WO2017208742A1 - Carbon for supporting catalyst and production process therefor - Google Patents

Carbon for supporting catalyst and production process therefor Download PDF

Info

Publication number
WO2017208742A1
WO2017208742A1 PCT/JP2017/017460 JP2017017460W WO2017208742A1 WO 2017208742 A1 WO2017208742 A1 WO 2017208742A1 JP 2017017460 W JP2017017460 W JP 2017017460W WO 2017208742 A1 WO2017208742 A1 WO 2017208742A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
catalyst
supporting
supporting carbon
heat treatment
Prior art date
Application number
PCT/JP2017/017460
Other languages
French (fr)
Japanese (ja)
Inventor
真衣子 菊地
洋一郎 河野
博明 安藤
昌裕 佐藤
翔太 五十嵐
Original Assignee
ライオン・スペシャリティ・ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ライオン・スペシャリティ・ケミカルズ株式会社 filed Critical ライオン・スペシャリティ・ケミカルズ株式会社
Publication of WO2017208742A1 publication Critical patent/WO2017208742A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J35/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a catalyst-supporting carbon and a method for producing the same.
  • This application claims priority on May 31, 2016 based on Japanese Patent Application No. 2016-108542 for which it applied to Japan, and uses the content here.
  • catalyst-carrying carbon that carries catalytic metal particles such as platinum.
  • the catalyst-supporting carbon is required to have a high specific surface area for improving the dispersibility and reaction efficiency of the catalyst metal particles, and to improve the resistance to oxidative decomposition in a high-load oxidation potential environment such as a fuel cell.
  • the following has been proposed as catalyst-supporting carbon.
  • Patent Document 1 High surface area graphitized carbon obtained by heat treating carbon black to graphitize and then increasing the surface by vapor etching (Patent Document 1).
  • Patent Document 2 a specific surface area of 200 ⁇ 1000 m 2 / g, the peak intensity ratio of D band of the Raman spectra (1350 cm -1) and G band (1580 cm -1) 0.3 to 0.7, the X-ray diffraction method ( 002) Modified graphite having a crystallite size Lc (002) in the c-axis direction of 30 nm or more (Patent Document 2).
  • Carbon black having a specific surface area of 300 to 1100 m 2 / g, a crystal layer thickness (Lc) of 25 to 100 mm, and a maximum diameter of aggregated particles of 20 ⁇ m or less (Patent Document 3).
  • Acetylene black having a specific surface area of 500 to 1100 m 2 / g and aggregated particles of 20 ⁇ m or more of 10 ppm or less (Patent Document 4).
  • catalyst-supporting carbons such as (1) to (4), it is difficult to make both catalyst metal particles finely distributed uniformly in the carbon (dispersion supportability) and excellent oxidative decomposition resistance. .
  • An object of the present invention is to provide a catalyst-supporting carbon that has both excellent dispersion supportability of catalyst metal particles and excellent oxidative decomposition resistance, and a method for producing the catalyst-supporting carbon.
  • the present invention has the following configuration.
  • a catalyst-supporting carbon that satisfies the following conditions (a) to (d).
  • (A) The crystallite thickness Lc (002) of the carbon surface calculated from the measurement result by the wide-angle X-ray diffraction method is 2.0 nm or more.
  • C It has pores including mesopores, and the mesopore volume is 0.35 to 1.3 cm 3 / g.
  • a method for producing a catalyst-supporting carbon as described in [1] above, wherein a heat treatment step of obtaining a carbon material by heat-treating carbon black at 2200 ° C. or higher, and a carbon material after the heat treatment step A method for producing catalyst-supporting carbon, comprising: a surface oxidation step for performing a surface oxidation treatment.
  • both excellent dispersion supportability of catalyst metal particles and excellent resistance to oxidative decomposition are achieved.
  • a catalyst-supporting carbon having both excellent dispersion supportability of catalyst metal particles and excellent oxidative decomposition resistance can be obtained.
  • the catalyst-supporting carbon of the present invention satisfies the conditions (a) to (d).
  • C It has pores including mesopores, and the mesopore volume is 0.35 to 1.3 cm 3 / g.
  • the crystallite thickness Lc (002) on the carbon surface calculated from the measurement result of the catalyst-supporting carbon of the present invention by the wide-angle X-ray diffraction method is 2.0 nm or more, and preferably 3.5 to 4.5 nm. If thickness Lc (002) is more than a lower limit, it will be excellent in oxidative degradation tolerance (durability). If thickness Lc (002) is below an upper limit, it will be excellent in the reactivity in the surface oxidation process which is a post process.
  • the ratio D / G of the peak area of D 1 -band to the peak area of G-band of the spectrum of the carbon surface by Raman spectroscopy of the catalyst-supporting carbon of the present invention (1590cm -1) (1350cm -1) is 0. 5 to 2.5, preferably 0.85 to 2.5. If the ratio D / G is equal to or greater than the lower limit, the crystal structure deficiency on the carbon surface is sufficiently increased, and the catalyst is excellent in dispersion support. If the ratio D / G is equal to or less than the upper limit value, it is possible to suppress the oxidative decomposition resistance of the catalyst-supporting carbon from being excessively lost.
  • the catalyst-supporting carbon of the present invention has pores including mesopores.
  • the mesopore means a pore having a pore diameter of 2 nm or more and 50 nm or less.
  • Mesopore volume of the catalyst-supporting carbon of the present invention is 0.35 ⁇ 1.3cm 3 / g, preferably 0.5 ⁇ 1.0cm 3 / g.
  • the mesopore volume is at least the lower limit value, the catalyst is excellent in dispersion support and sufficient catalytic activity is obtained. If the mesopore volume is less than or equal to the upper limit value, it is possible to suppress the oxidative degradation resistance of the catalyst-supporting carbon due to excessive pores.
  • the mesopore volume means the total volume of all mesopores possessed by the catalyst-supporting carbon.
  • the ratio of the mesopore volume to the total pore volume of the catalyst-supporting carbon of the present invention is 0.6 or more, and preferably 0.8 or more. If the ratio of the catalyst supporting carbon is equal to or higher than the lower limit value, the catalyst is excellent in dispersion supporting property and sufficient catalytic activity can be obtained.
  • BET specific surface area of the catalyst-supporting carbon of the present invention is preferably 130 ⁇ 700m 2 / g, more preferably 200 ⁇ 600m 2 / g. If the BET specific surface area of the catalyst supporting carbon is not less than the lower limit value, the catalyst is excellent in dispersion supporting property and sufficient catalytic activity can be obtained. If the BET specific surface area of the catalyst-supporting carbon is not more than the upper limit value, the oxidative decomposition resistance of the catalyst-supporting carbon is maintained even if the treatment is performed in the subsequent surface oxidation step. The BET specific surface area of the catalyst-supporting carbon is measured under conditions based on ASTM D 3037.
  • DBP oil absorption amount of the catalyst-supporting carbon of the present invention is preferably 150 ⁇ 500cm 3 / 100g, more preferably 200 ⁇ 450cm 3 / 100g.
  • the conductivity is excellent.
  • the DBP oil absorption amount of the catalyst-supporting carbon is not more than the upper limit value, it is possible to suppress the advanced development of the aggregate and maintain good dispersibility of the catalyst-supporting carbon in the solvent at the time of preparing the catalyst ink.
  • the DBP oil absorption amount of the catalyst-supporting carbon is measured with a sample amount of 9 g under the condition based on ASTM D 2414.
  • the catalyst-supporting carbon of the present invention is a powder composed of aggregates (secondary particles) composed of a chain of primary particles.
  • the aggregate diameter (mode diameter) of the catalyst-supporting carbon of the present invention is preferably 1.0 to 35.0 ⁇ m, and more preferably 5.0 to 30.0 ⁇ m. If the aggregate diameter of the catalyst-supporting carbon is equal to or greater than the lower limit value, the metal particles are easily supported uniformly when preparing the catalyst ink. In addition, the conductivity of the catalyst-supporting carbon is excellent. If the aggregate diameter of the catalyst-supporting carbon is not more than the upper limit value, the dispersibility of the catalyst-supporting carbon in the solvent during preparation of the catalyst ink is excellent.
  • the aggregate diameter (mode diameter) is measured by the aggregate diameter measuring method described in JIS K6217-6.
  • the total mass ratio of the aggregate diameter of 20 ⁇ m or more with respect to the total mass of the catalyst-supporting carbon of the present invention is preferably 20 to 45% by mass, and more preferably 25 to 40% by mass.
  • the aggregate diameter is 20 ⁇ m or more, the conductivity is excellent.
  • the ratio of the aggregate diameter of 20 ⁇ m or more is equal to or less than the upper limit value, the dispersibility of the catalyst-supporting carbon with respect to the solvent during preparation of the catalyst ink is excellent.
  • the catalyst-supporting carbon of the present invention can be suitably used for fuel cell applications.
  • the catalyst metal particles supported on the catalyst-supporting carbon include platinum, an alloy with platinum (an alloy with platinum selected from at least one selected from nickel, cobalt, palladium, and ruthenium). Platinum is preferred for applications.
  • the supporting rate of the catalyst metal particles is not particularly limited, and can be, for example, 20 to 50% by mass based on the total mass of the catalyst-supporting carbon in which the catalyst-supporting carbon is supported on the catalyst-supporting carbon.
  • the method for producing catalyst-supporting carbon of the present invention is a method for producing the catalyst-supporting carbon of the present invention described above.
  • the method for producing catalyst-supporting carbon of the present invention includes the following heat treatment step and surface oxidation step.
  • Heat treatment process Carbon black is heat-treated at 2200 ° C. or higher to obtain a carbon material.
  • Surface oxidation process A surface oxidation process is performed on the carbon material after the heat treatment process.
  • heat treatment process carbon black is heat-treated at 2200 ° C. or higher to obtain a carbon material.
  • the heat treatment temperature is 2200 ° C. or higher, preferably 2200 to 3500 ° C., more preferably 2200 to 3000 ° C.
  • the heat treatment temperature is equal to or higher than the lower limit, the carbon black is sufficiently crystallized, and catalyst-supporting carbon that satisfies the condition (a) is obtained. If heat processing temperature is below an upper limit, it will be excellent in the reactivity in the surface oxidation process which is a post process.
  • the heat treatment time may be appropriately set according to the heat treatment temperature, and may be, for example, 1 to 30 hours.
  • ketjen black is preferable because it is easy to obtain catalyst-supporting carbon that satisfies the conditions (a) to (d). Carbon black other than ketjen black may be used.
  • BET specific surface area of the carbon black is preferably 50 ⁇ 2000m 2 / g, more preferably 100 ⁇ 1500m 2 / g, more preferably 700 ⁇ 1500m 2 / g. If the BET specific surface area of the carbon black is within the above range, it is easy to obtain catalyst-supporting carbon that satisfies the conditions (a) to (d). In addition, the BET specific surface area of carbon black is measured on the conditions based on ASTM D3037.
  • DBP oil absorption of carbon black is preferably 200 ⁇ 600cm 3 / 100g, more preferably 250 ⁇ 500cm 3 / 100g. If the DBP oil absorption of carbon black is not less than the lower limit value, the conductivity is excellent. If the DBP oil absorption of carbon black is less than or equal to the upper limit value, the advanced development of aggregates can be suppressed, and good dispersibility of the catalyst-supporting carbon in the solvent can be maintained when preparing the catalyst ink. Note that the DBP oil absorption of carbon black is a value measured with a sample amount of 9 g under conditions based on ASTM D 2414.
  • Carbon black is a powder composed of secondary particles composed of a chain of primary particles connected in a kitchen shape.
  • the average primary particle size of carbon black is preferably 5 to 100 nm, more preferably 20 to 60 nm. If the average primary particle diameter of the carbon black is within the above range, the specific surface area of the catalyst-supporting carbon increases, and the active point when supporting the catalyst metal particles increases.
  • the average primary particle diameter of carbon black is a value obtained by measuring 1000 or more particle diameters randomly in an image observed with a transmission electron microscope.
  • the aggregate diameter (mode diameter) of carbon black is preferably 1.0 to 35.0 ⁇ m, more preferably 5.0 to 30.0 ⁇ m. If the mode diameter of the carbon black is within the above range, the catalyst-supporting carbon is excellent in dispersibility in the solvent at the time of catalyst ink preparation, and the catalyst metal particles are easily supported uniformly.
  • the volatile content of carbon black is preferably 5% by mass or less, and more preferably 2% by mass or less. If the volatile content of carbon black is less than or equal to the upper limit value, the type of functional group can be suppressed in the surface oxidation treatment as a post process.
  • the volatile content of carbon black is measured by a method based on ASTM D 1620-60.
  • the magnetic crucible (diameter 15 mm, height 30 mm, capacity 10 mL) and the drop lid were baked at 950 ⁇ 20 ° C. for 30 minutes, then cooled to room temperature (25 ° C.) in a desiccator, and the mass of the magnetic crucible and drop lid ( Weigh accurately M A ) to the nearest 0.1 mg.
  • the carbon black 2g capped off by Oshitsume to the extent not exceeding the lid under 2mm in a porcelain crucible, accurately weighed its mass (M B) to 0.1mg units.
  • the magnetic crucible is then heated in an electric furnace at 950 ⁇ 20 ° C.
  • Volatile content (mass%) (M B ⁇ M C ) / (M B ⁇ M A )
  • the ash content of carbon black is preferably 0.5% by mass or less, and more preferably 0.2% by mass or less. If the ash content of carbon black is less than or equal to the upper limit value, the impurities are small and the conductivity is excellent.
  • the ash content of carbon black is measured by a method based on ASTM D 1506.
  • ketjen black having a BET specific surface area of 700 to 1500 m 2 / g is particularly preferable because a catalyst-supporting carbon satisfying the conditions (a) to (d) can be easily obtained.
  • the surface oxidation treatment method is not particularly limited, and examples thereof include a method of bringing a carbon material into contact with an aqueous solution containing an oxidizing agent.
  • the aqueous solution containing an oxidizing agent when contacting the carbon material may be in a liquid state, a subcritical state, or a supercritical state.
  • the treatment time can be appropriately determined according to the treatment method, the type of oxidizing agent, and the like.
  • the treatment time when an aqueous solution containing an oxidizing agent is in a liquid state can be 1 to 30 hours.
  • the treatment time can be 0.5 hours or longer.
  • the amount of the oxidizing agent can be 2 to 20% by mass with respect to the total mass of the aqueous solution containing the oxidizing agent.
  • the oxidizing agent is not particularly limited, and examples thereof include hydrogen peroxide, ammonium persulfate, sodium persulfate, nitric acid, hydrochloric acid, sulfuric acid and the like. Of these, hydrogen peroxide, ammonium persulfate, and sodium persulfate are preferable.
  • 1 type may be used independently and 2 or more types may be used together.
  • the catalyst-supporting carbon of the present invention described above satisfies the conditions (a) to (d), and therefore has excellent catalyst dispersibility and resistance to oxidative decomposition.
  • Catalyst loading method As a method of supporting the catalyst metal particles on the catalyst-supporting carbon of the present invention, a known method can be used. For example, a method of performing a heat treatment in an inert gas atmosphere or a heat treatment in a reducing atmosphere after adding a catalyst-supporting carbon in a solvent containing a metal complex and adsorbing the metal complex on the carbon surface. . Also, a method of adhering metal colloidal particles to the surface of a carbon by adding a catalyst-supporting carbon to a metal colloidal particle by mixing a reducing agent such as an organic acid, alcohol or ethylene glycol in a solvent containing a metal complex.
  • a reducing agent such as an organic acid, alcohol or ethylene glycol
  • a precipitation method may be used in which a catalyst is added to a solvent containing a metal complex and then a reducing agent is added to form metal colloid particles on the carbon surface.
  • the catalyst-supporting carbon may be subjected to a hydrophilization treatment or a hydrophobization treatment in advance before the catalyst metal particles are supported, and after the catalyst metal particles are supported on the catalyst-supporting carbon, a heat treatment or an acid treatment is performed. Also good.
  • A-2 product name "EC300J” (Ketjenblack, BET specific surface area: 800 m 2 / g, DBP oil absorption: 365cm 3 / 100g, volatile matter: 0.4 wt%, ash content: 0.02 wt%, average Primary particle size: 40 nm, manufactured by Lion Specialty Chemicals).
  • A-3 Product name “Denka Black 50% Press” (acetylene black, BET specific surface area: 65 m 2 / g, average primary particle size: 36 nm, ash content: 0.01% by mass, manufactured by DENKA CORPORATION).
  • the volatile content and ash content were measured as follows. [Measurement method of volatile matter] It was measured by a method according to ASTM D 1620-60. The magnetic crucible (diameter 15 mm, height 30 mm, capacity 10 mL) and the drop lid were baked at 950 ⁇ 20 ° C. for 30 minutes, then cooled to room temperature (25 ° C.) in a desiccator, and the mass of the magnetic crucible and drop lid ( M A ) was accurately weighed to the nearest 0.1 mg. Next, 2 g of carbon black was pressed into a magnetic crucible so as not to exceed 2 mm below the lid, and the lid was dropped, and the mass (M B ) was accurately weighed to the nearest 0.1 mg.
  • Example 1 Heat treatment process: Carbon black (A-1) was introduced into a firing furnace, heat-treated at 2800 ° C. for 12 hours, and then allowed to cool to room temperature to obtain a carbon material.
  • Surface oxidation process 1 g of the carbon material obtained in the heat treatment step and about 100 mL of 5% hydrogen peroxide water were put into a high pressure resistant container. The temperature was increased by covering the high pressure resistant container, and when the temperature reached 350 ° C., the pressure inside the container was increased to 25 MPa while additionally introducing 5% hydrogen peroxide water at 1.8 mL / min for 150 minutes. . After maintaining at 350 ° C.
  • the high pressure resistant container was allowed to cool, and after confirming that the inside of the container was at normal temperature and normal pressure, the container was opened and the carbon material dispersion was taken out. Next, the dispersion was filtered, and the filtered carbon material was dried under reduced pressure (1 mmHg or less) at 110 ° C. for 24 hours to obtain powdery catalyst-supporting carbon.
  • Example 2 Heat treatment process: A carbon material was obtained in the same manner as in Example 1.
  • Example 3 Except for changing the heat treatment temperature to 2200 ° C., the same heat treatment step as in Example 1 was performed to obtain a carbon material. Next, the same surface oxidation step as in Example 2 was performed to obtain powdery catalyst-supporting carbon.
  • Example 4 Except for changing the heat treatment temperature to 2200 ° C., the same heat treatment step as in Example 1 was performed to obtain a carbon material. Next, the same surface oxidation step as in Example 1 was performed to obtain powdery catalyst-supporting carbon.
  • Example 5 A carbon material was obtained by carrying out the same heat treatment step as in Example 1 except that carbon black (A-2) was used. Next, the same surface oxidation step as in Example 2 was performed to obtain powdery catalyst-supporting carbon.
  • Example 6 Except for changing the heat treatment temperature to 2500 ° C., the same heat treatment step as in Example 1 was performed to obtain a carbon material. Next, the same surface oxidation step as in Example 2 was performed to obtain powdery catalyst-supporting carbon.
  • Example 7 Using carbon black (A-3), the same surface oxidation step as in Example 2 was performed to obtain powdery catalyst-supporting carbon.
  • Example 1 Except for using carbon black (A-2), the same heat treatment step as in Example 1 was performed to obtain a carbon material, which was used as catalyst-supporting carbon.
  • Example 3 A carbon material was obtained by carrying out the same heat treatment step as in Example 1 except that carbon black (A-2) was used. 1 g of the carbon material obtained in the heat treatment step was dispersed in 200 mL of concentrated nitric acid, subjected to ultrasonic treatment (23 MHz) at room temperature for 6 hours, and then stirred at room temperature for 96 hours. After completion of the stirring, the dispersion was filtered, and the carbon material was washed with ultrapure water until the filtrate reached pH 7. The washed carbon material was dried under reduced pressure at 110 ° C. to obtain powdery catalyst-supporting carbon.
  • Crystalline thickness Lc (002) of carbon surface (thickness in thickness direction) The crystallite thickness Lc (002) of the carbon on the catalyst-supporting carbon was determined by a wide-angle X-ray diffraction method. Specifically, the catalyst-supporting carbon was measured using an X-ray diffractometer (Spectris Co., Ltd.), and a diffraction line peak on the 002 plane was obtained. The diffraction angle and half-value width of this 002 diffraction line were substituted into the following Serrer equation to calculate the crystallite thickness Lc (002) (thickness in the thickness direction) (nm) on the carbon surface.
  • Lc ⁇ / ⁇ cos ⁇
  • is the wavelength (nm) of X-rays
  • is the half width (nm) of the 002 diffraction line
  • is the 002 diffraction line. Is the diffraction angle (°).
  • the BET specific surface area of the catalyst-supporting carbon was measured under conditions based on ASTM D 3037.
  • Carbon reduction amount was measured when the catalyst-carrying carbon was heated in a nitrogen atmosphere. About 20 mg of carbon was heated to 950 ° C. at 10 ° C./min by TG-DTA2000SA (Netch Japan Co., Ltd. (formerly Bruker AXS Co., Ltd.)), and the amount (%) of carbon reduction at that time was measured.
  • the platinum particle size is calculated from the half-value width of the peak of the Pt (111) plane in the spectrum obtained by the X-ray diffraction method, using the Scherrer equation. did.
  • the platinum loading rate is determined when TG-DTA2000SA (manufactured by Netch Japan Co., Ltd. (former Bruker AXS Co., Ltd.)) raises the temperature of platinum-supported carbon to 950 ° C. at a heating rate of 10 ° C./min. Calculated from the amount of platinum remaining.
  • Electrochemical surface area The electrochemical effective surface area (ECSA) of the catalyst-supporting carbon was measured according to a protocol published by the Council for Promotion of Commercialization of Fuel Cells (FCCJ).
  • the glass cell was filled with perchloric acid adjusted to 0.1 M, and nitrogen was bubbled into the glass cell for 30 minutes while heating to 60 ° C.
  • ECSA initial value
  • ECSA maintenance rate index of durability and electrode life
  • the ECSA retention rate was measured under the optimized conditions so as to further promote the deterioration phenomenon of carbon with reference to “potential cycle test method” described in the protocol published by FCCJ.
  • the glass cell was filled with perchloric acid adjusted at 0.1 M, and nitrogen was bubbled into the glass cell for 30 minutes while heating to 60 ° C.
  • CV was performed under the conditions of 0.05 to 1.20 V vs. RHE, 50 mV / s with the number of revolutions of the electrode being zero for cleaning the carbon surface and measuring ECSA.
  • ECSA maintenance rate (%) (ECSA / ECSA (initial value) after high potential load) ⁇ 100 The durability was determined according to the following criteria. ⁇ Criteria> A: ECSA maintenance rate is 70% or more. A: ECSA maintenance rate is 50% or more and less than 70%. X: ECSA maintenance rate is less than 50%.
  • Table 2 shows the measurement results and evaluation results of the physical properties of the catalyst-supporting carbon in each example.
  • the catalyst-supporting carbons of Examples 1 to 7 satisfying the conditions (a) to (d) have a high ESCA (initial value), a high platinum support rate, and excellent catalyst dispersion support. It was. Further, the catalyst-supporting carbons of Examples 1 to 7 had a high ESCA maintenance rate and excellent durability (oxidative decomposition resistance).
  • Comparative Example 1 that did not satisfy the conditions (b) and (c)
  • the ESCA (initial value) was remarkably low, the platinum support rate was low, and the dispersion support property of the catalyst was inferior.
  • Comparative Example 2 that did not satisfy the condition (a) the ESCA maintenance rate was zero, and the durability (oxidative degradation resistance) was remarkably inferior.
  • Comparative Example 3 that did not satisfy the condition (d) ESCA (initial value) was remarkably low.
  • Example 8 Preparation of platinum-supported carbon: The catalyst-supporting carbon 0.5g of Example 1, 240 g of water, and 320 g of ethylene glycol were mixed by ultrasonic waves, and then added to a mixed solution of 1.32 g of hexachloride platinum (IV) acid hexahydrate and 40 g of ethylene glycol. A 1 mol / L sodium hydroxide aqueous solution was added to adjust the pH to 11. This solution was transferred to a flask, and purged with nitrogen, followed by stirring at 110 ° C. for 4 hours. After cooling, the solution was filtered, and the filtrate was washed with pure water until pH 7 and dried under reduced pressure overnight to obtain platinum-supported carbon.
  • MEA membrane electrode assembly
  • This catalyst ink was applied to a polytetrafluoroethylene (PTFE) sheet so that the amount of catalyst was 0.3 mg / cm 2 , dried, and cut into a rectangular shape of 5 cm 2 to produce a cathode electrode.
  • PTFE polytetrafluoroethylene
  • the electrolyte membrane was sandwiched between the cathode electrode and the anode electrode, and hot pressing was performed to produce an MEA.
  • TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. was used for the anode electrode.
  • Example 9 A platinum-supporting carbon was prepared in the same manner as in Example 8 except that the catalyst-supporting carbon of Example 2 was used, and an MEA was prepared.
  • Durability performance evaluation Durability performance was evaluated according to the potential cycle (start / stop) test described in FCCJ's published “Proposals for Targets, R & D Issues and Evaluation Methods for Polymer Electrolyte Fuel Cells”.
  • the MEA was humidified under conditions of a temperature of 80 ° C. and a humidity of 90% RH, hydrogen was supplied to the anode electrode at 500 sccm, and oxygen was supplied to the cathode electrode at 500 sccm to perform IV measurement. After holding the potential at 1.0 V for 30 seconds, after conducting a potential cycle test of 5,000 cycles at a voltage range of 1.0 V to 1.5 V and a potential scanning speed of 0.5 V / s, an IV measurement was performed. It was.
  • Table 3 shows the evaluation results of the initial performance and durability performance of the MEAs of Examples 8 to 11 and Comparative Examples 4 to 6.
  • the MEA current density was high and the initial performance was excellent.
  • the MEA maintained a high current density even after 5,000 cycles of the potential cycle test, and was excellent in durability.

Abstract

Provided is carbon for supporting catalysts thereon which combines the excellent property of dispersedly supporting catalyst-metal particles with excellent resistance to oxidative degradation. The carbon for supporting catalysts satisfies the following requirements (a) to (d). (a) The carbon surface has a crystallite thickness Lc(002), calculated from the results of an examination by wide-angle X-ray diffractometry, of 2.0 nm or greater. (b) The carbon surface, when examined by Raman spectrometry, gives a spectrum wherein the ratio of the area of a D1-band (1,350 cm-1) peak to the area of a G-band (1,590 cm-1) peak, D/G, is 0.5-2.5. (c) The carbon has pores comprising mesopores, the volume of the mesopores being 0.35-1.3 cm3/g. (d) The ratio of the mesopore volume to the total pore volume is 0.6-1.0.

Description

触媒担持用カーボン及びその製造方法Catalyst-supporting carbon and method for producing the same
 本発明は、触媒担持用カーボン及びその製造方法に関する。
 本願は、2016年5月31日に、日本に出願された特願2016-108542号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a catalyst-supporting carbon and a method for producing the same.
This application claims priority on May 31, 2016 based on Japanese Patent Application No. 2016-108542 for which it applied to Japan, and uses the content here.
 燃料電池等においては、白金等の触媒金属粒子を担持する触媒担持用カーボンにカーボンブラックが広く用いられている。触媒担持用カーボンには、触媒金属粒子の分散性及び反応効率を高めるための高比表面積化、燃料電池等の高負荷な酸化電位環境での酸化分解耐性の向上等が求められる。そこで、触媒担持用カーボンとしては、例えば、以下のものが提案されている。 In fuel cells and the like, carbon black is widely used as catalyst-carrying carbon that carries catalytic metal particles such as platinum. The catalyst-supporting carbon is required to have a high specific surface area for improving the dispersibility and reaction efficiency of the catalyst metal particles, and to improve the resistance to oxidative decomposition in a high-load oxidation potential environment such as a fuel cell. Thus, for example, the following has been proposed as catalyst-supporting carbon.
 (1)カーボンブラックを熱処理して黒鉛化した後、蒸気エッチングにより高表面化した高表面積黒鉛化カーボン(特許文献1)。
 (2)比表面積が200~1000m/g、ラマンスペクトルのDバンド(1350cm-1)とGバンド(1580cm-1)のピーク強度比が0.3~0.7、X線回折法の(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上である改質黒鉛(特許文献2)。
 (3)比表面積が300~1100m/g、結晶層厚み(Lc)が25~100Å、凝集粒子の最大径が20μm以下のカーボンブラック(特許文献3)。
 (4)比表面積が500~1100m/g、20μm以上の凝集粒子が10ppm以下であるアセチレンブラック(特許文献4)。
(1) High surface area graphitized carbon obtained by heat treating carbon black to graphitize and then increasing the surface by vapor etching (Patent Document 1).
(2) a specific surface area of 200 ~ 1000 m 2 / g, the peak intensity ratio of D band of the Raman spectra (1350 cm -1) and G band (1580 cm -1) 0.3 to 0.7, the X-ray diffraction method ( 002) Modified graphite having a crystallite size Lc (002) in the c-axis direction of 30 nm or more (Patent Document 2).
(3) Carbon black having a specific surface area of 300 to 1100 m 2 / g, a crystal layer thickness (Lc) of 25 to 100 mm, and a maximum diameter of aggregated particles of 20 μm or less (Patent Document 3).
(4) Acetylene black having a specific surface area of 500 to 1100 m 2 / g and aggregated particles of 20 μm or more of 10 ppm or less (Patent Document 4).
特表2011-514304号公報Special table 2011-514304 gazette 特開2007-290936号公報JP 2007-290936 A 特開2014-214290号公報JP 2014-214290 A 特開2013-209504号公報JP 2013-209504 A
 しかし、(1)~(4)のような触媒担持用カーボンでは、触媒金属粒子を微粒子化しカーボンに均一に分布させること(分散担持性)と、優れた酸化分解耐性とを両立することが難しい。 However, with catalyst-supporting carbons such as (1) to (4), it is difficult to make both catalyst metal particles finely distributed uniformly in the carbon (dispersion supportability) and excellent oxidative decomposition resistance. .
 本発明は、触媒金属粒子の優れた分散担持性と、優れた酸化分解耐性とが両立された触媒担持用カーボン、及び該触媒担持用カーボンの製造方法を提供することを目的とする。 An object of the present invention is to provide a catalyst-supporting carbon that has both excellent dispersion supportability of catalyst metal particles and excellent oxidative decomposition resistance, and a method for producing the catalyst-supporting carbon.
 本発明は、以下の構成を有する。
[1]下記条件(a)~(d)を満たす触媒担持用カーボン。
 (a)広角X線回折法による測定結果から算出されるカーボン表面の結晶子の厚みLc(002)が2.0nm以上である。
 (b)ラマン分光法によるカーボン表面のスペクトルにおけるG-band(1590cm-1)のピーク面積に対するD-band(1350cm-1)のピーク面積の比D/Gが0.5~2.5である。
 (c)メソ孔を含む細孔を有し、メソ孔容積が0.35~1.3cm/gである。
 (d)全細孔容積に対する前記メソ孔容積の比率が0.6~1.0である。
[2]前記[1]に記載の触媒担持用カーボンを製造する方法であって、カーボンブラックを2200℃以上で熱処理して炭素材料を得る熱処理工程と、前記熱処理工程後の炭素材料に対して表面酸化処理を行う表面酸化工程と、を有する、触媒担持用カーボンの製造方法。
The present invention has the following configuration.
[1] A catalyst-supporting carbon that satisfies the following conditions (a) to (d).
(A) The crystallite thickness Lc (002) of the carbon surface calculated from the measurement result by the wide-angle X-ray diffraction method is 2.0 nm or more.
(B) at D 1 -band (1350cm -1) ratio D / G is 0.5 of the peak area of 2.5 to the peak area of G-band of the spectrum of the carbon surface by Raman spectroscopy (1590 cm -1) is there.
(C) It has pores including mesopores, and the mesopore volume is 0.35 to 1.3 cm 3 / g.
(D) The ratio of the mesopore volume to the total pore volume is 0.6 to 1.0.
[2] A method for producing a catalyst-supporting carbon as described in [1] above, wherein a heat treatment step of obtaining a carbon material by heat-treating carbon black at 2200 ° C. or higher, and a carbon material after the heat treatment step A method for producing catalyst-supporting carbon, comprising: a surface oxidation step for performing a surface oxidation treatment.
 本発明の触媒担持用カーボンにおいては、触媒金属粒子の優れた分散担持性と、優れた酸化分解耐性とが両立されている。
 本発明の触媒担持用カーボンの製造方法によれば、触媒金属粒子の優れた分散担持性と、優れた酸化分解耐性とが両立された触媒担持用カーボンが得られる。
In the catalyst-supporting carbon of the present invention, both excellent dispersion supportability of catalyst metal particles and excellent resistance to oxidative decomposition are achieved.
According to the method for producing a catalyst-supporting carbon of the present invention, a catalyst-supporting carbon having both excellent dispersion supportability of catalyst metal particles and excellent oxidative decomposition resistance can be obtained.
[触媒担持用カーボン]
 本発明の触媒担持用カーボンは、条件(a)~(d)を満たす。
 (a)広角X線回折法による測定結果から算出されるカーボン表面の結晶子の厚みLc(002)が2.0nm以上である。
 (b)ラマン分光法によるカーボン表面のスペクトルにおけるG-band(1590cm-1)のピーク面積に対するD-band(1350cm-1)のピーク面積の比D/Gが0.5~2.5である。
 (c)メソ孔を含む細孔を有し、メソ孔容積が0.35~1.3cm/gである。
 (d)全細孔容積に対するメソ孔容積の比率が0.6~1.0である。
[Catalyst-supporting carbon]
The catalyst-supporting carbon of the present invention satisfies the conditions (a) to (d).
(A) The crystallite thickness Lc (002) of the carbon surface calculated from the measurement result by the wide-angle X-ray diffraction method is 2.0 nm or more.
(B) at D 1 -band (1350cm -1) ratio D / G is 0.5 of the peak area of 2.5 to the peak area of G-band of the spectrum of the carbon surface by Raman spectroscopy (1590 cm -1) is there.
(C) It has pores including mesopores, and the mesopore volume is 0.35 to 1.3 cm 3 / g.
(D) The ratio of the mesopore volume to the total pore volume is 0.6 to 1.0.
(条件(a))
 本発明の触媒担持用カーボンの広角X線回折法による測定結果から算出されるカーボン表面の結晶子の厚みLc(002)は、2.0nm以上であり、3.5~4.5nmが好ましい。厚みLc(002)が下限値以上であれば、酸化分解耐性(耐久性)に優れる。厚みLc(002)が上限値以下であれば、後工程である表面酸化工程での反応性に優れる。
(Condition (a))
The crystallite thickness Lc (002) on the carbon surface calculated from the measurement result of the catalyst-supporting carbon of the present invention by the wide-angle X-ray diffraction method is 2.0 nm or more, and preferably 3.5 to 4.5 nm. If thickness Lc (002) is more than a lower limit, it will be excellent in oxidative degradation tolerance (durability). If thickness Lc (002) is below an upper limit, it will be excellent in the reactivity in the surface oxidation process which is a post process.
(条件(b))
 本発明の触媒担持用カーボンのラマン分光法によるカーボン表面のスペクトルにおけるG-band(1590cm-1)のピーク面積に対するD-band(1350cm-1)のピーク面積の比D/Gは、0.5~2.5であり、0.85~2.5が好ましい。比D/Gが下限値以上であれば、カーボン表面における結晶構造の欠損が充分に増大し、触媒の分散担持性に優れたものとなる。比D/Gが上限値以下であれば、欠損過多により触媒担持用カーボンの酸化分解耐性が損なわれることを抑制できる。
(Condition (b))
The ratio D / G of the peak area of D 1 -band to the peak area of G-band of the spectrum of the carbon surface by Raman spectroscopy of the catalyst-supporting carbon of the present invention (1590cm -1) (1350cm -1) is 0. 5 to 2.5, preferably 0.85 to 2.5. If the ratio D / G is equal to or greater than the lower limit, the crystal structure deficiency on the carbon surface is sufficiently increased, and the catalyst is excellent in dispersion support. If the ratio D / G is equal to or less than the upper limit value, it is possible to suppress the oxidative decomposition resistance of the catalyst-supporting carbon from being excessively lost.
(条件(c))
 本発明の触媒担持用カーボンは、メソ孔を含む細孔を有する。なお、メソ孔とは、細孔径が2nm以上50nm以下の細孔を意味するものとする。
 本発明の触媒担持用カーボンのメソ孔容積は、0.35~1.3cm/gであり、0.5~1.0cm/gが好ましい。メソ孔容積が下限値以上であれば、触媒の分散担持性に優れ、触媒活性が充分に得られる。メソ孔容積が上限値以下であれば、細孔過多により触媒担持用カーボンの酸化分解耐性が損なわれることを抑制できる。なお、メソ孔容積とは、触媒担持カーボンが有する全てのメソ孔の容積の合計を意味する。
(Condition (c))
The catalyst-supporting carbon of the present invention has pores including mesopores. The mesopore means a pore having a pore diameter of 2 nm or more and 50 nm or less.
Mesopore volume of the catalyst-supporting carbon of the present invention is 0.35 ~ 1.3cm 3 / g, preferably 0.5 ~ 1.0cm 3 / g. When the mesopore volume is at least the lower limit value, the catalyst is excellent in dispersion support and sufficient catalytic activity is obtained. If the mesopore volume is less than or equal to the upper limit value, it is possible to suppress the oxidative degradation resistance of the catalyst-supporting carbon due to excessive pores. The mesopore volume means the total volume of all mesopores possessed by the catalyst-supporting carbon.
(条件(d))
 本発明の触媒担持用カーボンの全細孔容積に対するメソ孔容積の比率は、0.6以上であり、0.8以上が好ましい。触媒担持用カーボンの前記比率が下限値以上であれば、触媒の分散担持性に優れ、触媒活性が充分に得られる。
(Condition (d))
The ratio of the mesopore volume to the total pore volume of the catalyst-supporting carbon of the present invention is 0.6 or more, and preferably 0.8 or more. If the ratio of the catalyst supporting carbon is equal to or higher than the lower limit value, the catalyst is excellent in dispersion supporting property and sufficient catalytic activity can be obtained.
 本発明の触媒担持用カーボンのBET比表面積は、130~700m/gが好ましく、200~600m/gがより好ましい。触媒担持用カーボンのBET比表面積が下限値以上であれば、触媒の分散担持性に優れ、触媒活性が充分に得られる。触媒担持用カーボンのBET比表面積が上限値以下であれば、後工程である表面酸化工程で処理を実施しても触媒担持用カーボンの酸化分解耐性が維持される。
 なお、触媒担持用カーボンのBET比表面積は、ASTM D 3037に準拠した条件で測定される。
BET specific surface area of the catalyst-supporting carbon of the present invention is preferably 130 ~ 700m 2 / g, more preferably 200 ~ 600m 2 / g. If the BET specific surface area of the catalyst supporting carbon is not less than the lower limit value, the catalyst is excellent in dispersion supporting property and sufficient catalytic activity can be obtained. If the BET specific surface area of the catalyst-supporting carbon is not more than the upper limit value, the oxidative decomposition resistance of the catalyst-supporting carbon is maintained even if the treatment is performed in the subsequent surface oxidation step.
The BET specific surface area of the catalyst-supporting carbon is measured under conditions based on ASTM D 3037.
 本発明の触媒担持用カーボンのDBP吸油量は、150~500cm/100gが好ましく、200~450cm/100gがより好ましい。触媒担持用カーボンのDBP吸油量が下限値以上であれば、導電性に優れる。触媒担持用カーボンのDBP吸油量が上限値以下であれば、凝集体の高度な発達を抑制し、触媒インク調製時の溶媒に対する触媒担持用カーボンの良好な分散性を維持することができる。
 なお、触媒担持用カーボンのDBP吸油量は、ASTM D 2414に準拠した条件で、サンプル量9gで測定される。
DBP oil absorption amount of the catalyst-supporting carbon of the present invention is preferably 150 ~ 500cm 3 / 100g, more preferably 200 ~ 450cm 3 / 100g. When the DBP oil absorption amount of the catalyst-supporting carbon is equal to or higher than the lower limit value, the conductivity is excellent. If the DBP oil absorption amount of the catalyst-supporting carbon is not more than the upper limit value, it is possible to suppress the advanced development of the aggregate and maintain good dispersibility of the catalyst-supporting carbon in the solvent at the time of preparing the catalyst ink.
The DBP oil absorption amount of the catalyst-supporting carbon is measured with a sample amount of 9 g under the condition based on ASTM D 2414.
 本発明の触媒担持用カーボンは、一次粒子が連なった連鎖体からなる凝集体(二次粒子)で構成された粉末である。
 本発明の触媒担持用カーボンの凝集体径(モード径)は、1.0~35.0μmが好ましく、5.0~30.0μmがより好ましい。触媒担持用カーボンの凝集体径が下限値以上であれば、触媒インク調製時、金属粒子が均一に担持されやすい。また触媒担持カーボンの導電性に優れる。触媒担持用カーボンの凝集体径が上限値以下であれば、触媒インク調製時の溶媒に対する触媒担持カーボンの分散性に優れる。
 なお、凝集体径(モード径)は、JIS K6217-6に記載の凝集体径の測定方法により測定される。
The catalyst-supporting carbon of the present invention is a powder composed of aggregates (secondary particles) composed of a chain of primary particles.
The aggregate diameter (mode diameter) of the catalyst-supporting carbon of the present invention is preferably 1.0 to 35.0 μm, and more preferably 5.0 to 30.0 μm. If the aggregate diameter of the catalyst-supporting carbon is equal to or greater than the lower limit value, the metal particles are easily supported uniformly when preparing the catalyst ink. In addition, the conductivity of the catalyst-supporting carbon is excellent. If the aggregate diameter of the catalyst-supporting carbon is not more than the upper limit value, the dispersibility of the catalyst-supporting carbon in the solvent during preparation of the catalyst ink is excellent.
The aggregate diameter (mode diameter) is measured by the aggregate diameter measuring method described in JIS K6217-6.
 本発明の触媒担持用カーボンの総質量に対する凝集体径が20μm以上の合計質量割合は、20~45質量%が好ましく、25~40質量%がより好ましい。前記凝集体径が20μm以上の割合が下限値以上であれば、導電性に優れる。前記凝集体径が20μm以上の割合が上限値以下であれば、触媒インク調製時の溶媒に対する触媒担持カーボンの分散性に優れる。 The total mass ratio of the aggregate diameter of 20 μm or more with respect to the total mass of the catalyst-supporting carbon of the present invention is preferably 20 to 45% by mass, and more preferably 25 to 40% by mass. When the aggregate diameter is 20 μm or more, the conductivity is excellent. When the ratio of the aggregate diameter of 20 μm or more is equal to or less than the upper limit value, the dispersibility of the catalyst-supporting carbon with respect to the solvent during preparation of the catalyst ink is excellent.
 本発明の触媒担持用カーボンは、燃料電池用途に好適に使用できる。
 触媒担持用カーボンに担持する触媒金属粒子としては、例えば、白金、白金との合金(ニッケル、コバルト、パラジウム、ルテニウムから選ばれる少なくとも一種以上から選ばれる白金との合金)等が挙げられ、燃料電池用途では白金が好ましい。
 触媒金属粒子の担持率は、特に限定されず、例えば、触媒担持用カーボンに触媒金属粒子を担持した触媒担持カーボンの総質量に対して、20~50質量%とすることができる。
The catalyst-supporting carbon of the present invention can be suitably used for fuel cell applications.
Examples of the catalyst metal particles supported on the catalyst-supporting carbon include platinum, an alloy with platinum (an alloy with platinum selected from at least one selected from nickel, cobalt, palladium, and ruthenium). Platinum is preferred for applications.
The supporting rate of the catalyst metal particles is not particularly limited, and can be, for example, 20 to 50% by mass based on the total mass of the catalyst-supporting carbon in which the catalyst-supporting carbon is supported on the catalyst-supporting carbon.
[触媒担持用カーボンの製造方法]
 本発明の触媒担持用カーボンの製造方法は、前述した本発明の触媒担持用カーボンを製造する方法である。本発明の触媒担持用カーボンの製造方法は、下記の熱処理工程と表面酸化工程とを有する。
 熱処理工程:カーボンブラックを2200℃以上で熱処理して炭素材料を得る。
 表面酸化工程:熱処理工程後の炭素材料に対して表面酸化処理を行う。
[Method for producing catalyst-supporting carbon]
The method for producing catalyst-supporting carbon of the present invention is a method for producing the catalyst-supporting carbon of the present invention described above. The method for producing catalyst-supporting carbon of the present invention includes the following heat treatment step and surface oxidation step.
Heat treatment process: Carbon black is heat-treated at 2200 ° C. or higher to obtain a carbon material.
Surface oxidation process: A surface oxidation process is performed on the carbon material after the heat treatment process.
(熱処理工程)
 熱処理工程では、カーボンブラックを2200℃以上で熱処理して炭素材料を得る。この熱処理により、カーボンブラックが高結晶化される。
 熱処理温度は、2200℃以上であり、2200~3500℃が好ましく、2200~3000℃がより好ましい。熱処理温度が下限値以上であれば、カーボンブラックが充分に高結晶化され、条件(a)を満たす触媒担持用カーボンが得られる。熱処理温度が上限値以下であれば、後工程である表面酸化処理での反応性に優れる。
(Heat treatment process)
In the heat treatment step, carbon black is heat-treated at 2200 ° C. or higher to obtain a carbon material. By this heat treatment, the carbon black is highly crystallized.
The heat treatment temperature is 2200 ° C. or higher, preferably 2200 to 3500 ° C., more preferably 2200 to 3000 ° C. When the heat treatment temperature is equal to or higher than the lower limit, the carbon black is sufficiently crystallized, and catalyst-supporting carbon that satisfies the condition (a) is obtained. If heat processing temperature is below an upper limit, it will be excellent in the reactivity in the surface oxidation process which is a post process.
 熱処理時間は、熱処理温度に応じて適宜設定すればよく、例えば、1~30時間とすることができる。 The heat treatment time may be appropriately set according to the heat treatment temperature, and may be, for example, 1 to 30 hours.
 原料であるカーボンブラックとしては、条件(a)~(d)を満たす触媒担持用カーボンが得られやすい点から、ケッチェンブラックが好ましい。なお、ケッチェンブラック以外のカーボンブラックを用いてもよい。 As the raw material carbon black, ketjen black is preferable because it is easy to obtain catalyst-supporting carbon that satisfies the conditions (a) to (d). Carbon black other than ketjen black may be used.
 カーボンブラックのBET比表面積は、50~2000m/gが好ましく、100~1500m/gがより好ましく、700~1500m/gがさらに好ましい。カーボンブラックのBET比表面積が前記範囲内であれば、条件(a)~(d)を満たす触媒担持用カーボンが得られやすい。
 なお、カーボンブラックのBET比表面積は、ASTM D 3037に準拠した条件で測定される。
BET specific surface area of the carbon black is preferably 50 ~ 2000m 2 / g, more preferably 100 ~ 1500m 2 / g, more preferably 700 ~ 1500m 2 / g. If the BET specific surface area of the carbon black is within the above range, it is easy to obtain catalyst-supporting carbon that satisfies the conditions (a) to (d).
In addition, the BET specific surface area of carbon black is measured on the conditions based on ASTM D3037.
 カーボンブラックのDBP吸油量は、200~600cm/100gが好ましく、250~500cm/100gがより好ましい。カーボンブラックのDBP吸油量が下限値以上であれば、導電性に優れる。カーボンブラックのDBP吸油量が上限値以下であれば、凝集体の高度な発達を抑制し、触媒インク調製時に溶媒に対する触媒担持用カーボンの良好な分散性を維持することができる。
 なお、カーボンブラックのDBP吸油量は、ASTM D 2414に準拠した条件で、サンプル量9gで測定される値である。
DBP oil absorption of carbon black is preferably 200 ~ 600cm 3 / 100g, more preferably 250 ~ 500cm 3 / 100g. If the DBP oil absorption of carbon black is not less than the lower limit value, the conductivity is excellent. If the DBP oil absorption of carbon black is less than or equal to the upper limit value, the advanced development of aggregates can be suppressed, and good dispersibility of the catalyst-supporting carbon in the solvent can be maintained when preparing the catalyst ink.
Note that the DBP oil absorption of carbon black is a value measured with a sample amount of 9 g under conditions based on ASTM D 2414.
 カーボンブラックは、一次粒子が葡萄房状に連なった連鎖体からなる二次粒子で構成された粉末である。
 カーボンブラックの平均一次粒子径は、5~100nmが好ましく、20~60nmがより好ましい。カーボンブラックの平均一次粒子径が前記範囲内であれば、触媒担持用カーボンの比表面積が増加し、触媒金属粒子を担持させる時の活性点が増加する。なお、カーボンブラックの平均一次粒子径は、透過型電子顕微鏡で観察した画像においてランダムに1000個以上の粒子径を測定して平均した値である。
Carbon black is a powder composed of secondary particles composed of a chain of primary particles connected in a kitchen shape.
The average primary particle size of carbon black is preferably 5 to 100 nm, more preferably 20 to 60 nm. If the average primary particle diameter of the carbon black is within the above range, the specific surface area of the catalyst-supporting carbon increases, and the active point when supporting the catalyst metal particles increases. In addition, the average primary particle diameter of carbon black is a value obtained by measuring 1000 or more particle diameters randomly in an image observed with a transmission electron microscope.
 カーボンブラックの凝集体径(モード径)は、1.0~35.0μmが好ましく、5.0~30.0μmがより好ましい。カーボンブラックのモード径が前記範囲内であれば、触媒インク調製時の溶媒に対する触媒担持カーボンの分散性に優れ、触媒金属粒子が均一に担持されやすい。 The aggregate diameter (mode diameter) of carbon black is preferably 1.0 to 35.0 μm, more preferably 5.0 to 30.0 μm. If the mode diameter of the carbon black is within the above range, the catalyst-supporting carbon is excellent in dispersibility in the solvent at the time of catalyst ink preparation, and the catalyst metal particles are easily supported uniformly.
 カーボンブラックの揮発分は、5質量%以下が好ましく、2質量%以下がより好ましい。カーボンブラックの揮発分が上限値以下であれば、後工程である表面酸化処理において官能基の種類を抑制できる。 The volatile content of carbon black is preferably 5% by mass or less, and more preferably 2% by mass or less. If the volatile content of carbon black is less than or equal to the upper limit value, the type of functional group can be suppressed in the surface oxidation treatment as a post process.
 なお、カーボンブラックの揮発分は、ASTM D 1620-60に準拠した方法で測定される。
 磁性るつぼ(直径15mm、高さ30mm、容量10mL)及び落とし蓋を950±20℃で30分間空焼きした後、デシケータ中で室温(25℃)まで冷却し、該磁性るつぼ及び落とし蓋の質量(M)を0.1mg単位まで正確に秤量する。次いで、カーボンブラック2gを、磁性るつぼ中に蓋下2mmを越えない程度に押し詰めて落とし蓋をし、その質量(M)を0.1mg単位まで正確に秤量する。次いで、磁性るつぼを950±20℃の電気炉で7分間加熱し、デシケータ中で室温(25℃)まで冷却して、再度、質量(M)を0.1mg単位まで正確に秤量して、以下の式により揮発分を算出する。
 揮発分(質量%)=(M-M)/(M-M
The volatile content of carbon black is measured by a method based on ASTM D 1620-60.
The magnetic crucible (diameter 15 mm, height 30 mm, capacity 10 mL) and the drop lid were baked at 950 ± 20 ° C. for 30 minutes, then cooled to room temperature (25 ° C.) in a desiccator, and the mass of the magnetic crucible and drop lid ( Weigh accurately M A ) to the nearest 0.1 mg. Then, the carbon black 2g, capped off by Oshitsume to the extent not exceeding the lid under 2mm in a porcelain crucible, accurately weighed its mass (M B) to 0.1mg units. The magnetic crucible is then heated in an electric furnace at 950 ± 20 ° C. for 7 minutes, cooled to room temperature (25 ° C.) in a desiccator, and the mass (M C ) is accurately weighed to the nearest 0.1 mg, The volatile content is calculated by the following formula.
Volatile content (mass%) = (M B −M C ) / (M B −M A )
 カーボンブラックの灰分は、0.5質量%以下が好ましく、0.2質量%以下がより好ましい。カーボンブラックの灰分が上限値以下であれば、不純物が少なく、導電性に優れる。
 なお、カーボンブラックの灰分は、ASTM D 1506に準拠した方法で測定される。
The ash content of carbon black is preferably 0.5% by mass or less, and more preferably 0.2% by mass or less. If the ash content of carbon black is less than or equal to the upper limit value, the impurities are small and the conductivity is excellent.
The ash content of carbon black is measured by a method based on ASTM D 1506.
 カーボンブラックとしては、条件(a)~(d)を満たす触媒担持用カーボンが得られやすい点から、BET比表面積が700~1500m/gであるケッチェンブラックが特に好ましい。 As the carbon black, ketjen black having a BET specific surface area of 700 to 1500 m 2 / g is particularly preferable because a catalyst-supporting carbon satisfying the conditions (a) to (d) can be easily obtained.
(表面酸化工程)
 表面酸化工程では、熱処理工程で得た炭素材料に対して表面酸化処理を行う。これにより、炭素材料のカーボン表面において結晶構造に欠損が生じて表面積が大きくなり、官能基が導入される。
(Surface oxidation process)
In the surface oxidation step, surface oxidation treatment is performed on the carbon material obtained in the heat treatment step. Thereby, defects are generated in the crystal structure on the carbon surface of the carbon material, the surface area is increased, and a functional group is introduced.
 表面酸化処理方法としては、特に限定されず、酸化剤を含む水溶液に炭素材料を接触させる方法が挙げられる。炭素材料を接触させる際の酸化剤を含む水溶液は、液体状態であってもよく、亜臨界状態であってもよく、超臨界状態であってもよい。 The surface oxidation treatment method is not particularly limited, and examples thereof include a method of bringing a carbon material into contact with an aqueous solution containing an oxidizing agent. The aqueous solution containing an oxidizing agent when contacting the carbon material may be in a liquid state, a subcritical state, or a supercritical state.
 処理時間は、処理方法及び酸化剤の種類等に応じて適宜決定できる。例えば、酸化剤を含む水溶液を液体状態とする場合の処理時間は1~30時間とすることができる。酸化剤を含む水溶液を亜臨界状態又は超臨界状態とする場合の処理時間は0.5時間以上とすることができる。 The treatment time can be appropriately determined according to the treatment method, the type of oxidizing agent, and the like. For example, the treatment time when an aqueous solution containing an oxidizing agent is in a liquid state can be 1 to 30 hours. When the aqueous solution containing the oxidizing agent is brought into the subcritical state or the supercritical state, the treatment time can be 0.5 hours or longer.
 酸化剤の量は、酸化剤を含む水溶液の総質量に対し、2~20質量%とすることができる。 The amount of the oxidizing agent can be 2 to 20% by mass with respect to the total mass of the aqueous solution containing the oxidizing agent.
 酸化剤としては、特に限定されず、例えば、過酸化水素、過硫酸アンモニウム、過硫酸ナトリウム、硝酸、塩酸、硫酸等が挙げられる。なかでも、過酸化水素、過硫酸アンモニウム、過硫酸ナトリウムが好ましい。酸化剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。 The oxidizing agent is not particularly limited, and examples thereof include hydrogen peroxide, ammonium persulfate, sodium persulfate, nitric acid, hydrochloric acid, sulfuric acid and the like. Of these, hydrogen peroxide, ammonium persulfate, and sodium persulfate are preferable. As an oxidizing agent, 1 type may be used independently and 2 or more types may be used together.
 酸化剤を含む水溶液による表面酸化処理後は、必要に応じて水による洗浄を行った後、乾燥することで粉末状の触媒担持用カーボンが得られる。 After surface oxidation treatment with an aqueous solution containing an oxidizing agent, washing with water is performed as necessary, followed by drying to obtain powdery catalyst-supporting carbon.
 以上説明した本発明の触媒担持用カーボンは、条件(a)~(d)を満たしているため、優れた触媒分散性及び酸化分解耐性を兼ね備えている。 The catalyst-supporting carbon of the present invention described above satisfies the conditions (a) to (d), and therefore has excellent catalyst dispersibility and resistance to oxidative decomposition.
[触媒の担持方法]
 本発明の触媒担持用カーボンに触媒金属粒子を担持させる方法としては、公知の方法を用いることができる。
 例えば、金属錯体を含む溶媒中に触媒担持用カーボンを加えて、カーボン表面に金属錯体を吸着させた後、不活性ガス雰囲気下での熱処理、又は還元雰囲気下での熱処理を行う方法が挙げられる。また、金属錯体を含む溶媒中に有機酸、アルコール、エチレングリコール等の還元剤を混合して金属コロイド粒子を生成させ、そこに触媒担持用カーボンを加えてカーボン表面に金属コロイド粒子を付着させる方法や、金属錯体を含む溶媒中に触媒担持用カーボンを加えてから還元剤を添加し、カーボン表面に金属コロイド粒子を生成させる沈殿法を用いることができる。触媒担持用カーボンには、触媒金属粒子を担持させる前に予め親水化処理や疎水化処理を行ってもよく、また、触媒担持用カーボンに触媒金属粒子を担持した後に熱処理や酸処理を行ってもよい。
[Catalyst loading method]
As a method of supporting the catalyst metal particles on the catalyst-supporting carbon of the present invention, a known method can be used.
For example, a method of performing a heat treatment in an inert gas atmosphere or a heat treatment in a reducing atmosphere after adding a catalyst-supporting carbon in a solvent containing a metal complex and adsorbing the metal complex on the carbon surface. . Also, a method of adhering metal colloidal particles to the surface of a carbon by adding a catalyst-supporting carbon to a metal colloidal particle by mixing a reducing agent such as an organic acid, alcohol or ethylene glycol in a solvent containing a metal complex. Alternatively, a precipitation method may be used in which a catalyst is added to a solvent containing a metal complex and then a reducing agent is added to form metal colloid particles on the carbon surface. The catalyst-supporting carbon may be subjected to a hydrophilization treatment or a hydrophobization treatment in advance before the catalyst metal particles are supported, and after the catalyst metal particles are supported on the catalyst-supporting carbon, a heat treatment or an acid treatment is performed. Also good.
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。
[原料]
 本実施例で使用した原料を以下に示す。
(カーボンブラック)
 A-1:製品名「EC600JD」(ケッチェンブラック、BET比表面積:1400m/g、DBP吸油量:495cm/100g、揮発分:0.5質量%、灰分:0.02質量%、平均一次粒子径:34nm、ライオン・スペシャリティ・ケミカルズ株式会社製)。
 A-2:製品名「EC300J」(ケッチェンブラック、BET比表面積:800m/g、DBP吸油量:365cm/100g、揮発分:0.4質量%、灰分:0.02質量%、平均一次粒子径:40nm、ライオン・スペシャリティ・ケミカルズ株式会社製)。
 A-3:製品名「デンカブラック50%プレス」(アセチレンブラック、BET比表面積:65m/g、平均一次粒子径:36nm、灰分:0.01質量%、デンカ株式会社製)。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description.
[material]
The raw materials used in this example are shown below.
(Carbon black)
A-1: product name "EC600JD" (Ketjen Black, BET specific surface area: 1400 m 2 / g, DBP oil absorption: 495cm 3 / 100g, volatile matter: 0.5 wt%, ash content: 0.02 wt%, average Primary particle size: 34 nm, manufactured by Lion Specialty Chemicals).
A-2: product name "EC300J" (Ketjenblack, BET specific surface area: 800 m 2 / g, DBP oil absorption: 365cm 3 / 100g, volatile matter: 0.4 wt%, ash content: 0.02 wt%, average Primary particle size: 40 nm, manufactured by Lion Specialty Chemicals).
A-3: Product name “Denka Black 50% Press” (acetylene black, BET specific surface area: 65 m 2 / g, average primary particle size: 36 nm, ash content: 0.01% by mass, manufactured by DENKA CORPORATION).
 なお、揮発分と灰分については下記のように測定した。
[揮発分の測定法]
 ASTM D 1620-60に準拠した方法で測定した。
 磁性るつぼ(直径15mm、高さ30mm、容量10mL)及び落とし蓋を950±20℃で30分間空焼きした後、デシケータ中で室温(25℃)まで冷却し、該磁性るつぼ及び落とし蓋の質量(M)を0.1mg単位まで正確に秤量した。次いで、カーボンブラック2gを、磁性るつぼ中に蓋下2mmを越えない程度に押し詰めて落とし蓋をし、その質量(M)を0.1mg単位まで正確に秤量した。次いで、磁性るつぼを950±20℃の電気炉で7分間加熱し、デシケータ中で室温(25℃)まで冷却して、再度、質量(M)を0.1mg単位まで正確に秤量して、以下の式により揮発分を算出した。
  揮発分(質量%)=(M-M)/(M-M
The volatile content and ash content were measured as follows.
[Measurement method of volatile matter]
It was measured by a method according to ASTM D 1620-60.
The magnetic crucible (diameter 15 mm, height 30 mm, capacity 10 mL) and the drop lid were baked at 950 ± 20 ° C. for 30 minutes, then cooled to room temperature (25 ° C.) in a desiccator, and the mass of the magnetic crucible and drop lid ( M A ) was accurately weighed to the nearest 0.1 mg. Next, 2 g of carbon black was pressed into a magnetic crucible so as not to exceed 2 mm below the lid, and the lid was dropped, and the mass (M B ) was accurately weighed to the nearest 0.1 mg. The magnetic crucible is then heated in an electric furnace at 950 ± 20 ° C. for 7 minutes, cooled to room temperature (25 ° C.) in a desiccator, and the mass (M C ) is accurately weighed to the nearest 0.1 mg, Volatile content was calculated by the following formula.
Volatile content (mass%) = (M B −M C ) / (M B −M A )
[灰分の測定法]
 ASTM D 1506に準拠した方法で測定した。
[Measurement method of ash]
It was measured by a method based on ASTM D 1506.
[実施例1]
 熱処理工程:
 カーボンブラック(A-1)を焼成炉に導入し、2800℃で12時間熱処理を行った後、室温まで放冷し、炭素材料を得た。
 表面酸化工程:
 熱処理工程で得た炭素材料1gと、5%過酸化水素水約100mLとを耐高圧容器に投入した。耐高圧容器に蓋をして昇温を開始し、350℃に到達した時点から5%過酸化水素水を1.8mL/分で150分間追加導入しながら容器内の圧力を25MPaまで上昇させた。350℃、25MPaの状態で1時間保持した後、耐高圧容器を放冷し、容器内が常温、常圧であることを確認してから容器を開き、炭素材料の分散液を取り出した。次いで、分散液をろ過し、ろ過後の炭素材料を110℃で24時間減圧(1mmHg以下)乾燥させ、粉末状の触媒担持用カーボンを得た。
[Example 1]
Heat treatment process:
Carbon black (A-1) was introduced into a firing furnace, heat-treated at 2800 ° C. for 12 hours, and then allowed to cool to room temperature to obtain a carbon material.
Surface oxidation process:
1 g of the carbon material obtained in the heat treatment step and about 100 mL of 5% hydrogen peroxide water were put into a high pressure resistant container. The temperature was increased by covering the high pressure resistant container, and when the temperature reached 350 ° C., the pressure inside the container was increased to 25 MPa while additionally introducing 5% hydrogen peroxide water at 1.8 mL / min for 150 minutes. . After maintaining at 350 ° C. and 25 MPa for 1 hour, the high pressure resistant container was allowed to cool, and after confirming that the inside of the container was at normal temperature and normal pressure, the container was opened and the carbon material dispersion was taken out. Next, the dispersion was filtered, and the filtered carbon material was dried under reduced pressure (1 mmHg or less) at 110 ° C. for 24 hours to obtain powdery catalyst-supporting carbon.
[実施例2]
 熱処理工程:
 実施例1と同様にして炭素材料を得た。
 表面酸化工程:
 熱処理工程で得た炭素材料1gを、1mol/L過硫酸アンモニウム水溶液100mLに分散させ、30℃で24時間撹拌した。撹拌終了後、分散液を室温でろ過し、炭素材料を超純水でろ液がpH7になるまで洗浄した。洗浄後の炭素材料を110℃で減圧乾燥させ、粉末状の触媒担持用カーボンを得た。
[Example 2]
Heat treatment process:
A carbon material was obtained in the same manner as in Example 1.
Surface oxidation process:
1 g of the carbon material obtained in the heat treatment step was dispersed in 100 mL of a 1 mol / L ammonium persulfate aqueous solution and stirred at 30 ° C. for 24 hours. After completion of stirring, the dispersion was filtered at room temperature, and the carbon material was washed with ultrapure water until the filtrate reached pH 7. The washed carbon material was dried under reduced pressure at 110 ° C. to obtain powdery catalyst-supporting carbon.
[実施例3]
 熱処理温度を2200℃に変更した以外は、実施例1と同様の熱処理工程を実施して炭素材料を得た。次いで、実施例2と同様の表面酸化工程を実施して粉末状の触媒担持用カーボンを得た。
[Example 3]
Except for changing the heat treatment temperature to 2200 ° C., the same heat treatment step as in Example 1 was performed to obtain a carbon material. Next, the same surface oxidation step as in Example 2 was performed to obtain powdery catalyst-supporting carbon.
[実施例4]
 熱処理温度を2200℃に変更した以外は、実施例1と同様の熱処理工程を実施して炭素材料を得た。次いで、実施例1と同様の表面酸化工程を実施して粉末状の触媒担持用カーボンを得た。
[Example 4]
Except for changing the heat treatment temperature to 2200 ° C., the same heat treatment step as in Example 1 was performed to obtain a carbon material. Next, the same surface oxidation step as in Example 1 was performed to obtain powdery catalyst-supporting carbon.
[実施例5]
 カーボンブラック(A-2)を使用した以外は、実施例1と同様の熱処理工程を実施して炭素材料を得た。次いで、実施例2と同様の表面酸化工程を実施して粉末状の触媒担持用カーボンを得た。
[Example 5]
A carbon material was obtained by carrying out the same heat treatment step as in Example 1 except that carbon black (A-2) was used. Next, the same surface oxidation step as in Example 2 was performed to obtain powdery catalyst-supporting carbon.
[実施例6]
 熱処理温度を2500℃に変更した以外は、実施例1と同様の熱処理工程を実施して炭素材料を得た。次いで、実施例2と同様の表面酸化工程を実施して粉末状の触媒担持用カーボンを得た。
[Example 6]
Except for changing the heat treatment temperature to 2500 ° C., the same heat treatment step as in Example 1 was performed to obtain a carbon material. Next, the same surface oxidation step as in Example 2 was performed to obtain powdery catalyst-supporting carbon.
[実施例7]
 カーボンブラック(A-3)を使用し、実施例2と同様の表面酸化工程を実施して粉末状の触媒担持用カーボンを得た。
[Example 7]
Using carbon black (A-3), the same surface oxidation step as in Example 2 was performed to obtain powdery catalyst-supporting carbon.
[比較例1]
 カーボンブラック(A-2)を使用した以外は、実施例1と同様の熱処理工程を実施して炭素材料を得て、これを触媒担持用カーボンとした。
[Comparative Example 1]
Except for using carbon black (A-2), the same heat treatment step as in Example 1 was performed to obtain a carbon material, which was used as catalyst-supporting carbon.
[比較例2]
 未処理のカーボンブラック(A-2)を触媒担持用カーボンとした。
[Comparative Example 2]
Untreated carbon black (A-2) was used as catalyst-supporting carbon.
[比較例3]
 カーボンブラック(A-2)を使用した以外は、実施例1と同様の熱処理工程を実施して炭素材料を得た。熱処理工程で得られた炭素材料1gを濃硝酸200mLに分散させ、室温で超音波(23MHz)処理を6時間行った後、引き続き室温で96時間撹拌した。撹拌終了後、分散液をろ過し、炭素材料を超純水でろ液がpH7になるまで洗浄した。洗浄後の炭素材料を110℃で減圧乾燥させ、粉末状の触媒担持用カーボンを得た。
[Comparative Example 3]
A carbon material was obtained by carrying out the same heat treatment step as in Example 1 except that carbon black (A-2) was used. 1 g of the carbon material obtained in the heat treatment step was dispersed in 200 mL of concentrated nitric acid, subjected to ultrasonic treatment (23 MHz) at room temperature for 6 hours, and then stirred at room temperature for 96 hours. After completion of the stirring, the dispersion was filtered, and the carbon material was washed with ultrapure water until the filtrate reached pH 7. The washed carbon material was dried under reduced pressure at 110 ° C. to obtain powdery catalyst-supporting carbon.
[測定法]
(1)カーボン表面の結晶子の厚みLc(002)(厚さ方向の厚み)
 触媒担持用カーボンにおけるカーボン表面の結晶子の厚みLc(002)は広角X線回折法により求めた。具体的には、X線回折装置(スペクトリス株式会社製)により触媒担持用カーボンの測定を実施し、002面の回折線ピークを得た。この002回折線の回折角及び半値幅を下記のsherrerの式に代入し、カーボン表面の結晶子の厚みLc(002)(厚さ方向の厚み)(nm)を算出した。
 Lc=κλ/βcosθ
 ただし、前記式中、κは形状因子でκ=0.9であり、λはX線の波長(nm)であり、βは002回折線の半値幅(nm)であり、θは002回折線の回折角(°)である。
[Measurement method]
(1) Crystalline thickness Lc (002) of carbon surface (thickness in thickness direction)
The crystallite thickness Lc (002) of the carbon on the catalyst-supporting carbon was determined by a wide-angle X-ray diffraction method. Specifically, the catalyst-supporting carbon was measured using an X-ray diffractometer (Spectris Co., Ltd.), and a diffraction line peak on the 002 plane was obtained. The diffraction angle and half-value width of this 002 diffraction line were substituted into the following Serrer equation to calculate the crystallite thickness Lc (002) (thickness in the thickness direction) (nm) on the carbon surface.
Lc = κλ / βcosθ
In the above formula, κ is a shape factor and κ = 0.9, λ is the wavelength (nm) of X-rays, β is the half width (nm) of the 002 diffraction line, and θ is the 002 diffraction line. Is the diffraction angle (°).
(2)ラマンピーク強度比(D/G)
 レーザーラマン分光光度計NRS-5100(日本分光株式会社製)により、表1に示す条件で触媒担持用カーボンにおけるカーボン表面(厚さ数nm)の結晶状態を測定した。カーボン表面の結晶状態に欠損がある場合、対称性が乱れることにより、グラファイトの欠損(エッジ部分)に由来するD-band(1350cm-1)のラマンピークが検出される。グラファイトのラマン活性の振動モードに由来するG-band(1590cm-1)とD-bandの強度比(D/G)を、それぞれのピークの面積比として算出した。
(2) Raman peak intensity ratio (D / G)
Using a laser Raman spectrophotometer NRS-5100 (manufactured by JASCO Corporation), the crystal state of the carbon surface (thickness of several nm) in the catalyst-supporting carbon was measured under the conditions shown in Table 1. When there is a defect in the crystal state of the carbon surface, the symmetry is disturbed, so that a D 1 -band (1350 cm −1 ) Raman peak derived from the defect (edge part) of graphite is detected. The intensity ratio (D / G) of G-band (1590 cm −1 ) and D 1 -band derived from the vibration mode of the Raman activity of graphite was calculated as the area ratio of each peak.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(3)細孔(メソ孔、ミクロ孔)容積
 触媒担持用カーボンの細孔分布をBELSORP-max(マイクロトラック・ベル株式会社製)により測定した。メソ孔(細孔サイズ2~50nm)の分布及びメソ孔容積はDH法、ミクロ孔(細孔サイズ2nm未満)容積はDA法により解析した。全細孔容積は、算出したメソ孔容積とミクロ孔容積の合計とした。
(3) Volume of pores (mesopores, micropores) The pore distribution of the catalyst-supporting carbon was measured by BELSORP-max (manufactured by Microtrack Bell). Distribution of mesopores (pore size 2 to 50 nm) and mesopore volume were analyzed by DH method, and micropore (pore size less than 2 nm) volume was analyzed by DA method. The total pore volume was the sum of the calculated mesopore volume and micropore volume.
(4)BET比表面積
 触媒担持用カーボンのBET比表面積は、ASTM D 3037に準拠した条件で測定した。
(4) BET specific surface area The BET specific surface area of the catalyst-supporting carbon was measured under conditions based on ASTM D 3037.
(5)カーボン減少量
 触媒担持用カーボンに含まれる官能基量を見積もるために、触媒担持用カーボンを窒素雰囲気中で昇温したときのカーボンの減少量を測定した。カーボン約20mgをTG-DTA2000SA(ネッチ・ジャパン株式会社(旧ブルカー・AXS株式会社製)により10℃/分で950℃まで昇温し、その際のカーボンの減少量(%)を測定した。
(5) Carbon reduction amount In order to estimate the functional group amount contained in the catalyst-carrying carbon, the carbon reduction amount was measured when the catalyst-carrying carbon was heated in a nitrogen atmosphere. About 20 mg of carbon was heated to 950 ° C. at 10 ° C./min by TG-DTA2000SA (Netch Japan Co., Ltd. (formerly Bruker AXS Co., Ltd.)), and the amount (%) of carbon reduction at that time was measured.
(6)DBP吸油量
 触媒担持用カーボンのDBP吸油量は、ASTM D 2414に準拠した条件で、サンプル量9gで測定した。
(6) DBP Oil Absorption The DBP oil absorption of the catalyst-supporting carbon was measured with a sample amount of 9 g under the conditions based on ASTM D 2414.
(7)凝集体径
 触媒担持用カーボンの凝集体径は、JIS K6217-6に記載の凝集体径の測定方法により測定した。
(7) Aggregate Diameter The aggregate diameter of the catalyst-supporting carbon was measured by the aggregate diameter measuring method described in JIS K6217-6.
[評価法]
(1)触媒作製方法
 ビス(アセチルアセトナト)白金(II)を60mgと、触媒担持用カーボン0.1gとをジクロロメタン40mLに加え、超音波(23kHz)を60分間当てて分散させた後、エバポレータ(常圧、60℃)によりジクロロメタンを除去して白金担持カーボンの前駆体を得た。窒素雰囲気下において、前記白金担持カーボンの前駆体を210℃で3時間焼成した後、続けて240℃で3時間焼成し、白金担持カーボンを調製した。前記の焼成における昇温速度は5℃/分とした。
[Evaluation method]
(1) Catalyst preparation method 60 mg of bis (acetylacetonato) platinum (II) and 0.1 g of catalyst-supporting carbon are added to 40 mL of dichloromethane and dispersed by applying ultrasonic waves (23 kHz) for 60 minutes, and then an evaporator. The dichloromethane was removed by (normal pressure, 60 ° C.) to obtain a platinum-supported carbon precursor. In a nitrogen atmosphere, the platinum-supported carbon precursor was calcined at 210 ° C. for 3 hours, and then calcined at 240 ° C. for 3 hours to prepare platinum-supported carbon. The heating rate in the firing was 5 ° C./min.
(2)白金粒径と白金担持率の算出
 白金粒径は、X線回折法で測定して得られたスペクトルのうちPt(111)面のピークの半値幅から、Scherrerの式を用いて算出した。白金担持率は、TG-DTA2000SA(ネッチ・ジャパン株式会社(旧ブルカー・AXS株式会社)製)により、空気中において白金担持カーボンを昇温速度10℃/分で950℃まで昇温させたときに残存する白金量から算出した。
(2) Calculation of platinum particle size and platinum loading rate The platinum particle size is calculated from the half-value width of the peak of the Pt (111) plane in the spectrum obtained by the X-ray diffraction method, using the Scherrer equation. did. The platinum loading rate is determined when TG-DTA2000SA (manufactured by Netch Japan Co., Ltd. (former Bruker AXS Co., Ltd.)) raises the temperature of platinum-supported carbon to 950 ° C. at a heating rate of 10 ° C./min. Calculated from the amount of platinum remaining.
(3)電気化学的有効表面積(Electrochemical Surface Area: ECSA)
 触媒担持用カーボンの電気化学的有効表面積(ECSA)の測定は、燃料電池実用化推進協議会(FCCJ)が公開しているプロトコルに従った。測定装置はポテンショスタット:Versa STAT4(株式会社東陽テクニカ製)と回転電極:RRDE-3A Rotating Ring Disk Electrode(ビー・エー・エス株式会社製)を使用した。0.1Mに調整した過塩素酸でガラスセルを満たし、60℃に加温しながら、ガラスセル内に窒素を30分間バブリングした。該過塩素酸を用いて、カーボン表面のクリーニングとECSAの測定のため、0.05~1.20V vs RHE、50mV/sの条件で電極の回転数をゼロとしてサイクリックボルタンメトリー(CV)を実施した。再現性のあるボルタモグラム(50サイクル実施)が得られたら、最後のサイクルにおけるボルタンメトリーからECSA(m/gPt)の初期値を算出した。ECSA(初期値)の判定は以下の基準で行った。
 <判定基準>
 ◎:ECSA(初期値)が80m/gPt以上である。
 ○:ECSA(初期値)が40m/gPt以上80m/gPt未満である。
 ×:ECSA(初期値)が40m/gPt未満である。
(3) Electrochemical surface area (ECSA)
The electrochemical effective surface area (ECSA) of the catalyst-supporting carbon was measured according to a protocol published by the Council for Promotion of Commercialization of Fuel Cells (FCCJ). The potentiostat: Versa STAT4 (manufactured by Toyo Technica Co., Ltd.) and the rotating electrode: RRDE-3A Rotating Ring Disk Electrode (manufactured by BAS Co., Ltd.) were used as measuring devices. The glass cell was filled with perchloric acid adjusted to 0.1 M, and nitrogen was bubbled into the glass cell for 30 minutes while heating to 60 ° C. Using this perchloric acid, cyclic voltammetry (CV) was performed with the electrode rotation speed set to zero under the conditions of 0.05 to 1.20 V vs. RHE and 50 mV / s for carbon surface cleaning and ECSA measurement. did. When a reproducible voltammogram (50 cycles performed) was obtained, the initial value of ECSA (m 2 / gPt) was calculated from voltammetry in the last cycle. ECSA (initial value) was determined according to the following criteria.
<Criteria>
A: ECSA (initial value) is 80 m 2 / gPt or more.
○: ECSA (initial value) is 40 m 2 / gPt or more and less than 80 m 2 / gPt.
X: ECSA (initial value) is less than 40 m 2 / gPt.
(4)ECSA維持率(耐久性、電極寿命の指標)
 ECSA維持率の測定は、FCCJが公開しているプロトコルに記載してある「電位サイクル試験方法」を参考にし、よりカーボンの劣化現象が促進されるように最適化した条件にて実施した。0.1Mで調整した過塩素酸でガラスセルを満たし、60℃に加温しながら、ガラスセル内に窒素を30分間バブリングした。該過塩素酸を用いて、カーボン表面のクリーニングとECSAの測定のため、0.05~1.20V vs RHE、50mV/sの条件で電極の回転数をゼロとしてCVを実施した。再現性のあるボルタモグラムが得られたら、1.5Vの高電位を10時間負荷し、その後のボルタンメトリーから高電位負荷後のECSA(m/gPt)を測定し、下記の式によりECSA維持率(%)を算出した。
 ECSA維持率(%)=(高電位負荷後のECSA/ECSA(初期値))×100
 耐久性の判定は、以下の基準で行った。
 <判定基準>
 ◎:ECSA維持率が70%以上である。
 ○:ECSA維持率が50%以上70%未満である。
 ×:ECSA維持率が50%未満である。
(4) ECSA maintenance rate (index of durability and electrode life)
The ECSA retention rate was measured under the optimized conditions so as to further promote the deterioration phenomenon of carbon with reference to “potential cycle test method” described in the protocol published by FCCJ. The glass cell was filled with perchloric acid adjusted at 0.1 M, and nitrogen was bubbled into the glass cell for 30 minutes while heating to 60 ° C. Using the perchloric acid, CV was performed under the conditions of 0.05 to 1.20 V vs. RHE, 50 mV / s with the number of revolutions of the electrode being zero for cleaning the carbon surface and measuring ECSA. When a reproducible voltammogram was obtained, a high potential of 1.5 V was loaded for 10 hours, and ECSA (m 2 / gPt) after high potential loading was measured from the subsequent voltammetry, and the ECSA maintenance rate ( %) Was calculated.
ECSA maintenance rate (%) = (ECSA / ECSA (initial value) after high potential load) × 100
The durability was determined according to the following criteria.
<Criteria>
A: ECSA maintenance rate is 70% or more.
A: ECSA maintenance rate is 50% or more and less than 70%.
X: ECSA maintenance rate is less than 50%.
 各例の触媒担持用カーボンの物性の測定結果及び評価結果を表2に示す。 Table 2 shows the measurement results and evaluation results of the physical properties of the catalyst-supporting carbon in each example.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、条件(a)~(d)を満たす実施例1~7の触媒担持用カーボンは、ESCA(初期値)が高く、白金担持率が高く触媒の分散担持性に優れていた。また、実施例1~7の触媒担持用カーボンは、ESCA維持率が高く、耐久性(酸化分解耐性)にも優れていた。
 一方、条件(b)及び(c)を満たしていない比較例1では、ESCA(初期値)が著しく低く、白金担持率が低く触媒の分散担持性が劣っていた。条件(a)を満たしていない比較例2では、ESCA維持率がゼロであり、耐久性(酸化分解耐性)が著しく劣っていた。条件(d)を満たしていない比較例3では、ESCA(初期値)が著しく低かった。
As shown in Table 2, the catalyst-supporting carbons of Examples 1 to 7 satisfying the conditions (a) to (d) have a high ESCA (initial value), a high platinum support rate, and excellent catalyst dispersion support. It was. Further, the catalyst-supporting carbons of Examples 1 to 7 had a high ESCA maintenance rate and excellent durability (oxidative decomposition resistance).
On the other hand, in Comparative Example 1 that did not satisfy the conditions (b) and (c), the ESCA (initial value) was remarkably low, the platinum support rate was low, and the dispersion support property of the catalyst was inferior. In Comparative Example 2 that did not satisfy the condition (a), the ESCA maintenance rate was zero, and the durability (oxidative degradation resistance) was remarkably inferior. In Comparative Example 3 that did not satisfy the condition (d), ESCA (initial value) was remarkably low.
[実施例8]
 白金担持カーボンの調製:
 実施例1の触媒担持用カーボン0.5g、水240g、エチレングリコール320gを超音波により混合した後、ヘキサクロリド白金(IV)酸六水和物1.32gとエチレングリコール40gの混合溶液に加え、1mol/L水酸化ナトリウム水溶液を添加してpH11に調整した。この溶液をフラスコに移し、窒素置換後、110℃で4時間撹拌した。冷却後、溶液をろ過し、ろ物をpH7となるまで純水で洗浄し、1晩減圧乾燥して白金担持カーボンを得た。
[Example 8]
Preparation of platinum-supported carbon:
The catalyst-supporting carbon 0.5g of Example 1, 240 g of water, and 320 g of ethylene glycol were mixed by ultrasonic waves, and then added to a mixed solution of 1.32 g of hexachloride platinum (IV) acid hexahydrate and 40 g of ethylene glycol. A 1 mol / L sodium hydroxide aqueous solution was added to adjust the pH to 11. This solution was transferred to a flask, and purged with nitrogen, followed by stirring at 110 ° C. for 4 hours. After cooling, the solution was filtered, and the filtrate was washed with pure water until pH 7 and dried under reduced pressure overnight to obtain platinum-supported carbon.
 膜電極接合体(MEA)の作製:
 白金担持カーボン2.0g(白金担持率:50質量%)、アイオノマーとして20質量% Nafion(商標登録)DE2021分散溶液(デュポン社製)2.0g、アルコール水溶液16.0gを秤量し、ビーズミルを用いて混合し、触媒インクを作成した。この触媒インクにおける触媒担持カーボンに対するアイオノマーの質量比は、アイオノマー/カーボン(I/C)=0.4である。この触媒インクを、触媒量が0.3mg/cmとなるようにポリテトラフルオロエチレン(PTFE)シートに塗布、乾燥させ、5cmの矩形状に切ってカソード電極を作製した。次に、カソード電極とアノード電極により電解質膜を挟み込み、ホットプレスを行ってMEAを作製した。アノード電極には、TEC10E50E(田中貴金属工業株式会社製)を用いた。
Production of membrane electrode assembly (MEA):
Weigh 2.0 g of platinum-supporting carbon (platinum support ratio: 50 mass%), 20 mass% as ionomer, 2.0 g of Nafion (registered trademark) DE2021 dispersion (manufactured by DuPont), and 16.0 g of aqueous alcohol solution, and use a bead mill. And mixed to prepare a catalyst ink. The mass ratio of ionomer to catalyst-supported carbon in this catalyst ink is ionomer / carbon (I / C) = 0.4. This catalyst ink was applied to a polytetrafluoroethylene (PTFE) sheet so that the amount of catalyst was 0.3 mg / cm 2 , dried, and cut into a rectangular shape of 5 cm 2 to produce a cathode electrode. Next, the electrolyte membrane was sandwiched between the cathode electrode and the anode electrode, and hot pressing was performed to produce an MEA. TEC10E50E (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was used for the anode electrode.
[実施例9]
 実施例2の触媒担持用カーボンを用いた以外は実施例8と同様にして白金担持カーボンを調製し、MEAを作製した。
[Example 9]
A platinum-supporting carbon was prepared in the same manner as in Example 8 except that the catalyst-supporting carbon of Example 2 was used, and an MEA was prepared.
[実施例10]
 実施例8と同様にして白金担持カーボンを調製し、I/C=0.7とした以外は実施例8と同様にしてMEAを作製した。
[Example 10]
A platinum-supporting carbon was prepared in the same manner as in Example 8, and an MEA was prepared in the same manner as in Example 8 except that I / C = 0.7.
[実施例11]
 実施例2の触媒担持用カーボンを用いた以外は実施例8と同様にして白金担持カーボンを調製し、I/C=0.7とした以外は実施例8と同様にしてMEAを作製した。
[Example 11]
A platinum-supporting carbon was prepared in the same manner as in Example 8 except that the catalyst-supporting carbon of Example 2 was used, and an MEA was prepared in the same manner as in Example 8 except that I / C = 0.7.
[比較例4]
 比較例1の触媒担持用カーボンを用いた以外は実施例8と同様にして白金担持カーボンを調製し、I/C=0.7とした以外は実施例8と同様にしてMEAを作製した。
[Comparative Example 4]
A platinum-supporting carbon was prepared in the same manner as in Example 8 except that the catalyst-supporting carbon of Comparative Example 1 was used, and an MEA was prepared in the same manner as in Example 8 except that I / C = 0.7.
[比較例5]
 比較例2の触媒担持用カーボンを用いた以外は実施例8と同様にして白金担持カーボンを調製し、I/C=1.0とした以外は実施例8と同様にしてMEAを作製した。
[Comparative Example 5]
A platinum-supporting carbon was prepared in the same manner as in Example 8 except that the catalyst-supporting carbon of Comparative Example 2 was used, and an MEA was prepared in the same manner as in Example 8 except that I / C = 1.0.
[比較例6]
 比較例2の触媒担持用カーボンを用いた以外は実施例8と同様にして白金担持カーボンを調製し、I/C=0.7とした以外は実施例8と同様にしてMEAを作製した。
[Comparative Example 6]
A platinum-supporting carbon was prepared in the same manner as in Example 8 except that the catalyst-supporting carbon of Comparative Example 2 was used, and an MEA was prepared in the same manner as in Example 8 except that I / C = 0.7.
[MEAの評価]
 (初期性能評価)
 MEAを温度80℃、湿度90%RHの条件で加湿し、アノード電極に水素を500sccmで供給し、カソード電極に酸素を500sccmで供給してI-V測定を行った。性能は0.6Vにおける電流密度(A/cm)で比較した。
[Evaluation of MEA]
(Initial performance evaluation)
The MEA was humidified under conditions of a temperature of 80 ° C. and a humidity of 90% RH, hydrogen was supplied to the anode electrode at 500 sccm, and oxygen was supplied to the cathode electrode at 500 sccm to perform IV measurement. The performance was compared by the current density (A / cm 2 ) at 0.6V.
 (耐久性能評価)
 FCCJが公開している「固体高分子形燃料電池の目標・研究開発課題と評価方法の提案」に記載の電位サイクル(起動停止)試験に従って耐久性能を評価した。MEAを温度80℃、湿度90%RHの条件で加湿し、アノード電極に水素を500sccmで供給し、カソード電極に酸素を500sccmで供給してI-V測定を行った。1.0Vで30秒間電位を保持した後、電圧範囲1.0V~1.5V、電位走査速度0.5V/sで5,000サイクルの電位サイクル試験を行った後、I-V測定を行った。電位サイクル試験前後のI-V測定の0.6Vにおける電流密度(A/cm)から、下式により電流密度維持率を算出した。
 電流密度維持率(%)=J5000/J×100
 ただし、Jは電位サイクル試験前のI-V測定の0.6Vにおける電流密度(A/cm)であり、J5000は5,000サイクルの電位サイクル試験を行った後のI-V測定の0.6Vにおける電流密度(A/cm)である。
(Durability performance evaluation)
Durability performance was evaluated according to the potential cycle (start / stop) test described in FCCJ's published “Proposals for Targets, R & D Issues and Evaluation Methods for Polymer Electrolyte Fuel Cells”. The MEA was humidified under conditions of a temperature of 80 ° C. and a humidity of 90% RH, hydrogen was supplied to the anode electrode at 500 sccm, and oxygen was supplied to the cathode electrode at 500 sccm to perform IV measurement. After holding the potential at 1.0 V for 30 seconds, after conducting a potential cycle test of 5,000 cycles at a voltage range of 1.0 V to 1.5 V and a potential scanning speed of 0.5 V / s, an IV measurement was performed. It was. From the current density (A / cm 2 ) at 0.6 V in the IV measurement before and after the potential cycle test, the current density maintenance ratio was calculated by the following equation.
Current density maintenance ratio (%) = J 5000 / J 0 × 100
However, J 0 is the current density (A / cm 2 ) at 0.6 V of the IV measurement before the potential cycle test, and J 5000 is the IV measurement after conducting the potential cycle test of 5,000 cycles. Current density (A / cm 2 ) at 0.6V.
 実施例8~11、比較例4~6のMEAの初期性能及び耐久性能の評価結果を表3に示す。 Table 3 shows the evaluation results of the initial performance and durability performance of the MEAs of Examples 8 to 11 and Comparative Examples 4 to 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、本発明の触媒担持用カーボンを用いた実施例8~11では、MEAの電流密度が高く、初期性能が優れていた。また、実施例10、11では5,000サイクルの電位サイクル試験後もMEAは高い電流密度を維持しており、耐久性能にも優れていた。 As shown in Table 3, in Examples 8 to 11 using the catalyst-supporting carbon of the present invention, the MEA current density was high and the initial performance was excellent. In Examples 10 and 11, the MEA maintained a high current density even after 5,000 cycles of the potential cycle test, and was excellent in durability.

Claims (2)

  1.  下記条件(a)~(d)を満たす触媒担持用カーボン。
     (a)広角X線回折法による測定結果から算出されるカーボン表面の結晶子の厚みLc(002)が2.0nm以上である。
     (b)ラマン分光法によるカーボン表面のスペクトルにおけるG-band(1590cm-1)のピーク面積に対するD-band(1350cm-1)のピーク面積の比D/Gが0.5~2.5である。
     (c)メソ孔を含む細孔を有し、メソ孔容積が0.35~1.3cm/gである。
     (d)全細孔容積に対する前記メソ孔容積の比率が0.6~1.0である。
    Catalyst-supporting carbon that satisfies the following conditions (a) to (d).
    (A) The crystallite thickness Lc (002) of the carbon surface calculated from the measurement result by the wide-angle X-ray diffraction method is 2.0 nm or more.
    (B) at D 1 -band (1350cm -1) ratio D / G is 0.5 of the peak area of 2.5 to the peak area of G-band of the spectrum of the carbon surface by Raman spectroscopy (1590 cm -1) is there.
    (C) It has pores including mesopores, and the mesopore volume is 0.35 to 1.3 cm 3 / g.
    (D) The ratio of the mesopore volume to the total pore volume is 0.6 to 1.0.
  2.  請求項1に記載の触媒担持用カーボンを製造する方法であって、
     カーボンブラックを2200℃以上で熱処理して炭素材料を得る熱処理工程と、
     前記熱処理工程後の炭素材料に対して表面酸化処理を行う表面酸化工程と、
     を有する、触媒担持用カーボンの製造方法。
    A method for producing the catalyst-supporting carbon according to claim 1,
    A heat treatment step of obtaining a carbon material by heat treating carbon black at 2200 ° C. or higher;
    A surface oxidation step of performing a surface oxidation treatment on the carbon material after the heat treatment step;
    A method for producing catalyst-supporting carbon, comprising:
PCT/JP2017/017460 2016-05-31 2017-05-09 Carbon for supporting catalyst and production process therefor WO2017208742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016108542 2016-05-31
JP2016-108542 2016-05-31

Publications (1)

Publication Number Publication Date
WO2017208742A1 true WO2017208742A1 (en) 2017-12-07

Family

ID=60479375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017460 WO2017208742A1 (en) 2016-05-31 2017-05-09 Carbon for supporting catalyst and production process therefor

Country Status (1)

Country Link
WO (1) WO2017208742A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024796A (en) * 2018-08-06 2020-02-13 トヨタ自動車株式会社 Manufacturing method for catalyst for fuel cell
JP2021061142A (en) * 2019-10-04 2021-04-15 日本製鉄株式会社 Porous carbon material for catalyst carrier of solid polymer type fuel cell, catalyst layer for solid polymer type fuel cell, and fuel cell
WO2021131386A1 (en) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 Electrode catalyst and electrode catalyst layer of electrochemical device, film/electrode assembly, and electrochemical device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008472A (en) * 2004-06-29 2006-01-12 Hitachi Powdered Metals Co Ltd Nano-structured graphite, its composite material, conductive material and catalyst material using them
JP2006179463A (en) * 2004-11-25 2006-07-06 Nissan Motor Co Ltd Solid polymer fuel cell
JP2011514304A (en) * 2008-02-19 2011-05-06 キャボット コーポレイション High surface area graphitized carbon and method for producing the same
WO2015056759A1 (en) * 2013-10-17 2015-04-23 日本ケミコン株式会社 Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
JP2015525184A (en) * 2012-05-21 2015-09-03 イメリス グラファイト アンド カーボン スイッツァランド リミティド Surface-modified carbon hybrid particles, production method and application thereof
JP2015204216A (en) * 2014-04-15 2015-11-16 トヨタ自動車株式会社 Electrode catalyst for fuel cell, and method of manufacturing electrode catalyst for fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006008472A (en) * 2004-06-29 2006-01-12 Hitachi Powdered Metals Co Ltd Nano-structured graphite, its composite material, conductive material and catalyst material using them
JP2006179463A (en) * 2004-11-25 2006-07-06 Nissan Motor Co Ltd Solid polymer fuel cell
JP2011514304A (en) * 2008-02-19 2011-05-06 キャボット コーポレイション High surface area graphitized carbon and method for producing the same
JP2015525184A (en) * 2012-05-21 2015-09-03 イメリス グラファイト アンド カーボン スイッツァランド リミティド Surface-modified carbon hybrid particles, production method and application thereof
WO2015056759A1 (en) * 2013-10-17 2015-04-23 日本ケミコン株式会社 Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
JP2015204216A (en) * 2014-04-15 2015-11-16 トヨタ自動車株式会社 Electrode catalyst for fuel cell, and method of manufacturing electrode catalyst for fuel cell

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAIKO KIKUCHI ET AL.: "Ketjen Black Oyobi Kakushu Carbon Black no Kozobussei to Nenryo Denchi Shokubai Seino tono Kankei ni Tsuite", ABSTRACTS OF THE 83RD ANNUAL MEETING OF THE ELECTROCHEMICAL SOCIETY OF JAPAN, 23 March 2016 (2016-03-23) *
QIAO, W.M. ET AL.: "Development of Mesophase Pitch Derived Mesoporous Carbons through a Commercially Nanosized Template", LANGMUIR, vol. 22, no. 8, 11 March 2006 (2006-03-11), pages 3791 - 3797, XP055511665, DOI: doi:10.1021/la052494p *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020024796A (en) * 2018-08-06 2020-02-13 トヨタ自動車株式会社 Manufacturing method for catalyst for fuel cell
JP7059861B2 (en) 2018-08-06 2022-04-26 トヨタ自動車株式会社 Manufacturing method of catalyst for fuel cell
JP2021061142A (en) * 2019-10-04 2021-04-15 日本製鉄株式会社 Porous carbon material for catalyst carrier of solid polymer type fuel cell, catalyst layer for solid polymer type fuel cell, and fuel cell
JP7277770B2 (en) 2019-10-04 2023-05-19 日本製鉄株式会社 Porous carbon material for catalyst carrier for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and fuel cell
WO2021131386A1 (en) * 2019-12-27 2021-07-01 パナソニックIpマネジメント株式会社 Electrode catalyst and electrode catalyst layer of electrochemical device, film/electrode assembly, and electrochemical device

Similar Documents

Publication Publication Date Title
Naik et al. Two-dimensional oxygen-deficient TiO2 nanosheets-supported Pt nanoparticles as durable catalyst for oxygen reduction reaction in proton exchange membrane fuel cells
JP4938165B2 (en) Fuel cell electrode catalyst
Chen et al. Electro-oxidation of methanol at the different carbon materials supported Pt nano-particles
Vinayan et al. Synthesis and investigation of mechanism of platinum–graphene electrocatalysts by novel co-reduction techniques for proton exchange membrane fuel cell applications
JP6232505B2 (en) Fuel cell electrode catalyst and method for producing the same
JP5557564B2 (en) Nitrogen-containing carbon alloy and carbon catalyst using the same
WO2014129597A1 (en) Carbon material for use as catalyst carrier
JP2015138780A (en) Electrode catalyst for fuel cell, method of preparing the same, and electrode for fuel cell and fuel cell that including the same
Liu et al. Highly graphitic carbon black-supported platinum nanoparticle catalyst and its enhanced electrocatalytic activity for the oxygen reduction reaction in acidic medium
Goel et al. Effect of support materials on the performance of direct ethanol fuel cell anode catalyst
Odetola et al. Enhanced activity and stability of Pt/TiO2/carbon fuel cell electrocatalyst prepared using a glucose modifier
KR100868756B1 (en) Pt/Ru alloy supported catalyst, manufacturing method thereof, and fuel cell using the same
Teran-Salgado et al. Platinum nanoparticles supported on electrochemically oxidized and exfoliated graphite for the oxygen reduction reaction
WO2018182048A1 (en) Carbon material for catalyst carrier of solid polymer fuel cell, and method for manufacturing same
JP2008041253A (en) Electrocatalyst and power generation system using the same
Novikova et al. Influence of carbon support on catalytic layer performance of proton exchange membrane fuel cells
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
Zhang et al. One-step preparation of N-doped graphitic layer-encased cobalt/iron carbide nanoparticles derived from cross-linked polyphthalocyanines as highly active electrocatalysts towards the oxygen reduction reaction
CN108808027B (en) Electrode catalyst for fuel cell and method for producing same
WO2017208742A1 (en) Carbon for supporting catalyst and production process therefor
JP2018012626A (en) Porous carbon material, catalyst for solid polymer shaped fuel cell, solid polymer shaped fuel cell and manufacturing method of porous carbon material
JP2016508439A (en) catalyst
JP6727263B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
Gupta et al. Highly purified CNTs: an exceedingly efficient catalyst support for PEM fuel cell
Luo et al. Synergistic effect of Yttrium and pyridine-functionalized carbon nanotube on platinum nanoparticles toward the oxygen reduction reaction in acid medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17806300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP