JP4939005B2 - Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell - Google Patents

Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell Download PDF

Info

Publication number
JP4939005B2
JP4939005B2 JP2005221407A JP2005221407A JP4939005B2 JP 4939005 B2 JP4939005 B2 JP 4939005B2 JP 2005221407 A JP2005221407 A JP 2005221407A JP 2005221407 A JP2005221407 A JP 2005221407A JP 4939005 B2 JP4939005 B2 JP 4939005B2
Authority
JP
Japan
Prior art keywords
fullerene
catalyst
catalyst carrier
electrode
porous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005221407A
Other languages
Japanese (ja)
Other versions
JP2007029931A (en
Inventor
久嗣 出原
公平 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Coke and Chemicals Co Ltd
Original Assignee
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Coke and Chemicals Co Ltd filed Critical Kansai Coke and Chemicals Co Ltd
Priority to JP2005221407A priority Critical patent/JP4939005B2/en
Publication of JP2007029931A publication Critical patent/JP2007029931A/en
Application granted granted Critical
Publication of JP4939005B2 publication Critical patent/JP4939005B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、触媒担体に関するものであり、より詳細には、燃料電池の電極触媒用触媒担体に関するものである。   The present invention relates to a catalyst carrier, and more particularly to a catalyst carrier for an electrode catalyst of a fuel cell.

燃料電池は、環境に調和した高効率な発電システムとして注目を集めている。なかでも電解質としてプロトン伝導性の固体高分子を使用する固体高分子型燃料電池は、常温でも動作でき、高出力密度が得られるため、自動車用電源、定置型電源などとして大きな期待が寄せられている。しかしながら、民生用電源としての実用化と普及のためには、一層の高性能化と耐久性向上、コストダウンが重要となっている。   Fuel cells are attracting attention as a highly efficient power generation system in harmony with the environment. In particular, solid polymer fuel cells that use proton-conducting solid polymers as electrolytes can operate at room temperature and achieve high output density, and are therefore highly expected as power sources for automobiles and stationary power sources. Yes. However, in order to put it into practical use and spread as a consumer power supply, it is important to further improve performance, improve durability, and reduce costs.

一般に、固体高分子型燃料電池の電極は、触媒活性成分である白金若しくは白金合金などの貴金属、該貴金属を担持する導電性カーボン材料、及び、高分子電解質を含有し、電極反応を効率的に行うためには、3相界面を効率よく形成する必要があると言われている。例えば、水素極(負極)では、白金を触媒活性成分として、下記電極反応が行われる。
→ 2H + 2e
In general, an electrode of a polymer electrolyte fuel cell contains a noble metal such as platinum or a platinum alloy which is a catalytically active component, a conductive carbon material supporting the noble metal, and a polymer electrolyte, and efficiently performs an electrode reaction. In order to do so, it is said that it is necessary to efficiently form a three-phase interface. For example, at the hydrogen electrode (negative electrode), the following electrode reaction is performed using platinum as a catalytically active component.
H 2 → 2H + + 2e

水素極(負極)において、電極反応を効率的に行うためには、燃料である水素を担体である導電性カーボン粒子間の空隙を利用して、導電性カーボンに担持された白金に接触させて反応させると同時に、生成する水素イオンを高分子電解質を媒体として正極へと移動させ、さらに、生成する電子を導電性カーボンを媒体として外部回路へ流す必要がある。そのため、電極内部において高分子電解質、水素、白金および担体の3相界面を効率よく形成する必要があり、3相界面が形成されない場合には、電極反応効率(若しくは触媒利用効率)を高めることができない。酸素極(正極)においても同様である。   In order to carry out an electrode reaction efficiently at the hydrogen electrode (negative electrode), hydrogen as a fuel is brought into contact with platinum supported on conductive carbon by utilizing gaps between conductive carbon particles as a carrier. At the same time as the reaction, it is necessary to move the generated hydrogen ions to the positive electrode using the polymer electrolyte as a medium, and to flow the generated electrons to the external circuit using the conductive carbon as a medium. Therefore, it is necessary to efficiently form the three-phase interface of the polymer electrolyte, hydrogen, platinum, and the support inside the electrode. When the three-phase interface is not formed, the electrode reaction efficiency (or catalyst utilization efficiency) can be increased. Can not. The same applies to the oxygen electrode (positive electrode).

例えば、特許文献1及び特許文献2には、電極反応効率(若しくは、触媒利用効率)を高める技術が開示されている。特許文献1には、直径60オングストローム以下の細孔を全細孔に対して20%以下の割合で有する炭素微粉末に貴金属を担持させることが開示され、特許文献2には、触媒活性成分(白金)を担持する担体としての活性炭に特定の含フッ素有機酸を添着或いは含浸させるとともに、導電剤と含フッ素イオン交換樹脂とを併用することが開示されている。特許文献3では、フラーレンの製造過程においてフラーレンの抽出操作により生じた残渣物を触媒担体に使用することが開示されている。耐久性に本質的に影響を及ぼす因子については明確にはなっていないのが現状である。   For example, Patent Literature 1 and Patent Literature 2 disclose techniques for increasing electrode reaction efficiency (or catalyst utilization efficiency). Patent Document 1 discloses that a noble metal is supported on carbon fine powder having pores having a diameter of 60 angstroms or less in a ratio of 20% or less with respect to all pores. Patent Document 2 discloses a catalyst active component ( It is disclosed that a specific fluorine-containing organic acid is impregnated or impregnated into activated carbon as a carrier supporting platinum), and a conductive agent and a fluorine-containing ion exchange resin are used in combination. Patent Document 3 discloses that a residue generated by fullerene extraction operation in a fullerene production process is used as a catalyst carrier. Currently, the factors that essentially affect durability are not clear.

酸素極では、酸素の還元反応により水が生成する。水が電極細孔内の閉塞(フラッディング)を起こし、長期の安定性を阻害する。強い酸化力を持つ過酸化水素が生成する可能性があり、また、酸素によって触媒上で局所的な発熱を起こしている可能性もある。特許文献4では、カーボンブラックまたは活性炭を加熱処理することで比表面積と黒鉛化度を制御し耐久性向上を試みている。
特開2000−100448号公報 特許第3446064号公報 特開2004−223311号公報 特開2000−268828号公報
At the oxygen electrode, water is generated by a reduction reaction of oxygen. Water causes clogging (flooding) within the electrode pores, impairing long-term stability. Hydrogen peroxide having strong oxidizing power may be generated, and oxygen may cause local heat generation on the catalyst. In Patent Document 4, an attempt is made to improve durability by controlling the specific surface area and the degree of graphitization by heat-treating carbon black or activated carbon.
Japanese Patent Laid-Open No. 2000-1000044 Japanese Patent No. 3446064 Japanese Patent Laid-Open No. 2004-223311 JP 2000-268828 A

本発明は、貴金属などの触媒活性成分を担持する担体において、該触媒活性成分の分散性を高め、高い触媒活性を有するとともに、耐酸化性に優れる触媒担体を提供することを目的とする。特に、燃料電池用電極触媒用の担体であって、白金などの貴金属の分散性を高め、発電性能に優れ、かつ、耐久性が良好な触媒担体を提供することを目的とする。   An object of the present invention is to provide a catalyst carrier that supports a catalytically active component such as a noble metal, improves the dispersibility of the catalytically active component, has a high catalytic activity, and is excellent in oxidation resistance. In particular, it is an object of the present invention to provide a catalyst carrier for a fuel cell electrode catalyst, which enhances the dispersibility of noble metals such as platinum, is excellent in power generation performance, and has excellent durability.

上記課題を解決することのできた本発明の触媒担体は、フラーレン含有煤、又は、フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物を賦活処理、高温熱処理、若しくは、賦活処理後高温熱処理して得られる多孔質物質を含有することを特徴とする。この多孔質物質を燃料電池用触媒担体として使用すると、高い触媒活性を示すと共に、耐酸化性にも優れる。前記高温熱処理温度としては、例えば、1500℃以上が好適である。1500℃以上の高温で熱処理することによって、多孔質物質に含まれる黒鉛結晶構造が制御されて、得られる触媒担体の耐酸化性が一層向上するからである。また、前記フラーレンの少なくとも一部を実質的に抽出する溶媒としては、例えば、芳香族系有機溶媒を挙げることができる。   The catalyst carrier of the present invention that has been able to solve the above-described problems is an activation treatment of an extraction residue obtained by substantially extracting at least a part of fullerene using a solvent from a fullerene-containing soot or a fullerene-containing soot, It contains a porous material obtained by high temperature heat treatment or high temperature heat treatment after activation treatment. When this porous material is used as a catalyst support for a fuel cell, it exhibits high catalytic activity and excellent oxidation resistance. As said high temperature heat processing temperature, 1500 degreeC or more is suitable, for example. This is because heat treatment at a high temperature of 1500 ° C. or higher controls the graphite crystal structure contained in the porous material and further improves the oxidation resistance of the resulting catalyst carrier. Examples of the solvent that substantially extracts at least a part of the fullerene include aromatic organic solvents.

本発明で使用する多孔質物質のBET比表面積は、好ましくは350〜1450m/gであり、より好ましくは350〜1300m/gである。 BET specific surface area of the porous material used in the present invention is preferably a 350~1450m 2 / g, more preferably 350~1300m 2 / g.

本発明の触媒担体は、貴金属などの触媒活性成分の分散性に優れ高活性であるとともに耐酸化性に優れる。本発明の触媒担体は、特に、燃料電池の電極触媒用として好適である。   The catalyst carrier of the present invention is excellent in dispersibility of catalytically active components such as noble metals and is highly active and also excellent in oxidation resistance. The catalyst carrier of the present invention is particularly suitable for an electrode catalyst for a fuel cell.

本発明の触媒担体は、フラーレン含有煤、又は、フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物を賦活処理、高温熱処理、若しくは、賦活処理後高温熱処理して得られる多孔質物質を含有することを特徴とする。   The catalyst carrier of the present invention is a fullerene-containing soot, or an extraction residue obtained by substantially extracting at least a part of fullerene from a fullerene-containing soot using a solvent, after activation treatment, high-temperature heat treatment, or after activation treatment It contains a porous substance obtained by high-temperature heat treatment.

まず、本発明で使用するフラーレン含有煤、又は、フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物について説明する。以下の説明において、「フラーレン含有煤、又は、フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物」を単に「フラーレン含有煤等」と略称する場合がある。   First, the fullerene-containing soot used in the present invention or an extraction residue obtained by substantially extracting at least a part of fullerene from the fullerene-containing soot using a solvent will be described. In the following description, “fullerene-containing soot or an extraction residue obtained by substantially extracting at least a part of fullerene from a fullerene-containing soot using a solvent” is simply abbreviated as “fullerene-containing soot”. There is.

フラーレンとは、周知の如く、5員環と6員環とのネットワークで閉じた中空殻状の構造を有する炭素分子であり、例えば、C60、C70、C76、C80、C84、C86、C90、C94、C96、C180、C240、C320、C540、又は、これらの混合物を挙げることができる。そして、フラーレン含有煤とは、フラーレンを製造する際にできる煤であれば、特に限定されない。フラーレンの製造方法としては、例えば、グラファイト電極などを用いてアーク放電により原料を蒸発させる方法(アーク放電法)、炭素質原料に高電流を流して原料を蒸発させる方法(抵抗加熱法)、紫外レーザーを黒鉛に照射する方法(レーザー蒸発法)、ベンゼンなどの炭素含有化合物を不完全燃焼させる方法(燃焼法)などが挙げられ、いずれの方法によってもフラーレンを含有する煤が得られる。前記フラーレン含有煤には、上述したフラーレンの他、例えば、フラーレンのような閉環構造には至らなかったフラーレンの前躯体、グラファイトやグラファイト構造を有する炭素、非晶質炭素、不定形炭素、カーボンブラック、又は、多環芳香族炭化水素などが含有されている。 As is well known, fullerene is a carbon molecule having a hollow shell-like structure closed by a network of five-membered rings and six-membered rings. For example, C 60 , C 70 , C 76 , C 80 , C 84 , Mention may be made of C 86 , C 90 , C 94 , C 96 , C 180 , C 240 , C 320 , C 540 , or mixtures thereof. The fullerene-containing soot is not particularly limited as long as it is a soot that can be produced when producing fullerene. As a method for producing fullerene, for example, a method of evaporating a raw material by arc discharge using a graphite electrode (arc discharge method), a method of evaporating a raw material by passing a high current through a carbonaceous material (resistance heating method), an ultraviolet There are a method of irradiating a graphite with a laser (laser evaporation method), a method of incompletely burning a carbon-containing compound such as benzene (combustion method), etc., and any method can obtain soot containing fullerene. For the fullerene-containing soot, in addition to the above-mentioned fullerene, for example, a fullerene precursor that has not reached a closed ring structure such as fullerene, graphite or carbon having a graphite structure, amorphous carbon, amorphous carbon, carbon black Or a polycyclic aromatic hydrocarbon.

前記フラーレン含有煤の具体例としては、アーク放電法若しくはレーザー蒸発法によって得られるC60を10%以上含有するフラーレン含有煤やトルエン可溶のフラーレンを3質量%以上含むフラーレン含有煤を挙げることができる。 Examples of the fullerene-containing soot, be mentioned fullerene-containing soot containing fullerene-containing soot and the toluene soluble fullerenes containing C 60 obtained by an arc discharge method or laser evaporation method at least 10% 3 wt% or more it can.

また本発明では、前記フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出した抽出残渣物を使用することができる。フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出した抽出残渣物とは、フラーレン含有煤に含まれるフラーレン成分の内、溶媒に可溶なフラーレン成分を実質的に抽出した残渣物を意味する。例えば、炭素数が60〜70のフラーレン(C60〜C70など)は、後述する溶媒に可溶であり、フラーレン含有煤から溶媒で抽出される。そして、前記フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物には、前記のフラーレンの前躯体、グラファイトやグラファイト構造を有する炭素、非晶質炭素、不定形炭素、カーボンブラックや、C70以上の高次のフラーレンなどが含まれていると考えられる。 In the present invention, an extraction residue obtained by substantially extracting at least a part of fullerene from the fullerene-containing soot using a solvent can be used. An extraction residue obtained by substantially extracting at least a part of fullerene from a fullerene-containing soot using a solvent is a residue obtained by substantially extracting a fullerene component soluble in a solvent from the fullerene components contained in the fullerene-containing soot. Means a thing. For example, fullerene having 60 to 70 carbon atoms (such as C 60 to C 70 ) is soluble in a solvent described later, and is extracted from the fullerene-containing soot with the solvent. An extraction residue obtained by substantially extracting at least a part of the fullerene from the fullerene-containing soot using a solvent includes a precursor of the fullerene, carbon having a graphite or a graphite structure, and amorphous carbon. , amorphous carbon, and carbon black, is considered to contain a like C 70 or higher order fullerenes.

フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出する際に使用する溶媒としては、芳香族炭化水素、脂肪族炭化水素などの有機溶媒が挙げられる。例えば、ベンゼン、トルエン、キシレン、1−メチルナフタレン、1,2,4−トリメチルベンゼン、テトラリン等の芳香族系有機溶媒が挙げられ、これらの中では、トルエンが好適である。トルエンを使用すれば、C60〜C120程度のフラーレンを抽出することができる。 Examples of the solvent used when substantially extracting at least a part of fullerene from the fullerene-containing soot using a solvent include organic solvents such as aromatic hydrocarbons and aliphatic hydrocarbons. Examples thereof include aromatic organic solvents such as benzene, toluene, xylene, 1-methylnaphthalene, 1,2,4-trimethylbenzene, and tetralin, and among these, toluene is preferable. Using toluene, can be extracted C 60 -C 120 about fullerene.

フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して、抽出残渣物を得る方法としては、例えば、次のような方法を挙げることができる。まず、フラーレン含有煤に約60倍の質量の溶媒を加えてフラーレン含有煤の分散液を作製し、この分散液を室温で1時間超音波で処理して、フラーレン含有煤の溶媒に可溶なフラーレン成分やその他の溶媒可溶分を溶媒に溶解させる。次いで、フラーレン含有煤の分散液をろ過して、更に、ろ液の着色がなくなるまでフラーレン含有煤を溶媒で洗浄し、溶媒に可溶なフラーレンの少なくとも一部やその他の溶媒可溶分を実質的に抽出して、得られた抽出残渣物を約60℃で真空乾燥することにより得られる。   Examples of a method for obtaining an extraction residue by substantially extracting at least a part of fullerene from a fullerene-containing soot using a solvent include the following methods. First, a solvent having a mass of about 60 times is added to fullerene-containing soot to prepare a dispersion of fullerene-containing soot, and this dispersion is treated with ultrasonic waves at room temperature for 1 hour to be soluble in the solvent of fullerene-containing soot. The fullerene component and other solvent-soluble components are dissolved in the solvent. Next, the dispersion of the fullerene-containing soot is filtered, and the fullerene-containing soot is washed with a solvent until the filtrate is no longer colored, so that at least a part of the solvent-soluble fullerene and other solvent-soluble components are substantially removed. And the obtained extraction residue is vacuum-dried at about 60 ° C.

次に、前記フラーレン含有煤、又は、フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物を賦活処理、高温熱処理、若しくは、賦活処理後高温熱処理して得られる多孔質物質について説明する。   Next, the fullerene-containing soot or the extraction residue obtained by substantially extracting at least a part of the fullerene using a solvent from the fullerene-containing soot is subjected to activation treatment, high-temperature heat treatment, or high-temperature heat treatment after activation treatment. The porous material obtained will be described.

本発明における「賦活処理」とは、前記フラーレン含有煤等を多孔質化し、その比表面積を増大させる処理であれば、特に限定されず、例えば、薬品賦活処理、ガス賦活処理、1500℃未満の温度での熱処理などを採用することができる。   The “activation treatment” in the present invention is not particularly limited as long as it is a treatment for making the fullerene-containing soot porous, and increasing its specific surface area. For example, chemical activation treatment, gas activation treatment, less than 1500 ° C. A heat treatment at a temperature can be employed.

前記薬品賦活処理は、例えば、上述したフラーレン含有煤等と賦活剤としてアルカリ金属化合物とを混合して加熱処理することにより行うことができる。前記アルカリ金属化合物としては、例えば、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物;炭酸カリウム、炭酸ナトリウムなどのアルカリ金属炭酸塩;硫酸カリウム、硫酸ナトリウムなどのアルカリ金属の硫酸塩などや、その水溶液や水和物を挙げることができる。前記賦活剤として好ましいのは、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属水酸化物の水和物や濃厚な水溶液である。前記フラーレン含有煤等に対するアルカリ金属化合物の使用量は、特に限定されないが、例えば、無水基準で、アルカリ金属化合物/フラーレン含有煤等(質量比)=0.3以上4.0以下であることが好ましい。   The chemical activation treatment can be performed, for example, by mixing the fullerene-containing soot described above and an alkali metal compound as an activator and performing heat treatment. Examples of the alkali metal compound include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; alkali metal carbonates such as potassium carbonate and sodium carbonate; alkali metal sulfates such as potassium sulfate and sodium sulfate; And aqueous solutions and hydrates thereof. Preferred as the activator is a hydrate or concentrated aqueous solution of an alkali metal hydroxide such as potassium hydroxide or sodium hydroxide. Although the usage-amount of the alkali metal compound with respect to the said fullerene containing soot etc. is not specifically limited, For example, it is an alkali metal compound / fullerene containing soot etc. (mass ratio) = 0.3 or more and 4.0 or less. preferable.

前記薬品賦活をする際の加熱処理は、特に限定されるものではないが、例えば、500℃以上900℃以下で行うことができ、アルゴン、窒素などの不活性ガス雰囲気下で加熱処理を行うことも好ましい態様である。また、アルカリ金属水酸化物などを用いて薬品賦活をした場合には、酸及び/又は水による洗浄を行って、フラーレン含有煤等内に存在する未反応の賦活剤や反応の結果生じたアルカリ金属化合物(例えば、カリウム化合物)などを除去することが好ましい態様である。また、酸及び/又は水を用いて洗浄した炭素質物質は、真空乾燥することが好ましい。真空乾燥によって、フラーレン含有煤等の内部に残留する酸及び/又は水を容易に除去できるからである。   The heat treatment at the time of chemical activation is not particularly limited. For example, the heat treatment can be performed at 500 ° C. or higher and 900 ° C. or lower, and the heat treatment is performed in an inert gas atmosphere such as argon or nitrogen. Is also a preferred embodiment. In addition, when chemical activation is performed using an alkali metal hydroxide or the like, washing with an acid and / or water is performed, and an unreacted activator present in the fullerene-containing soot etc. or an alkali generated as a result of the reaction. It is a preferred embodiment to remove a metal compound (for example, potassium compound). Moreover, it is preferable that the carbonaceous material washed with an acid and / or water is vacuum-dried. This is because the acid and / or water remaining inside the fullerene-containing soot can be easily removed by vacuum drying.

本発明では、フラーレン含有煤等をガス賦活処理してもよい。前記ガス賦活処理は、例えば、上述したフラーレン含有煤等を750℃以上で酸化性ガスと接触させることによって行われることが好ましい態様である。前記ガス賦活処理の温度は、800℃以上が好ましく、より好ましくは850℃以上であって、1100℃以下が好ましく、より好ましくは1050℃以下である。また、前記酸化性ガスとしては、例えば、炭酸ガス、水蒸気、酸素、燃焼排ガス、及びこれらの混合物などを使用することができる。   In the present invention, the fullerene-containing soot may be subjected to a gas activation treatment. The gas activation treatment is preferably performed, for example, by bringing the fullerene-containing soot described above into contact with an oxidizing gas at 750 ° C. or higher. The temperature of the gas activation treatment is preferably 800 ° C. or higher, more preferably 850 ° C. or higher, preferably 1100 ° C. or lower, more preferably 1050 ° C. or lower. Moreover, as said oxidizing gas, a carbon dioxide gas, water vapor | steam, oxygen, combustion exhaust gas, a mixture thereof, etc. can be used, for example.

また本発明では、上述したフラーレン含有煤等を単に1500℃未満の温度(好ましくは750℃〜1500℃、より好ましくは800℃〜1400℃)で熱処理することによっても、実用レベルに多孔質化された多孔質物質が得られる。フラーレン含有煤等を熱処理して多孔質化する機構の詳細は不明であるが、フラーレン含有煤等に含有されているフラーレンの一部が、熱処理中に昇華し、フラーレンが存在していたところが空洞化して、フラーレン含有煤等が多孔質化することも一因と考えられる。前記フラーレン含有煤等の1500℃未満の温度での熱処理は、不活性雰囲気下で行うことが好ましく、例えば、窒素、アルゴンなどの不活性ガス雰囲気下、酸化されやすい炭素を周囲に置いた容器や炭素からなる坩堝に入れて焼成するなど実質的に不活性な雰囲気下で行うことが好ましい。   In the present invention, the fullerene-containing soot and the like described above can be made porous to a practical level simply by heat treatment at a temperature of less than 1500 ° C. (preferably 750 ° C. to 1500 ° C., more preferably 800 ° C. to 1400 ° C.). Porous material is obtained. The details of the mechanism for heat treatment of fullerene-containing soot and the like to make it porous are unknown, but part of fullerene contained in fullerene-containing soot etc. sublimates during the heat treatment, and the place where fullerene was present is hollow It is also considered that the fullerene-containing soot and the like become porous. The heat treatment of the fullerene-containing soot or the like at a temperature of less than 1500 ° C. is preferably performed in an inert atmosphere. For example, a container in which carbon that is easily oxidized is placed in an atmosphere of an inert gas atmosphere such as nitrogen or argon. It is preferable to carry out in a substantially inert atmosphere, for example, in a crucible made of carbon and firing.

本発明の賦活処理において、1500℃未満の温度での熱処理と薬品賦活処理若しくはガス賦活処理とを重畳的に行うこともできる。例えば、1500℃未満の温度での熱処理と酸化性ガスを用いるガス賦活処理とを適宜組合わせることもでき、不活性ガス雰囲気下における1500℃未満の温度での熱処理に続けて、酸化性ガスを用いるガス賦活処理を行う態様や、ガス賦活処理に続けて1500℃未満の温度での熱処理を行う態様を挙げることができる。   In the activation process of the present invention, a heat treatment at a temperature lower than 1500 ° C. and a chemical activation process or a gas activation process can be performed in a superimposed manner. For example, a heat treatment at a temperature of less than 1500 ° C. and a gas activation treatment using an oxidizing gas can be appropriately combined. Following the heat treatment at a temperature of less than 1500 ° C. in an inert gas atmosphere, an oxidizing gas can be used. The aspect which performs the gas activation process to be used, and the aspect which heat-processes at the temperature below 1500 degreeC following a gas activation process can be mentioned.

本発明において、前記洗浄後や賦活処理後の多孔質物質を不活性ガス雰囲気下で1500℃未満の温度で熱処理して、多孔質物質の表面官能基量を調整することも好ましい態様である。前記多孔質物質の表面の官能基量を調整する1500℃未満の温度の熱処理としては、賦活直後の多孔質物質を不活性ガス雰囲気下で熱処理する態様;賦活直後の多孔質物質を、酸および/または水で洗浄した後、不活性ガス雰囲気下で熱処理する態様;賦活直後の多孔質物質を有機溶剤で洗浄した後、不活性ガス雰囲気下で熱処理する態様;賦活直後の多孔質物質を酸および/または水で洗浄して、不活性ガス雰囲気下で熱処理を行った後、さらに有機溶剤で洗浄して、不活性ガス雰囲気下で熱処理を行う態様などを挙げることができる。前記不活性ガスとしては、例えば、アルゴン、窒素、ヘリウムなどを使用することができる。ま前記多孔質物質の表面官能基量を調整する熱処理温度は、特に限定されないが、1500℃未満が好ましく、1000℃以下がより好ましく、400℃以上が好ましい。   In the present invention, it is also a preferred aspect to adjust the amount of surface functional groups of the porous material by heat-treating the porous material after washing or activation treatment at a temperature of less than 1500 ° C. in an inert gas atmosphere. As the heat treatment at a temperature of less than 1500 ° C. for adjusting the amount of functional groups on the surface of the porous material, an embodiment in which the porous material immediately after activation is heat-treated in an inert gas atmosphere; the porous material immediately after activation is treated with an acid and An embodiment in which heat treatment is performed in an inert gas atmosphere after washing with water; an embodiment in which a porous material immediately after activation is washed with an organic solvent, and then heat treatment is performed in an inert gas atmosphere; And / or an embodiment in which the substrate is washed with water and heat-treated in an inert gas atmosphere, and further washed with an organic solvent and heat-treated in an inert gas atmosphere. As said inert gas, argon, nitrogen, helium etc. can be used, for example. The heat treatment temperature for adjusting the surface functional group amount of the porous material is not particularly limited, but is preferably less than 1500 ° C, more preferably 1000 ° C or less, and preferably 400 ° C or more.

本発明における「高温熱処理」とは、前記フラーレン含有煤等、若しくは、フラーレン含有煤などを賦活処理したものを、実質的に不活性な雰囲気下で1500℃以上の高温で熱処理することである。斯かる高温熱処理は、多孔質物質に含まれる黒鉛結晶構造を調整し、得られる触媒担体の耐酸化性(耐久性)を一層向上させることを目的とするものである。しかしながら、上述したようにフラーレン含有煤等は、単に熱処理をすることによって賦活されるため、前記高温熱処理が、フラーレン含有煤等の賦活処理を実質的に兼ねる場合もある。尚、フラーレン含有煤等の賦活処理と前記高温熱処理とを別々に行うことも好ましい態様である。   The “high temperature heat treatment” in the present invention is to heat treat the fullerene-containing soot or the like, or a product obtained by activating the fullerene-containing soot, at a high temperature of 1500 ° C. or higher in a substantially inert atmosphere. Such high-temperature heat treatment is intended to adjust the graphite crystal structure contained in the porous material and further improve the oxidation resistance (durability) of the resulting catalyst carrier. However, as described above, fullerene-containing soot and the like are activated simply by heat treatment, and thus the high-temperature heat treatment may substantially double as activation treatment for fullerene-containing soot and the like. In addition, it is also a preferable aspect to perform activation processing of fullerene containing soot etc. and the said high temperature heat processing separately.

本態様における高温熱処理温度は、特に限定されるものではないが、1500℃以上が好ましく、より好ましくは1600℃以上であって、2500℃以下が好ましく、より好ましくは2200℃以下である。高温熱処理温度が低すぎると、黒鉛結晶構造の発達が低くなり、高温熱処理温度が高すぎると、一度発達した細孔が減少し、却って比表面積が小さくなる場合があるからである。前記高温熱処理(黒鉛結晶構造調整)は、不活性雰囲気下で行うことが好ましく、例えば、窒素、アルゴンなどの不活性ガス雰囲気下、酸化されやすい炭素を周囲に置いた容器や炭素からなる坩堝に入れて焼成するなど実質的に不活性な雰囲気下で行うことが好ましい。また、前記高温熱処理は、例えば、減圧下(真空中)で行うこともできる。   The high temperature heat treatment temperature in this embodiment is not particularly limited, but is preferably 1500 ° C. or higher, more preferably 1600 ° C. or higher, preferably 2500 ° C. or lower, more preferably 2200 ° C. or lower. This is because if the high-temperature heat treatment temperature is too low, the development of the graphite crystal structure is low, and if the high-temperature heat treatment temperature is too high, the pores once developed may decrease and the specific surface area may be reduced. The high-temperature heat treatment (graphite crystal structure adjustment) is preferably performed in an inert atmosphere. For example, in an atmosphere of an inert gas such as nitrogen or argon, a oxidizable carbon is placed in a surrounding container or a crucible made of carbon. It is preferable to carry out in a substantially inert atmosphere, such as putting and baking. The high temperature heat treatment can also be performed under reduced pressure (in a vacuum), for example.

次に、本発明で使用する多孔質物質は、上述した製造方法により得られるものであれば、特に限定されるものではないが、下記特性を有するものであることが好ましい。   Next, the porous material used in the present invention is not particularly limited as long as it is obtained by the production method described above, but preferably has the following characteristics.

本発明で使用する多孔質物質は、BET比表面積が350m/g以上、より好ましくは400m/g以上であって、1450m/g以下、より好ましくは1300m/g以下、さらに好ましくは1000m/g以下であることが望ましい。比表面積が大きい方が触媒の担持性が向上するので、350m/g以上とすることによって、触媒担体として使用する際の触媒の分散が向上する。一方、1450m/g以下とすることによって、得られる触媒担体の耐酸化性の低下を防ぐことができる。 Porous material for use in the present invention, BET specific surface area of 350 meters 2 / g or more, more preferably be at 400 meters 2 / g or more, 1450 m 2 / g or less, more preferably 1300 m 2 / g or less, more preferably It is desirable that it is 1000 m < 2 > / g or less. The larger the specific surface area, the better the catalyst supportability. Therefore, by setting it to 350 m 2 / g or more, the dispersion of the catalyst when used as a catalyst carrier is improved. On the other hand, by setting it as 1450 m < 2 > / g or less, the fall of the oxidation resistance of the catalyst support obtained can be prevented.

本発明の触媒担体は、上述した多孔質物質を含有するものであれば、特に限定されず、例えば、実質的に上述した多孔質物質からなる態様、或は、上述した多孔質物質に加えて、本発明の効果を実質的に低下させない範囲で、従来触媒担体として用いられてきた導電性カーボンブラックを含有する態様などを挙げることができる。   The catalyst carrier of the present invention is not particularly limited as long as it contains the above-described porous material. For example, the catalyst carrier of the present invention is substantially composed of the porous material described above, or in addition to the porous material described above. As long as the effect of the present invention is not substantially lowered, an embodiment containing conductive carbon black that has been used as a conventional catalyst carrier can be exemplified.

上述のようにして調製した本発明の触媒担体に(貴)金属などの触媒活性成分を担持させる方法は、特に限定されず、例えば、(貴)金属塩の溶液に触媒担体を分散し、さらに還元剤を加えて、該溶液中の金属イオンを還元して、触媒担体に金属を析出させる方法、或は、触媒担体を分散させた(貴)金属塩の溶液を加熱撹拌して、金属塩を触媒担体上に析出させた後に、ろ過、洗浄、乾燥などを適宜行い、水素ガスなどにより還元処理する方法などを挙げることができる。本発明の触媒担体に担持できる(貴)金属としては、例えば、白金、レニウム、パラジウム、イリジウム、ロジウム、ルテニウム、オスミウム、金、銀及び、これらの合金などを挙げることができる。   The method of supporting the catalytically active component such as (noble) metal on the catalyst carrier of the present invention prepared as described above is not particularly limited. For example, the catalyst carrier is dispersed in a (noble) metal salt solution, A method of reducing the metal ions in the solution by adding a reducing agent and precipitating the metal on the catalyst carrier, or a solution of the (noble) metal salt in which the catalyst carrier is dispersed is heated and stirred to form a metal salt And the like, after being deposited on the catalyst support, filtration, washing, drying and the like are appropriately performed, and a reduction treatment with hydrogen gas or the like can be given. Examples of the (noble) metal that can be supported on the catalyst carrier of the present invention include platinum, rhenium, palladium, iridium, rhodium, ruthenium, osmium, gold, silver, and alloys thereof.

本発明の触媒担体は、触媒活性成分の分散性に優れるので、3相界面反応を効率よく形成する必要がある燃料電池の電極触媒用として好適である。特に、民生用として実用化されつつある固体高分子型燃料電池の電極触媒用として好適である。   Since the catalyst carrier of the present invention is excellent in the dispersibility of the catalytically active component, it is suitable for an electrode catalyst for a fuel cell that needs to efficiently form a three-phase interface reaction. In particular, it is suitable for an electrode catalyst of a polymer electrolyte fuel cell that is being put into practical use for consumer use.

以下、本発明を実施例によってより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、本発明の趣旨を逸脱しない範囲の変更、実施の態様は、いずれも本発明の範囲内に含まれる。   Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the following examples, and all modifications and embodiments within the scope not departing from the gist of the present invention are described in the present invention. Included within the scope of the invention.

[BET比表面積測定方法]
抽出残渣物、及び、多孔質物質のBET比表面積は、マイクロメリティックス社製ASAP−2400窒素吸着装置を用いて測定し、BET多点法で求めた。
[Method for measuring BET specific surface area]
The BET specific surface area of the extraction residue and the porous material was measured using an ASAP-2400 nitrogen adsorption device manufactured by Micromeritics, and determined by the BET multipoint method.

[X線回折測定]
X線回折測定は、以下の条件で行った。
X線回折測定装置:Spectris社製X’Pert PRO型 X線源:Cu−Kα線(波長1.54Å)、出力:40KV40mA、操作軸:θ/2θ、測定モード:Continuous、測定範囲:2θ=5〜80°、取り込み幅:0.01°、走査速度:5.0°/min.
黒鉛化度は、標準シリコンを加え、学振法に基づいて解析した。
[X-ray diffraction measurement]
X-ray diffraction measurement was performed under the following conditions.
X-ray diffraction measurement apparatus: X'Pert PRO type manufactured by Spectris X-ray source: Cu-Kα ray (wavelength 1.54 mm), output: 40 KV 40 mA, operation axis: θ / 2θ, measurement mode: Continuous, measurement range: 2θ = 5 to 80 °, capture width: 0.01 °, scanning speed: 5.0 ° / min.
The graphitization degree was analyzed based on the Gakushin method by adding standard silicon.

[触媒活性評価]
触媒活性の評価は、固体高分子電解質型燃料電池の触媒評価に有効であり、燃料電池性能と良い相関性があると報告されている回転電極法により行った(S.Lj.Gojkovic, S.K.Zecevic and R.F.Savinell, 「O2 Reduction on an Ink-Type Rotating Disk Electrode Using Pt Supported on High-Area Carbon」J. Electrochem. Soc.145,3713(1998)参照)。
[Catalyst activity evaluation]
The catalytic activity was evaluated by the rotating electrode method, which was reported to be effective for the evaluation of solid polymer electrolyte fuel cell catalysts and had a good correlation with fuel cell performance (S.Lj.Gojkovic, SKZecevic and RF Savinell, “O 2 Reduction on an Ink-Type Rotating Disk Electrode Using Pt Supported on High-Area Carbon”, J. Electrochem. Soc. 145, 3713 (1998)).

田中貴金属社製ジニトロジアミン白金硝酸溶液(白金含有量4.5質量%)45gに、触媒担体として多孔質物質を2g混合し、撹拌後、還元剤として11mlのエタノールを添加した。この溶液を撹拌しながら6時間還流し、上記多孔質物質に白金を担持させた。その後、該溶液をろ過、洗浄、乾燥し、電極触媒を得た。得られた触媒中の白金担持量は、33質量%であった。   2 g of a porous substance as a catalyst carrier was mixed with 45 g of a dinitrodiamine platinum nitric acid solution (platinum content: 4.5 mass%) manufactured by Tanaka Kikinzoku Co., Ltd. After stirring, 11 ml of ethanol was added as a reducing agent. This solution was refluxed for 6 hours with stirring, and platinum was supported on the porous material. Thereafter, the solution was filtered, washed and dried to obtain an electrode catalyst. The amount of platinum supported in the obtained catalyst was 33% by mass.

得られた白金担持触媒0.15gに5%ナフィオン溶液(アルドリッチ社製)1.6gを加え超音波により分散させて触媒ペーストを作製した。次いで、触媒ペースト6μlを回転グラッシーカーボンディスク電極(北斗電工製、塗布面積0.196cm)に塗布し、乾燥固定した。この回転電極を酸素で飽和した0.1M硫酸水溶液中に浸漬し、銀/塩化銀電極を参照極として、1500rpmで回転しながら、酸素還元電流と電極電位の関係を測定した。 To 0.15 g of the obtained platinum-supported catalyst, 1.6 g of a 5% Nafion solution (manufactured by Aldrich) was added and dispersed by ultrasonic waves to prepare a catalyst paste. Next, 6 μl of the catalyst paste was applied to a rotating glassy carbon disk electrode (manufactured by Hokuto Denko, application area 0.196 cm 2 ), and fixed by drying. The rotating electrode was immersed in a 0.1 M sulfuric acid aqueous solution saturated with oxygen, and the relationship between the oxygen reduction current and the electrode potential was measured while rotating at 1500 rpm using the silver / silver chloride electrode as a reference electrode.

[熱天秤による耐酸化性評価]
ブルカエイエックスエス社製TG−DTA2000SPを用い、白金担持触媒を100ml/分の窒素気流下、350℃まで昇温し、到達度100ml/分の空気を加え、1時間保持し、重量減少を測定した。
[Evaluation of oxidation resistance by thermobalance]
Using a TG-DTA2000SP manufactured by Bruca AXS, the platinum-supported catalyst was heated to 350 ° C under a nitrogen stream of 100 ml / min, air reaching 100 ml / min was added, held for 1 hour, and weight loss was measured did.

(実施例1)
ロータリーキルンを用いて、フラーレン含有煤(アルドリッチ製、商品名 Fullerene Soot as prodeced)を窒素雰囲気下、950℃まで昇温した後、950℃を維持したまま、窒素/水蒸気=50/50(体積比)の雰囲気下にて15分間保持してガス賦活処理を行い、冷却して多孔質物質を得た。得られた多孔質物質の比表面積は1030m2/gであった。得られた多孔質物質を触媒担体として用いた白金担持触媒の酸素還元電流と電極電位の関係を表1に示した。
Example 1
Using a rotary kiln, the temperature of a fullerene-containing soot (manufactured by Aldrich, product name Fullerene Soot as prodeced) was raised to 950 ° C. in a nitrogen atmosphere, and then maintained at 950 ° C., nitrogen / water vapor = 50/50 (volume ratio) Was kept for 15 minutes in the atmosphere to perform a gas activation treatment and cooled to obtain a porous material. The specific surface area of the obtained porous material was 1030 m 2 / g. Table 1 shows the relationship between the oxygen reduction current and the electrode potential of a platinum-supported catalyst using the obtained porous material as a catalyst carrier.

原料として用いたフラーレン含有煤についてX線回折を測定した結果を図1に示した。27°、44°、55°付近に黒鉛に由来するピークが認められ、11°、17°、21°付近にはフラーレンC60に由来すると考えられるピーク、更には、非晶質、不定形の炭素に由来すると考えられる台地状のベースラインの上昇が認められた。 The result of measuring X-ray diffraction of the fullerene-containing soot used as a raw material is shown in FIG. Peaks derived from graphite are observed in the vicinity of 27 °, 44 °, and 55 °, peaks considered to be derived from fullerene C 60 in the vicinity of 11 °, 17 °, and 21 °, and amorphous and amorphous shapes. An increase in plateau-like baseline, which is thought to be derived from carbon, was observed.

参考例1
実施例1で使用したフラーレン含有煤に約60倍の質量のトルエンを加えて、フラーレン含有煤の分散液を調製し、この分散液を室温で1時間超音波で処理した後、この分散液をろ過し、更に、ろ液の着色がなくなるまでトルエンで洗浄し、このろ過物を60℃で約5時間真空乾燥して、フラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物を得た。抽出残渣物の比表面積は180m2/gであった。前記抽出残渣物についてX線回折を測定した結果を図2に示した。図2より、フラーレンC60に由来すると考えられる11°、17°、21°付近のピークがほとんど消失したことが認められる。この結果より、得られた抽出残渣物は、フラーレン含有煤からフラーレンの少なくとも一部としてC60及びC70が実質的に抽出されているものであることが分かる。
( Reference Example 1 )
About 60 times the mass of toluene was added to the fullerene-containing soot used in Example 1 to prepare a dispersion of fullerene-containing soot, and this dispersion was treated with ultrasound at room temperature for 1 hour. Filter, wash with toluene until the filtrate is no longer colored, and vacuum-dry the filtrate for about 5 hours at 60 ° C., and extract at least a part of the fullerene using a solvent from the fullerene-containing soot. Thus obtained extraction residue was obtained. The specific surface area of the extraction residue was 180 m 2 / g. The result of measuring the X-ray diffraction of the extracted residue is shown in FIG. From FIG. 2, it is recognized that peaks near 11 °, 17 ° and 21 ° considered to be derived from fullerene C 60 almost disappeared. From this result, it can be seen that the extracted residue obtained is that C 60 and C 70 are substantially extracted as at least a part of the fullerene from the fullerene-containing soot.

この抽出残渣物を、ロータリーキルンを用いて、実施例1と同様に賦活処理を行って、多孔質物質を得た。前記多孔質物質をさらに、静置式高温炉でアルゴン雰囲気下1500℃以上で5時間以上の条件で高温熱処理をした。この高温熱処理物(多孔質物質)の比表面積は560m2/gであった。図3は、高温熱処理後の多孔質物質の学振法によるX線回折結果であり、図4は、図2(抽出残渣物のX線回折結果)の24°〜28°における部分拡大図である。図3と図4との比較により、高温熱処理後の多孔質物質には、原料由来の2θ=26.5度付近の黒鉛ピークの低角度側に、結晶性は低いが新しい黒鉛ピークが認められた。得られた多孔質物質を触媒担体として用いた白金担持触媒の酸素還元電流と電極電位の関係を表1に示した。熱天秤による酸化減量曲線を図5に示した。 The extraction residue was subjected to activation treatment in the same manner as in Example 1 using a rotary kiln to obtain a porous material. The porous material was further subjected to high-temperature heat treatment in a static high-temperature furnace at 1500 ° C. or higher under an argon atmosphere for 5 hours or longer. The specific surface area of this high-temperature heat-treated product (porous material) was 560 m 2 / g. 3 is an X-ray diffraction result by the Gakushin method of the porous material after the high-temperature heat treatment, and FIG. 4 is a partially enlarged view of 24 ° to 28 ° of FIG. is there. 3 and 4 show that a new graphite peak is observed in the porous material after the high-temperature heat treatment on the low angle side of the graphite peak around 2θ = 26.5 degrees derived from the raw material, although the crystallinity is low. It was. Table 1 shows the relationship between the oxygen reduction current and the electrode potential of a platinum-supported catalyst using the obtained porous material as a catalyst carrier. FIG. 5 shows an oxidation weight loss curve by a thermobalance.

(実施例3)
実施例1で使用したフラーレン含有煤を、静置式高温炉で、アルゴン雰囲気下1500℃以上で5時間以上の条件で高温熱処理をして多孔質物質を得た。この多孔質物質の比表面積は410m2/gであった。得られた多孔質物質を触媒担体として用いた白金担持触媒の酸素還元電流と電極電位の関係を表1に示した。熱天秤による酸化減量曲線を図5に示した。
(Example 3)
The fullerene-containing soot used in Example 1 was subjected to high-temperature heat treatment at 1500 ° C. or higher under an argon atmosphere for 5 hours or longer in a static high-temperature furnace to obtain a porous material. The specific surface area of this porous material was 410 m 2 / g. Table 1 shows the relationship between the oxygen reduction current and the electrode potential of a platinum-supported catalyst using the obtained porous material as a catalyst carrier. FIG. 5 shows an oxidation weight loss curve by a thermobalance.

参考例2
実施例1で使用したフラーレン含有煤を、静置式高温炉で、アルゴン雰囲気下1000℃〜1500℃で5時間以上熱処理をして多孔質物質を得た。この多孔質物質の比表面積は510m2/gであった。得られた触媒担体を用いた白金担持触媒の酸素還元電流と電極電位の関係を表1に示した。熱天秤による酸化減量曲線を図5に示した。
( Reference Example 2 )
The fullerene-containing soot used in Example 1 was heat-treated at 1000 ° C. to 1500 ° C. for 5 hours or more in an argon atmosphere in a static high temperature furnace to obtain a porous material. The specific surface area of this porous material was 510 m 2 / g. Table 1 shows the relationship between the oxygen reduction current and the electrode potential of the platinum-supported catalyst using the obtained catalyst carrier. FIG. 5 shows an oxidation weight loss curve by a thermobalance.

(比較例1)
実施例で使用した多孔質物質の代わりに、燃料電池の電極触媒用として市販されている導電性カーボンブラックを使用して、静置式高温炉で、アルゴン雰囲気下1500℃以上で5時間以上の条件で高温熱処理をして多孔質物質を得た。得られた多孔質物質の比表面積は590m2/gであった。得られた多孔質物質を触媒担体として用いた白金担持触媒の酸素還元電流と電極電位の関係を表1に示した。熱天秤による酸化減量曲線を図5に示す。
(Comparative Example 1)
In place of the porous material used in the examples, a conductive carbon black marketed as an electrode catalyst for a fuel cell was used, and the condition was 5 hours or more at 1500 ° C. or higher in an argon atmosphere in a stationary high temperature furnace. The porous material was obtained by high-temperature heat treatment. The specific surface area of the obtained porous material was 590 m 2 / g. Table 1 shows the relationship between the oxygen reduction current and the electrode potential of a platinum-supported catalyst using the obtained porous material as a catalyst carrier. FIG. 5 shows an oxidation weight loss curve by a thermobalance.

(比較例2)
参考例1で作製したトルエン抽出残渣物を触媒担体として、実施例1と同様にして電極触媒を作製した。得られた多孔質物質を触媒担体として用いた白金担持触媒の酸素還元電流と電極電位の関係を表1に示した。
(Comparative Example 2)
An electrode catalyst was produced in the same manner as in Example 1 using the toluene extraction residue produced in Reference Example 1 as a catalyst carrier. Table 1 shows the relationship between the oxygen reduction current and the electrode potential of a platinum-supported catalyst using the obtained porous material as a catalyst carrier.

表1より、本発明の触媒担体を使用した場合、電極電位が高く、電極において触媒活性が高くなっていることが分かる。一方、比較例1及び比較例2の触媒担体を使用した場合、電極電位が低くなった。また、図5より、本発明の触媒担体を使用した場合、重量減少率が低く、耐酸化性にも優れていることが分かる。特に、フラーレン含有煤を高温で熱処理した実施例3の耐酸化性が極めて良好になっていることが分かる。   From Table 1, it can be seen that when the catalyst carrier of the present invention is used, the electrode potential is high and the catalytic activity is high in the electrode. On the other hand, when the catalyst carriers of Comparative Examples 1 and 2 were used, the electrode potential was lowered. FIG. 5 also shows that when the catalyst carrier of the present invention is used, the weight reduction rate is low and the oxidation resistance is excellent. In particular, it can be seen that the oxidation resistance of Example 3 in which the fullerene-containing soot is heat-treated at a high temperature is very good.

本発明の触媒担体は、(貴)金属触媒の分散性が高く、活性が高く、かつ、耐酸化性も良好であり、特に、固体高分子型燃料電池の電極触媒用として好適である。   The catalyst carrier of the present invention has high dispersibility of (noble) metal catalyst, high activity and good oxidation resistance, and is particularly suitable for an electrode catalyst of a polymer electrolyte fuel cell.

本発明で使用するフラーレン含有煤のX線回折パターンである。2 is an X-ray diffraction pattern of fullerene-containing soot used in the present invention. 本発明で使用するフラーレン含有煤から溶媒を用いてフラーレンの少なくとも一部を実質的に抽出して得られる抽出残渣物のX線回折パターンである。It is an X-ray diffraction pattern of an extraction residue obtained by substantially extracting at least a part of fullerene from a fullerene-containing soot used in the present invention using a solvent. 高温熱処理後の多孔質物質のX線回折パターンである。2 is an X-ray diffraction pattern of a porous material after high-temperature heat treatment. 図2の24°〜28°における部分拡大図である。It is the elements on larger scale in 24 degrees-28 degrees of FIG. 電極触媒の加熱処理時の重量減少を示すグラフである。It is a graph which shows the weight reduction at the time of heat processing of an electrode catalyst.

Claims (4)

フラーレン含有煤を賦活処理、1500℃以上の高温熱処理、若しくは、賦活処理後、1500℃以上の高温熱処理して得られる多孔質物質を含有することを特徴とする触媒担体。   A catalyst carrier comprising a porous material obtained by activating a fullerene-containing soot at a high temperature heat treatment of 1500 ° C. or higher, or a high temperature heat treatment at 1500 ° C. or higher after the activation treatment. 前記多孔質物質のBET比表面積は、350〜1450m2/gである請求項1に記載の触媒担体。 The catalyst carrier according to claim 1, wherein the porous material has a BET specific surface area of 350 to 1450 m 2 / g. 前記多孔質物質のBET比表面積は、350〜1300m2/gである請求項に記載の触媒担体。 The catalyst carrier according to claim 2 , wherein the porous material has a BET specific surface area of 350 to 1300 m 2 / g. 燃料電池の電極触媒用である請求項1〜のいずれか一項に記載の触媒担体。 The catalyst carrier according to any one of claims 1 to 3 , which is used for an electrode catalyst of a fuel cell.
JP2005221407A 2005-07-29 2005-07-29 Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell Expired - Fee Related JP4939005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221407A JP4939005B2 (en) 2005-07-29 2005-07-29 Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221407A JP4939005B2 (en) 2005-07-29 2005-07-29 Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell

Publications (2)

Publication Number Publication Date
JP2007029931A JP2007029931A (en) 2007-02-08
JP4939005B2 true JP4939005B2 (en) 2012-05-23

Family

ID=37789827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221407A Expired - Fee Related JP4939005B2 (en) 2005-07-29 2005-07-29 Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell

Country Status (1)

Country Link
JP (1) JP4939005B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963080B2 (en) * 2007-04-17 2012-06-27 独立行政法人産業技術総合研究所 Method for producing catalyst support for polymer electrolyte fuel cell, and catalyst support for polymer electrolyte fuel cell
JP5121290B2 (en) * 2007-04-17 2013-01-16 新日鐵住金株式会社 Catalyst for polymer electrolyte fuel cell electrode
JP6102624B2 (en) * 2013-08-08 2017-03-29 エヌ・イーケムキャット株式会社 Method for manufacturing disk electrode for electrochemical measurement
KR101635845B1 (en) * 2015-06-25 2016-07-04 송남강 Cosmetic composition containing natural fullerene and method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794192A (en) * 1993-09-24 1995-04-07 Fuji Electric Co Ltd Catalyst of phosphoric acid fuel cell
JP2838192B2 (en) * 1996-03-01 1998-12-16 工業技術院長 Hydrocarbon cracking catalyst and method for producing hydrogen using the same
JP2000268828A (en) * 1999-03-18 2000-09-29 Asahi Glass Co Ltd Solid highpolymer type fuel cell
JP2003036859A (en) * 2001-07-24 2003-02-07 Asahi Glass Co Ltd Solid polymer type fuel cell and its fabrication method
JP2004223311A (en) * 2003-01-17 2004-08-12 Tdk Corp Catalyst carrier, electrode and fuel cell
JP4377610B2 (en) * 2003-05-14 2009-12-02 関西熱化学株式会社 Porous carbon for electric double layer capacitor, method for producing the same, and electric double layer capacitor
JP4463522B2 (en) * 2003-10-16 2010-05-19 日揮触媒化成株式会社 Electrode catalyst fine particles, electrode catalyst fine particle dispersion, and method for producing electrode catalyst fine particle dispersion
JP4878729B2 (en) * 2003-11-21 2012-02-15 三菱鉛筆株式会社 Fuel cell electrode catalyst and method for producing the same

Also Published As

Publication number Publication date
JP2007029931A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5456797B2 (en) Fuel cell electrode catalyst
JP4656576B2 (en) Method for producing Pt / Ru alloy catalyst for fuel cell anode
WO2014129597A1 (en) Carbon material for use as catalyst carrier
KR20200099046A (en) Manufacturing method of nitrogen doped metal-carbon catalyst for fuel cell
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
JPWO2009060582A1 (en) Method for producing fuel cell electrode material, fuel cell electrode material, and fuel cell using the fuel cell electrode material
JP4764866B2 (en) Catalyst carrier, catalyst, method for producing catalyst carrier, and method for producing catalyst
JP5893305B2 (en) Electrocatalyst for polymer electrolyte fuel cell and method for producing the same
JP2006253147A (en) Manufacturing method of electrocatalyst for cation exchange membrane fuel cell
JP4954530B2 (en) Platinum colloid-supporting carbon and method for producing the same
JP4041429B2 (en) Fuel cell electrode and manufacturing method thereof
JP2008041253A (en) Electrocatalyst and power generation system using the same
Thomas et al. Carbon nanotubes as catalyst supports for ethanol oxidation
JP4939005B2 (en) Catalyst carrier and catalyst carrier for electrode catalyst of fuel cell
JP2007311026A (en) Electrode catalyst for fuel cell, its manufacturing method, and fuel cell using the catalyst
JP5754686B2 (en) Cathode platinum catalyst for highly active fuel cells
JP2019169289A (en) Air electrode catalyst for fuel cell, manufacturing method of the same, and fuel cell using fuel cell air electrode catalyst
Bae et al. Carbon-caged palladium catalysts supported on carbon nanofibers for proton exchange membrane fuel cells
JPH04141235A (en) Electrode catalyst for an anode pole
JP5515115B2 (en) Fuel cell electrode catalyst and method for producing the same
KR101220722B1 (en) Nickel hydrooxide nanoparticle as an oxygen reduction catalyst
KR100721310B1 (en) Carbon supported electrocatalyst for polymer electrolyte membrane fuel cell and its fabrication method
JP2020161273A (en) Manufacturing method of electrode material
JP2020035720A (en) Oxidation catalyst for fuel cell, manufacturing method thereof, and fuel cell
JP7144378B2 (en) Graphitized carbon porous material for fuel cell catalyst carrier, fuel cell catalyst, and method for producing fuel cell catalyst layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees