JPH0463730B2 - - Google Patents

Info

Publication number
JPH0463730B2
JPH0463730B2 JP61010621A JP1062186A JPH0463730B2 JP H0463730 B2 JPH0463730 B2 JP H0463730B2 JP 61010621 A JP61010621 A JP 61010621A JP 1062186 A JP1062186 A JP 1062186A JP H0463730 B2 JPH0463730 B2 JP H0463730B2
Authority
JP
Japan
Prior art keywords
platinum
catalyst
supported
preparing
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61010621A
Other languages
Japanese (ja)
Other versions
JPS62168545A (en
Inventor
Yoshinori Nishihara
Masahiro Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61010621A priority Critical patent/JPS62168545A/en
Publication of JPS62168545A publication Critical patent/JPS62168545A/en
Publication of JPH0463730B2 publication Critical patent/JPH0463730B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8846Impregnation
    • H01M4/885Impregnation followed by reduction of the catalyst salt precursor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、白金と担体から成る高分散白金担
持触媒の調製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to a method for preparing a highly dispersed supported platinum catalyst comprising platinum and a carrier.

〔従来技術とその問題点〕[Prior art and its problems]

従来、電気化学セルに用いる白金触媒として
は、周知の方法にて調製した白金黒を用いる方法
が知られている。ところが触媒として白金黒を用
いた場合にはその比表面積が小さい(約20〜
25m2/g−Pt)ために満足しうる特性が得られ
なかつた。そこで大きい比表面積を有する白金触
媒を得るためにカーボンブラツクなどの比較的高
表面積を有する導電性多孔質微粉体を担体として
用い、これに白金微粒子を担持させる方法がとら
れてきた。この白金担持触媒の調製方法の従来方
法としては大別して次の三種類がある。
Conventionally, as a platinum catalyst used in an electrochemical cell, a method using platinum black prepared by a well-known method is known. However, when platinum black is used as a catalyst, its specific surface area is small (approx.
25 m2/g-Pt), so satisfactory properties could not be obtained. Therefore, in order to obtain a platinum catalyst having a large specific surface area, a method has been adopted in which a conductive porous fine powder having a relatively high surface area, such as carbon black, is used as a carrier and platinum fine particles are supported on the carrier. Conventional methods for preparing this platinum-supported catalyst can be broadly classified into the following three types.

(1) 気相還元法 この方法は、一般的には担体に塩化白金酸水
溶液などの白金塩を含浸させた後に水分を除去
し、これを水素気流中で所定の温度において直
接水素還元を行う方法である。ところが、この
方法においては、使用する担体の種類によつて
は、白金塩が充分に担体の表面に吸着できない
ものがありこのような系では白金塩は単に担体
間の細孔あるいは担体内に存在する細孔内に吸
収されているにすぎず、これを乾燥することに
より白金塩水溶液が徐々に濃縮され、この事に
より白金の粒子径が大きくなり(これは白金の
比表面積が減少した事に対応する)期待する程
の高表面積白金触媒が得られなかつた。また、
白金塩が徐々に濃縮されることにより、白金粒
子が集落を形成し、このために担体の表面に均
一に白金粒子を分散させることが困難であつ
た。さらに他の問題点としては、水素ガスを用
いて還元を行い白金担持触媒を得るためには、
通常100〜400℃の高温にさらさなければならな
い。そころがこの様な条件下で処理を行うと白
金粒子のシンタリング(融点以下での白金粒子
径の増大)が起きさらに白金比表面積が減少す
るという欠点があつた。
(1) Gas-phase reduction method In this method, the carrier is generally impregnated with a platinum salt such as an aqueous solution of chloroplatinic acid, water is removed, and then the carrier is directly reduced with hydrogen at a predetermined temperature in a hydrogen stream. It's a method. However, in this method, depending on the type of carrier used, the platinum salt may not be sufficiently adsorbed to the surface of the carrier, and in such systems, the platinum salt simply exists in the pores between the carriers or within the carrier. By drying the platinum salt aqueous solution, the platinum salt aqueous solution gradually becomes concentrated, which increases the particle size of the platinum (this is due to a decrease in the specific surface area of platinum). (corresponding) A platinum catalyst with a high surface area as expected could not be obtained. Also,
As the platinum salt is gradually concentrated, the platinum particles form clusters, which makes it difficult to uniformly disperse the platinum particles on the surface of the carrier. Another problem is that in order to obtain a platinum-supported catalyst by performing reduction using hydrogen gas,
Must be exposed to high temperatures, usually between 100 and 400 degrees Celsius. However, when the treatment is carried out under such conditions, sintering of the platinum particles (increase in the platinum particle diameter below the melting point) occurs, and the specific surface area of the platinum decreases.

また、現在では、触媒の活性を向上させるた
めに白金単独の担持触媒にかわつて、白金担持
触媒を出発物質として用い、これにパナジウム
等の第2成分を添加し、白金−第2成分(ある
いは第3成分)の合金担持触媒を調製、使用す
る傾向にある。ところが、この場合には一般的
に約900℃の温度において触媒を熱処理をする
必要があり、この際に分散性の悪い平均結晶子
径の大きい白金担持触媒を出発物質として用い
ると、熱処理により触媒の結晶子径の大きい活
性の低い触媒した調製できないという欠点があ
つた。
Currently, in order to improve the activity of the catalyst, a platinum-supported catalyst is used as a starting material instead of a supported platinum-only catalyst, and a second component such as panadium is added to it, and a platinum-second component (or platinum-second component) is used as a starting material. There is a trend toward preparing and using alloy-supported catalysts with three components. However, in this case, it is generally necessary to heat-treat the catalyst at a temperature of about 900°C, and if a platinum-supported catalyst with a large average crystallite size and poor dispersibility is used as a starting material, the catalyst will be hardened by heat treatment. The drawback was that it was impossible to prepare a catalyst with a large crystallite size and low activity.

(2) 熱分解法 特開昭50−56545に開示されているように、
白金塩として、ジニトロジアンミン白金(Pt
(NH32(NO22)を用い、これを30%硝酸に溶
解した後にカーボンブラツクと接触させ充分に
なじませた後に、乾燥しその後これを260℃空
気気流中で処理し白金塩を熱的に分解して白金
担持触媒を得る方法がある。しかしながら、こ
の場合にも白金塩を担体に吸収させているため
に気相還元法と同様な欠点があると考えられ
る。
(2) Pyrolysis method As disclosed in JP-A-50-56545,
As a platinum salt, dinitrodiammine platinum (Pt
(NH 3 ) 2 (NO 2 ) 2 ) was dissolved in 30% nitric acid, brought into contact with carbon black and thoroughly blended, dried, and then treated in an air stream at 260°C to form a platinum salt. There is a method of thermally decomposing platinum to obtain a supported platinum catalyst. However, this method is also considered to have the same drawbacks as the gas phase reduction method because the platinum salt is absorbed into the carrier.

(3) 液相還元法 特開昭54−92588に開示されているように水
に分散させたカーボンブラツクに塩化白金酸水
溶液を添加し、充分に接触させたのちに、ニチ
オン酸ナトリウムを用いて塩化白金酸を還元す
る方法がある。しかしながら、この方法におい
ては所定の白金を担体上に担持させることが困
難であり、実用的でないことがわかつた。
(3) Liquid phase reduction method As disclosed in JP-A-54-92588, an aqueous solution of chloroplatinic acid is added to carbon black dispersed in water, and after sufficient contact, a solution of chloroplatinic acid is added to the carbon black dispersed in water. There is a method to reduce chloroplatinic acid. However, it was found that this method was difficult to support a predetermined amount of platinum on the carrier and was not practical.

このような従来技術の背景にあつて、本発明
者は先に特願昭60−38128により、担体を白金
塩水溶液と接触させた後に系のPHを調整し、こ
の後に蟻酸等の還元剤を用いて白金塩を還元
し、担体上に白金を析出させる方法を提案して
いるが、この方法において得られる白金粒子は
その結晶子径がまだ大きく、電子顕微鏡での観
察においては白金粒子の集落が観察され白金担
持触媒として充分な物性を有しているとは言い
がたいことがわかつた。
Against the background of such prior art, the present inventor previously disclosed in Japanese Patent Application No. 60-38128 that the pH of the system was adjusted after bringing the carrier into contact with an aqueous platinum salt solution, and then a reducing agent such as formic acid was added. However, the crystallite size of the platinum particles obtained by this method is still large, and when observed with an electron microscope, platinum particles are concentrated. was observed, indicating that it cannot be said to have sufficient physical properties as a platinum-supported catalyst.

〔発明の目的〕[Purpose of the invention]

この発明は従来の欠点を除去して、従来より微
細な結晶子径を有する高分散で高表面積な白金担
持触媒が短時間に、安全に、しかも確実に調製で
きる方法を提供することを目的とする。
The purpose of this invention is to eliminate the conventional drawbacks and provide a method for preparing a highly dispersed and high surface area platinum-supported catalyst having a finer crystallite size than the conventional method, in a short time, safely, and reliably. do.

〔発明の要点〕[Key points of the invention]

この発明は、カーボンブラツクやアセチレンブ
ラツク等の炭素粒子からなる触媒担体を酸水溶液
に接触させて親水処理を施した触媒担体と、白金
塩の酸水溶液とを充分に接触させた系に、保護コ
ロイド剤としての過酸化水素を添加し充分に混合
して、その後系のPHをアルカリ側にして、アルデ
ヒド基に相当する置換基を有する還元剤を用いて
還元が充分におこりうる反応温度で白金塩の還元
を行い、同時に還元された白金を担体上に吸着さ
せることにより、より微細な結晶子径を有する高
分散高表面積白金担持触媒が、確実に安全にしか
も短時間で調製できるようにしたものである。
In this invention, a protective colloid is added to a system in which a catalyst carrier made of carbon particles such as carbon black or acetylene black is subjected to hydrophilic treatment by contacting it with an acid aqueous solution, and an acid aqueous solution of a platinum salt. Add hydrogen peroxide as an agent and mix thoroughly, then set the pH of the system to an alkaline side, and use a reducing agent with a substituent corresponding to an aldehyde group to form a platinum salt at a reaction temperature that allows sufficient reduction to occur. By reducing the amount of platinum and simultaneously adsorbing the reduced platinum onto a carrier, a highly dispersed, high surface area platinum-supported catalyst with finer crystallite size can be prepared reliably, safely, and in a short time. It is.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例に基づきより具体的に説
明する。
Hereinafter, the present invention will be explained in more detail based on Examples.

アセチレンブラツク9gに10wt%硝酸水溶液400
c.c.を添加しこれを撹はんしながら、60℃まで昇温
しこの温度で約2時間撹はんを続けた。この後に
これをろ過しケーキのPHが7になるまで充分に洗
浄した。次にこのケーキを2.1mg−Pt/c.c.の塩化
白金酸水溶液500c.c.に充分に分散させ、さらに1
時間撹はんを続けた。これに30wt%の過酸化水
素水11.2c.c.を添加した。次にこれに0.1M炭酸ナ
トリウム水溶液を添加し系のPHを9.5に調整した。
その後0.1M蟻酸水溶液213c.c.を約10分間かけて
徐々に添加した。添加完了後反応物を撹はんしな
がら50℃まで昇温した。さらにこの温度で2時間
撹はんを続けた。反応完了後、反応物をろ別しケ
ーキを60℃の温水で充分洗浄した。このケーキを
50℃で加熱真空乾燥して白金担持触媒を得た。得
られた触媒の物性を評価した結果白金比表面積は
180m2/g−Pt、白金担持量は10.5%であること
がわかつた。
9g of acetylene black and 400ml of 10wt% nitric acid aqueous solution
cc was added, and while stirring, the temperature was raised to 60°C, and stirring was continued at this temperature for about 2 hours. After that, this was filtered and thoroughly washed until the pH of the cake became 7. Next, this cake was thoroughly dispersed in 500 c.c. of a 2.1 mg-Pt/cc chloroplatinic acid aqueous solution, and
Stirring was continued for an hour. To this was added 11.2 cc of 30 wt% hydrogen peroxide solution. Next, 0.1M aqueous sodium carbonate solution was added to this to adjust the pH of the system to 9.5.
Thereafter, 213 c.c. of a 0.1M aqueous formic acid solution was gradually added over about 10 minutes. After the addition was complete, the reaction mixture was heated to 50° C. with stirring. Stirring was further continued at this temperature for 2 hours. After the reaction was completed, the reaction product was filtered and the cake was thoroughly washed with 60°C warm water. this cake
The platinum-supported catalyst was obtained by heating and vacuum drying at 50°C. As a result of evaluating the physical properties of the obtained catalyst, the platinum specific surface area was
It was found that the amount of platinum supported was 180 m2/g-Pt and 10.5%.

なお、この実施例において、担体と白金を接触
させた系に添加する保護コロイド剤としての過酸
化水素水の量を22.3c.c.としても同様の効果が得ら
れた。また、上記実施例において、塩化白金酸水
溶液に前処理した担体を徐々に分散させるかわり
に、前処理した担体を脱イオン水約500c.c.に充分
に分散させた後に50mg/c.c.の塩化白金酸水溶液21
c.c.を撹はんしながら滴下して触媒を調製してもよ
い。更に、10wt%硝酸のかわりに過マンガン酸
カリウムやオゾン水溶液を用いても同様の効果が
得られる。
In this example, the same effect was obtained even when the amount of hydrogen peroxide water as a protective colloid added to the system in which the carrier and platinum were brought into contact was 22.3 cc. In the above example, instead of gradually dispersing the pretreated carrier in an aqueous solution of chloroplatinic acid, the pretreated carrier was sufficiently dispersed in about 500 c.c. of deionized water, and then 50 mg/cc of platinum chloride was added. acid aqueous solution 21
The catalyst may be prepared by adding cc dropwise with stirring. Furthermore, the same effect can be obtained by using potassium permanganate or an aqueous ozone solution instead of 10 wt% nitric acid.

次に比較のため、先に従来技術の項で述べた気
相還元法により、白金担持触媒を作成した結果を
以下に述べる。
Next, for comparison, the results of producing a platinum-supported catalyst using the gas phase reduction method previously described in the prior art section will be described below.

アセチレンブラツク9gを1.05gの白金を含有す
る塩化白金酸水溶液50c.c.と混合する。充分に混合
しペースト状になつたものを5℃に保ち約20時間
静置する。この後にペースト内に存在する水分を
除去すべく充分に乾燥する。乾燥の後にこれを
250℃水素雰囲気で約2時間還元する。出来上つ
た触媒の物性を評価したところ、CO化学吸着法
による白金比表面積は、約90m2/g−Pt、白金
担持量10.4%、X線回折法による平均結晶子径約
100オングストロームであつた。また、この触媒
を電子顕微鏡で観察した結果、多くの白金粒子の
集落が観察された。さらにこの触媒の熱的安定性
を見るために、900℃、N2雰囲気で2時間熱処理
したところ、平均結晶子径が約250オングストロ
ームに増大した。
9 g of acetylene black are mixed with 50 c.c. of an aqueous chloroplatinic acid solution containing 1.05 g of platinum. Mix thoroughly to form a paste and leave to stand at 5°C for about 20 hours. After this, the paste is sufficiently dried to remove any moisture present in the paste. Do this after drying
Reduce in a hydrogen atmosphere at 250°C for about 2 hours. When the physical properties of the finished catalyst were evaluated, the platinum specific surface area measured by CO chemisorption method was approximately 90 m2/g-Pt, the amount of platinum supported was 10.4%, and the average crystallite diameter was determined by X-ray diffraction method.
It was 100 angstroms. Furthermore, as a result of observing this catalyst using an electron microscope, many colonies of platinum particles were observed. Furthermore, in order to examine the thermal stability of this catalyst, it was heat treated at 900° C. in a N 2 atmosphere for 2 hours, and the average crystallite diameter increased to about 250 angstroms.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなようにこの発明によれ
ば、触媒を調製にあたり保護コロイド剤を添加し
たことにより、従来の方法と比較して白金微粒子
の集落がなくなり分散性が向上し、より高性能の
触媒が得られるようになつた。このことにより白
金触媒としての特性が向上したのみならず、これ
をベースとして白金−第二成分合金触媒の調製に
おいても、触媒粒子の分散性が向上し特性を向上
させることができる。
As is clear from the above explanation, according to the present invention, by adding a protective colloid agent when preparing the catalyst, there is no clustering of platinum fine particles compared to the conventional method, and the dispersibility is improved, resulting in higher performance. Catalysts are now available. This not only improves the properties as a platinum catalyst, but also improves the dispersibility of catalyst particles and improves the properties when preparing a platinum-second component alloy catalyst using this as a base.

また、本発明によれば、基本的に触媒調製時に
不必要な熱がかからないために、調製時における
白金のシンタリングを極力抑えることができる。
更に、白金が担体に吸収されるのではなく白金塩
の還元と同時に白金微粒子が担体上に吸着される
ため従来の担持強度が強くより安定な白金担持触
媒が得られる。更にまた、本発明によれば白金担
持工程をくりかえすことなく、所定の担持量の触
媒が短時間に安全にしかも確実に得られる。
Furthermore, according to the present invention, since unnecessary heat is basically not applied during catalyst preparation, sintering of platinum during preparation can be suppressed as much as possible.
Furthermore, since platinum is not absorbed by the carrier, but the platinum fine particles are adsorbed onto the carrier at the same time as the platinum salt is reduced, a supported platinum catalyst with stronger supporting strength and more stability than conventional catalysts can be obtained. Furthermore, according to the present invention, a predetermined amount of supported catalyst can be obtained safely and reliably in a short time without repeating the platinum supporting step.

Claims (1)

【特許請求の範囲】 1 カーボンブラツクやアセチレンブラツク等の
炭素粒子からなる触媒担体を酸水溶液に接触させ
て親水処理を施した触媒担体と、白金塩の酸水溶
液とを充分に接触させた系に、保護コロイド剤と
しての過酸化水素を添加し、更にこの系のPHをア
ルカリ側にして、液相においてアルデヒド基を有
する還元剤を添加した後、白金塩の還元が充分に
起こりうる反応温度で還元を行うことを特徴とす
る電気化学セル用白金担持触媒の調製方法。 2 特許請求の範囲第1項の方法において、反応
温度は40℃から90℃であることを特徴とする白金
担持触媒の調製方法。 3 特許請求の範囲第1項の方法において、反応
温度は50℃から60℃であることを特徴とする白金
担持触媒の調製方法。
[Scope of Claims] 1. A system in which a catalyst carrier made of carbon particles such as carbon black or acetylene black is subjected to hydrophilic treatment by contacting it with an acid aqueous solution, and a catalyst carrier made of a catalyst carrier made of carbon particles such as carbon black or acetylene black, which is brought into sufficient contact with an acid aqueous solution of a platinum salt. , hydrogen peroxide was added as a protective colloid, the pH of this system was adjusted to the alkaline side, and a reducing agent having an aldehyde group was added in the liquid phase, and then the reaction temperature was set at a temperature at which sufficient reduction of the platinum salt could occur. A method for preparing a platinum-supported catalyst for an electrochemical cell, characterized by carrying out reduction. 2. A method for preparing a supported platinum catalyst according to claim 1, characterized in that the reaction temperature is from 40°C to 90°C. 3. A method for preparing a supported platinum catalyst according to claim 1, characterized in that the reaction temperature is 50°C to 60°C.
JP61010621A 1986-01-21 1986-01-21 Production of platinum supported catalyst Granted JPS62168545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010621A JPS62168545A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010621A JPS62168545A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Publications (2)

Publication Number Publication Date
JPS62168545A JPS62168545A (en) 1987-07-24
JPH0463730B2 true JPH0463730B2 (en) 1992-10-12

Family

ID=11755294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010621A Granted JPS62168545A (en) 1986-01-21 1986-01-21 Production of platinum supported catalyst

Country Status (1)

Country Link
JP (1) JPS62168545A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8620982D0 (en) * 1986-08-29 1986-10-08 Shell Int Research Catalyst preparation
KR100229133B1 (en) * 1996-12-14 1999-11-01 윤종용 Magnetron
JP2001216991A (en) 2000-02-02 2001-08-10 Toyota Motor Corp Device and method for evaluating performance of fuel cell, device and method for evaluating specific surface area of electrode catalyst for fuel cell, and electrode catalyst for fuel cell and its production
DE10037072A1 (en) * 2000-07-29 2002-02-14 Omg Ag & Co Kg Membrane electrode unit for polymer electrolyte fuel cells and process for their production

Also Published As

Publication number Publication date
JPS62168545A (en) 1987-07-24

Similar Documents

Publication Publication Date Title
CN1964782B (en) Platinum catalysts obtained by reducing in-situ formed platinum dioxide
JP5456797B2 (en) Fuel cell electrode catalyst
JPH01210037A (en) Method of forming alloy on carrier
JPS6340135B2 (en)
JPS609858B2 (en) Method for producing carrier material for noble metal catalyst
JPS6346958B2 (en)
CN111569868A (en) Method for preparing catalyst loaded on carbon
US4054687A (en) Method for making a fuel cell electrode
JPH0463730B2 (en)
JPH04700B2 (en)
JPH04141235A (en) Electrode catalyst for an anode pole
JP4939005B2 (en) Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell
JPH0463731B2 (en)
JP3516734B2 (en) Method for producing platinum-supported catalyst
JP3053414B2 (en) New or old graphite powder processing method to improve its effectiveness as metal catalyst support
JP3890653B2 (en) Methanol fuel cell
JP3978470B2 (en) Cathode catalyst for fuel cell and fuel cell using the same
JP4082800B2 (en) Catalyst production method
JP7178127B1 (en) METHOD FOR MANUFACTURING FUEL CELL ELECTROCATALYST
JP2002095969A (en) Method for producing platinum-cobalt alloy catalyst
JPH0572711B2 (en)
JP2808867B2 (en) Method for producing fuel cell alloy catalyst
JPH01307445A (en) Preparation of catalyst
JPS62132548A (en) Production of catalyst
JPS6344940A (en) Alloy supported catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees