614A KR20210121605A KR 20210121605 A KR20210121605 A KR 20210121605A KR 1020200038614 A KR1020200038614 A KR 1020200038614A KR 20200038614 A KR20200038614 A KR 20200038614A KR 20210121605 A KR20210121605 A KR 20210121605A
Authority
KR
South Korea
Prior art keywords
oxide
carbon nanotube
carbon nanotubes
surfactant
support
Prior art date
Application number
KR1020200038614A
Other languages
Korean (ko)
Other versions
KR102341316B1 (en
Inventor
조은애
김엄지
김기현
이상재
박준우
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020200038614A priority Critical patent/KR102341316B1/en
Publication of KR20210121605A publication Critical patent/KR20210121605A/en
Application granted granted Critical
Publication of KR102341316B1 publication Critical patent/KR102341316B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • B01J32/00
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/065Carbon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/081Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound the element being a noble metal
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

The present invention relates to a carbon nanotube support in which the coating amount of an oxide is controlled using a surfactant, and a method for manufacturing the same, and more specifically, to a support that exhibits excellent conductivity and stability by controlling the content of tin oxide nanoparticles on carbon nanotubes surface-modified with a surfactant, and a method for manufacturing the same. The support and a supported catalyst using the same according to the present invention can be applied to a cation-exchange electrolyte membrane water electrolysis battery, a cation-exchange electrolyte membrane fuel cell, a lithium-air battery, and the like.

Description

계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체 및 이의 제조방법{Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same}A carbon nanotube support with an oxide coating amount controlled using a surfactant and a method for manufacturing the same

본 발명은 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체 및 이의 제조 방법에 관한 것으로, 보다 상세하게는 계면활성제로 표면 개질된 탄소나노튜브 상에 산화주석 나노입자의 함량을 조절하여 우수한 전도성 및 안정성을 나타내는 담지체 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a carbon nanotube support in which the coating amount of oxide is controlled using a surfactant and a method for preparing the same, and more particularly, to control the content of tin oxide nanoparticles on carbon nanotubes surface-modified with a surfactant to a carrier exhibiting excellent conductivity and stability and a method for manufacturing the same.

차세대 리튬-공기 배터리, 양이온-교환 막 연료전지 및 음이온-교환 막 연료전지 등 다양한 에너지 변환 및 저장 시스템에서 전기화학촉매는 반응의 효율을 결정하는 중요한 요소이다. 고분자 전해질 막 연료전지, 고분자 전해질 막 수전해 등 기술의 경우, 산소극에 각각 백금과 이리듐이 과량으로 사용되고 있어 상기 귀금속들의 사용량을 저감시키는 것이 중요하다. In various energy conversion and storage systems, such as next-generation lithium-air batteries, cation-exchange membrane fuel cells, and anion-exchange membrane fuel cells, electrochemical catalysts are an important factor in determining the efficiency of reactions. In the case of technologies such as polymer electrolyte membrane fuel cells and polymer electrolyte membrane water electrolysis, platinum and iridium are used in excess in oxygen electrodes, respectively, so it is important to reduce the amount of the noble metals used.

이때, 담지체를 사용하게 되면 백금, 이리듐 등 귀금속 촉매의 분산도를 향상시킬 수 있으므로 귀금속 촉매의 이용효율을 높일 수 있다. 특히, 고분자 전해질 수전해 기술의 경우, 산소극에서 산소발생반응(Oxygen Evolution Reaction, OER)이 일어나는데 고전압 산성 환경 산소극에 사용되는 담지체들의 경우 우수한 안정성과 높은 전기전도성을 가져야 한다.In this case, when the carrier is used, the dispersion degree of the noble metal catalyst such as platinum and iridium can be improved, so that the utilization efficiency of the noble metal catalyst can be increased. In particular, in the case of polymer electrolyte water electrolysis technology, oxygen evolution reaction (OER) occurs at the oxygen electrode, and the carriers used for the oxygen electrode in a high voltage acidic environment must have excellent stability and high electrical conductivity.

고전압 산성 환경에서 안정한 물질로는 이산화티타늄, 산화주석 등이 있는데 이러한 산화물계 물질을 담지체로 도입한 경우 귀금속의 분산도를 증가시키는 역할을 할 수 있다. 그러나, 산화물계 담지체의 경우 낮은 전도도로 인하여 전자의 이동을 방해하므로 오히려 촉매 전체의 성능이 낮아지는 문제점이 발생한다. Examples of materials that are stable in a high-voltage acidic environment include titanium dioxide and tin oxide. When these oxide-based materials are introduced as a support, they can play a role in increasing the dispersion of noble metals. However, in the case of an oxide-based support, since the movement of electrons is hindered due to low conductivity, the performance of the entire catalyst is rather deteriorated.

상기 담지체의 전도도를 높이기 위해서 도펀트(dopant)들이 도입되는데, 산화주석의 경우 안티모니, 플루오린, 인듐 등을 대표적으로 사용한다. 그러나 안티모니, 플루오린 및 인듐의 경우, 고전압 산성 환경에서 용출되는 문제가 있어서 담지체의 전도도가 떨어져 성능이 감소되는 문제점이 지적되고 있다. Dopants are introduced to increase the conductivity of the support, and in the case of tin oxide, antimony, fluorine, indium, and the like are typically used. However, in the case of antimony, fluorine, and indium, there is a problem of eluting in a high voltage acidic environment, so that the conductivity of the carrier is lowered and thus the performance is reduced.

따라서, 고전압 산성 환경에서 안정하면서도 전도성이 우수한 산화물계 담지체의 개발이 요구되고 있다. Therefore, there is a demand for the development of an oxide-based support having excellent conductivity while being stable in a high voltage acidic environment.

한국 등록특허 제10-1484193호Korean Patent Registration No. 10-1484193 한국 등록특허 제10-1250587호Korean Patent Registration No. 10-1250587

본 발명의 목적은 우수한 전도성 및 안정성을 나타내는 담지체를 제공하기 위한 것으로, 도펀트 없이 탄소 계열 담지체에 산화물 입자를 코팅하여 담지체의 활성과 내구성을 극대화시킨 담지체 및 담지촉매를 제공하기 위한 것이다.An object of the present invention is to provide a support exhibiting excellent conductivity and stability, and coating oxide particles on a carbon-based support without a dopant to maximize the activity and durability of the support and to provide a supported catalyst. .

한편으로, 본 발명은 On the one hand, the present invention

산소발생반응용 촉매 담지체에 있어서,In the catalyst carrier for oxygen evolution reaction,

산처리를 통해 표면 일부가 산화되어 산화물 흡착점이 형성된 탄소나노튜브; 및a carbon nanotube whose surface is partially oxidized through acid treatment to form an oxide adsorption point; and

상기 산화물 흡착점에 코팅된 산화물 나노입자;를 포함하되,Including; oxide nanoparticles coated on the oxide adsorption point;

상기 산화물 흡착점을 로릴황산나트륨으로 표면 개질시켜 상기 산화물 나노입자가 코팅될 수 있는 영역이 확장되어 상기 산화물 나노입자의 코팅량을 조절하는 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체를 제공한다.By surface-modifying the oxide adsorption point with sodium lauryl sulfate, the area where the oxide nanoparticles can be coated is expanded to control the coating amount of the oxide nanoparticles, the coating amount of the oxide is controlled using a surfactant A carbon nanotube carrier is provided.

다른 한편으로, 본 발명은On the other hand, the present invention

산소발생반응용 촉매 담지체의 제조방법에 있어서,In the method for producing a catalyst support for oxygen evolution reaction,

(i) 산처리를 통해 탄소나노튜브의 표면 일부를 산화시켜 산화물 흡착점 영역을 생성하는 단계; (i) generating an oxide adsorption point region by oxidizing a portion of the surface of the carbon nanotubes through acid treatment;

(ii) 상기 탄소나노튜브를 로릴황산나트륨으로 개질하여 상기 산화물 흡착점 영역을 확장하는 단계; 및(ii) reforming the carbon nanotube with sodium lauryl sulfate to expand the oxide adsorption point region; and

(iii) 상기 산화물 흡착점 영역에 산화물 나노입자를 코팅하는 단계;를 포함하는 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체의 제조방법을 제공한다.(iii) coating the oxide nanoparticles on the oxide adsorption point region; provides a method for producing a carbon nanotube support in which the coating amount of the oxide is controlled by using a surfactant, characterized in that it comprises.

다른 한편으로, 본 발명은On the other hand, the present invention

상기 탄소나노튜브 담지체 상에 이리듐 또는 백금 입자가 담지된, 산소발생반응용 담지 촉매를 제공한다.To provide a supported catalyst for oxygen evolution reaction, in which iridium or platinum particles are supported on the carbon nanotube support.

본 발명에 따른 담지체는 탄소나노튜브에 산화주석 나노입자를 선택적으로 코팅하여 전기전도도가 높으면서도 산성 환경에서 우수한 안정성을 나타내기 때문에 종래 탄소 담지체 또는 산화물 담지체에 비하여 우수한 활성 및 내구성을 나타낼 수 있다.The support according to the present invention exhibits excellent activity and durability compared to the conventional carbon support or oxide support because it has high electrical conductivity and excellent stability in an acidic environment by selectively coating tin oxide nanoparticles on carbon nanotubes. can

또한, 본 발명에 따른 담지체는 산성 환경에서 산소발생반응에 대하여 상용 이리듐 촉매 또는 상용 탄소 담지체 위에 담지된 이리듐 촉매보다 우수한 성능과 내구성을 보이므로, 양이온-교환 전해질 막 수전해전지 뿐만 아니라 양이온-교환 전해질 막 연료전지, 리튬-공기 전지 등에 적용되어 이리듐의 사용양을 효과적으로 감소시키는 소재로도 적용될 수 있다.In addition, since the support according to the present invention shows superior performance and durability than a commercial iridium catalyst or an iridium catalyst supported on a commercial carbon support for oxygen evolution reaction in an acidic environment, a cation-exchange electrolyte membrane water electrolysis battery as well as a cation - It can be applied as a material that effectively reduces the amount of iridium used in exchange electrolyte membrane fuel cells, lithium-air batteries, etc.

또한, 산화주석 나노입자 코팅시 별도의 진공 장비 없이 용액 기반의 방법을 사용하므로, 다른 산화물 나노입자의 코팅량을 조절하는 데에도 응용될 수 있다.In addition, since a solution-based method is used without a separate vacuum equipment for coating the tin oxide nanoparticles, it can be applied to control the coating amount of other oxide nanoparticles.

도 1은 본 발명에 따른 실시예 1의 산처리된 탄소나노튜브의 투과전자현미경 (TEM) 분석 결과이다.
도 2는 본 발명에 따른 실시예 1의 산처리된 탄소나노튜브의 주사전자현미경 (SEM) 분석 결과이다.
도 3 는 본 발명의 일 실시형태에 따른 탄소나노튜브에 산화 주석을 코팅하는 과정을 나타낸 모식도이다.
도 4 은 본 발명에 따른 실시예 3의 담지체의 주사전자현미경 (SEM) 분석 결과이다.
도 5는 본 발명에 따른 실시예 2, 3 및 4의 담지체의 투과전자현미경(TEM) 분석 결과이다.
도 6은 본 발명에 따른 실시예 2-1의 담지촉매의 주사투과전자현미경(STEM) 분석 결과이다.
도 7은 본 발명에 따른 실시예 3-1의 담지촉매의 주사투과전자현미경(STEM) 분석 결과이다.
도 8은 본 발명에 따른 실시예 4-1의 담지촉매의 주사투과전자현미경(STEM) 분석 결과이다.
도 9는 본 발명에 따른 실시예 및 비교예의 담지촉매의 산성 전해질 환경에서 산소발생반응 LSV(Linear sweep voltammetry) 분극 곡선을 전압 대비 전류밀도로 나타낸 것이다.
도 10은 본 발명에 따른 실시예 및 비교예의 담지체 및 담지촉매의 산성 전해질 환경에서 정전류를 인가하면서 전압의 변화를 측정한 것을 시간 대비 전압으로 나타낸 것이다.
도 11은 본 발명에 따른 산처리된 탄소나노튜브에 계면활성제의 개질 유무에 따른 주석 이온의 코팅량을 비교한 모식도이다.
1 is a transmission electron microscope (TEM) analysis result of the acid-treated carbon nanotube of Example 1 according to the present invention.
2 is a scanning electron microscope (SEM) analysis result of the acid-treated carbon nanotube of Example 1 according to the present invention.
3 is a schematic diagram illustrating a process of coating tin oxide on carbon nanotubes according to an embodiment of the present invention.
4 is a scanning electron microscope (SEM) analysis result of the carrier of Example 3 according to the present invention.
5 is a transmission electron microscope (TEM) analysis result of the carriers of Examples 2, 3 and 4 according to the present invention.
6 is a scanning transmission electron microscope (STEM) analysis result of the supported catalyst of Example 2-1 according to the present invention.
7 is a scanning transmission electron microscope (STEM) analysis result of the supported catalyst of Example 3-1 according to the present invention.
8 is a scanning transmission electron microscope (STEM) analysis result of the supported catalyst of Example 4-1 according to the present invention.
9 is a graph showing linear sweep voltammetry (LSV) polarization curves for oxygen evolution reaction in an acidic electrolyte environment of the supported catalysts of Examples and Comparative Examples according to the present invention as a voltage versus current density.
10 is a graph showing voltage versus time measured while applying a constant current in an acidic electrolyte environment of the carrier and the supported catalyst of Examples and Comparative Examples according to the present invention.
11 is a schematic diagram comparing the coating amount of tin ions on the acid-treated carbon nanotubes according to the present invention according to the presence or absence of modification of the surfactant.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 일 실시형태는 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체에 관한 것으로, One embodiment of the present invention relates to a carbon nanotube carrier in which the coating amount of the oxide is controlled using a surfactant,

산소발생반응용 촉매 담지체에 있어서,In the catalyst carrier for oxygen evolution reaction,

산처리를 통해 표면 일부가 산화되어 산화물 흡착점이 형성된 탄소나노튜브; 및a carbon nanotube whose surface is partially oxidized through acid treatment to form an oxide adsorption point; and

상기 산화물 흡착점에 코팅된 산화물 나노입자;를 포함하되,Including; oxide nanoparticles coated on the oxide adsorption point;

상기 산화물 흡착점을 로릴황산나트륨으로 표면 개질시켜 상기 산화물 나노입자가 코팅될 수 있는 영역이 확장되어 상기 산화물 나노입자의 코팅량을 조절하는 것을 특징으로 한다.By surface-modifying the oxide adsorption point with sodium lauryl sulfate, the area where the oxide nanoparticles can be coated is expanded to control the coating amount of the oxide nanoparticles.

본 발명에 따른 금속 산화물/탄소나노튜브 복합체의 경우, 탄소나노튜브(CNT)는 준 일차원적인 양자구조를 가지고 있어, 저차원에서 특이한 여러 양자 현상이 관측되며, 특히 역학적 견고성, 화학적 안정성, 열전도성이 우수할 뿐만 아니라 구조에 따라 도체 또는 반도체의 성질을 띠는 독특한 특성을 나타낸다. In the case of the metal oxide/carbon nanotube composite according to the present invention, the carbon nanotube (CNT) has a quasi-one-dimensional quantum structure, and various quantum phenomena are observed in a low dimension, particularly mechanical robustness, chemical stability, and thermal conductivity. Not only is this excellent, but it also exhibits a unique characteristic that takes on the properties of a conductor or a semiconductor depending on the structure.

종래의 금속 산화물/탄소나노튜브 복합체 제조방법의 경우, 금속산화물의 코팅 이전에 탄소나노튜브의 표면을 산처리하는 과정을 필수적으로 포함하는데, 산처리를 거치지 않은 CNT 분말의 표면은 소수성을 나타내기 때문에 용매 중에서 분산되기 어렵기 때문이다. 그러나, 이러한 산처리 과정은 실제 응용성의 관점에서 시간적/경제적 한계 요인으로 작용하고, 더욱이 CNT 성장 상태의 구조에 손상을 야기시키는 문제점이 있다.In the case of the conventional metal oxide/carbon nanotube composite manufacturing method, it essentially includes a process of acid-treating the surface of the carbon nanotube prior to coating the metal oxide, and the surface of the CNT powder that has not been subjected to the acid treatment exhibits hydrophobicity. This is because it is difficult to disperse in a solvent. However, this acid treatment process acts as a time/economic limiting factor in terms of practical applicability, and furthermore, there is a problem of causing damage to the structure of the CNT growth state.

이에, 본 발명에 따른 금속 산화물/탄소나노튜브 복합체로 구성되는 담지체는 상기 산처리 과정을 최소화하여 CNT 구조 손상을 방지하고, 계면활성제로 상기 CNT 표면을 개질하여 상기 금속 산화물의 코팅 함량을 증가시키는 효과를 나타낼 수 있다. Accordingly, the support composed of the metal oxide/carbon nanotube composite according to the present invention minimizes the acid treatment process to prevent damage to the CNT structure, and modifies the CNT surface with a surfactant to increase the coating content of the metal oxide effect can be shown.

도 11을 참조로, 산처리를 통해 표면 일부가 산화되어 산화물 흡착점이 형성된 탄소나노튜브를 로릴황산나트륨(Sodium Dodecyl Sulfate, SDS)으로 표면 개질시킴으로써 산처리되지 않은 탄소나노튜브의 표면에도 금속 산화물을 코팅시킬 수 있다. 이를 통해, 상기 탄소나노튜브로 코팅되는 금속 산화물의 함량을 조절할 수 있다.Referring to FIG. 11, by surface-modifying the carbon nanotube with an oxide adsorption point formed by oxidizing a part of the surface through acid treatment with sodium dodecyl sulfate (SDS), a metal oxide is also coated on the surface of the carbon nanotube that is not acid-treated can do it Through this, the content of the metal oxide coated with the carbon nanotubes can be controlled.

로릴황산나트륨의 경우 친수성 부분과 소수성 부분을 갖는 계면활성제 중 하나이다. 상기 로릴황산나트륨이 탈이온수에 용해되면 C12H25SO4 - 와 Na+로 해리되는데, 여기서 소수성 부분인 탄소 사슬부분이 탄소나노튜브에 표면에 흡착하고, 외부에는 친수성 부분인 -SO4 -가 노출된다. 이러한 -SO4 - 부분은 주석 이온과 같은 금속 이온이 쉽게 흡착할 수 있는 사이트가 된다. 이에 따라, 금속 이온의 흡착량은 증가하고 표면의 금속산화물 입자 코팅량이 증가할 수 있다.Sodium lauryl sulfate is one of the surfactants having a hydrophilic portion and a hydrophobic portion. When the sodium lauryl sulfate is dissolved in deionized water, it is dissociated into C 12 H 25 SO 4 and Na + , where the carbon chain part, which is a hydrophobic part, is adsorbed to the surface of the carbon nanotube, and the hydrophilic part -SO 4 on the outside is are exposed These -SO 4 - moieties become sites to which metal ions such as tin ions can be easily adsorbed. Accordingly, the amount of adsorption of metal ions may increase and the amount of coating of metal oxide particles on the surface may increase.

본 발명의 일 실시형태에서, 상기 금속산화물은 산화주석, 이산화티타늄, 산화몰리브덴 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the metal oxide may be used, such as tin oxide, titanium dioxide, molybdenum oxide, but is not limited thereto.

상기 금속산화물 입자의 크기는 5 내지 10 nm인 것이 바람직하다.The size of the metal oxide particles is preferably 5 to 10 nm.

상기 금속산화물 입자는 작은 크기로 형성되었을 뿐만 아니라 상기 탄소나노튜브 표면에 고르게 분산(highly dispersed)되어 흡착되는 것을 또 다른 특징으로 한다.Another feature of the metal oxide particles is that they are not only formed in a small size, but are also highly dispersed and adsorbed on the surface of the carbon nanotube.

본 발명의 일 실시형태에서, 상기 탄소나노튜브 및 로릴황산나트륨의 함량 비율은 1:2 내지 1:10인 것이 바람직하고, 1:2인 것이 보다 바람직하다.In one embodiment of the present invention, the content ratio of the carbon nanotubes and sodium lauryl sulfate is preferably 1:2 to 1:10, more preferably 1:2.

상기 함량 비율이 상기 범위 미만인 경우, 계면활성제의 개질 효과가 미미하여 산화주석과 같은 금속산화물의 코팅량을 증가시킬 수 없고, 상기 범위 초과인 경우, 세척 과정시 잔여물이 남아 있을 확률이 커지게 된다.When the content ratio is less than the above range, the modification effect of the surfactant is insignificant and the coating amount of the metal oxide such as tin oxide cannot be increased. .

상기 함량 비율은 wt%를 기준으로 한다. The content ratio is based on wt%.

본 발명에 따른 탄소나노튜브 담지체는 로릴황산나트륨으로 개질되어 금속산화물의 함량을 증가시킬 수 있으므로, 우수한 전기전도도를 나타낼 수 있을 뿐만 아니라 귀금속의 분산도를 증가시켜 우수한 촉매 성능을 나타낼 수 있다.Since the carbon nanotube support according to the present invention can be modified with sodium lauryl sulfate to increase the content of metal oxides, it can exhibit excellent electrical conductivity and excellent catalytic performance by increasing the dispersion of noble metals.

본 발명의 일 실시형태는 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체의 제조방법에 관한 것으로,One embodiment of the present invention relates to a method for manufacturing a carbon nanotube carrier in which the coating amount of an oxide is controlled using a surfactant,

산소발생반응용 촉매 담지체의 제조방법에 있어서,In the method for producing a catalyst support for oxygen evolution reaction,

(i) 산처리를 통해 탄소나노튜브의 표면 일부를 산화시켜 산화물 흡착점 영역을 생성하는 단계; (i) generating an oxide adsorption point region by oxidizing a portion of the surface of the carbon nanotubes through acid treatment;

(ii) 상기 탄소나노튜브를 로릴황산나트륨으로 개질하여 상기 산화물 흡착점 영역을 확장하는 단계; 및(ii) reforming the carbon nanotube with sodium lauryl sulfate to expand the oxide adsorption point region; and

(iii) 상기 산화물 흡착점 영역에 산화물 나노입자를 코팅하는 단계;를 포함하는 것을 특징으로 한다.(iii) coating the oxide nanoparticles on the oxide adsorption point region; characterized in that it comprises a.

본 발명에서는 전체 공정을 크게 3 가지 단계로 나누어 볼 수 있다. In the present invention, the entire process can be roughly divided into three steps.

첫 번째 단계는 산화주석 나노입자를 코팅할 때 주석이온의 흡착점을 만드는 단계로 다음과 같다. 탄소나노튜브를 황산과 질산의 부피비를 3:1 비율로 혼합한 산 용액에 분산시켜 탄소나노튜브 표면을 산화시킨다. 이 공정에서 산화된 표면은 주석 이온이 흡작되는 흡착점의 역할을 한다. 반응이 종료되면 탈이온수를 더하여 산 용액을 중화시킨 뒤 여과 장치를 사용하여 황산과 질산을 제거한다. 그 후 건조 과정을 거쳐 산처리가 된 탄소나노튜브를 수득한다.The first step is to create an adsorption point for tin ions when coating tin oxide nanoparticles. The carbon nanotube surface is oxidized by dispersing the carbon nanotube in an acid solution in which the volume ratio of sulfuric acid and nitric acid is mixed in a 3:1 ratio. In this process, the oxidized surface serves as an adsorption point where tin ions are adsorbed. When the reaction is complete, deionized water is added to neutralize the acid solution, and then sulfuric acid and nitric acid are removed using a filtration device. Thereafter, the carbon nanotubes subjected to acid treatment are obtained through a drying process.

두 번째 단계에서는 상기 제조된 산처리된 탄소나노튜브를 로릴황산나트륨으로 표면 개질하여 흡착점 영역을 확장하는 과정으로 다음과 같다. 로릴황산나트륨(Sodium dodecylsulfate, SDS)과 염산을 물에 넣고 상온에서 교반시켜 혼합한다. 용액이 투명해지면, 전처리된 탄소나노튜브를 넣고 초음파 분산기를 사용하여 분산시킨 뒤 상온에서 한 시간 교반하여 개질된 탄소나노튜브를 수득한다.In the second step, the surface-modification of the prepared acid-treated carbon nanotubes with sodium lauryl sulfate to expand the adsorption point region is as follows. Sodium dodecyl sulfate (SDS) and hydrochloric acid are added to water and stirred at room temperature to mix. When the solution becomes transparent, the pre-treated carbon nanotubes are put, dispersed using an ultrasonic disperser, and stirred at room temperature for one hour to obtain modified carbon nanotubes.

세 번째 단계에서는 상기 개질된 탄소나노튜브에 산화주석 나노입자를 코팅하는 과정으로 다음과 같다. 상기 개질된 탄소나노튜브가 분산된 용액에 주석 클로라이드(Sn(II) chloride)를 추가하여 주석 이온을 산처리된 탄소나노튜브에 흡착시킨다. 이 때 탄소나노튜브와 로릴황산나트륨의 비율에 따라서 흡착되는 주석 이온의 양이 조절되기 때문에, 이를 통하여 산화주석 나노입자의 코팅양을 조절할 수 있다. 반응이 완료되면 여과장치를 통하여 흡착되지 않은 잉여 주석 이온을 제거하고 후 탈이온수를 사용하여 수회 세척하고 건조 시킨 뒤 공기 분위기에서 300 내지 400 ℃에서 약 2 시간 열처리를 진행하여 주석이온을 산화주석으로 산화시킨다. 이때 주석이온이 탄소나노튜브에만 흡착되어 있으므로, 탄소나노튜브에 코팅된 산화주석을 제외하고는 별도의 산화주석 나노입자가 형성되지 않는다.In the third step, the process of coating the tin oxide nanoparticles on the modified carbon nanotubes is as follows. Tin chloride (Sn(II) chloride) is added to the solution in which the modified carbon nanotubes are dispersed to adsorb tin ions to the acid-treated carbon nanotubes. At this time, since the amount of tin ions adsorbed is controlled according to the ratio of the carbon nanotubes to sodium lauryl sulfate, the coating amount of the tin oxide nanoparticles can be controlled. When the reaction is completed, excess tin ions that are not adsorbed are removed through a filtration device, washed several times using deionized water, dried, and then heat-treated at 300 to 400° C. in an air atmosphere for about 2 hours to convert tin ions to tin oxide. oxidize At this time, since the tin ions are adsorbed only to the carbon nanotubes, no separate tin oxide nanoparticles are formed except for the tin oxide coated on the carbon nanotubes.

상기 두 번째 단계와 세 번째 단계는 공정상 용이성을 향상시키기 위하여 동시에 수행될 수 있으며, 이때 로릴황산나트륨과 주석 클로라이드를 함께 투입할 수 있다.The second step and the third step may be performed simultaneously to improve process easiness, and at this time, sodium lauryl sulfate and tin chloride may be added together.

본 발명에 따른 제조방법에 따르면, 탄소나노튜브를 산처리하여 표면 일부를 산화시킨 후 로릴황산나트륨으로 개질하여 금속산화물 나노입자의 코팅량을 증가시킬 수 있으므로, 백금, 이리듐 등 귀금속 입자의 분산도를 향상시킬 수 있으므로 귀금속 촉매의 이용효율을 높일 수 있다.According to the manufacturing method according to the present invention, since the coating amount of metal oxide nanoparticles can be increased by oxidizing a part of the surface of the carbon nanotubes by acid treatment and then modifying them with sodium lauryl sulfate, the dispersion degree of noble metal particles such as platinum and iridium Since it can be improved, it is possible to increase the utilization efficiency of the noble metal catalyst.

본 발명의 일 실시형태는 상기 탄소나노튜브 담지체 상에 이리듐, 백금 등 귀금속 입자가 담지된 산소발생반응용 담지 촉매에 관한 것이다.One embodiment of the present invention relates to a supported catalyst for oxygen evolution reaction in which noble metal particles such as iridium and platinum are supported on the carbon nanotube support.

상기 담지 촉매는 산소발생반응에 대하여 고전압 산성 전해질 환경에서 우수한 효과를 나타낼 수 있고, 촉매의 활성 및 내구성이 향상될 수 있다.The supported catalyst can exhibit an excellent effect on the oxygen evolution reaction in a high voltage acidic electrolyte environment, and the activity and durability of the catalyst can be improved.

구체적으로 상기 촉매의 제조방법으로는, 상기 산화주석 나노입자가 코팅된 탄소나노튜브와 염화이리듐산칼륨(K2IrCl6)을 에틸렌 글리콜(Ethylene glycol)에 넣고 분산시킨 뒤 수산화칼륨(KOH) 수용액을 사용하여 pH를 10으로 조절하고 160 내지 190 ℃에서 약 3 시간 동안 아르곤 분위기에서 교반한 뒤 반응이 종료되면 상온까지 식히고, 여과 및 세척 그리고 건조 과정을 거쳐 담지 촉매를 수득한다.Specifically, as a method for preparing the catalyst, the carbon nanotubes coated with the tin oxide nanoparticles and potassium iridium chloride (K 2 IrCl 6 ) are put in ethylene glycol and dispersed therein, followed by an aqueous solution of potassium hydroxide (KOH). After adjusting the pH to 10 using a , and stirring in an argon atmosphere at 160 to 190 ℃ for about 3 hours, when the reaction is completed, it is cooled to room temperature, filtered, washed, and dried to obtain a supported catalyst.

이하, 실시예에 의해 본 발명을 보다 구체적으로 설명하고자 한다. 이들 실시예는 오직 본 발명을 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업자에게 있어서 자명하다.Hereinafter, the present invention will be described in more detail by way of Examples. These examples are for illustrative purposes only, and it is apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

실시예 1: 산처리된 탄소나노튜브의 제조Example 1: Preparation of acid-treated carbon nanotubes

황산과 질산이 혼합된 산 용액에 탄소나노튜브를 투입한 후 상온에서 12 시간 동안 교반하여 산처리를 진행하였다. 이때, 황산 및 질산은 3:1 비율로 혼합되었다. 산처리가 종료되면 증류수를 사용하여 세척한 후 여과, 건조 과정을 거쳐 전처리된 탄소나노튜브를 수득하였다. After adding carbon nanotubes to an acid solution in which sulfuric acid and nitric acid were mixed, acid treatment was performed by stirring at room temperature for 12 hours. At this time, sulfuric acid and nitric acid were mixed in a 3:1 ratio. When the acid treatment was completed, the carbon nanotubes were washed with distilled water, filtered and dried to obtain pretreated carbon nanotubes.

도 1은 상기 실시예 1의 산처리된 탄소나노튜브의 투과전자현미경(TEM) 분석 결과로, 산처리 후에도 탄소나노튜브의 구조가 붕괴되지 않고 잘 유지되고 있는 것을 확인하였다.FIG. 1 is a transmission electron microscope (TEM) analysis result of the acid-treated carbon nanotube of Example 1, confirming that the structure of the carbon nanotube is well maintained even after acid treatment.

도 2는 상기 실시예 1의 산처리된 탄소나노튜브의 주사전자현미경(SEM) 분석 결과로, 산처리 후에도 탄소나노튜브의 구조가 붕괴되지 않고 잘 유지되고 있다는 것을 보다 거시적 관찰을 통해 확인하였다.FIG. 2 is a scanning electron microscope (SEM) analysis result of the acid-treated carbon nanotube of Example 1, and it was confirmed through macroscopic observation that the structure of the carbon nanotube was well maintained without collapsing even after acid treatment.

실시예 1-1: 이리듐을 담지한 담지촉매의 제조Example 1-1: Preparation of Iridium-supported Supported Catalyst

실시예 1에서 제조된 탄소나노튜브 상에 이리듐 나노 입자를 담지하기 위하여, 실시예 1의 탄소나노튜브 및 염화이리듐산칼륨(K2IrCl6)을 에틸렌 글리콜(Ethylene glycol)에 넣고 분산시킨 뒤 수산화칼륨(KOH) 수용액을 사용하여 pH 를 10으로 조절하고 170 ℃에서 3 시간 동안 아르곤 분위기에서 교반하였다. 반응이 종료되면 상온까지 식히고, 여과, 세척 및 건조 과정을 거쳐 이리듐이 20 wt% 담지된 탄소나노튜브 담지촉매를 제조하였다.In order to support the iridium nanoparticles on the carbon nanotubes prepared in Example 1, the carbon nanotubes of Example 1 and potassium iridium chloride (K 2 IrCl 6 ) were put in ethylene glycol, dispersed, and then hydroxylated. The pH was adjusted to 10 using an aqueous potassium (KOH) solution, and the mixture was stirred at 170° C. for 3 hours in an argon atmosphere. Upon completion of the reaction, the reaction was cooled to room temperature, filtered, washed, and dried to prepare a carbon nanotube-supported catalyst on which 20 wt% of iridium was supported.

실시예 2: 산처리된 탄소나노튜브에 산화주석 나노입자를 코팅한 담지체의 제조Example 2: Preparation of a carrier coated with tin oxide nanoparticles on acid-treated carbon nanotubes

실시예 1 에서 제조된 탄소나노튜브 상에 산화주석 나노입자를 코팅하기 위하여, 주석(II) 클로라이드(SnCl2)와 염산(HCl) 수용액을 제조한 후 용액이 투명해지면 초음파 분산기를 이용하여 실시예 1의 탄소나노튜브를 분산시키고 1시간 동안 교반하였다. 반응이 종료되면 여과장치를 사용하여 탄소나노튜브에 흡착되지 않은 잉여 주석 이온을 제거해주었다. 이후 수 회 세척 및 건조시킨 뒤 공기 분위기에서 350 ℃, 2 시간 열처리를 진행하고 상온으로 식혀주어 탄소나노튜브 담지체를 제조하였다.In order to coat the tin oxide nanoparticles on the carbon nanotubes prepared in Example 1, tin (II) chloride (SnCl 2 ) and hydrochloric acid (HCl) aqueous solution were prepared and then, when the solution became transparent, using an ultrasonic disperser Example The carbon nanotubes of No. 1 were dispersed and stirred for 1 hour. When the reaction was completed, excess tin ions not adsorbed to the carbon nanotubes were removed using a filtration device. After washing and drying several times, heat treatment was performed at 350° C. for 2 hours in an air atmosphere, and then cooled to room temperature to prepare a carbon nanotube carrier.

도 3은 상기 탄소나노튜브에 산화 주석을 코팅하는 과정을 나타낸 모식도이다. 도 3을 참조로, 주석 이온을 흡착한 뒤 여과 장치를 이용하여 세척하여 잉여 주석 이온을 제거함으로써 산화주석을 탄소나노튜브 표면에만 선택적으로 코팅할 수 있다.3 is a schematic diagram illustrating a process of coating tin oxide on the carbon nanotubes. Referring to FIG. 3 , tin oxide can be selectively coated only on the surface of carbon nanotubes by adsorbing tin ions and then washing using a filtering device to remove excess tin ions.

실시예 2-1: 이리듐을 담지한 담지촉매의 제조Example 2-1: Preparation of Iridium-supported Supported Catalyst

실시예 2 에서 제조된 담지체 상에 이리듐 나노 입자를 담지하기 위하여, 실시예 2에서 제조된 담지체와 염화이리듐산칼륨을 에틸렌 글리콜에 넣고 분산시킨 뒤 KOH 수용액을 사용하여 pH 를 10으로 조절하고 170 ℃에서 3 시간 동안 아르곤 분위기에서 교반하였다. 반응이 종료되면 상온까지 식히고, 여과, 세척 및 건조 과정을 거쳐 이리듐이 담지된 담지촉매를 제조하였다.In order to support the iridium nanoparticles on the support prepared in Example 2, the support prepared in Example 2 and potassium iridium chloride were put in ethylene glycol and dispersed, and then the pH was adjusted to 10 using an aqueous KOH solution, The mixture was stirred at 170° C. for 3 hours in an argon atmosphere. Upon completion of the reaction, the reaction was cooled to room temperature, filtered, washed, and dried to prepare a supported catalyst on which iridium was supported.

도 6은 상기 담지촉매의 주사투과전자현미경(STEM) 결과를 나타낸 것이다. 도 6을 참조로, 실시예 2-1의 경우 로릴황산나트륨이 첨가되지 않아서 산화주석 나노입자가 탄소나노튜브에 고르게 코팅되지 못한 형상을 보이며, 이리듐이 담지 될 때 산화주석 나노입자 위에 담지되므로 이리듐이 고르게 분포되지 못한 형상을 확인하였다.6 shows the results of a scanning transmission electron microscope (STEM) of the supported catalyst. 6, in the case of Example 2-1, sodium lauryl sulfate was not added, so the tin oxide nanoparticles were not evenly coated on the carbon nanotubes. It was confirmed that the shape was not evenly distributed.

실시예 3: 산처리된 탄소나노튜브에 로릴황산나트륨을 사용하여 산화주석 나노입자의 코팅량을 조절한 담지체(CNT:SDS=1:2)의 제조Example 3: Preparation of a carrier (CNT:SDS=1:2) in which the coating amount of tin oxide nanoparticles was controlled using sodium lauryl sulfate on acid-treated carbon nanotubes

산처리된 탄소나노튜브에 코팅되는 산화주석 나노 입자의 함량을 조절하기 위하여, 수용액에 로릴황산나트륨을 추가하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지체를 제조하였다. 이때, 실시예 1의 산처리된 탄소나노튜브 및 로릴황산나트륨의 비율은 1:2로 하였다.In order to control the content of tin oxide nanoparticles coated on the acid-treated carbon nanotubes, a support was prepared in the same manner as in Example 2, except that sodium lauryl sulfate was added to the aqueous solution. At this time, the ratio of the acid-treated carbon nanotubes of Example 1 and sodium lauryl sulfate was 1:2.

도 4는 상기 실시예 3의 담지체의 주사전자현미경(SEM) 분석 결과를 나타낸 것으로, 탄소나노튜브의 형상만 관찰되는 것으로 보아 산화주석 나노입자가 별도로 분리되어 존재하지 않는다는 것을 확인하였다.4 shows the results of scanning electron microscope (SEM) analysis of the carrier of Example 3, it was confirmed that only the shape of the carbon nanotube was observed, so that the tin oxide nanoparticles were not separately separated.

실시예 3-1: 이리듐을 담지한 담지촉매의 제조Example 3-1: Preparation of Iridium-supported Supported Catalyst

실시예 3에서 제조된 담지체 상에 이리듐 나노 입자를 담지하기 위하여, 실시예 2에서 제조된 담지체 대신 실시예 3에서 제조된 담지체를 사용하는 것을 제외하고는 상기 실시예 2-1과 동일한 방법으로 담지촉매를 제조하였다.In order to support the iridium nanoparticles on the support prepared in Example 3, the same as in Example 2-1 except for using the support prepared in Example 3 instead of the support prepared in Example 2 A supported catalyst was prepared by this method.

도 7은 상기 실시예 3-1의 담지촉매의 주사투과전자현미경(STEM) 분석 결과를 나타낸 것으로, 로릴황산나트륨의 비율이 탄소나노튜브에 비하여 2 배 첨가되었는데 그에 따라 산화주석 나노입자가 탄소나노튜브 위에 고르게 분포되어 있고 이리듐 입자도 고르게 분포되어 있는 형상을 확인하였다. 7 shows the results of scanning transmission electron microscopy (STEM) analysis of the supported catalyst of Example 3-1. The ratio of sodium lauryl sulfate was twice that of carbon nanotubes, and accordingly, tin oxide nanoparticles were added to carbon nanotubes. It was confirmed that the shape was evenly distributed on the top and the iridium particles were also evenly distributed.

실시예 4: 산처리된 탄소나노튜브에 로릴황산나트륨을 사용하여 산화주석 나노입자의 코팅량을 조절한 담지체(CNT:SDS=1:10)의 제조Example 4: Preparation of a carrier (CNT:SDS=1:10) in which the coating amount of tin oxide nanoparticles was controlled using sodium lauryl sulfate on acid-treated carbon nanotubes

산처리된 탄소나노튜브에 코팅되는 산화주석 나노 입자의 함량을 조절하기 위하여, 수용액에 로릴황산나트륨을 추가하는 것을 제외하고는 상기 실시예 2와 동일한 방법으로 담지체를 제조하였다. 이때, 실시예 1의 산처리된 탄소나노튜브 및 로릴황산나트륨의 비율은 1:10으로 하였다.In order to control the content of tin oxide nanoparticles coated on the acid-treated carbon nanotubes, a support was prepared in the same manner as in Example 2, except that sodium lauryl sulfate was added to the aqueous solution. At this time, the ratio of the acid-treated carbon nanotubes of Example 1 and sodium lauryl sulfate was 1:10.

실시예 4-1: 이리듐을 담지한 담지촉매의 제조Example 4-1: Preparation of Iridium-supported Supported Catalyst

실시예 4에서 제조된 담지체 상에 이리듐 나노 입자를 담지하기 위하여, 실시예 2에서 제조된 담지체 대신 실시예 4에서 제조된 담지체를 사용하는 것을 제외하고는 상기 실시예 2-1과 동일한 방법으로 담지촉매를 제조하였다.In order to support the iridium nanoparticles on the support prepared in Example 4, the same as in Example 2-1, except that the support prepared in Example 4 was used instead of the support prepared in Example 2 A supported catalyst was prepared by this method.

도 8은 상기 실시예 4-1의 담지촉매의 주사투과전자현미경(STEM) 분석 결과를 나타낸 것으로, 로릴황산나트륨의 비율이 탄소나노튜브에 비하여 10 배 첨가되었는데 그에 따라 산화주석 나노입자가 탄소나노튜브를 완전히 뒤덮었으며, 이리듐 나노입자는 산화주석 나노입자 위에 고르게 분포된 것을 확인하였다.FIG. 8 shows the results of scanning transmission electron microscopy (STEM) analysis of the supported catalyst of Example 4-1. The ratio of sodium lauryl sulfate was added 10 times compared to the carbon nanotubes, and accordingly, the tin oxide nanoparticles were carbon nanotubes. was completely covered, and it was confirmed that the iridium nanoparticles were evenly distributed on the tin oxide nanoparticles.

도 5는 실시예 2, 3 및 4의 담지체의 투과전자현미경(TEM) 분석 결과를 나타낸 것이다. 도 5를 참조로, 로릴황산나트륨과 산처리된 탄소나노튜브의 비율에 따라서 산화주석의 코팅량이 변화됨을 확인하였다. 로릴황산나트륨의 비율이 증가할수록 탄소나노튜브 표면에 형성된 산화주석 나노입자의 양이 증가한 것을 확인하였다.5 is Transmission electron microscope (TEM) analysis results of the carriers of Examples 2, 3 and 4 are shown. Referring to FIG. 5, it was confirmed that the coating amount of tin oxide was changed according to the ratio of sodium lauryl sulfate and acid-treated carbon nanotubes. As the ratio of sodium lauryl sulfate increased, it was confirmed that the amount of tin oxide nanoparticles formed on the surface of the carbon nanotube increased.

비교예 1: 상용 이리듐 촉매Comparative Example 1: Commercial Iridium Catalyst

이리듐 함량이 20 wt%인 상용 촉매(Premetek)를 준비하여 상기 실시예에서 제조된 촉매와 비교하였다.A commercial catalyst (Premetek) having an iridium content of 20 wt% was prepared and compared with the catalyst prepared in the above example.

비교예 2: Vulcan carbon에 이리듐을 담지한 담지촉매의 제조Comparative Example 2: Preparation of a supported catalyst supporting iridium on Vulcan carbon

상용 Vulcan carbon 담지체의 성능 및 내구성 비교를 위하여, 상용 Vulcan carbon과 염화이리듐산칼륨(K2IrCl6)을 에틸렌 글리콜에 넣고 분산시킨 뒤 KOH 수용액을 사용하여 pH 를 10으로 조절하고 170 ℃에서 3 시간 동안 아르곤 분위기에서 교반하였다. 반응이 종료되면 상온까지 식히고, 여과, 세척 및 건조 과정을 거쳐 이리듐이 20 wt% 담지된 담지촉매를 제조하였다.In order to compare the performance and durability of commercial Vulcan carbon support, commercial Vulcan carbon and potassium iridium chloride (K 2 IrCl 6 ) were put in ethylene glycol and dispersed, and then the pH was adjusted to 10 using KOH aqueous solution and 3 at 170 ° C. The mixture was stirred in an argon atmosphere for hours. Upon completion of the reaction, the reaction was cooled to room temperature, filtered, washed, and dried to prepare a supported catalyst in which 20 wt% of iridium was supported.

실험예 1: 주석 이온의 흡착점 생성 확인Experimental Example 1: Confirmation of generation of adsorption points for tin ions

상기 실시예 1의 탄소나노튜브를 산처리하면서 주석 이온이 흡착할 수 있는 흡착점이 생성되었는지 확인하기 위하여 원소분석기(Element analyzer)로 분석하였다. 아래 표 1을 참조로, 산처리 후 실시예 1 에서 탄소의 함유량이 감소하고 산소의 함유량이 증가한 것으로 보아 탄소나노튜브가 산 처리 과정에서 산화되면서 주석 이온이 흡착할 수 있는 흡착점이 생성된 것을 확인하였다.The carbon nanotubes of Example 1 were analyzed with an element analyzer to determine whether an adsorption point capable of adsorbing tin ions was generated while acid-treated. Referring to Table 1 below, it was confirmed that carbon nanotubes were oxidized in the acid treatment process and an adsorption point capable of adsorbing tin ions was created, as the carbon content decreased and the oxygen content increased in Example 1 after acid treatment. did.

원소(%)element(%) 탄소나노튜브carbon nanotubes 실시예1Example 1 탄소carbon 96.496.4 86.786.7 산소Oxygen 0.40.4 6.46.4 질소nitrogen 0.060.06 0.150.15 수소Hydrogen 0.020.02 0.340.34

실험예 2: 전기전도도 평가Experimental Example 2: Electrical conductivity evaluation

상용 탄소나노튜브와 상기 실시예 1 및 실시예 3의 탄소나노튜브의 전기전도도를 평가하였다. 아래 표 2를 참조로, 탄소나노튜브를 산처리하고 산화주석을 코팅하는 과정에서 전도도가 감소하는 양상을 보였으나 실시예 3의 탄소나노튜브의 전도도가 0.26 S/cm 로 담지체로 사용될만한 높은 전기전도도를 갖는 것을 확인하였다.The electrical conductivity of commercial carbon nanotubes and the carbon nanotubes of Examples 1 and 3 was evaluated. Referring to Table 2 below, in the process of acid-treating carbon nanotubes and coating tin oxide, the conductivity decreased, but the conductivity of the carbon nanotubes of Example 3 was 0.26 S/cm, which was high enough to be used as a carrier. It was confirmed that it has conductivity.

S/cmS/cm 탄소나노튜브carbon nanotubes 실시예1Example 1 실시예3Example 3 전도도conductivity 5.35.3 36.236.2 0.260.26

실험예 3: 촉매의 반-전지(Half cell) 활성 및 내구성 평가 Experimental Example 3: Evaluation of half-cell activity and durability of the catalyst

도 9를 참조로, 비교예 1 및 2, 실시예 1-1, 2-1, 3-1 및 4-1의 촉매의 산성 전해질에서의 반-전지(Half cell) 활성을 평가하였다. 활성 평가는 아르곤 기체 포화 전해질 환경에서 전압 1.2-1.8 VRHE을 5 mV/s의 속도로 산화방향으로 인가하여 전류를 측정하였다. 또한 1.51 VRHE에서 임피던스분광법(EIS)으로 저항을 측정하여 전압을 보정하였다. 이에 대한 결과를 전압 대비 전류 밀도로 하여 나타내었다. 측정 시 전극에 올라간 이리듐의 양은 10 ㎍Ir/cm2로 고정하였으나 비교예 1 의 경우 비담지 촉매이기 때문에 촉매입자의 밀도가 작아 40 ㎍Ir/cm2로 이리듐의 양을 증가시켰다.Referring to FIG. 9 , the half-cell activity of the catalysts of Comparative Examples 1 and 2 and Examples 1-1, 2-1, 3-1 and 4-1 in the acidic electrolyte was evaluated. To evaluate the activity, the current was measured by applying a voltage of 1.2-1.8 V RHE in the oxidation direction at a rate of 5 mV/s in an argon gas saturated electrolyte environment. In addition, the voltage was corrected by measuring the resistance by impedance spectroscopy (EIS) at 1.51 V RHE. The results are shown as voltage versus current density. The amount of iridium on the electrode during measurement was fixed at 10 μg Ir / cm 2 , but in Comparative Example 1, the density of the catalyst particles was small because it was an unsupported catalyst, and the amount of iridium was increased to 40 μg Ir / cm 2 .

또한, 도 10을 참조로, 비교예 1 및 2, 실시예 1-1, 2-1, 3-1 및 4-1의 촉매의 산성 전해질에서의 반-전지(Half cell) 내구성을 평가하였다. 내구성 평가는 아르곤 기체 포화 전해질 환경에서 진행되었으며 평가는 정전류 방법을 사용하였다. 10 mA/cm2의 일정한 전류밀도를 인가하여 변화하는 전압의 추이를 측정하였다.In addition, referring to FIG. 10 , the half-cell durability of the catalysts of Comparative Examples 1 and 2 and Examples 1-1, 2-1, 3-1 and 4-1 in the acidic electrolyte was evaluated. Durability evaluation was conducted in an argon gas saturated electrolyte environment, and the evaluation was performed using a constant current method. A change in voltage was measured by applying a constant current density of 10 mA/cm 2 .

표 3은 도 9 및 10을 참조로, 비교예 1 및 2, 실시예 1-1, 2-1, 3-1 및 4-1의 촉매의 활성 지표를 수치로 정리한 결과이다.Table 3 is a numerical result of the activity indicators of the catalysts of Comparative Examples 1 and 2, Examples 1-1, 2-1, 3-1 and 4-1 with reference to FIGS. 9 and 10 .

질량 당 활성
(A/gIr @ 1.55 VRHE)
activity per mass
(A/g Ir @ 1.55 V RHE )
2 VRHE까지 도달 시간
(분)
Time to reach 2 V RHE
(minute)
실시예 1-1Example 1-1 10001000 205205 실시예 2-1Example 2-1 345345 9090 실시예 3-1Example 3-1 938938 310310 실시예 4-1Example 4-1 456456 185185 비교예 1Comparative Example 1 244244 4747 비교예 2Comparative Example 2 660660 143143

표 3을 참조로, 산소발생반응 촉매의 활성은 이리듐 질량 당 활성으로 정리하였는데 실시예 1-1 및 실시예 3-1 의 경우 비교예 1과 비교예 2에 비하여 높은 활성을 보여주었다. 비담지 촉매인 비교예 1에 비하여 실시예 1-1의 촉매는 4배 이상, 실시예 3-1의 촉매는 3.8배 이상의 활성 증가를 보여주었다. 상용 탄소 담지체 촉매인 비교예 2와 비교할 경우, 실시예 1-1의 촉매는 1.5 배 이상, 실시예 3-1의 촉매는 1.4배 이상의 성능 향상을 보여주었다.Referring to Table 3, the activity of the oxygen evolution catalyst was summarized in terms of the activity per iridium mass. Examples 1-1 and 3-1 showed higher activity than those of Comparative Examples 1 and 2. Compared to the unsupported catalyst, Comparative Example 1, the catalyst of Example 1-1 showed an activity increase of 4 times or more, and the catalyst of Example 3-1 showed an activity increase of 3.8 times or more. Compared with Comparative Example 2, which is a commercial carbon carrier catalyst, the catalyst of Example 1-1 showed 1.5 times or more, and the catalyst of Example 3-1 showed performance improvement of 1.4 times or more.

또한, 내구성의 평가는 2 VRHE까지의 도달시간을 기준으로 평가하였는데, 실시예 3-1의 촉매의 경우 가장 높은 내구성을 보여주었으며, 이는 비교예 1의 촉매에 비하여 6배 이상, 비교예 2의 촉매에 비하여 2배 이상의 내구성을 보여주었다.In addition, the evaluation of durability was evaluated based on the time to reach 2 V RHE , and the catalyst of Example 3-1 showed the highest durability, which was 6 times or more compared to the catalyst of Comparative Example 1, Comparative Example 2 showed more than twice the durability compared to the catalyst of

따라서, 활성과 내구성을 모두 고려하였을 때 실시예 3-1의 촉매가 비교예 1 및 2의 촉매보다 높은 성능을 보이면서도 가장 우수한 내구성을 보여줌을 확인하였다.Therefore, it was confirmed that the catalyst of Example 3-1 showed the best durability while exhibiting higher performance than the catalysts of Comparative Examples 1 and 2 when both activity and durability were considered.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아님은 명백하다. 본 발명이 속한 기술분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.As the specific part of the present invention has been described in detail above, for those of ordinary skill in the art to which the present invention pertains, it is clear that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto. do. Those of ordinary skill in the art to which the present invention pertains will be able to make various applications and modifications within the scope of the present invention based on the above contents.

따라서, 본 발명의 실질적인 범위는 첨부된 특허청구범위와 그의 등가물에 의하여 정의된다고 할 것이다.Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (8)

산소발생반응용 촉매 담지체에 있어서,
산처리를 통해 표면 일부가 산화되어 산화물 흡착점이 형성된 탄소나노튜브; 및
상기 산화물 흡착점에 코팅된 산화물 나노입자;를 포함하되,
상기 산화물 흡착점을 로릴황산나트륨으로 표면 개질시켜 상기 산화물 나노입자가 코팅될 수 있는 영역이 확장되어 상기 산화물 나노입자의 코팅량을 조절하는 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체.
In the catalyst carrier for oxygen evolution reaction,
a carbon nanotube whose surface is partially oxidized through acid treatment to form an oxide adsorption point; and
Including; oxide nanoparticles coated on the oxide adsorption point;
By surface-modifying the oxide adsorption point with sodium lauryl sulfate, the area where the oxide nanoparticles can be coated is expanded and the coating amount of the oxide nanoparticles is controlled, characterized in that the coating amount of the oxide is controlled using a surfactant Carbon nanotube carrier.
제1항에 있어서, 상기 산화물은 산화주석인 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체.The carbon nanotube carrier according to claim 1, wherein the oxide is tin oxide, the coating amount of which is controlled using a surfactant. 제1항에 있어서, 상기 탄소나노튜브 및 로릴황산나트륨의 함량 비율은 1:2 내지 1:10인 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체.The carbon nanotube carrier according to claim 1, wherein the content ratio of the carbon nanotubes and sodium lauryl sulfate is 1:2 to 1:10. 산소발생반응용 촉매 담지체의 제조방법에 있어서,
(i) 산처리를 통해 탄소나노튜브의 표면 일부를 산화시켜 산화물 흡착점 영역을 생성하는 단계;
(ii) 상기 탄소나노튜브를 로릴황산나트륨으로 개질하여 상기 산화물 흡착점 영역을 확장하는 단계; 및
(iii) 상기 산화물 흡착점 영역에 산화물 나노입자를 코팅하는 단계;를 포함하는 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체의 제조방법.
In the method for producing a catalyst support for oxygen evolution reaction,
(i) generating an oxide adsorption point region by oxidizing a portion of the surface of the carbon nanotubes through acid treatment;
(ii) reforming the carbon nanotube with sodium lauryl sulfate to expand the oxide adsorption point region; and
(iii) coating the oxide nanoparticles on the oxide adsorption point region; a method for producing a carbon nanotube support in which the coating amount of the oxide is controlled using a surfactant, comprising: a.
제4항에 있어서, 상기 산화물은 산화주석인 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체의 제조방법.The method of claim 4, wherein the oxide is tin oxide, wherein the coating amount of the oxide is controlled using a surfactant. 제4항에 있어서, 상기 탄소나노튜브 및 로릴황산나트륨의 함량 비율은 1:2 내지 1:10인 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체의 제조방법.[Claim 5] The method of claim 4, wherein the content ratio of the carbon nanotubes and sodium lauryl sulfate is 1:2 to 1:10, wherein the coating amount of the oxide is controlled using a surfactant. 제4항에 있어서, 상기 산화물 나노입자는 금속이온을 열처리를 통해 산화시켜 제조되는 것을 특징으로 하는, 계면활성제를 사용하여 산화물의 코팅량이 조절된 탄소나노튜브 담지체의 제조방법.[Claim 5] The method of claim 4, wherein the oxide nanoparticles are prepared by oxidizing metal ions through heat treatment. 제1항 내지 제3항 중 어느 한 항에 따른 탄소나노튜브 담지체 상에 이리듐 또는 백금 입자가 담지된, 산소발생반응용 담지 촉매.A supported catalyst for oxygen evolution reaction, wherein iridium or platinum particles are supported on the carbon nanotube support according to any one of claims 1 to 3.
KR1020200038614A 2020-03-30 2020-03-30 Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same KR102341316B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200038614A KR102341316B1 (en) 2020-03-30 2020-03-30 Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200038614A KR102341316B1 (en) 2020-03-30 2020-03-30 Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same

Publications (2)

Publication Number Publication Date
KR20210121605A true KR20210121605A (en) 2021-10-08
KR102341316B1 KR102341316B1 (en) 2021-12-22

Family

ID=78610204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200038614A KR102341316B1 (en) 2020-03-30 2020-03-30 Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same

Country Status (1)

Country Link
KR (1) KR102341316B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543038A (en) * 2024-01-10 2024-02-09 武汉科技大学 Modification preparation process of bipolar plate of proton exchange membrane fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250587B1 (en) 2010-04-20 2013-04-03 연세대학교 산학협력단 Method of manufacturing transition metal oxide/carbon nanotube composite and the composite
KR101484193B1 (en) 2012-10-19 2015-01-20 고려대학교 산학협력단 Carbon supported metal oxide catalyst and preparing method for thereof
CN105561912A (en) * 2015-12-16 2016-05-11 浙江省海洋水产研究所 Method for treating heavy metal ion wastewater with modified shell powder
KR20200030874A (en) * 2018-09-13 2020-03-23 가천대학교 산학협력단 Method for Forming Catalyst Support for Fuel Cell and Electrode for Fuel Cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101250587B1 (en) 2010-04-20 2013-04-03 연세대학교 산학협력단 Method of manufacturing transition metal oxide/carbon nanotube composite and the composite
KR101484193B1 (en) 2012-10-19 2015-01-20 고려대학교 산학협력단 Carbon supported metal oxide catalyst and preparing method for thereof
CN105561912A (en) * 2015-12-16 2016-05-11 浙江省海洋水产研究所 Method for treating heavy metal ion wastewater with modified shell powder
KR20200030874A (en) * 2018-09-13 2020-03-23 가천대학교 산학협력단 Method for Forming Catalyst Support for Fuel Cell and Electrode for Fuel Cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117543038A (en) * 2024-01-10 2024-02-09 武汉科技大学 Modification preparation process of bipolar plate of proton exchange membrane fuel cell
CN117543038B (en) * 2024-01-10 2024-04-12 武汉科技大学 Modification preparation process of bipolar plate of proton exchange membrane fuel cell

Also Published As

Publication number Publication date
KR102341316B1 (en) 2021-12-22

Similar Documents

Publication Publication Date Title
US8263290B2 (en) Precious metal oxide catalyst for water electrolysis
US8398884B2 (en) Method for producing electrode material for fuel cell, electrode material for fuel cell, and fuel cell using the electrode material for fuel cell
US8409659B2 (en) Nanowire supported catalysts for fuel cell electrodes
JP5456797B2 (en) Fuel cell electrode catalyst
JP2017179408A (en) Electrode material for water electrolysis and method for producing the same, and electrode for water electrolysis
KR20210141132A (en) Electrocatalyst for CO2 reduction and method for manufacturing the same
KR101749486B1 (en) Method for preparing for graphine catalyst for fuel cell using a ball milling
CN109585860B (en) Preparation method of sulfur-doped cobalt oxide and sulfur, nitrogen and oxygen-doped carbon in-situ composite electrode
KR102341316B1 (en) Oxide coated carbon nanotube support via surfactant and Manufacturing method of the Same
Hosseini et al. Evaluation of the Performance of Platinum Nanoparticle–Titanium Oxide Nanotubes as a New Refreshable Electrode for Formic Acid Electro‐oxidation
KR102291160B1 (en) Au doped Pt alloy catalysts for fuel cell and method thereof
JP4992185B2 (en) Catalyst for fuel cell, membrane electrode composite, and solid polymer electrolyte fuel cell
KR20220101460A (en) Oxygen Evolution Reaction catalyst comprising Copper-Iridium core-shell structure and Manufacturing method of the Same
EP2218503A1 (en) Electrode catalyst and oxygen reduction electrode for positive electrode using the electrode catalyst
KR102571771B1 (en) Method of producing platinum alloy catalyst for fuel cell, and fuel cell using same
KR102539195B1 (en) Precious metal single atom-nanoparticle catalysts derived from single atom sites using hydrothermal method and Manufacturing method of the Same
KR102491462B1 (en) Iridium alloy catalyst having reversible catalytic activity and preparation method thereof
KR102379667B1 (en) Titanium dioxide coated carbon nanotube support via solution layer by layer coating and Manufacturing method of the Same
KR20200028052A (en) Membrane electrode assembly for proton exchange membrane fuel cell and manufacturing method of catalyst for proton exchange membrane fuel cell
KR20180028042A (en) Pt composite particles, a method for manufacturing the same, and an integral regenerative fuel cell comprising the same
KR101015505B1 (en) Alcohol oxidation catalyst, manufacturing method thereof, and fuel cell using the same
KR20230032250A (en) Catalyst for fuel cell, method of preparing thereof and fuel cell comprising the same
GB2611508A (en) A stable reusable graphite crucible for upscaling of unsupported metal oxides electrocatalysts via a modified Adams fusion method
CN117418266A (en) Fluorine-doped cobaltosic oxide/nitrogen-doped carbon composite material and preparation method and application thereof
KR20220096339A (en) High durable electrolyte membrane with improved ion conductivity and preparing method thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right