JP7277770B2 - Porous carbon material for catalyst carrier for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and fuel cell - Google Patents

Porous carbon material for catalyst carrier for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and fuel cell Download PDF

Info

Publication number
JP7277770B2
JP7277770B2 JP2019184024A JP2019184024A JP7277770B2 JP 7277770 B2 JP7277770 B2 JP 7277770B2 JP 2019184024 A JP2019184024 A JP 2019184024A JP 2019184024 A JP2019184024 A JP 2019184024A JP 7277770 B2 JP7277770 B2 JP 7277770B2
Authority
JP
Japan
Prior art keywords
fuel cell
carbon material
catalyst
polymer electrolyte
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019184024A
Other languages
Japanese (ja)
Other versions
JP2021061142A (en
Inventor
孝 飯島
正孝 日吉
晋也 古川
智子 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019184024A priority Critical patent/JP7277770B2/en
Publication of JP2021061142A publication Critical patent/JP2021061142A/en
Application granted granted Critical
Publication of JP7277770B2 publication Critical patent/JP7277770B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本開示は、固体高分子形燃料電池の触媒担体用多孔質炭素材料、固体高分子形燃料電池用触媒層、及び燃料電池に関する。 TECHNICAL FIELD The present disclosure relates to a porous carbon material for a catalyst carrier for a polymer electrolyte fuel cell, a catalyst layer for a polymer electrolyte fuel cell, and a fuel cell.

燃料電池の一種である固体高分子形燃料電池は、固体高分子電解質膜の両面に配置される一対の触媒層と、各触媒層の外側に配置されるガス拡散層と、各ガス拡散層の外側に配置されるセパレータとを備える。一対の触媒層のうち、一方の触媒層は固体高分子形燃料電池のアノードとなり、他方の触媒層は固体高分子形燃料電池のカソードとなる。なお、通常の固体高分子形燃料電池では、所望の出力を得るために、上記構成要素を有する単位セルが複数個スタックされている。 A polymer electrolyte fuel cell, which is a kind of fuel cell, comprises a pair of catalyst layers arranged on both sides of a solid polymer electrolyte membrane, gas diffusion layers arranged outside each catalyst layer, and gas diffusion layers arranged on the outside of each catalyst layer. and a separator arranged on the outside. One of the pair of catalyst layers serves as the anode of the polymer electrolyte fuel cell, and the other catalyst layer serves as the cathode of the polymer electrolyte fuel cell. In addition, in a normal polymer electrolyte fuel cell, a plurality of unit cells having the above components are stacked in order to obtain a desired output.

アノード側のセパレータには、水素等の燃料ガスが導入される。アノード側のガス拡散層は、燃料を拡散させた後、アノードに導入する。アノードは、触媒成分と、燃料電池用触媒を担持する触媒担体と、プロトン伝導性を有する電解質材料とを含む。以下、燃料電池内の発電反応(後述する酸化反応または還元反応)を促進する触媒成分を「燃料電池用触媒」とも称する。触媒担体は、多孔質炭素材料で構成されることが多い。燃料電池用触媒上では、燃料ガスの酸化反応が起こり、プロトンと電子が生成される。例えば、燃料ガスが水素ガスとなる場合、以下の酸化反応が起こる。
→2H+2e (E=0V)
A fuel gas such as hydrogen is introduced into the separator on the anode side. The gas diffusion layer on the anode side diffuses the fuel and then introduces it into the anode. The anode includes a catalyst component, a catalyst carrier supporting a fuel cell catalyst, and an electrolyte material having proton conductivity. Hereinafter, a catalyst component that promotes a power generation reaction (an oxidation reaction or a reduction reaction to be described later) in a fuel cell is also referred to as a "fuel cell catalyst". Catalyst carriers are often composed of porous carbon materials. On the fuel cell catalyst, an oxidation reaction of the fuel gas occurs to generate protons and electrons. For example, when the fuel gas is hydrogen gas, the following oxidation reactions occur.
H 2 →2H + +2e (E 0 =0 V)

この酸化反応で生じたプロトンは、アノード内の電解質材料、及び固体高分子電解質膜を通ってカソードに導入される。また、電子は、触媒担体、ガス拡散層、及びセパレータを通って外部回路に導入される。この電子は、外部回路で仕事をした後、カソード側のセパレータに導入される。そして、この電子は、カソード側のセパレータ、カソード側のガス拡散層を通ってカソードに導入される。 Protons generated by this oxidation reaction are introduced into the cathode through the electrolyte material in the anode and the solid polymer electrolyte membrane. Electrons are also introduced into the external circuit through the catalyst carrier, gas diffusion layer, and separator. The electrons are introduced into the separator on the cathode side after doing work in an external circuit. These electrons are introduced into the cathode through the separator on the cathode side and the gas diffusion layer on the cathode side.

固体高分子形電解質膜は、プロトン伝導性を有する電解質材料で構成されている。固体高分子電解質膜は、上記酸化反応で生成したプロトンをカソードに導入する。 A solid polymer electrolyte membrane is composed of an electrolyte material having proton conductivity. The solid polymer electrolyte membrane introduces protons generated by the oxidation reaction to the cathode.

カソード側のセパレータには、酸素ガスあるいは空気等の酸化性ガスが導入される。カソード側のガス拡散層は、酸化性ガスを拡散させた後、カソードに導入する。カソードは、燃料電池用触媒と、燃料電池用触媒を担持する触媒担体と、プロトン伝導性を有する電解質材料とを含む。触媒担体は、多孔質炭素材料で構成されることが多い。燃料電池用触媒上では、酸化性ガスの還元反応が起こり、水が生成される。例えば、酸化性ガスが酸素ガスあるいは空気となる場合、以下の還元反応が起こる。
+4H+4e→2HO (E=1.23V)
Oxidizing gas such as oxygen gas or air is introduced into the separator on the cathode side. The gas diffusion layer on the cathode side introduces the oxidizing gas into the cathode after diffusing it. The cathode includes a fuel cell catalyst, a catalyst carrier supporting the fuel cell catalyst, and an electrolyte material having proton conductivity. Catalyst carriers are often composed of porous carbon materials. On the fuel cell catalyst, a reduction reaction of the oxidizing gas occurs to produce water. For example, when the oxidizing gas is oxygen gas or air, the following reduction reactions occur.
O 2 +4H + +4e →2H 2 O (E 0 =1.23 V)

還元反応で生じた水は、未反応の酸化性ガスとともに燃料電池の外部に排出される。このように、固体高分子形燃料電池では、燃料ガスの酸化反応に伴って生成する自由エネルギー差(電位差)を利用して発電する。言い換えれば、酸化反応で生じた自由エネルギーを電子が外部回路で行う仕事に変換するものである。 Water produced by the reduction reaction is discharged outside the fuel cell together with unreacted oxidizing gas. As described above, the polymer electrolyte fuel cell generates electricity by utilizing the free energy difference (potential difference) generated by the oxidation reaction of the fuel gas. In other words, it converts the free energy produced by the oxidation reaction into work done by electrons in an external circuit.

ところで、固体高分子形燃料電池の更なる普及のためには、低コスト化と耐久性の改善が重要な課題である。低コスト化には触媒に用いる白金(Pt)の使用量の削減、そして、耐久性には触媒の耐久性、特に、担体に用いる炭素材料の耐酸化消耗性の改善が必須である。白金、或いは、貴金属の使用量削減には、一つには触媒の利用率向上が重要な解決策であり、一つには、高電圧で大電流を取出せるような高出力化がもう一つの解決策である。前者の利用率向上には、担体の多孔質構造の制御が有効であることが知られている。即ち、白金や白金を主成分とする合金などの触媒金属粒子は通常数nmの大きさ(直径)であるから、触媒金属粒子を担持するのに適した大きさ、即ち、いわゆるメソ孔領域、特に、10nm以下のメソ孔の容積を大きく、且つ、担持するために表面積を大きくすることが重要となる。 By the way, cost reduction and durability improvement are important issues for the further spread of polymer electrolyte fuel cells. For cost reduction, it is essential to reduce the amount of platinum (Pt) used in the catalyst, and for durability, it is essential to improve the durability of the catalyst, especially the oxidation wear resistance of the carbon material used as the carrier. In order to reduce the amount of platinum or precious metals used, one important solution is to improve the utilization rate of the catalyst. It is one solution. It is known that control of the porous structure of the carrier is effective for improving the former utilization rate. That is, since catalytic metal particles such as platinum and platinum-based alloys usually have a size (diameter) of several nanometers, a size suitable for supporting the catalytic metal particles, that is, a so-called mesopore region, In particular, it is important to increase the volume of mesopores of 10 nm or less and increase the surface area for supporting.

他方、大電流特性を高めるためには、カソードの反応ガスである酸素の触媒層中での拡散を高めることが重要である。そのためには、気体の分子運動性が現れない100nm以上の直径の細孔が触媒層中に存在することが重要となる。触媒層中に生成する細孔は、触媒担体の立体構造により制御することが可能である。即ち、100nm以上の長さの樹状構造が発達した担体であれば、触媒層には樹状構造に相当する100nmの細孔を生成することが可能である。 On the other hand, in order to improve the large current characteristics, it is important to increase the diffusion of oxygen, which is the reaction gas of the cathode, in the catalyst layer. For this purpose, it is important that pores with a diameter of 100 nm or more exist in the catalyst layer so that the molecular mobility of the gas does not appear. Pores generated in the catalyst layer can be controlled by the three-dimensional structure of the catalyst support. That is, if the carrier has a dendritic structure with a length of 100 nm or more, it is possible to form pores of 100 nm corresponding to the dendritic structure in the catalyst layer.

近年、特許文献1~4に開示されているように、このような10nm以下のメソ孔容積、比表面積と100nm程度の樹状構造の二つの観点から、3次元樹状構造を持つ多孔質炭素材料(以下「3次元樹状炭素材料」とも称する)を触媒担体として使用する技術が提案されている。3次元樹状炭素材料は、他の炭素材料には認められない特徴的な構造を有する。具体的には、3次元樹状炭素材料は、非常に発達した細孔構造(多孔質構造)と大きなスケールの樹状構造を両立させた構造を有する。つまり、3次元樹状炭素材料を構成する担体粒子は、その内部に燃料電池用触媒を担持可能な細孔を多数有しており、かつ、大きな樹状構造を有している。
また、特許文献5に開示されていように、高い温度の熱処理をしても細孔が潰れにくい材料としてMgOを鋳型として作製される多孔質炭素材料が注目されている。
また、特許文献6に開示されていように、高い温度の熱処理をしても細孔が潰れにくい材料としてカーボンブラックを出発材料として作製される多孔質炭素材料が注目されている。
In recent years, as disclosed in Patent Documents 1 to 4, from the two viewpoints of such mesopore volume of 10 nm or less, specific surface area and dendritic structure of about 100 nm, porous carbon having a three-dimensional dendritic structure Techniques using materials (hereinafter also referred to as "three-dimensional dendritic carbon materials") as catalyst supports have been proposed. A three-dimensional dendritic carbon material has a characteristic structure not found in other carbon materials. Specifically, the three-dimensional dendritic carbon material has a structure that combines a highly developed pore structure (porous structure) and a large-scale dendritic structure. In other words, the carrier particles that constitute the three-dimensional dendritic carbon material have a large number of pores capable of supporting fuel cell catalysts therein and have a large dendritic structure.
Further, as disclosed in Patent Document 5, a porous carbon material produced using MgO as a template has attracted attention as a material whose pores are less likely to collapse even when subjected to high-temperature heat treatment.
Also, as disclosed in Patent Document 6, a porous carbon material produced using carbon black as a starting material has attracted attention as a material whose pores are less likely to collapse even when subjected to high-temperature heat treatment.

その他、多孔質炭素材料は、水蒸気、炭酸ガスを酸化剤とするガス賦活多孔質炭素およびアルカリ金属による賦活炭素材料(非特許文献1)、ゼオライトや酸化マグネシウムを鋳型とした鋳型炭素材料(非特許文献2)、SiCなどカーバイドを塩素雰囲気で加熱処理して作製されるCDC(非特許文献3)、銀アセチリドを原料とする3次元樹状炭素材料(非特許文献4)などが典型的である。 Other porous carbon materials include gas-activated porous carbon using water vapor or carbon dioxide as an oxidizing agent, carbon material activated with alkali metal (Non-Patent Document 1), template carbon material using zeolite or magnesium oxide as a template (Non-Patent Document 1). Document 2), CDC (Non-Patent Document 3) produced by heat-treating carbide such as SiC in a chlorine atmosphere, and three-dimensional dendritic carbon materials made from silver acetylide (Non-Patent Document 4) are typical examples. .

国際公開第2014/129597号WO2014/129597 国際公開第2015/088025号WO2015/088025 国際公開第2015/141810号WO2015/141810 国際公開第2016/133132号WO2016/133132 特開2012-188309号公報JP 2012-188309 A 特開2017-052967号公報JP 2017-052967 A Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas, Separation science and technology, 35, 903-918, 2000)Adsorption characteristics of alkaline activated carbon exemplified by water vapor, H2S, and CH3SH gas, Separation science and technology, 35, 903-918, 2000) A review of the controle of pore structure in MgO-templated nanoporous carbons, Carbon, 48, 2690-2707(2010))A review of the controle of pore structure in MgO-templated nanoporous carbons, Carbon, 48, 2690-2707(2010)) Carbide-derived-carbon, Nanoporous carbide-derived carbonwith tunable pore size, Nature Materials 2, 591-594(2003)Carbide-derived-carbon, Nanoporous carbide-derived carbonwith tunable pore size, Nature Materials 2, 591-594(2003) Meso-Carbon-Nano-dendrite, Synthesis and characterization of mesoporous carbon nano-dendrites with graphitic ultra-thin walls and teir application to supercapacitor electrodes, Carbon 47, 306-312(2009)Meso-Carbon-Nano-dendrite, Synthesis and characterization of mesoporous carbon nano-dendrites with graphitic ultra-thin walls and teir application to supercapacitor electrodes, Carbon 47, 306-312(2009)

近年では、高い温度での運転したときの固体高分子形燃料電池の耐久性(特に、酸化消耗耐性)が求められている。特に、自動車用途では、その要求が強い。例えば、現時点で標準的な運転温度は70~80℃であるが、業界の最終目標は、120℃運転を目標として開発を進めている。
しかし、高い温度で、固体高分子形燃料電池を運転すると、熱により酸化が進行し触媒担体用炭素材料の細孔が潰れ、低電流時の出力特性が低下する。
そして、高い温度で、固体高分子形燃料電池を運転したときに、細孔の潰れを抑制するためには、多孔質炭素材料に対して高温での熱処理が必要となる。
In recent years, polymer electrolyte fuel cells are required to have durability (especially resistance to oxidative exhaustion) when operated at high temperatures. In particular, in automobile applications, the demand is strong. For example, the standard operating temperature at present is 70 to 80°C, but the final goal of the industry is to operate at 120°C.
However, when the polymer electrolyte fuel cell is operated at a high temperature, the oxidation progresses due to the heat, and the pores of the carbon material for the catalyst carrier are crushed, resulting in deterioration of output characteristics at low current.
In order to suppress collapse of pores when the polymer electrolyte fuel cell is operated at high temperature, heat treatment at high temperature is required for the porous carbon material.

多孔質炭素材料の中でも、ミクロ孔のように、小さい細孔径を主体とする多孔質炭素材料ほど、2000℃以上の熱処理による炭素構造の変化に伴い細孔が潰れやすい傾向にある。一方で、鋳型炭素材料と3次元樹状炭素材料は、メソ孔が主要な細孔径であるため、2000℃以上の熱処理に伴って少々炭素構造が変化しても細孔の潰れは少ない。 Among porous carbon materials, porous carbon materials having mainly small pore diameters, such as micropores, tend to have pores that are easily crushed due to changes in the carbon structure due to heat treatment at 2000° C. or higher. On the other hand, in the template carbon material and the three-dimensional dendritic carbon material, mesopores are the major pore diameters, so even if the carbon structure slightly changes due to heat treatment at 2000° C. or higher, the pores are less crushed.

しかしながら、2300℃処理以上の温度では、従来報告されている鋳型炭素や3次元樹状炭素材料であっても、細孔の潰れを回避することは困難であった。 However, at a temperature of 2300° C. or higher, it was difficult to avoid collapsing of the pores even with conventionally reported template carbon and three-dimensional dendritic carbon materials.

そこで、本発明の課題は、高い温度で運転しても、低電流時の出力特性の経時変化が少なく耐久性(特に、炭素の酸化消耗耐性)に優れた固体高分子形燃料電池の触媒層を製造する上で好適な触媒担体用多孔質炭素材料、それを利用した固体高分子形燃料電池用触媒層および燃料電池を提供することである。 Therefore, an object of the present invention is to provide a catalyst layer for a polymer electrolyte fuel cell that has excellent durability (especially resistance to oxidation and consumption of carbon) with less change over time in output characteristics at low current even when operated at high temperatures. It is an object of the present invention to provide a porous carbon material for a catalyst carrier suitable for producing a polymer electrolyte fuel cell catalyst layer and a fuel cell using the same.

課題を解決するための手段は、次の態様を含む。
<1>
下記(A)、(B)、(C)、及び(D)の要件を満たす固体高分子形燃料電池の触媒担体用多孔質炭素材料。
(A)窒素吸着等温線のBET解析による比表面積が、450~700m/gである。
(B)窒素吸脱着等温線における、相対圧0.9の吸着量から相対圧0.4の吸着量を差し引いた吸着量の差分V0.4-0.9が、150~450mL/gである。
(C)窒素吸脱着等温線における、相対圧0.4の吸着量から相対圧0.1の吸着量を差し引いた吸着量の差分をV0.1-0.4としたとき、2400℃で熱処理した後のV0.1-0.4から2200℃で熱処理した後のV0.1-0.4を差し引いた吸着量の差分ΔV0.1-0.4が、10~30mL/gである。
(D)ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅が、35~45cm-1である。
<2>
下記(E)の要件を満たす<1>に記載の固体高分子形燃料電池の触媒担体用多孔質炭素材料。
(E)ラマン分光スペクトルから得られる、Gバンド1500~1700cm-1の範囲のピーク強度IとDバンド1200~1400cm-1の範囲のピーク強度Iとの強度比l/lが、1.0~1.7である。
<3>
前記吸着量の差分V0.4-0.9が、200~400mL/gである<1>又は<2>に記載の固体高分子形燃料電池の触媒担体用多孔質炭素材料。
<4>
前記吸着量の差分ΔV0.1-0.4が、15~25mL/gである<1>~<3>のいずれか1項に記載の固体高分子形燃料電池の触媒担体用多孔質炭素材料。
<5>
<1>~4>のいずれか1項に記載の固体高分子形燃料電池の触媒担体用多孔質炭素材料を含む固体高分子形燃料電池用触媒層。
<6>
<5>に記載の固体高分子形燃料電池用触媒層を含む燃料電池。
<7>
前記固体高分子形燃料電池用触媒層は、カソード側の触媒層である<6>に記載の燃料電池。
Means for solving the problems include the following aspects.
<1>
A porous carbon material for a catalyst carrier for polymer electrolyte fuel cells that satisfies the following requirements (A), (B), (C), and (D).
(A) Specific surface area determined by BET analysis of nitrogen adsorption isotherm is 450 to 700 m 2 /g.
(B) The adsorption amount difference V 0.4-0.9 obtained by subtracting the adsorption amount at a relative pressure of 0.4 from the adsorption amount at a relative pressure of 0.9 in the nitrogen adsorption/desorption isotherm is 150 to 450 mL/g.
(C) After heat treatment at 2400 ° C., when the difference in the adsorption amount obtained by subtracting the adsorption amount at a relative pressure of 0.1 from the adsorption amount at a relative pressure of 0.4 in the nitrogen adsorption and desorption isotherm is V 0.1-0.4 The difference ΔV 0.1-0.4 in adsorption amount obtained by subtracting V 0.1-0.4 after heat treatment at 2200 ° C. from V 0.1-0.4 is 10 to 30 mL/g.
(D) The half width of the G band detected in the range of 1500 to 1700 cm -1 by Raman spectroscopy is 35 to 45 cm -1 .
<2>
A porous carbon material for a catalyst carrier for polymer electrolyte fuel cells according to <1>, which satisfies the following requirement (E).
(E) The intensity ratio l D /l G of the peak intensity I G in the range of G band 1500 to 1700 cm −1 and the peak intensity I D in the range of D band 1200 to 1400 cm −1 obtained from the Raman spectroscopy spectrum is 1.0 to 1.7.
<3>
The porous carbon material for a catalyst carrier for polymer electrolyte fuel cells according to <1> or <2>, wherein the adsorption amount difference V 0.4-0.9 is 200 to 400 mL/g.
<4>
The porous carbon material for a catalyst carrier for polymer electrolyte fuel cells according to any one of <1> to <3>, wherein the adsorption amount difference ΔV 0.1-0.4 is 15 to 25 mL/g.
<5>
A catalyst layer for a polymer electrolyte fuel cell, comprising the porous carbon material for a catalyst carrier for a polymer electrolyte fuel cell according to any one of <1> to 4>.
<6>
A fuel cell comprising the polymer electrolyte fuel cell catalyst layer according to <5>.
<7>
The fuel cell according to <6>, wherein the polymer electrolyte fuel cell catalyst layer is a cathode-side catalyst layer.

本発明によれば、高い温度で運転しても、低電流時の出力特性の経時変化が少なく耐久性(特に、炭素の酸化消耗耐性)に優れた固体高分子形燃料電池の触媒層を製造する上で好適な触媒担体用多孔質炭素材料、それを利用した固体高分子形燃料電池用触媒層および燃料電池を提供できる。 According to the present invention, a catalyst layer of a polymer electrolyte fuel cell is manufactured that has excellent durability (particularly resistance to oxidation and consumption of carbon) with less change over time in output characteristics at low current even when operated at high temperatures. It is possible to provide a porous carbon material for a catalyst carrier, a catalyst layer for a polymer electrolyte fuel cell, and a fuel cell using the same.

本発明の本開示の固体高分子形燃料電池の触媒担体用多孔質炭素材料の窒素吸脱着等温線の一例を示すグラフである。1 is a graph showing an example of a nitrogen adsorption/desorption isotherm of a porous carbon material for a catalyst carrier of a polymer electrolyte fuel cell of the present disclosure. 本発明の本開示の固体高分子形燃料電池の触媒担体用多孔質炭素材料における、2200℃および2400℃の熱処理後の窒素吸脱着等温線の一例を示すグラフである。1 is a graph showing an example of nitrogen adsorption and desorption isotherms after heat treatment at 2200° C. and 2400° C. in a porous carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to the present invention. 本実施形態に係る燃料電池の概略構成を示す模式図である。1 is a schematic diagram showing a schematic configuration of a fuel cell according to an embodiment; FIG.

以下、本発明について説明する。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。
数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
「好ましい態様の組み合わせ」は、より好ましい態様である。
The present invention will be described below.
In this specification, a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
In the numerical ranges described stepwise, the upper limit value or lower limit value described in a certain numerical range may be replaced with the upper limit value or lower limit value of another numerical range described stepwise.
In numerical ranges, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
The term "process" is included in this term not only as an independent process, but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
A "combination of preferred aspects" is a more preferred aspect.

<固体高分子形燃料電池の触媒担体用多孔質炭素材料>
本発明の固体高分子形燃料電池の触媒担体用多孔質炭素材料(以下、「多孔質炭素材料」とも称する。)は、下記(A)、(B)、(C)、及び(D)の要件を満たす。
(A)窒素吸着等温線のBET解析による比表面積が、450~700m/gである。
(B)窒素吸脱着等温線における、相対圧0.9の吸着量から相対圧0.4の吸着量を差し引いた吸着量の差分V0.4-0.9が、150~450mL/gである。
(C)窒素吸脱着等温線における、相対圧0.4の吸着量から相対圧0.1の吸着量を差し引いた吸着量の差分をV0.1-0.4としたとき、2400℃で熱処理した後のV0.1-0.4から2200℃で熱処理した後のV0.1-0.4を差し引いた吸着量の差分ΔV0.1-0.4が、10~30mL/gである。
(D)ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅が、35~45cm-1である。
<Porous carbon material for catalyst carrier of polymer electrolyte fuel cell>
The porous carbon material for a catalyst carrier for a polymer electrolyte fuel cell of the present invention (hereinafter also referred to as "porous carbon material") is the following (A), (B), (C), and (D) meet the requirements.
(A) Specific surface area determined by BET analysis of nitrogen adsorption isotherm is 450 to 700 m 2 /g.
(B) The adsorption amount difference V 0.4-0.9 obtained by subtracting the adsorption amount at a relative pressure of 0.4 from the adsorption amount at a relative pressure of 0.9 in the nitrogen adsorption/desorption isotherm is 150 to 450 mL/g.
(C) After heat treatment at 2400 ° C., when the difference in the adsorption amount obtained by subtracting the adsorption amount at a relative pressure of 0.1 from the adsorption amount at a relative pressure of 0.4 in the nitrogen adsorption and desorption isotherm is V 0.1-0.4 The difference ΔV 0.1-0.4 in adsorption amount obtained by subtracting V 0.1-0.4 after heat treatment at 2200 ° C. from V 0.1-0.4 is 10 to 30 mL/g.
(D) The half width of the G band detected in the range of 1500 to 1700 cm -1 by Raman spectroscopy is 35 to 45 cm -1 .

本発明の多孔質炭素材料は、高い温度で運転しても、低電流時の出力特性の経時変化が少なく耐久性(特に、炭素の酸化消耗耐性)に優れた固体高分子形燃料電池の触媒層を製造することが可能となる。
本発明の多孔質炭素材料は、次の知見により見出された。
The porous carbon material of the present invention is a catalyst for a polymer electrolyte fuel cell that has excellent durability (especially resistance to oxidation and consumption of carbon) with little change over time in output characteristics at low current even when operated at high temperatures. Layers can be manufactured.
The porous carbon material of the present invention was discovered based on the following findings.

まず、低電流時の出力特性を高めるには、金属触媒粒子を細孔内に担持させる面積と容積の双方を同時に確保することが重要である。酸素極において金属触媒粒子が均等に酸素還元反応に供するためには、粒子径数nmに対し粒子間距離は直径と同程度以上離れることが必要と言われている。たとえば、直径3nmの金属触媒粒子であれば、概略36nmに1個の金属触媒粒子が存在すればよいことになる。これを面積に換算すると、金属触媒粒子がPt粒子であると仮定すると、触媒担持率を50質量%とすると、おおよそ120m/g程度の比面積が必要条件となる。
上記の比表面積を有する細孔は、数nmサイズの金属触媒粒子が担持されても、なお、ガス流通のための空隙が確保できる程度の大きさの細孔でなければならない。すなわち、最低でも金属触媒粒子と同じサイズの細孔(直径)でなければならないし、望ましくは、金属触媒粒子よりも大きい細孔直径が必要である。
多孔質炭素材料の場合には、直径2nm以下のいわゆるミクロ孔による比表面積は、一般に、数割から半分以上、活性炭の場合には、9割にも達することが知られている。したがって、窒素吸脱着等温線から求められるBET比表面積は、直径数nm以上の細孔の部分だけで、上述の120m/g以上を確保する必要があり、本発明に規定するように、120m/gよりも数倍大きい値(つまり、700m/g以下)となると推察される。
First, in order to improve the output characteristics at low current, it is important to secure both the area and the volume for carrying the metal catalyst particles in the pores at the same time. In order for the metal catalyst particles to be evenly subjected to the oxygen reduction reaction at the oxygen electrode, it is said that the distance between the particles should be at least as large as the diameter with respect to the particle diameter of several nanometers. For example, in the case of metal catalyst particles with a diameter of 3 nm, it is sufficient that one metal catalyst particle exists in approximately 36 nm 2 . Converting this to an area, assuming that the metal catalyst particles are Pt particles, a specific area of about 120 m 2 /g is a necessary condition, assuming that the catalyst support rate is 50% by mass.
The pores having the above-mentioned specific surface area must be of such a size that even if metal catalyst particles with a size of several nanometers are supported, pores for gas flow can still be secured. That is, the pore size (diameter) must be at least the same as that of the metal catalyst particles, and desirably, the pore diameter must be larger than that of the metal catalyst particles.
It is known that in the case of porous carbon materials, the specific surface area due to so-called micropores with a diameter of 2 nm or less generally reaches from several tenths to more than half, and in the case of activated carbon, it reaches as much as 90%. Therefore, the BET specific surface area obtained from the nitrogen adsorption/desorption isotherm must be ensured to be 120 m 2 /g or more as described above only at the portion of the pores having a diameter of several nanometers or more. 2 /g (that is, 700 m 2 /g or less).

一方で、窒素吸脱着等温線における相対圧0.9の吸着量から相対圧0.4の吸着量を差し引いた吸着量の差分V0.4-0.9は、よく知られるBJH(Barrett-Joyner-Halenda)解析によれば、細孔径に換算すると、細孔径(直径)4nm~20nmのメソ孔容積に相当する。この細孔径に相当する細孔に担持された金属触媒粒子が触媒反応に主に寄与すると考えられる。それは、細孔径4nm~20nmのメソ孔は、触媒金属粒子のサイズが通常2~6nmなので、このサイズの触媒金属粒子が担持されても空間に余裕がある細孔であるためである。たとえば、代表的細孔直径を5nmとし、そこに、金属触媒粒子として3nm直径のPt粒子を担持させることを考えると、スリット幅が5nmのスリット状の細孔を想定してスリット内の面積を計算すると、おおよそ200cm/gとなり、やはり、本発明で規定する相対圧0.9の吸着量から相対圧0.4の吸着量を差し引いた吸着量の差分V0.4-0.9の値となる。 On the other hand, the adsorption amount difference V 0.4-0.9 obtained by subtracting the adsorption amount at a relative pressure of 0.4 from the adsorption amount at a relative pressure of 0.9 in the nitrogen adsorption/desorption isotherm is the well-known BJH (Barrett-Joyner-Halenda) According to analysis, when converted to pore diameter, it corresponds to a mesopore volume with a pore diameter (diameter) of 4 nm to 20 nm. It is believed that the metal catalyst particles supported in the pores corresponding to this pore diameter mainly contribute to the catalytic reaction. This is because mesopores with a pore diameter of 4 nm to 20 nm have sufficient space even when catalytic metal particles of this size are supported, because the size of the catalytic metal particles is usually 2 to 6 nm. For example, assuming that a representative pore diameter is 5 nm, and Pt particles with a diameter of 3 nm are supported there as metal catalyst particles, assuming a slit-shaped pore with a slit width of 5 nm, the area in the slit is When calculated, it is approximately 200 cm 3 /g, which is also the value of the adsorption amount difference V 0.4-0.9 obtained by subtracting the adsorption amount at a relative pressure of 0.4 from the adsorption amount at a relative pressure of 0.9 specified in the present invention.

また、2400℃で熱処理した後のV0.1-0.4から2200℃で熱処理した後のV0.1-0.4を差し引いた吸着量の差分ΔV0.1-0.4は、2200℃~2400℃の高温度域での容積変化が小さいことを示している。この容積変化が少ないと、多孔質炭素材料の炭素骨格の機械的強度が高く、均一分散のインクを作る際の担体に加えられる機械的シェアに対し細孔構造を維持することが可能となる。そのため触媒が均一に分散した触媒層を作ることができる。また、機械的強度の向上は同時に、酸化消耗に伴う細孔構造の潰れも最小限に抑制することにつながる。その結果として、耐久性(炭素の酸化消耗耐性)が向上する。このように、2200℃~2400℃の高温度域での容積変化に着目することにより、2400℃以上の温度域でも細孔が潰れ難く、且つ、耐久性に優れる特性を引き出すことが可能となる。 In addition, the difference ΔV 0.1-0.4 in the amount of adsorption obtained by subtracting V 0.1-0.4 after heat treatment at 2200 ° C. from V 0.1-0.4 after heat treatment at 2400 ° C. is the volume in the high temperature range of 2200 ° C. to 2400 ° C. This indicates that the change is small. When this volume change is small, the mechanical strength of the carbon skeleton of the porous carbon material is high, and it is possible to maintain the pore structure against the mechanical shear applied to the carrier in making a uniformly dispersed ink. Therefore, a catalyst layer in which the catalyst is uniformly dispersed can be produced. At the same time, the improvement in mechanical strength leads to minimization of collapse of the pore structure due to oxidative consumption. As a result, the durability (resistance to oxidative consumption of carbon) is improved. In this way, by focusing on the volume change in the high temperature range of 2200 ° C. to 2400 ° C., it is possible to bring out the characteristics that the pores are difficult to collapse even in the temperature range of 2400 ° C. or higher and the durability is excellent. .

そして、Gバンドの半値幅は、多孔質炭素材料の結晶性を示している。結晶性が高ければ、酸化の起点であるグラフェンのエッジ部分の面積が小さくなるために、酸化消耗しにくいという意味で耐久性(炭素の酸化消耗耐性)を向上させることができる。
なお、本発明で特に留意すべきは、従来は、高々2200℃での熱処理を高温限界として耐久性の改善と発電特性の両立を図ってきたのに対し、本発明は、通常の多孔質炭素であれば、細孔が潰れて担体としての機能を果たさないような2400℃以上の温度域での熱処理を狙っている。本発明では、このような特殊な材料系を用いることで、従来と同等の発電特性を維持しつつ更なる耐久性改善に成功したことである。上述の比表面積、V0.1-0.4、差分ΔV0.1-0.4、それに、ΔGは、そもそも従来の多孔質炭素材料では同時にこれらを満たすことのできない領域であり、本発明の多孔質炭素材料により始めて達することのできるものである。
The half width of the G band indicates the crystallinity of the porous carbon material. If the crystallinity is high, the area of the edge portion of the graphene, which is the starting point of oxidation, becomes smaller, so the durability (resistance to oxidation and consumption of carbon) can be improved in the sense that oxidation consumption is less likely to occur.
In addition, it should be noted that in the present invention, conventional porous carbon If so, the aim is to perform heat treatment in a temperature range of 2400° C. or higher where the pores are crushed and the carrier does not function. In the present invention, by using such a special material system, we have succeeded in further improving the durability while maintaining the same level of power generation characteristics as in the past. The above-mentioned specific surface area, V 0.1-0.4 , difference ΔV 0.1-0.4 , and ΔG are areas in which conventional porous carbon materials cannot satisfy these simultaneously, and the porous carbon material of the present invention is the first to reach them. It is possible.

以上の知見により、本発明の多孔質炭素材料は、高い温度で運転しても、低電流時の出力特性の経時変化が少なく耐久性(特に、炭素の酸化消耗耐性)に優れた固体高分子形燃料電池の触媒層を製造することが可能となることが見出された。 Based on the above findings, the porous carbon material of the present invention is a solid polymer that has excellent durability (especially resistance to oxidation and consumption of carbon) with little change over time in output characteristics at low current even when operated at high temperatures. It has been found that it is possible to produce catalyst layers for shaped fuel cells.

以下、本発明の多孔質炭素材料について詳細に説明する。 The porous carbon material of the present invention will be described in detail below.

(要件(A))
窒素吸着等温線のBET解析による比表面積(以下、「BET比表面積」とも称する)は、450~700m/gである。これにより、より多くの金属触媒粒子を細孔壁へ担持することができ、低電流時の出力特性が向上する。
BET比表面積が450m/g未満である場合、金属触媒粒子の担持量が減り、低流時の出力特性が低下する。BET比表面積が700m/gを超える場合、多孔質炭素材料の機械的強度及び高温運転時の耐久性(炭素の耐酸化消耗性)が低下する。
(Requirement (A))
The specific surface area determined by BET analysis of the nitrogen adsorption isotherm (hereinafter also referred to as "BET specific surface area") is 450 to 700 m 2 /g. As a result, more metal catalyst particles can be supported on the pore walls, and output characteristics at low current are improved.
If the BET specific surface area is less than 450 m 2 /g, the amount of supported metal catalyst particles is reduced, and the output characteristics at low flow are deteriorated. When the BET specific surface area exceeds 700 m 2 /g, the mechanical strength of the porous carbon material and the durability during high-temperature operation (oxidative wear resistance of carbon) are lowered.

BET比表面積の下限は、金属触媒粒子の担持性の低下を抑制し、低電流時の出力特性を向上する観点から、500m/g以上が好ましく、550m/g以上がより好ましい。
一方、BET比表面積の上限は、炭素量が少なくなり、多孔質炭素材料の物理的強度(機械的強度)及び高温運転時の耐久性(耐酸化消耗性)を向上する観点から680m/g以下が好ましく、650m/g以下がより好ましい。
The lower limit of the BET specific surface area is preferably 500 m 2 /g or more, and more preferably 550 m 2 /g or more, from the viewpoint of suppressing the deterioration of the supportability of the metal catalyst particles and improving the output characteristics at low current.
On the other hand, the upper limit of the BET specific surface area is 680 m 2 /g from the viewpoint of reducing the carbon content and improving the physical strength (mechanical strength) of the porous carbon material and the durability during high-temperature operation (oxidation wear resistance). The following is preferable, and 650 m 2 /g or less is more preferable.

ここで、BET比表面積は、後述する実施例に示す測定方法により測定される値である。 Here, the BET specific surface area is a value measured by a measuring method shown in Examples described later.

(要件(B))
窒素吸脱着等温線における、相対圧0.9の吸着量から相対圧(P/P)0.4の吸着量を差し引いた吸着量の差分V0.4-0.9(図1参照)は、150~450mL/g(好ましくは200~400mL/g)である。それにより、メソ孔容積が高く、低電流時の出力特性が向上する。
吸着量の差分V0.4-0.9が150mL/g未満である場合、メソ孔容積が確保されず、低電流時の出力特性が低下する。一方、吸着量の差分V0.4-0.9が450mL/g超えである場合、多孔質炭素材料の機械的強度及び高温運転時の耐久性(炭素の耐酸化消耗性)が低下する。
(Requirement (B))
In the nitrogen adsorption/desorption isotherm, the difference V 0.4-0.9 (see FIG. 1) of the adsorption amount obtained by subtracting the adsorption amount at a relative pressure (P/P 0 ) of 0.4 from the adsorption amount at a relative pressure of 0.9 is 150 to 450 mL/g (preferably 200-400 mL/g). As a result, the mesopore volume is high and the output characteristics at low current are improved.
If the adsorption amount difference V 0.4-0.9 is less than 150 mL/g, the mesopore volume is not ensured, and the output characteristics at low currents deteriorate. On the other hand, when the adsorption amount difference V 0.4-0.9 exceeds 450 mL/g, the mechanical strength of the porous carbon material and the durability during high-temperature operation (oxidative consumption resistance of carbon) decrease.

吸着量の差分V0.4-0.9の下限は、メソ孔容積を高め、低電流時の出力特性を向上する観点から、200mL/g以上が好ましく、250mL/g以上がより好ましい。
吸着量の差分V0.4-0.9の上限は、多孔質炭素材料の物理的強度(機械的強度)及び高温運転時の耐久性(耐酸化消耗性)を向上する観点から、400mL/g以下が好ましく、395mL/g以下がより好ましい。
The lower limit of the adsorption amount difference V 0.4-0.9 is preferably 200 mL/g or more, more preferably 250 mL/g or more, from the viewpoint of increasing the mesopore volume and improving the output characteristics at low current.
The upper limit of the adsorption amount difference V 0.4-0.9 is preferably 400 mL/g or less from the viewpoint of improving the physical strength (mechanical strength) of the porous carbon material and the durability during high-temperature operation (oxidation wear resistance). , 395 mL/g or less.

ここで、吸着量の差分V0.4-0.9は、後述する実施例に示す測定方法により測定される値である。
なお、吸着量の差分V0.4-0.9は、測定対象である多孔質炭素材料に熱処理を施さずに、窒素吸脱着等温線を求めて算出する。
Here, the adsorption amount difference V 0.4-0.9 is a value measured by a measurement method shown in Examples described later.
The adsorption amount difference V 0.4-0.9 is calculated by determining the nitrogen adsorption/desorption isotherm without subjecting the porous carbon material to be measured to heat treatment.

(要件(C))
窒素吸脱着等温線における、相対圧0.4の吸着量から相対圧(P/P)0.1の吸着量を差し引いた吸着量の差分をV0.1-0.4としたとき、2400℃で熱処理した後のV0.1-0.4から2200℃で熱処理した後のV0.1-0.4を差し引いた吸着量の差分ΔV0.1-0.4(図2参照)は、10~30mL/gである。それにより、2200℃以上の温度で熱処理しても細孔の潰れが抑制され、高温運転時の耐久性(炭素の耐酸化消耗性)が向上する。
一般に、炭素材料は1800℃以上の温度で、官能基や芳香族化合物の水素が分解脱離し、芳香族分子間の結合し、グラフェン構造が成長し始める。さらに、2200~2400℃の温度域で、グラフェン成長と共に、グラフェン層の相互の移動により積層構造が発達し始めるとされる。多孔質炭素材料の場合には、グラフェンの成長は致命的な細孔構造の潰れにはつながらないが、積層構造の発達は、細孔を構成する壁の再配列及び構造変化、すなわち、細孔構造の潰れに直結する。高い温度で運転しても、低電流時の出力特性の経時変化が少なく耐久性(特に、炭素の酸化消耗耐性)を高めるためには、従来よりも高い熱処理温度、すなわち、2400℃以上の高温域での細孔の潰れの抑制が必須となる。そのためには、2200~2400℃での細孔構造の変化が小さい、すなわち、積層構造の発達が抑制されることが本質的に重要となる。そのために、本発明では、2400℃で熱処理した後のV0.1-0.4から2200℃で熱処理した後のV0.1-0.4を差し引いた吸着量の差分ΔV0.1-0.4を指標として採用し、積層構造の発達の程度を物性規定とした。
吸着量の差分ΔV0.1-0.4が10mL/g未満である場合、細孔を構成する炭素からなる壁の厚みが厚いために構造安定性が高く、その場合には、そもそも、担持体として必要な細孔容積と細孔の表面積が小さ過ぎるという問題を生じる。
一方、吸着量の差分ΔV0.1-0.4が30mL/g超えである場合、2400℃以上の高温域での熱処理に対し細孔の潰れが著しく、具体的には、触媒金属粒子を担持するために必要な比表面積、メソ細孔の容積(つまり、V0.1-0.4)を維持することができないおそれがある。
(Requirement (C))
Heat treatment at 2400 ° C., where V 0.1-0.4 is the difference in the adsorption amount obtained by subtracting the adsorption amount at a relative pressure (P/P 0 ) of 0.1 from the adsorption amount at a relative pressure of 0.4 in the nitrogen adsorption and desorption isotherm The adsorption amount difference ΔV 0.1-0.4 (see FIG. 2) obtained by subtracting V 0.1-0.4 after heat treatment at 2200° C. from V 0.1-0.4 after heat treatment is 10 to 30 mL/g. As a result, collapse of pores is suppressed even when heat treatment is performed at a temperature of 2200° C. or higher, and durability (oxidative consumption resistance of carbon) during high-temperature operation is improved.
In general, at a temperature of 1800° C. or higher, hydrogen atoms in functional groups and aromatic compounds are decomposed and eliminated from carbon materials, bonds between aromatic molecules are formed, and a graphene structure begins to grow. Furthermore, in the temperature range of 2200 to 2400° C., it is believed that a laminated structure begins to develop due to the mutual movement of the graphene layers as the graphene grows. In the case of porous carbon materials, the growth of graphene does not lead to fatal collapse of the pore structure, but the development of the layered structure causes the rearrangement and structural change of the walls that make up the pores, i.e., the pore structure directly linked to the collapse of In order to improve the durability (especially the resistance to oxidation and consumption of carbon) with less change over time in the output characteristics at low current even when operated at a high temperature, a higher heat treatment temperature than before, that is, a high temperature of 2400 ° C. or higher It is essential to suppress the collapse of pores in the region. For that purpose, it is essential that the change in the pore structure at 2200 to 2400° C. is small, that is, the development of the laminated structure is suppressed. Therefore, in the present invention, the adsorption amount difference ΔV 0.1-0.4 obtained by subtracting V 0.1-0.4 after heat treatment at 2200° C. from V 0.1-0.4 after heat treatment at 2400° C. is used as an index. The degree of development was defined as physical property.
When the difference ΔV 0.1-0.4 in the amount of adsorption is less than 10 mL/g, the thickness of the walls made of carbon constituting the pores is large, resulting in high structural stability. The problem arises that the pore volume and pore surface area are too small.
On the other hand, when the adsorption amount difference ΔV 0.1-0.4 is more than 30 mL/g, the pores are significantly crushed by heat treatment in a high temperature range of 2400 ° C. or higher. It may not be possible to maintain the required specific surface area, mesopore volume (that is, V 0.1-0.4 ).

吸着量の差分ΔV0.1-0.4の下限は、細孔の機械的強度に相当し、この加減が小さい、すなわち機械的強度がある一定値以上に強くなると、細孔を構成する炭素壁が厚くなってしまい、単位重量当たりの比表面積が小さくなる。このように、細孔の強度と比表面積のバランスの観点から、吸着量の差分ΔV0.1-0.4の下限は、12mL/g以上が好ましく、15mL/g以上がより好ましい。
吸着量の差分ΔV0.1-0.4の上限は、2200℃の熱処理による細孔の潰れを抑制し、高温運転時の耐久性(炭素の耐酸化消耗性)を向上する観点から、28mL/g以下が好ましく、25mL/g以下がより好ましい。
The lower limit of the adsorption amount difference ΔV 0.1-0.4 corresponds to the mechanical strength of the pores. and the specific surface area per unit weight becomes smaller. Thus, from the viewpoint of the balance between pore strength and specific surface area, the lower limit of the difference ΔV 0.1-0.4 in adsorption amount is preferably 12 mL/g or more, more preferably 15 mL/g or more.
The upper limit of the adsorption amount difference ΔV 0.1-0.4 is 28 mL / g or less from the viewpoint of suppressing pore collapse due to heat treatment at 2200 ° C. and improving durability during high-temperature operation (oxidation resistance of carbon). Preferably, 25 mL/g or less is more preferable.

ここで、吸着量の差分ΔV0.1-0.4は、後述する実施例に示す測定方法により測定される値である。
なお、吸着量の差分V0.4-0.9は、測定対象である多孔質炭素材料に、2200℃、2400の熱処理を施した後、各々の熱処理後の多孔質炭素材料の窒素吸脱着等温線を求めて算出する。
Here, the adsorption amount difference ΔV 0.1-0.4 is a value measured by a measurement method shown in Examples described later.
The adsorption amount difference V 0.4-0.9 is obtained by subjecting the porous carbon material to be measured to heat treatment at 2200° C. and 2400 °C, and then obtaining the nitrogen adsorption and desorption isotherms of the porous carbon material after each heat treatment. calculated by

(要件(D))
ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅は、35~45cm-1である。それにより、多孔質炭素材料の炭素網面が広がって、結晶性が高まり、高温運転時の耐久性(炭素の耐酸化消耗性)を向上する。
Gバンドの半値幅が35cm-1未満である場合、多孔質炭素材料の炭素網面が広がり過ぎて細孔壁を形成する炭素網面のエッジ量が減少し、細孔壁への触媒金属微粒子の担持特性が低下する。それにより、低電流時の出力特性が低下する。
一方、Gバンドの半値幅が45cm-1超えの場合、多孔質炭素材料の結晶性が低く、炭素網面が狭くなるため、酸化消耗しやすい炭素網面のエッジ量が増えて、高温運転時の耐久性(炭素の耐酸化消耗性)が低下する。
(Requirement (D))
The half width of the G band detected in the range of 1500 to 1700 cm -1 by Raman spectroscopy is 35 to 45 cm -1 . As a result, the carbon network surface of the porous carbon material is expanded, the crystallinity is enhanced, and the durability (oxidative consumption resistance of carbon) during high-temperature operation is improved.
When the half-value width of the G band is less than 35 cm −1 , the carbon network plane of the porous carbon material spreads too much, the edge amount of the carbon network plane forming the pore wall decreases, and the catalytic metal fine particles on the pore wall The supporting properties of the are lowered. As a result, the output characteristics at low current are degraded.
On the other hand, when the half-value width of the G band exceeds 45 cm −1 , the crystallinity of the porous carbon material is low and the carbon network planes become narrow. durability (oxidative wear resistance of carbon) is reduced.

Gバンドの半値幅の下限は、低電流時の出力特性を向上する観点から、37cm-1以上が好ましく、39cm-1以上がより好ましい。
Gバンドの半値幅の上限は、高温運転時の耐久性(炭素の耐酸化消耗性)を向上する観点から、44cm-1以下が好ましく、43cm-1以下がより好ましい。
The lower limit of the half-value width of the G band is preferably 37 cm −1 or more, more preferably 39 cm −1 or more, from the viewpoint of improving output characteristics at low current.
The upper limit of the half-value width of the G band is preferably 44 cm −1 or less, more preferably 43 cm −1 or less, from the viewpoint of improving the durability (oxidative consumption resistance of carbon) during high-temperature operation.

(要件(E))
本発明の多孔質炭素材料は、下記(E)の要件を満たすことが好ましい。
(E)ラマン分光スペクトルから得られる、Gバンド1500~1700cm-1の範囲のピーク強度IとDバンド1200~1400cm-1の範囲のピーク強度Iとの強度比l/lが、1.0~1.7である。
強度比l/lは、多孔質炭素材料の結晶性を示す指標であり、1.0~1.7を満たすと、さらに、多孔質炭素材料の結晶性が高まり、高温運転時の耐久性(炭素の耐酸化消耗性)を向上する。
(Requirement (E))
The porous carbon material of the present invention preferably satisfies the following requirement (E).
(E) The intensity ratio l D /l G of the peak intensity I G in the range of G band 1500 to 1700 cm −1 and the peak intensity I D in the range of D band 1200 to 1400 cm −1 obtained from the Raman spectroscopy spectrum is 1.0 to 1.7.
The intensity ratio l D /l G is an index indicating the crystallinity of the porous carbon material. (oxidative consumption resistance of carbon) is improved.

強度比l/lの下限は、低電流密度の出力電圧の維持と耐久性の更なる改善の観点から、1.1以上が好ましく、1.2以上がより好ましい。
強度比l/lの上限は、低電流密度の出力電圧の維持と耐久性の更なる改善の観点から、1.6以下が好ましく、1.5以下がより好ましい。
The lower limit of the intensity ratio l D /l G is preferably 1.1 or more, more preferably 1.2 or more, from the viewpoint of maintaining the output voltage at a low current density and further improving durability.
The upper limit of the intensity ratio l D /l G is preferably 1.6 or less, more preferably 1.5 or less, from the viewpoint of maintaining the output voltage at a low current density and further improving durability.

<固体高分子形燃料電池の触媒担体用多孔質炭素材料の製造方法>
以下、本発明の多孔質炭素材料の製造方法の一例について説明する。
<Method for Producing Porous Carbon Material for Catalyst Carrier of Polymer Electrolyte Fuel Cell>
An example of the method for producing the porous carbon material of the present invention will be described below.

(MgO鋳型法)
発明者らは、MgOを鋳型とする多孔質炭素材料の製造方法(MgO鋳型法)について検討した。その結果、次の知見を得た。
芳香族性が高い多環縮合芳香族を構成要素として含む炭素壁でできた多孔質炭素材料であれば、熱処理しても、縮合が進みに難いため、細孔は潰れ難い。また、熱による炭素の再配列による細孔潰れを抑制するため、グラフェンリボンが立体的に結合した構造がよい。
そのような、高い芳香族性を持つ炭素壁を持つ多孔質炭素材料を得るには、炭酸マグネシウムをMgO源とし、且つ、炭素源として、2環以上の縮合多環芳香族基を分子構造に含むポリイミド(具体的には、ポリイミドの前駆体であるポリアミック酸)を用いる。これらMgO源及び炭素源を利用した製法では、例えば、炭素六角網面の幅が3~4個以下のグラフェンリボンが構成単位としてナノサイズのMgO粒子を取り囲む形でリボン間の結合が形成される。それにより、2300~2600℃で熱処理しても、このグラフェンリボン自体は変形せず、また、相互の結合もしにくい。MgO粒子を取り囲む形の結合を作っているので、熱による再配列も起こりにくい。
(MgO template method)
The inventors studied a method for producing a porous carbon material using MgO as a template (MgO template method). As a result, the following findings were obtained.
In the case of a porous carbon material made of carbon walls containing polycyclic condensed aromatics with high aromaticity as a constituent element, even if it is heat-treated, the condensation does not easily proceed, and the pores are not easily collapsed. In order to suppress pore collapse due to carbon rearrangement due to heat, a structure in which graphene ribbons are sterically bonded is preferable.
In order to obtain such a porous carbon material having a carbon wall with high aromaticity, magnesium carbonate is used as an MgO source, and as a carbon source, a condensed polycyclic aromatic group having two or more rings is added to the molecular structure. polyimide (specifically, polyamic acid, which is a precursor of polyimide) is used. In the production method using these MgO sources and carbon sources, for example, graphene ribbons with a width of 3 to 4 or less carbon hexagonal network planes surround nano-sized MgO particles as constituent units, thereby forming bonds between the ribbons. . As a result, the graphene ribbons themselves do not deform even when heat-treated at 2300 to 2600° C., and are less likely to bond to each other. Since the bonds are formed so as to surround the MgO particles, rearrangement due to heat is less likely to occur.

また、MgO源に、予め合成したMgO粒子を適用すると、MgOの結晶子サイズが数nmにすることが困難で、少なくとも、市販の酸化マグネシウムでは、結晶子の最小サイズは7nmであった。これまで述べてきたように、金属触媒粒子は数nmであり、それを収納する細孔の直径は3~10nm、好ましくは、4~8nm程度であり、結晶子7nmのMgO粒子を鋳型原料とすると、少なくとも形成する多孔質の細孔サイズは7nm以上となり、必ずしも担体用の多孔質炭素には適当ではない。
一方、炭酸マグネシウムは、200~430℃において徐々に熱分解し、その過程でMgO微粒子を形成する。この熱分解過程と同じ温度域に、原料の炭素源の熱分解が重なることにより、炭素源分解物がMgO粒子の成長を抑制し、結果として、数nmのMgO粒子を形成し、得られる多孔質炭素材料の細孔直径も数nmを得ることができる。
In addition, when pre-synthesized MgO particles are used as the MgO source, it is difficult to make the crystallite size of MgO several nm. At least, the minimum crystallite size of commercially available magnesium oxide was 7 nm. As described above, the metal catalyst particles are several nanometers in size, the diameter of the pores containing them is 3 to 10 nm, preferably about 4 to 8 nm, and the MgO particles with a crystallite size of 7 nm are used as the template raw material. Then, at least the porous carbon to be formed has a pore size of 7 nm or more, which is not necessarily suitable for porous carbon for a carrier.
On the other hand, magnesium carbonate gradually thermally decomposes at 200 to 430° C., forming MgO fine particles in the process. When the thermal decomposition of the raw material carbon source is superimposed in the same temperature range as this thermal decomposition process, the carbon source decomposition product suppresses the growth of MgO particles, and as a result, MgO particles of several nanometers are formed, resulting in porous A pore diameter of several nanometers can also be obtained in the carbonaceous material.

さらに、原料のポリアミック酸を加熱処理する過程で、脱水縮合によるイミド化反応を生じるが、このイミド構造こそが耐熱安定性の要であるから、イミド化率を高めることにより、炭化過程におけるグラフェンリボンの形成率を高めることが可能となる。そうすることにより、芳香性が高まると共に、結晶性が上がり、高温運転時の耐久性(酸化消耗耐性)を高まる。 Furthermore, in the process of heat-treating the raw material polyamic acid, an imidization reaction occurs due to dehydration condensation, but this imide structure is the key to heat-resistant stability. It is possible to increase the formation rate of By doing so, the aromaticity is increased, the crystallinity is increased, and the durability (oxidative consumption resistance) during high-temperature operation is increased.

それにより、本発明のMgO鋳型法では、所定の比表面積を有すると共に、細孔径4nm~10数nmのメソ孔が形成できると共に、2300℃以上で熱処理しても細孔が潰れず、高い結晶性を有する多孔質炭素材料が製造可能となる。つまり、上記(A)~(D)を満たす多孔質炭素材料が製造可能となる。 As a result, in the MgO template method of the present invention, mesopores having a predetermined specific surface area and a pore diameter of 4 nm to 10 and several nm can be formed. It becomes possible to manufacture a porous carbon material having properties. That is, it is possible to manufacture a porous carbon material that satisfies the above (A) to (D).

以下、MgO鋳型法の一例について説明する。
MgO鋳型法は、MgO源と炭素源の混合工程、第1の加熱工程、MgO除去工程、及び第2の加熱工程を含む。以下、各工程について詳細に説明する。
An example of the MgO template method is described below.
The MgO template method includes a step of mixing an MgO source and a carbon source, a first heating step, a MgO removal step, and a second heating step. Each step will be described in detail below.

(MgO源と炭素源との混合工程)
本工程では、MgO源と炭素源とを混合する。
そして、MgO源として、炭酸マグネシウムを適用する。
一方、炭素源としては、ポリイミドの前駆体であり、2環以上(好ましくは2~4環)の縮合多環芳香族基を有するポリアミック酸を適用する。ここで、縮合多環芳香族基は、芳香族環が複数縮合して得られる基であり、2環では、ナフタレン、3環では、アントラセン、フェナントレン、4環では、テトラセン、クリセン、ピレン、5環では、ペンタセン、ベンゾピレン、トリフェニレン、コランニュレン等が例示される。
MgO源として炭酸マグネシウムを適用し、炭素源として2環以上(好ましくは2~4環)の縮合多環芳香族基を有するポリアミック酸を適用することで、目的とする吸着量の差分ΔV0.1-0.4を有する多孔質炭素材料が得られる。
(Mixing step of MgO source and carbon source)
In this step, an MgO source and a carbon source are mixed.
Then, magnesium carbonate is applied as the MgO source.
On the other hand, as the carbon source, a polyamic acid which is a polyimide precursor and has a condensed polycyclic aromatic group of two or more rings (preferably two to four rings) is used. Here, the condensed polycyclic aromatic group is a group obtained by condensing a plurality of aromatic rings, and naphthalene for bicyclic rings, anthracene and phenanthrene for tricyclic rings, tetracene, chrysene, pyrene, 5 Examples of rings include pentacene, benzopyrene, triphenylene, colannulene, and the like.
By applying magnesium carbonate as the MgO source and polyamic acid having a condensed polycyclic aromatic group with two or more rings (preferably two to four rings) as the carbon source, the target adsorption amount difference ΔV 0.1- A porous carbon material with 0.4 is obtained.

ポリアミック酸は、テトラカルボン酸二無水物とジアミン化合物との縮合重合物である。以下、テトラカルボン酸二無水物およびジアミン化合物の例示を示す。ただし、テトラカルボン酸二無水物およびジアミン化合物の少なくとも一方は、2環以上の縮合多環芳香族基を有する化合物を適用する。 A polyamic acid is a condensation polymer of a tetracarboxylic dianhydride and a diamine compound. Examples of tetracarboxylic dianhydrides and diamine compounds are shown below. However, at least one of the tetracarboxylic dianhydride and the diamine compound applies a compound having a condensed polycyclic aromatic group of two or more rings.

芳香族系のテトラカルボン酸二無水物:ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、2,3,5,6-シクロヘキサン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、4,4-オキシフタリック二無水物、3,4-オキシフタリック二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物等 Aromatic tetracarboxylic dianhydrides: pyromellitic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenylsulfone tetracarboxylic acid acid dianhydride, 2,3,5,6-cyclohexane dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,6,7-anthracenetetracarboxylic dianhydride, 4,4-oxyphthalic dianhydride, 3,4-oxyphthalic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, etc.

脂肪族又は脂環式のテトラカルボン酸二無水物:ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、3,5,6-トリカルボキシノルボナン-2-酢酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、ビシクロ[2,2,2]-オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物 Aliphatic or alicyclic tetracarboxylic dianhydrides: butanetetracarboxylic dianhydride, 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3, 4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic dianhydride, 3,5,6-tricarboxynol Bonane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2- Dicarboxylic dianhydride, bicyclo[2,2,2]-oct-7-ene-2,3,5,6-tetracarboxylic dianhydride

芳香族ジアミン化合物:p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエタン、4,4’-ジアミノジフェニルエーテル、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、9,10-アントラセンジアミン等のほか、メラミン、ヘキサメチレンテトラミンなども用いることができる。
脂肪族又は脂環式のジアミン化合物;1,1-メタキシリレンジアミン、1,3-プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4-ジアミノヘプタメチレンジアミン、1,4-ジアミノシクロヘキサン、イソフォロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ-4,7-メタノインダニレンジメチレンジアミン、トリシクロ[6,2,1,02.7]-ウンデシレンジメチルジアミン、4,4’-メチレンビス(シクロヘキシルアミン)等
Aromatic diamine compounds: p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylethane, 4,4'-diaminodiphenyl ether, 1,5-naphthalenediamine, 2,6 -Naphthalenediamine, 9,10-anthracenediamine and the like, as well as melamine, hexamethylenetetramine and the like can also be used.
Aliphatic or alicyclic diamine compounds; 1,1-metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, octamethylenediamine, nonamethylenediamine, 4,4-diaminoheptamethylenediamine , 1,4-diaminocyclohexane, isophoronediamine, tetrahydrodicyclopentadienylenediamine, hexahydro-4,7-methanoindanidimethylenediamine, tricyclo[6,2,1,0 2.7 ]-undecylenedimethyl diamine, 4,4'-methylenebis(cyclohexylamine), etc.

MgO源と炭素源との混合比(MgO源/炭素源)は、例えば、MgOと炭素源中の炭素Cのモル比において1.0以上15.0以下とする。それにより、目的とするBET比表面積および細孔分布(吸着量の差分V0.4-0.9)の多孔質炭素材料が得られる。 The mixing ratio of the MgO source and the carbon source (MgO source/carbon source) is, for example, 1.0 or more and 15.0 or less in terms of the molar ratio of MgO and carbon C in the carbon source. As a result, a porous carbon material having the desired BET specific surface area and pore size distribution (difference V 0.4-0.9 in adsorbed amount) can be obtained.

(第1の加熱工程)
第1の加熱工程では、例えば、MgO源と炭素源との混合物を、不活性ガス雰囲気下で、昇温速度5~30℃/分で、800~1100℃まで昇温し、その温度で
10~200分保持する。
この熱処理により、ポリアミック酸のポリイミド化及び炭素化と並行して、炭酸マグネシウムを熱分解及びMgO化し、炭素-MgO複合体を得る。
(First heating step)
In the first heating step, for example, a mixture of an MgO source and a carbon source is heated to 800 to 1100° C. at a temperature elevation rate of 5 to 30° C./min under an inert gas atmosphere. Hold for ~200 minutes.
By this heat treatment, magnesium carbonate is thermally decomposed and converted to MgO in parallel with the polyimidation and carbonization of the polyamic acid to obtain a carbon-MgO composite.

ここで、ポリアミック酸を加熱することで、脱水縮合しポリイミドが形成されるが、上記昇温過程ではイミド化が不完全のまま熱分解される。そのため、昇温途中において、300℃~450℃で1時間以上の保持し、イミド化率を高めることがよい。イミド化率を高めることにより、ポリイミドの耐熱性が向上し、800~1100℃での保持後の炭化歩留まりが高くなる。そして、グラフェンリボンが長くなり芳香性が高まると共に、結晶性が上がり、高温運転時の耐久性(酸化消耗耐性)が向上する。 When the polyamic acid is heated, it undergoes dehydration condensation and polyimide is formed. However, in the process of raising the temperature, the polyamic acid is thermally decomposed while imidization is incomplete. Therefore, it is preferable to maintain the temperature at 300° C. to 450° C. for 1 hour or more during the temperature rise to increase the imidization rate. By increasing the imidization rate, the heat resistance of the polyimide is improved, and the carbonization yield after holding at 800 to 1100° C. is increased. In addition, the graphene ribbon becomes longer, the fragrance increases, the crystallinity increases, and the durability (resistance to oxidative wear and tear) during high-temperature operation improves.

(MgO除去工程)
MgO除去工程では、炭素-MgO複合体を酸洗することで、MgO鋳型を酸洗液中に溶解する。これにより、炭素-MgO複合体からMgO鋳型を除去する。それにより、多孔質炭素材料中間体を得る。
酸洗に用いる酸は、MgOが可溶であればよく、好ましい例としては、硫酸が挙げられる。酸洗後、炭素材料を水洗し、乾燥させる。
(MgO removal step)
In the MgO removal step, the carbon-MgO composite is pickled to dissolve the MgO template in the pickling solution. This removes the MgO template from the carbon-MgO composite. Thereby, a porous carbon material intermediate is obtained.
The acid used for pickling may be any acid that dissolves MgO, and a preferred example is sulfuric acid. After pickling, the carbon material is washed with water and dried.

(第2の加熱工程)
第2の加熱工程では、例えば、得られた多孔質炭素材料中間体を、不活性ガス雰囲気下で、2300~2600℃で、0.5~3.0時間保持する。
この熱処理により、多孔質炭素材料の結晶性がさらに高まり、高温運転時の耐久性(酸化消耗耐性)が向上する。
(Second heating step)
In the second heating step, for example, the obtained porous carbon material intermediate is held at 2300 to 2600° C. for 0.5 to 3.0 hours in an inert gas atmosphere.
This heat treatment further increases the crystallinity of the porous carbon material and improves the durability (resistance to oxidation consumption) during high-temperature operation.

以上のMgO鋳型法により、目的とする多孔質炭素材料が得られる。 The intended porous carbon material can be obtained by the MgO template method described above.

(銀アセチリド法)
発明者らは、銀アセチリドを原料とする多孔質炭素材料の製造方法(銀アセチリド法)についても検討した。その結果、次の知見を得た。
銀アセチリドの熱分解で生じる炭素構造は、基本的に芳香族性と共に、結晶性が高いのが特徴である。一方、銀アセチリドを原料とする製法では、分解時の環境を調製することで銀のナノ粒子のサイズを制御することが可能である。つまり、細孔径分布を制御し、メソ細孔が形成可能である。
一方、従来、銀アセチリド由来の銀粒子内包中間体を乾燥後に爆発させていたのに対して、水に分散した銀アセチリドのスラリーを滴下し、水の蒸発で銀アセチリドの爆発の熱量を減量する。そうすると、従来よりも長い時間かけて銀アセチリドが爆発し、グラフェンリボンが立体的に結合した構造の形成が促進され、熱による炭素の再配列による細孔潰れが抑制される。
そのため、本発明の銀アセチリド法では、所定の比表面積を有すると共に、細孔径4nm~10数nmのメソ孔が形成され、2300℃以上で熱処理しても細孔が潰れず、高い結晶性を有する多孔質炭素材料が形成可能となる。つまり、上記(A)~(D)を満たす多孔質炭素材料が製造可能となる。
(Silver acetylide method)
The inventors also investigated a method for producing a porous carbon material using silver acetylide as a raw material (silver acetylide method). As a result, the following findings were obtained.
The carbon structure generated by the thermal decomposition of silver acetylide is basically characterized by high crystallinity as well as aromaticity. On the other hand, in the production method using silver acetylide as a raw material, it is possible to control the size of silver nanoparticles by adjusting the environment during decomposition. That is, it is possible to control the pore size distribution and form mesopores.
On the other hand, conventionally, a silver particle-encapsulating intermediate derived from silver acetylide is dried and then exploded. . Then, silver acetylide explodes over a longer period of time than before, promoting the formation of a structure in which graphene ribbons are sterically bonded, and suppressing pore collapse due to carbon rearrangement due to heat.
Therefore, in the silver acetylide method of the present invention, mesopores having a predetermined specific surface area and a pore diameter of 4 nm to 10 and several nm are formed, and the pores are not crushed even by heat treatment at 2300 ° C. or higher, and high crystallinity is achieved. It becomes possible to form a porous carbon material having That is, it is possible to manufacture a porous carbon material that satisfies the above (A) to (D).

以下、銀アセチリド法の一例について説明する。
銀アセチリド法は、銀アセチリド生成工程、第1の加熱処理工程、第2の加熱処理工程、洗浄処理工程、および第3の加熱処理工程を含む。以下、各工程について詳細に説明する。
An example of the silver acetylide method is described below.
The silver acetylide method includes a silver acetylide production step, a first heat treatment step, a second heat treatment step, a washing treatment step, and a third heat treatment step. Each step will be described in detail below.

(銀アセチリド生成工程)
銀アセチリド生成工程では、銀又は銀塩を含む溶液中にアセチレンガスを吹き込み、金属アセチリドを生成させる。
(Silver acetylide production step)
In the silver acetylide production step, acetylene gas is blown into a solution containing silver or a silver salt to produce metal acetylide.

(第1の加熱処理工程)
第1の加熱処理工程では、銀アセチリドを60℃以上80℃以下の温度で加熱し、銀を銀粒子として偏析させ、この銀粒子が内包された銀粒子内包中間体を得る。この第1の加熱処理工程での加熱時間は、通常1時間以上、好ましくは1~10時間である。
(First heat treatment step)
In the first heat treatment step, silver acetylide is heated at a temperature of 60° C. or higher and 80° C. or lower to segregate silver as silver particles to obtain a silver particle-encapsulated intermediate in which the silver particles are encapsulated. The heating time in this first heat treatment step is usually 1 hour or more, preferably 1 to 10 hours.

(第2の加熱工程)
第2の加熱工程では、金属粒子内包中間体を200℃以上400℃以下の温度で加熱し、銀アセチリドの自己分解爆発反応を誘発させ、銀粒子内包中間体を爆発させる。それにより、銀粒子内包中間体により金属粒子を噴出させ、多孔質炭素材料中間体(銀と炭素との複合物からなる分解生成物)を得る。
(Second heating step)
In the second heating step, the metal particle-encapsulated intermediate is heated at a temperature of 200° C. or higher and 400° C. or lower to induce self-decomposition explosion reaction of silver acetylide and explode the silver particle-encapsulated intermediate. As a result, metal particles are ejected from the silver particle-containing intermediate to obtain a porous carbon material intermediate (decomposition product composed of a composite of silver and carbon).

銀粒子内包中間体の爆発の過程で、銀のナノサイズの粒子(銀ナノ粒子)が生成すると同時に、この銀ナノ粒子を取り巻くように六角網面の炭素層が形成されて、銀アセチリドの形状である3次元樹状構造の骨格がそのまま炭素層で構成されるに至る。さらに、生成した銀ナノ粒子が爆発エネルギーにより溶融した状態で、ナノ粒子を取り巻く炭素層により形成される細孔を通じて、その外部に噴出して銀の集合体(銀粒子)を形成する。この爆発から銀の噴出までの一連の過程で、3次元樹状構造の外形をもつ多孔質炭素と銀の複合体が形成される。 In the process of the explosion of the silver particle-encapsulated intermediate, silver nano-sized particles (silver nanoparticles) are generated, and at the same time, a hexagonal mesh plane carbon layer is formed surrounding the silver nanoparticles, resulting in the shape of silver acetylide. The skeleton of the three-dimensional dendritic structure is composed of the carbon layer as it is. Further, the generated silver nanoparticles are melted by the explosion energy, and ejected to the outside through the pores formed by the carbon layer surrounding the nanoparticles to form aggregates of silver (silver particles). In a series of processes from this explosion to the ejection of silver, a composite of porous carbon and silver having a three-dimensional dendritic structure is formed.

ここで、第2の加熱工程では、銀アセチリド由来の金属粒子内包中間体を水に分散させたスラリーを調製し、300℃以上500℃以下で加熱した加熱板上、このスラリーを滴下する。滴下したスラリーは、まず加熱板上で水分が蒸発し、次いで、銀アセチリドの爆発分解を生じる。スラリーを熱分解する過程の重要性は、二つの効果にある。一つ目の効果は、銀アセチリドの爆発分解時に、水分が残り、爆発エネルギーの一部を水分の蒸発と水蒸気の加熱に振り分け、銀アセチリドの加熱を軽減することにある。二つ目の効果は、同時に、爆発箇所とタイミングが分散することにより、個々の爆発規模そのものが小さくなることにある。 Here, in the second heating step, a slurry is prepared by dispersing the silver acetylide-derived metal particle-encapsulating intermediate in water, and this slurry is dropped onto a hot plate heated at 300° C. or higher and 500° C. or lower. The dropped slurry first evaporates water on the heating plate, and then causes explosive decomposition of silver acetylide. The importance of the process of pyrolyzing the slurry lies in two effects. The first effect is that water remains during the explosive decomposition of silver acetylide, and part of the explosion energy is allocated to evaporation of water and heating of steam, thereby reducing heating of silver acetylide. The second effect is that, at the same time, the explosion locations and timings are dispersed, so that the scale of each explosion itself becomes smaller.

第1の加熱工程後の銀アセチリドを真空乾燥した後に、真空中で加熱して、熱により一気に爆発させる従来の分解行程に比較すると、上述の第2の加熱工程では、スラリーの加熱板上での分解による二つの効果により、銀の粒子を取り巻く六角網面の炭素層を形成する時間が長くなり、炭素層どうしの連結が発達する。その結果、グラフェンリボンが立体的に結合した構造の形成が促進され、熱による炭素の再配列による細孔潰れが抑制される。 Compared to the conventional decomposition process in which the silver acetylide after the first heating step is vacuum-dried, then heated in a vacuum and exploded at once by heat, in the above-mentioned second heating step, on a slurry heating plate, A two-fold effect of the decomposition of , lengthens the time to form the hexagonal carbon layers surrounding the silver grains and develops connections between the carbon layers. As a result, the formation of a structure in which graphene ribbons are sterically bonded is promoted, and pore collapse due to carbon rearrangement due to heat is suppressed.

また、第2の加熱工程において、上述の効果を十分に発現させるために、加熱板はできる限り熱容量の大きく、且つ、熱伝導性の高い材料を用いる。具体的には、加熱板は金属板を用いるのが好ましい。スラリーの濃度は、銀アセチリドの乾燥質量を固形分とし、0.5~30質量%とし、スラリー滴下量は、加熱板の面積に1mmの高さを乗じて得られる体積に対し、0.2倍~1.5倍とする。加熱板は、スラリーの滴下から分解が終わるまでの間に、加熱板表面温度が、少なくとも200℃以上を保つように制御されることが望ましい。
これらの条件で加熱することで、目的とするBET比表面積および細孔径4nm~10数nmのメソ孔(つまり、差分V0.4-0.9)を有する多孔質炭素材料が形成される。
Further, in the second heating step, a material having as large a heat capacity as possible and high thermal conductivity is used for the heating plate in order to fully exhibit the above effects. Specifically, it is preferable to use a metal plate as the heating plate. The concentration of the slurry is 0.5 to 30% by mass based on the dry mass of the silver acetylide as a solid content, and the amount of the slurry dropped is 0.2 with respect to the volume obtained by multiplying the area of the heating plate by the height of 1 mm. Double to 1.5 times. The heating plate is desirably controlled so that the surface temperature of the heating plate is kept at least 200° C. or higher from the time the slurry is dropped until the decomposition is completed.
By heating under these conditions, a porous carbon material having the desired BET specific surface area and mesopores with a pore size of 4 nm to 10 and several nm (that is, the difference V 0.4-0.9 ) is formed.

(洗浄処理工程)
洗浄工程では、多孔質炭素材料中間体(銀と炭素との複合物からなる分解生成物)に対して、銀の溶解処理(洗浄処理)を実施する。それにより、多孔質炭素材料中間体の表面に存在する銀粒子やその他の不安定な炭素化合物を除去する。
ここで、銀の溶解処理(洗浄処理)は、例えば、硝酸、硫酸を用いる。濃度は、5~30質量%、温度は、室温から必要に応じて80℃程度、時間は、数時間から10数時間程度である。この工程は複数回行うことも可能である。
(Washing process)
In the washing step, the porous carbon material intermediate (a decomposition product composed of a composite of silver and carbon) is subjected to silver dissolution treatment (washing treatment). Thereby, silver particles and other unstable carbon compounds present on the surface of the porous carbon material intermediate are removed.
Here, for example, nitric acid and sulfuric acid are used for dissolving treatment (cleaning treatment) of silver. The concentration is 5 to 30% by mass, the temperature is from room temperature to about 80° C., and the time is from several hours to ten and several hours. This step can also be performed multiple times.

(第3の加熱工程)
第3の加熱工程では、不活性ガス雰囲気下で、洗浄された多孔質炭素材料中間体を、2300~2600℃で、0.5~3.0時間保持する。この熱処理により、多孔質炭素材料の結晶性がさらに高まり、高温運転時の耐久性(酸化消耗耐性)が向上する。
(Third heating step)
In the third heating step, the cleaned porous carbon material intermediate is held at 2300 to 2600° C. for 0.5 to 3.0 hours in an inert gas atmosphere. This heat treatment further increases the crystallinity of the porous carbon material and improves the durability (resistance to oxidation consumption) during high-temperature operation.

以上の銀アセチリド法により、目的とする多孔質炭素材料が得られる。 The desired porous carbon material can be obtained by the silver acetylide method described above.

<固体高分子形燃料電池の構成>
本実施形態に係る触媒担体用炭素材料は、例えば図3に示す固体高分子形燃料電池100に適用可能である。固体高分子形燃料電池100は、セパレータ110、120、ガス拡散層130、140、触媒層150、160、及び電解質膜170を備える。
<Structure of polymer electrolyte fuel cell>
The catalyst carrier carbon material according to this embodiment can be applied to, for example, a polymer electrolyte fuel cell 100 shown in FIG. The polymer electrolyte fuel cell 100 includes separators 110 and 120 , gas diffusion layers 130 and 140 , catalyst layers 150 and 160 and an electrolyte membrane 170 .

セパレータ110は、アノード側のセパレータであり、水素等の燃料ガスをガス拡散層130に導入する。セパレータ120は、カソード側のセパレータであり、酸素ガス、空気等の酸化性ガスをガス拡散凝集相に導入する。セパレータ110、120の種類は特に問われず、従来の燃料電池、例えば固体高分子形燃料電池で使用されるセパレータであればよい。 The separator 110 is an anode-side separator and introduces a fuel gas such as hydrogen into the gas diffusion layer 130 . The separator 120 is a separator on the cathode side, and introduces an oxidizing gas such as oxygen gas or air into the gas diffusion and aggregation phase. The type of the separators 110 and 120 is not particularly limited as long as they are separators used in conventional fuel cells such as polymer electrolyte fuel cells.

ガス拡散層130は、アノード側のガス拡散層であり、セパレータ110から供給された燃料ガスを拡散させた後、触媒層150に供給する。ガス拡散層140は、カソード側のガス拡散層であり、セパレータ120から供給された酸化性ガスを拡散させた後、触媒層160に供給する。ガス拡散層130、40の種類は特に問われず、従来の燃料電池、例えば固体高分子形燃料電池に使用されるガス拡散層であればよい。ガス拡散層130、40の例としては、多孔質炭素材料(カーボンクロス、カーボンペーパー等)、多孔質金属材料(金属メッシュ、金属ウール等)等が挙げられる。
なお、ガス拡散層130、140の好ましい例としては、ガス拡散層のセパレータ側の層が繊維状炭素材料を主成分とするガス拡散繊維層となり、触媒層側の層がカーボンブラックを主成分とするマイクロポア層となる2層構造のガス拡散層が挙げられる。
The gas diffusion layer 130 is a gas diffusion layer on the anode side, and supplies the catalyst layer 150 after diffusing the fuel gas supplied from the separator 110 . The gas diffusion layer 140 is a cathode-side gas diffusion layer, and after diffusing the oxidizing gas supplied from the separator 120 , supplies the gas to the catalyst layer 160 . The type of gas diffusion layers 130 and 40 is not particularly limited as long as they are gas diffusion layers used in conventional fuel cells, such as polymer electrolyte fuel cells. Examples of the gas diffusion layers 130 and 40 include porous carbon materials (carbon cloth, carbon paper, etc.), porous metal materials (metal mesh, metal wool, etc.), and the like.
As a preferred example of the gas diffusion layers 130 and 140, the separator-side layer of the gas diffusion layer is a gas diffusion fiber layer containing a fibrous carbon material as a main component, and the catalyst layer-side layer contains carbon black as a main component. A gas diffusion layer having a two-layer structure that serves as a microporous layer is exemplified.

触媒層150は、いわゆるアノードである。触媒層150内では、燃料ガスの酸化反応が起こり、プロトンと電子が生成される。例えば、燃料ガスが水素ガスとなる場合、以下の酸化反応が起こる。
→2H+2e (E=0V)
The catalyst layer 150 is a so-called anode. An oxidation reaction of the fuel gas occurs in the catalyst layer 150 to generate protons and electrons. For example, when the fuel gas is hydrogen gas, the following oxidation reactions occur.
H 2 →2H + +2e (E 0 =0 V)

酸化反応によって生じたプロトンは、触媒層150、及び電解質膜170を通って触媒層160に到達する。酸化反応によって生じた電子は、触媒層150、ガス拡散層130、及びセパレータ110を通って外部回路に到達する。電子は、外部回路内で仕事をした後、セパレータ120に導入される。その後、電子は、セパレータ120、ガス拡散層140を通って触媒層160に到達する。 Protons generated by the oxidation reaction reach catalyst layer 160 through catalyst layer 150 and electrolyte membrane 170 . Electrons generated by the oxidation reaction pass through the catalyst layer 150, the gas diffusion layer 130, and the separator 110 and reach the external circuit. The electrons are introduced into separator 120 after doing work in the external circuit. After that, the electrons reach the catalyst layer 160 through the separator 120 and the gas diffusion layer 140 .

アノードとなる触媒層150の構成は特に制限されない。すなわち、触媒層150の構成は、従来のアノードと同様の構成であってもよいし、触媒層160と同様の構成であってもよいし、触媒層160よりもさらに親水性が高い構成であってもよい。 The configuration of the catalyst layer 150 that serves as the anode is not particularly limited. That is, the structure of the catalyst layer 150 may be the same as that of a conventional anode, or the same as that of the catalyst layer 160, or may be more hydrophilic than the catalyst layer 160. may

触媒層160は、いわゆるカソードである。触媒層160内では、酸化性ガスの還元反応が起こり、水が生成される。例えば、酸化性ガスが酸素ガスあるいは空気となる場合、以下の還元反応が起こる。酸化反応で発生した水は、未反応の酸化性ガスとともに固体高分子形燃料電池100の外部に排出される。
+4H+4e→2HO (E=1.23V)
The catalyst layer 160 is a so-called cathode. A reduction reaction of the oxidizing gas occurs in the catalyst layer 160 to produce water. For example, when the oxidizing gas is oxygen gas or air, the following reduction reactions occur. Water generated by the oxidation reaction is discharged outside the solid polymer fuel cell 100 together with unreacted oxidizing gas.
O 2 +4H + +4e →2H 2 O (E 0 =1.23 V)

このように、固体高分子形燃料電池100では、酸化反応と還元反応とのエネルギー差(電位差)を利用して発電する。言い換えれば、酸化反応で生じた電子が外部回路で仕事を行う。 In this manner, the polymer electrolyte fuel cell 100 generates electricity using the energy difference (potential difference) between the oxidation reaction and the reduction reaction. In other words, the electrons produced in the oxidation reaction do work in the external circuit.

触媒層160には、本実施形態に係る触媒担体用炭素材料が含まれている。すなわち、触媒層160は、本実施形態に係る触媒担体用炭素材料と、電解質材料と、燃料電池用触媒とを含む。これにより、触媒層160内の触媒利用率を高めることができる。その結果、固体高分子形燃料電池100の触媒利用率を高めることができる。 The catalyst layer 160 contains the catalyst carrier carbon material according to the present embodiment. That is, the catalyst layer 160 includes the catalyst carrier carbon material according to the present embodiment, the electrolyte material, and the fuel cell catalyst. Thereby, the catalyst utilization rate in the catalyst layer 160 can be increased. As a result, the catalyst utilization rate of the polymer electrolyte fuel cell 100 can be increased.

なお、触媒層160における燃料電池触媒担持率は特に制限されないが、30質量%以上80質量%未満であることが好ましい。ここで、燃料電池触媒担持率は、触媒担持粒子(触媒担体用炭素材料に燃料電池用触媒を担持させた粒子)の総質量に対する燃料電池用触媒の質量%であることが好ましい。この場合、触媒利用率がさらに高くなる。なお、燃料電池触媒担持率が30質量%未満となる場合、固体高分子形燃料電池100を実用に耐えるようにするために触媒層160を厚くする必要が生じうる。一方、燃料電池触媒担持率が80質量%以上となる場合、触媒凝集が起こりやすくなる。また、触媒層160が薄くなりすぎて、フラッディングが起こる可能性が生じる。 Although the fuel cell catalyst loading rate in the catalyst layer 160 is not particularly limited, it is preferably 30% by mass or more and less than 80% by mass. Here, the fuel cell catalyst support rate is preferably mass % of the fuel cell catalyst with respect to the total mass of the catalyst-supporting particles (particles in which the fuel cell catalyst is supported on the carbon material for catalyst support). In this case, the catalyst utilization rate is further increased. If the fuel cell catalyst support rate is less than 30% by mass, it may be necessary to increase the thickness of the catalyst layer 160 in order to make the polymer electrolyte fuel cell 100 practically usable. On the other hand, when the fuel cell catalyst support rate is 80% by mass or more, catalyst aggregation tends to occur. Also, the catalyst layer 160 may become too thin, causing flooding.

触媒層160における電解質材料の質量I(g)と触媒担体用炭素材料の質量C(g)との質量比I/Cは特に制限されないが、0.5超5.0未満であることが好ましい。この場合、細孔ネットワークと電解質材料ネットワークとが両立でき、触媒利用率が高くなる。一方、質量比I/Cが0.5以下となる場合、電解質材料ネットワークが貧弱になり、プロトン伝導抵抗が高くなる傾向にある。質量比I/Cが5.0以上となる場合、電解質材料によって細孔ネットワークが分断される可能性がある。いずれの場合にも、触媒利用率が低下する可能性がある。
The mass ratio I/C between the mass I (g) of the electrolyte material and the mass C (g) of the carbon material for catalyst support in the catalyst layer 160 is not particularly limited, but is preferably more than 0.5 and less than 5.0. . In this case, both the pore network and the electrolyte material network can be achieved, and the catalyst utilization rate increases. On the other hand, when the mass ratio I/C is 0.5 or less, the electrolyte material network tends to be poor and the proton conduction resistance tends to be high. If the mass ratio I/C is 5.0 or more, the electrolyte material may disrupt the pore network. In either case, catalyst utilization may decrease.

また、触媒層160の厚さは特に制限されないが、5μm超20μm未満であることが好ましい。この場合、触媒層160内に酸化性ガスが拡散しやすく、かつ、フラッディングが生じにくくなる。触媒層160の厚さが5μm以下となる場合、フラッディングが生じやすくなる。触媒層160の厚さが20μm以上となる場合、触媒層160内で酸化性ガスが拡散しにくくなり、電解質膜170近傍の燃料電池用触媒が働きにくくなる。すなわち、触媒利用率が低下する可能性がある。 Moreover, the thickness of the catalyst layer 160 is not particularly limited, but is preferably more than 5 μm and less than 20 μm. In this case, the oxidizing gas easily diffuses into the catalyst layer 160, and flooding is less likely to occur. When the thickness of the catalyst layer 160 is 5 μm or less, flooding is likely to occur. When the thickness of the catalyst layer 160 is 20 μm or more, it becomes difficult for the oxidizing gas to diffuse in the catalyst layer 160, and the fuel cell catalyst in the vicinity of the electrolyte membrane 170 becomes difficult to work. That is, the catalyst utilization rate may decrease.

電解質膜170は、プロトン伝導性を有する電解質材料で構成されている。電解質膜170は、上記酸化反応で生成したプロトンをカソードである触媒層160に導入する。ここで、電解質材料の種類は特に問われず、従来の燃料電池、例えば固体高分子形燃料電池で使用される電解質材料であればよい。好適な例は固体高分子形燃料電池で使用される電解質材料、すなわち、電解質樹脂である。電解質樹脂としては、例えば、リン酸基、スルホン酸基等を導入した高分子(例えば、パーフルオロスルホン酸ポリマー又はベンゼンスルホン酸が導入されたポリマー)等が挙げられる。もちろん、本実施形態に係る電解質材料は他の種類の電解質材料であってもよい。このような電解質材料としては、例えば、無機系、無機-有機ハイブリッド系等の電解質材料等が挙げられる。なお、固体高分子形燃料電池100は、常温~150℃の範囲内で作動する燃料電池であってもよい。 The electrolyte membrane 170 is made of an electrolyte material having proton conductivity. The electrolyte membrane 170 introduces the protons generated by the oxidation reaction into the catalyst layer 160, which is the cathode. Here, the type of electrolyte material is not particularly limited as long as it is an electrolyte material used in conventional fuel cells such as polymer electrolyte fuel cells. A suitable example is an electrolyte material used in a polymer electrolyte fuel cell, ie, an electrolyte resin. Examples of electrolyte resins include polymers into which phosphoric acid groups, sulfonic acid groups, etc. are introduced (for example, perfluorosulfonic acid polymers or polymers into which benzenesulfonic acid is introduced). Of course, the electrolyte material according to this embodiment may be other types of electrolyte materials. Examples of such electrolyte materials include inorganic electrolyte materials, inorganic-organic hybrid electrolyte materials, and the like. The polymer electrolyte fuel cell 100 may be a fuel cell that operates within the range of room temperature to 150.degree.

<固体高分子形燃料電池の製造方法>
固体高分子形燃料電池100の製造方法は特に制限されず、従来と同様の製造方法であればよい。ただし、カソード側の触媒担体には本実施形態に係る触媒担体用炭素材料を用いる。
<Method for Producing Polymer Electrolyte Fuel Cell>
The method of manufacturing the polymer electrolyte fuel cell 100 is not particularly limited as long as it is a conventional manufacturing method. However, the catalyst carrier carbon material according to the present embodiment is used for the catalyst carrier on the cathode side.

<各パラメータの測定方法>
つぎに、本発明の実施例について説明する。まず、各パラメータの測定方法について説明する。
<Method of measuring each parameter>
Next, examples of the present invention will be described. First, the method of measuring each parameter will be described.

(窒素吸脱着等温線の測定方法)
約30mgの試料を測り採り、120℃で2時間真空乾燥した。次いで、自動比表面積測定装置(マイクロトラックベル社製、BELSORP MAX)に試料をセットし、窒素ガスを吸着質に用いて77Kの測定温度で窒素吸脱着等温線を測定した。
窒素吸脱着等温線の測定では、一般の測定よりも、相対圧P/Pの測定間隔を小さく(具体的には、P/Pの測定間隔を0.005刻みで定点を取るように)設定した。つまり、測定上の相対圧P/Pの測定精度は0.005とした。
(Method for measuring nitrogen adsorption/desorption isotherm)
About 30 mg of sample was weighed out and vacuum dried at 120° C. for 2 hours. Next, the sample was set in an automatic specific surface area measuring device (BELSORP MAX manufactured by Microtrack Bell), and the nitrogen adsorption/desorption isotherm was measured at a measurement temperature of 77K using nitrogen gas as an adsorbate.
In the measurement of the nitrogen adsorption-desorption isotherm, the measurement interval of the relative pressure P/P 0 is set smaller than in general measurement (specifically, the measurement interval of P/P 0 is set at increments of 0.005. ) was set. That is, the measurement accuracy of the relative pressure P/ P0 on measurement was set to 0.005.

次に、相対圧P/Pが0.05~0.15の範囲で窒素吸着等温線をBET解析することにより、BET比表面積SBETを算出した。 Next, the BET specific surface area S BET was calculated by BET analysis of the nitrogen adsorption isotherm when the relative pressure P/P 0 was in the range of 0.05 to 0.15.

次に、窒素吸脱着等温線から、相対圧0.9の吸着量、相対圧0.4の吸着量を求め、吸着量の差分V0.4-0.9(=相対圧0.9の吸着量-相対圧0.4の吸着量)を算出した。 Next, from the nitrogen adsorption/desorption isotherm, the adsorption amount at a relative pressure of 0.9 and the adsorption amount at a relative pressure of 0.4 are obtained, and the adsorption amount difference V 0.4-0.9 (= adsorption amount at a relative pressure of 0.9 - relative The amount of adsorption at a pressure of 0.4) was calculated.

次に、試料に対して、不活性ガス雰囲気下で、2200℃、1.0時間の条件で熱処理を施す。この熱処理後の試料に対して、上記同様にして窒素吸脱着等温線を測定する。
得られた窒素吸脱着等温線から、相対圧0.4の吸着量、相対圧0.1の吸着量を求め、吸着量の差分をV0.1-0.4@2200℃(=相対圧0.4の吸着量-相対圧0.1の吸着量)を算出した。
次に、試料に対して、不活性ガス雰囲気下で、2400℃、1.0時間の条件で熱処理を施す。この熱処理後の試料に対して、上記同様にして窒素吸脱着等温線を測定する。
得られた窒素吸脱着等温線から、相対圧0.4の吸着量、相対圧0.1の吸着量を求め、吸着量の差分をV0.1-0.4@2400℃(=相対圧0.4の吸着量-相対圧0.1の吸着量)を算出した。
そして、吸着量の差分ΔV0.1-0.4(=V0.1-0.4@2400℃-V0.1-0.4@2200℃)を求める。
Next, the sample is heat-treated at 2200° C. for 1.0 hour in an inert gas atmosphere. The nitrogen adsorption/desorption isotherm is measured for the sample after this heat treatment in the same manner as described above.
From the obtained nitrogen adsorption and desorption isotherms, the adsorption amount at a relative pressure of 0.4 and the adsorption amount at a relative pressure of 0.1 are obtained, and the difference in the adsorption amount is V 0.1-0.4 @ 2200 ° C (= relative pressure of 0.4 Adsorption amount - adsorption amount at a relative pressure of 0.1) was calculated.
Next, the sample is heat-treated at 2400° C. for 1.0 hour in an inert gas atmosphere. The nitrogen adsorption/desorption isotherm is measured for the sample after this heat treatment in the same manner as described above.
From the obtained nitrogen adsorption and desorption isotherms, the adsorption amount at a relative pressure of 0.4 and the adsorption amount at a relative pressure of 0.1 are obtained, and the difference in the adsorption amount is V 0.1-0.4 @ 2400 ° C (= relative pressure of 0.4 Adsorption amount - adsorption amount at a relative pressure of 0.1) was calculated.
Then, the adsorption amount difference ΔV 0.1-0.4 (=V 0.1-0.4 @2400° C.−V 0.1-0.4 @2200° C.) is obtained.

(ラマン分光スペクトルの測定方法)
試料約3mgを測り採り、レーザラマン分光光度計(日本分光(株)製、NRS-3100型)を用い、ラマン分光スペクトルを測定した。下記測定条件で得られたラマン分光スペクトルから、Gバンドと呼ばれる1500~1700cm-1の範囲のピーク、および、Dバンドと呼ばれる1200~1400cm-1の範囲のピークを抽出した。
そして、Gバンドのピークの半値幅(△)を測定した。また、Gバンドのピーク強度I、Dバンドのピーク強度Iを測定し、強度比l/lを算出した。
-測定条件-
励起レーザー:532nm、レーザーパワー:10mW(試料照射パワー:1.1mW)、顕微配置:Backscattering、対物レンズ:×100倍、スポット径:1μm、露光時間:30sec、観測波数:2000cm-1~300cm-1、積算回数:6回
(Method for measuring Raman spectrum)
About 3 mg of a sample was weighed and Raman spectrum was measured using a laser Raman spectrophotometer (manufactured by JASCO Corporation, model NRS-3100). A peak in the range of 1500 to 1700 cm −1 called the G band and a peak in the range of 1200 to 1400 cm −1 called the D band were extracted from the Raman spectrum obtained under the following measurement conditions.
Then, the half width (Δ G ) of the G band peak was measured. Also, the peak intensity I G of the G band and the peak intensity I D of the D band were measured, and the intensity ratio l D /l G was calculated.
-Measurement condition-
Excitation laser: 532 nm, Laser power: 10 mW (Sample irradiation power: 1.1 mW), Microscopic arrangement: Backscattering, Objective lens: ×100, Spot diameter: 1 μm, Exposure time: 30 sec, Observation wave number: 2000 cm -1 to 300 cm - 1 , Accumulated times: 6 times

<鋳型炭素の製造方法>
(試験例No.1~5:クエン酸マグネシウム系鋳型炭素)
市販の二クエン酸三マグネシウム(関東化学社製、CitMgと記す)を、ガス流通型の横型管状電気炉を用いて、不活性ガスを流通させながら焼成して、MgO粒子と炭素の複合体を得た。アルゴンは線速度3cm毎分の流量で流通させ、昇温速度20℃毎分で、室温から400℃まで昇温し、400℃で1時間保持した後、同じ昇温速度で900℃まで昇温し、900℃で30分保持した後、放冷し100℃以下になったところで取り出し、MgO粒子と炭素の複合体を得た。乳鉢で軽く解砕した後、20質量%の硫酸水溶液に分散させて、90℃で40時間撹拌後、メンブレンフィルターで吸引濾過し、再度、蒸留水に分散し濾過を2回繰り返し、洗浄した。100℃の温風乾燥機で水分を除去後、90℃5時間真空乾燥し、多孔質炭素材料を得た。結晶性を高めるために、多孔質炭素材料に対して、不活性ガス雰囲気中で2000℃から2600℃の範囲の加熱温度条件で0.5時間から1.0時間の黒鉛化処理(加熱処理)を実施し、触媒担体用多孔質炭素材料の試料とした。調製条件を表1にまとめて示した。
<Method for producing template carbon>
(Test Examples Nos. 1 to 5: Magnesium citrate template carbon)
Commercially available trimagnesium dicitrate (manufactured by Kanto Chemical Co., Ltd., abbreviated as CitMg) is sintered in a horizontal gas-flowing tubular electric furnace while an inert gas is circulated to form a composite of MgO particles and carbon. Obtained. Argon was flowed at a linear velocity of 3 cm/min, heated from room temperature to 400°C at a temperature elevation rate of 20°C/min, held at 400°C for 1 hour, and then heated to 900°C at the same temperature elevation rate. After being held at 900° C. for 30 minutes, it was allowed to cool and taken out when the temperature reached 100° C. or lower to obtain a composite of MgO particles and carbon. After lightly pulverizing with a mortar, it was dispersed in a 20% by mass sulfuric acid aqueous solution, stirred at 90° C. for 40 hours, suction filtered with a membrane filter, dispersed again in distilled water, and washed by repeating filtration twice. After removing moisture with a hot air dryer at 100° C., it was vacuum-dried at 90° C. for 5 hours to obtain a porous carbon material. In order to increase the crystallinity, the porous carbon material is subjected to graphitization (heat treatment) for 0.5 to 1.0 hours under heating temperature conditions in the range of 2000° C. to 2600° C. in an inert gas atmosphere. was carried out and used as a sample of a porous carbon material for a catalyst carrier. Table 1 summarizes the preparation conditions.

(試験例No.6~10:酸化マグネシウム系鋳型炭素)
神島化学工業社製酸化マグネシウムPSF-150を酸化マグネシウム(MgOと記す)として用い、炭素源には、デンカ社製ポリビニルアルコール(商品名ポバールB05S)の微粉末を用いた。両粉末を乳鉢で十分に混合した後、上述のクエン酸マグネシウム系鋳型炭素と同一の調製方法で、多孔質炭素材料を得た。酸化マグネシウムとPVAの混合比を変えた数水準を調製した。結晶性を高めるために、多孔質炭素材料に対して、不活性ガス雰囲気中で2000℃から2600℃の範囲の加熱温度条件で0.5時間から1.0時間の黒鉛化処理(加熱処理)を実施し、触媒担体用多孔質炭素材料の試料とした。調製条件を表1にまとめて示した。
(Test Example Nos. 6 to 10: Magnesium oxide-based mold carbon)
Magnesium oxide PSF-150 manufactured by Kojima Kagaku Kogyo Co., Ltd. was used as magnesium oxide (referred to as MgO), and fine powder of polyvinyl alcohol manufactured by Denka Co., Ltd. (trade name: Poval B05S) was used as the carbon source. After thoroughly mixing both powders in a mortar, a porous carbon material was obtained by the same preparation method as for the magnesium citrate-based template carbon described above. Several levels were prepared with varying mixing ratios of magnesium oxide and PVA. In order to increase the crystallinity, the porous carbon material is subjected to graphitization (heat treatment) for 0.5 to 1.0 hours under heating temperature conditions in the range of 2000° C. to 2600° C. in an inert gas atmosphere. was carried out and used as a sample of a porous carbon material for a catalyst carrier. Table 1 summarizes the preparation conditions.

(試験例No.11~47:炭酸マグネシウムとポリイミド(その前駆体であるポリアミック酸)を用いた鋳型炭素)
塩基性炭酸マグネシウム(和光純薬工業社製、CarMgと記す)粉末4gと下記の方法で合成した12質量%固形分濃度のポリアミック酸溶液(ポリアミック酸のDMAc溶液)を12g(固形分換算14.4g)とを乳鉢内に入れて、必要の応じて、DMAcを少量ずつピペットで加えて粘度を調製し、高粘度状態で十分に混合した。混合した溶液をシャーレに移しとり、ガス置換型の電気炉内に入れ、アルゴン200mL/分の流通下で、150℃、5時間処理して、溶媒のDMAcを蒸発させ、乾固した塩基性炭酸マグネシウム粉末とポリアミック酸の混合した固形物を得た。
次に、横型の管状電気炉内へこの固形物を配置し、アルゴンを線速度3cm毎分の流量で流通させ、20℃/分で900℃まで昇温し、900℃で30分保持し、ポリアミック酸のポリイミド化と炭素化、並行して、塩基性炭酸マグネシウムの熱分解とその後のMgO化を行った。また、必要に応じて、20℃/分で900℃まで昇温過程で、表1に示す条件で中間熱処理も実施した。
900℃30分保持後は、炉内で放冷し100℃まで冷えてから取り出した。乳鉢で十分に粉砕してから、ナスフラスコへ炭素化後の粉末を入れ、20質量%硫酸水溶液を質量比で固形物に対して100~150倍加えて、90℃で40時間以上撹拌し、MgOを硫酸で溶解除去した。
次に、メンブレンフィルターで濾過し、残渣を更に蒸留水で撹拌洗浄し、再び濾過、この操作を2回繰り返し、濾過残渣を100℃の温風乾燥機で水分を除去後、90℃5時間、真空乾燥して、多孔質炭素を得た。
(Test Examples Nos. 11 to 47: Template carbon using magnesium carbonate and polyimide (its precursor, polyamic acid))
4 g of basic magnesium carbonate (manufactured by Wako Pure Chemical Industries, Ltd., abbreviated as CarMg) powder and 12 g of a polyamic acid solution (DMAc solution of polyamic acid) having a solid concentration of 12% by mass synthesized by the following method (solid content: 14.0 g). 4g) was placed in a mortar and, if necessary, DMAc was added in small portions with a pipette to adjust the viscosity and mixed well in a highly viscous state. The mixed solution is transferred to a petri dish, placed in a gas-exchanged electric furnace, and treated at 150 ° C. for 5 hours under a flow of argon at 200 mL / min to evaporate the solvent DMAc and dry basic carbonate. A solid mixture of magnesium powder and polyamic acid was obtained.
Next, this solid is placed in a horizontal tubular electric furnace, argon is flowed at a linear velocity of 3 cm per minute, the temperature is raised to 900° C. at 20° C./min, and the temperature is maintained at 900° C. for 30 minutes. Polyimidization and carbonization of polyamic acid, and in parallel, thermal decomposition of basic magnesium carbonate and subsequent conversion to MgO were performed. Further, if necessary, an intermediate heat treatment was also performed under the conditions shown in Table 1 during the temperature rising process to 900° C. at 20° C./min.
After being held at 900°C for 30 minutes, it was allowed to cool in the furnace and was taken out after being cooled to 100°C. After sufficiently pulverizing in a mortar, put the powder after carbonization into an eggplant flask, add 100 to 150 times by mass of a 20% by mass aqueous solution of sulfuric acid to the solids, and stir at 90 ° C. for 40 hours or more, MgO was dissolved off with sulfuric acid.
Next, it is filtered through a membrane filter, and the residue is further stirred and washed with distilled water and filtered again. This operation is repeated twice. Vacuum drying yielded porous carbon.

また、塩基性炭酸マグネシウムに対する炭素源であるポリイミド(その前駆体であるポリアミック酸)の質量比を増減させて、同様の方法で多孔質炭素を得た。
また、下記の合成法により調製した各種ポリアミック酸を用いて、ポリアミック酸の種類が異なる以外は上述と同一の方法により多孔質炭素を得た。
そして、結晶性を高めるために、多孔質炭素に対して、不活性ガス雰囲気中で2000℃から2600℃の範囲の加熱温度条件で0.5時間から1.0時間の黒鉛化処理(加熱処理)を実施し、触媒担体用多孔質炭素材料の試料とした。調製条件を表1にまとめて示した。
In addition, porous carbon was obtained in the same manner by increasing or decreasing the mass ratio of polyimide (its precursor, polyamic acid) as a carbon source to basic magnesium carbonate.
Moreover, using various polyamic acids prepared by the synthesis method described below, porous carbon was obtained in the same manner as described above, except that the type of polyamic acid was different.
Then, in order to increase the crystallinity, the porous carbon is subjected to graphitization treatment (heat treatment) for 0.5 to 1.0 hours under heating temperature conditions in the range of 2000 ° C. to 2600 ° C. in an inert gas atmosphere. ) was carried out to obtain a sample of a porous carbon material for a catalyst carrier. Table 1 summarizes the preparation conditions.

(ポリアミック酸の合成)
まず、使用する化合物とその略語について以下に示す。
ATDA: 9,10-アントラセンジアミン(ChemTik社製)
NTDA: 2,6-ナフタレンジアミン(米国MatrixScientific社製)
p-PhDA: 1,4-フェニレンジアミン(東京化成社製)
PMDA: ピロメリット酸(東京化成社製)
BPDA: ビフェニル-3,4,3’,4’-テトラカルボン酸(東京化成社製)
DMAc: N,N-ジメチルアセトアミド(関東化学社製)
(Synthesis of polyamic acid)
First, the compounds to be used and their abbreviations are shown below.
ATDA: 9,10-anthracenediamine (manufactured by ChemTik)
NTDA: 2,6-naphthalenediamine (manufactured by Matrix Scientific, USA)
p-PhDA: 1,4-phenylenediamine (manufactured by Tokyo Kasei Co., Ltd.)
PMDA: pyromellitic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
BPDA: Biphenyl-3,4,3',4'-tetracarboxylic acid (manufactured by Tokyo Chemical Industry Co., Ltd.)
DMAc: N,N-dimethylacetamide (manufactured by Kanto Chemical Co., Ltd.)

-合成例1-
2Lの反応容器を用いて合成した。ATDA40gを、500gのDMAcに溶解させた。次いで、この溶液にPMDAを当モル量加え撹拌し、固形分が12wt%になるようにDMAcを加えて、室温で5時間攪拌して重合反応を行った。反応後、粘稠で透明なポリアミック酸溶液を得た。このポリアミック酸を、PM-ATと記す。
-Synthesis Example 1-
Synthesis was performed using a 2 L reaction vessel. 40 g of ATDA was dissolved in 500 g of DMAc. Next, an equimolar amount of PMDA was added to this solution and stirred, DMAc was added so that the solid content became 12 wt %, and the mixture was stirred at room temperature for 5 hours to carry out a polymerization reaction. After the reaction, a viscous and transparent polyamic acid solution was obtained. This polyamic acid is referred to as PM-AT.

-合成例2-
2Lの反応容器を用いて合成した。ATDA40gを、500gのDMAcに溶解させた。次いで、この溶液にBPDAを当モル量加え撹拌し、固形分が12wt%になるようにDMAcを加えて、室温で5時間攪拌して重合反応を行った。反応後、粘稠で透明なポリアミック酸溶液を得た。このポリアミック酸を、BP-ATと記す。
-Synthesis Example 2-
Synthesis was performed using a 2 L reaction vessel. 40 g of ATDA was dissolved in 500 g of DMAc. Next, an equimolar amount of BPDA was added to this solution and stirred, DMAc was added so that the solid content was 12 wt %, and the mixture was stirred at room temperature for 5 hours to carry out a polymerization reaction. After the reaction, a viscous and transparent polyamic acid solution was obtained. This polyamic acid is referred to as BP-AT.

-合成例3-
2Lの反応容器を用いて合成した。NTDA40gを、500gのDMAcに溶解させた。次いで、この溶液にPMDAを当モル量加え撹拌し、固形分が12wt%になるようにDMAcを加えて、室温で5時間攪拌して重合反応を行った。反応後、粘稠で透明なポリアミック酸溶液を得た。このポリアミック酸を、PM-NTと記す。
-Synthesis Example 3-
Synthesis was performed using a 2 L reaction vessel. 40 g of NTDA was dissolved in 500 g of DMAc. Next, an equimolar amount of PMDA was added to this solution and stirred, DMAc was added so that the solid content became 12 wt %, and the mixture was stirred at room temperature for 5 hours to carry out a polymerization reaction. After the reaction, a viscous and transparent polyamic acid solution was obtained. This polyamic acid is referred to as PM-NT.

-合成例4-
2Lの反応容器を用いて合成した。NTDA40gを、500gのDMAcに溶解させた。次いで、この溶液にBPDAを当モル量加え撹拌し、固形分が12wt%になるようにDMAcを加えて、室温で5時間攪拌して重合反応を行った。反応後、粘稠で透明なポリアミック酸溶液を得た。このポリアミック酸を、BP-NTと記す。
-Synthesis Example 4-
Synthesis was performed using a 2 L reaction vessel. 40 g of NTDA was dissolved in 500 g of DMAc. Next, an equimolar amount of BPDA was added to this solution and stirred, DMAc was added so that the solid content was 12 wt %, and the mixture was stirred at room temperature for 5 hours to carry out a polymerization reaction. After the reaction, a viscous and transparent polyamic acid solution was obtained. This polyamic acid is referred to as BP-NT.

-合成例5-
2Lの反応容器を用いて合成した。p-PhDA40gを、500gのDMAcに溶解させた。次いで、この溶液にBPDAを当モル量加え撹拌し、固形分が12wt%になるようにDMAcを加えて、室温で5時間攪拌して重合反応を行った。反応後、粘稠で透明なポリアミック酸溶液を得た。このポリアミック酸を、BP-Phと記す。
-Synthesis Example 5-
Synthesis was performed using a 2 L reaction vessel. 40 g of p-PhDA was dissolved in 500 g of DMAc. Next, an equimolar amount of BPDA was added to this solution and stirred, DMAc was added so that the solid content was 12 wt %, and the mixture was stirred at room temperature for 5 hours to carry out a polymerization reaction. After the reaction, a viscous and transparent polyamic acid solution was obtained. This polyamic acid is referred to as BP-Ph.

-合成例6-
2Lの反応容器を用いて合成した。p-PhDA40gを、500gのDMAcに溶解させた。次いで、この溶液にPMDAを当モル量加え撹拌し、固形分が12wt%になるようにDMAcを加えて、室温で5時間攪拌して重合反応を行った。反応後、粘稠で透明なポリアミック酸溶液を得た。このポリアミック酸を、PM-Phと記す。
-Synthesis Example 6-
Synthesis was performed using a 2 L reaction vessel. 40 g of p-PhDA was dissolved in 500 g of DMAc. Next, an equimolar amount of PMDA was added to this solution and stirred, DMAc was added so that the solid content became 12 wt %, and the mixture was stirred at room temperature for 5 hours to carry out a polymerization reaction. After the reaction, a viscous and transparent polyamic acid solution was obtained. This polyamic acid is referred to as PM-Ph.

<試験例No.48~49:カーボンブラック系多孔質炭素>
ライオン社製、ケッチェンブラック「EC600JD」の結晶性を高めるために、東京真空社製黒鉛化炉を用いて、2100℃と2300℃で熱処理(黒鉛化処理)を行った。熱処理対象の粉末を黒鉛坩堝に入れ、黒鉛化炉内にセットした。20℃/分で1200℃まで昇温し、1800℃まで15℃で昇温し、それよりも高い温度域では、10℃/分で昇温し、所定の温度で所定の時間、熱処理した。熱処理時間は1時間とした。雰囲気はアルゴンで、2L/分の流通下で熱処理した。
<Test Example No. 48-49: carbon black-based porous carbon>
In order to increase the crystallinity of Ketjenblack "EC600JD" manufactured by Lion Corporation, a heat treatment (graphitization treatment) was performed at 2100°C and 2300°C using a graphitization furnace manufactured by Tokyo Shinku Co., Ltd. The powder to be heat-treated was placed in a graphite crucible and set in a graphitization furnace. The temperature was raised at 20° C./min to 1200° C., the temperature was raised to 1800° C. at 15° C., and in the higher temperature range, the temperature was raised at 10° C./min, and heat treatment was performed at a predetermined temperature for a predetermined time. The heat treatment time was 1 hour. The atmosphere was argon, and heat treatment was performed under a flow rate of 2 L/min.

<銀アセチリド系多孔質炭素>
(試験例No.50~52:銀アセチリド系多孔質炭素01)
(1) 銀アセチリド生成工程
5質量%濃度に調整された硝酸銀水溶液中に、硝酸銀に対してモル比で8倍になるようにアンモニアを混合し、アンモニア性硝酸銀水溶液を調製した。ここに、先ず、窒素ガスを40~60分間吹き込んで、溶存する酸素を不活性ガスに置換し、この銀アセチリド生成工程で生成した銀アセチリドが分解爆発を起こす危険性を排除した。
次に、このようにして調製されたアンモニア性硝酸銀水溶液中に、アセチレンガスを室温下で10分間程度吹き込み、反応溶液中からアセチレンガスが泡として放出され始めた時点でこのアセチレンガスの吹込みを中止し、反応溶液中の硝酸銀とアセチレンとを反応させて銀アセチリドの白い沈殿物を生成させた。
生成した銀アセチリドの沈殿物についてはメンブレンフィルターで濾過して回収し、この回収された沈殿物をメタノールに再分散させ、再び濾過して得られた沈殿物をシャーレに取り出した。
<Silver acetylide-based porous carbon>
(Test Example Nos. 50 to 52: Silver acetylide-based porous carbon 01)
(1) Silver acetylide production step Ammonia was mixed into an aqueous solution of silver nitrate adjusted to a concentration of 5% by mass so as to have a molar ratio of eight times that of silver nitrate to prepare an aqueous solution of ammoniacal silver nitrate. First, nitrogen gas was blown in for 40 to 60 minutes to replace dissolved oxygen with an inert gas to eliminate the risk of decomposition explosion of silver acetylide produced in this silver acetylide producing step.
Next, acetylene gas is blown into the ammoniacal silver nitrate aqueous solution thus prepared at room temperature for about 10 minutes, and when acetylene gas starts to be released as bubbles from the reaction solution, the acetylene gas is stopped. The reaction was stopped and silver nitrate and acetylene in the reaction solution reacted to form a white precipitate of silver acetylide.
The precipitate of silver acetylide produced was recovered by filtration with a membrane filter, the recovered precipitate was re-dispersed in methanol, and the precipitate obtained by filtering again was taken out in a petri dish.

(2) 第1の加熱処理工程
銀アセチリド生成工程で得られた銀アセチリドについて、メタノールが含浸された状態のまま約0.5gを直径5cmのステンレス製円筒容器内に装入し、これを真空加熱電気炉に入れ、60℃で1~3時間かけて真空乾燥し、各実施例及び比較例の銀アセチリド由来の銀粒子内包中間体を調製した。
(2) First heat treatment step About 0.5 g of the silver acetylide obtained in the silver acetylide production step was placed in a stainless steel cylindrical container with a diameter of 5 cm while it was impregnated with methanol, and this was vacuumed. It was placed in a heating electric furnace and vacuum-dried at 60° C. for 1 to 3 hours to prepare a silver particle-encapsulating intermediate derived from silver acetylide of each example and comparative example.

(3) 第2の加熱処理工程
第1の加熱処理工程で得られた真空乾燥直後の60℃の銀粒子内包中間体を、そのまま更に真空加熱電気炉から取り出すことなく200℃まで昇温させて加熱し、この過程で、銀アセチリドの自己分解爆発反応を誘発させ、炭素材料中間体(銀と炭素との複合物からなる分解生成物)を得た。
(3) Second heat treatment step The silver particle-encapsulating intermediate at 60°C immediately after vacuum drying obtained in the first heat treatment step is further heated to 200°C without being removed from the vacuum heating electric furnace. In this process, the silver acetylide was heated to induce a self-decomposition explosion reaction to obtain a carbon material intermediate (decomposition product composed of a composite of silver and carbon).

(4) 洗浄処理工程
炭素材料中間体(銀と炭素との複合物からなる分解生成物)に対して、60℃において濃度30質量%の濃硝酸で、銀の溶解処理(洗浄処理)を実施し、炭素材料中間体の表面に存在する銀粒子やその他の不安定な炭素化合物を除去し、清浄化された炭素材料中間体を得た。
(4) Washing treatment process Silver dissolution treatment (washing treatment) is performed on the carbon material intermediate (decomposition product composed of a composite of silver and carbon) with concentrated nitric acid having a concentration of 30% by mass at 60 ° C. Then, the silver particles and other unstable carbon compounds existing on the surface of the carbon material intermediate were removed to obtain a cleaned carbon material intermediate.

(5) 第3の加熱処理工程(黒鉛化処理)
洗浄処理工程で清浄化された炭素材料中間体に対して、不活性ガス雰囲気中で2000℃から2600℃の範囲の加熱温度条件で0.5時間から1.0時間の黒鉛化処理(加熱処理)を実施し、触媒担体用炭素材料の試料を得た。調製条件を表1にまとめて示した。
(5) Third heat treatment step (graphitization treatment)
The carbon material intermediate cleaned in the cleaning treatment step is subjected to graphitization treatment (heat treatment) for 0.5 hour to 1.0 hour under heating temperature conditions in the range of 2000 ° C. to 2600 ° C. in an inert gas atmosphere. ) was carried out to obtain a sample of a carbon material for a catalyst carrier. Table 1 summarizes the preparation conditions.

(試験例No.53~56:銀アセチリド系多孔質炭素02)
(1) 銀アセチリド生成工程
(2) 第1の加熱処理工程
試験例No.50~52の製造法と同様にして、銀アセチリドを生成した後、銀アセチリド由来の銀粒子内包中間体を得た。
(Test Example Nos. 53 to 56: Silver acetylide-based porous carbon 02)
(1) Silver acetylide production step (2) First heat treatment step Test Example No. After silver acetylide was produced in the same manner as in 50-52, a silver particle-encapsulating intermediate derived from silver acetylide was obtained.

(3) 第2の加熱処理工程
次に、銀粒子内包中間体を水に分散させ、銀粒子内包中間体を含むスラリーを調製した。スラリーの固形分濃度は、約2質量%に調整した。
次に、第2の熱処理工程を実施した。まず、容積10Lのステンレス製の真空容器の中に、350~450℃に加熱したステンレス板を設置し、上記のスラリーを、1mL滴下し、水の蒸発と共に銀アセチリド由来の銀粒子内包中間体が爆発させ、炭素材料中間体(銀と炭素との複合物からなる分解生成物)を得た。
(3) Second heat treatment step Next, the silver particle-containing intermediate was dispersed in water to prepare a slurry containing the silver particle-containing intermediate. The solid content concentration of the slurry was adjusted to about 2% by mass.
Next, a second heat treatment step was performed. First, a stainless steel plate heated to 350 to 450° C. is placed in a stainless steel vacuum container with a volume of 10 L, and 1 mL of the above slurry is added dropwise. Explosion was carried out to obtain a carbon material intermediate (a decomposition product composed of a composite of silver and carbon).

(4) 洗浄処理工程
炭素材料中間体(銀と炭素との複合物からなる分解生成物)に対して、60℃において濃度30質量%の濃硝酸で、銀の溶解処理(洗浄処理)を実施し、炭素材料中間体の表面に存在する銀粒子やその他の不安定な炭素化合物を除去し、清浄化された炭素材料中間体を得た。
(4) Washing treatment process Silver dissolution treatment (washing treatment) is performed on the carbon material intermediate (decomposition product composed of a composite of silver and carbon) with concentrated nitric acid having a concentration of 30% by mass at 60 ° C. Then, the silver particles and other unstable carbon compounds existing on the surface of the carbon material intermediate were removed to obtain a cleaned carbon material intermediate.

(5) 第3の加熱処理工程(黒鉛化処理)
洗浄処理工程で清浄化された炭素材料中間体に対して、不活性ガス雰囲気中で2000℃から2600℃の範囲の加熱温度条件で0.5時間から1.0時間の黒鉛化処理(加熱処理)を実施し、触媒担体用炭素材料の試料を得た。調製条件を表1にまとめて示した。
(5) Third heat treatment step (graphitization treatment)
The carbon material intermediate cleaned in the cleaning treatment step is subjected to graphitization treatment (heat treatment) for 0.5 hour to 1.0 hour under heating temperature conditions in the range of 2000 ° C. to 2600 ° C. in an inert gas atmosphere. ) was carried out to obtain a sample of a carbon material for a catalyst carrier. Table 1 summarizes the preparation conditions.

<触媒の調製、触媒層の作製、MEAの作製、燃料電池の組立、及び電池性能の評価>
次に、以上のようにして調製され、また、準備された触媒担体用炭素材料を用い、以下のようにして触媒金属が担持された固体高分子型燃料電池用触媒を調製し、また、得られた触媒を用いて触媒層インク液を調製し、次いでこの触媒層インク液を用いて触媒層を形成し、更に形成された触媒層を用いて膜電極接合体(MEA: Membrane Electrode Assembly)を作製し、この作製されたMEAを燃料電池セルに組み込み、燃料電池測定装置を用いて発電試験を行った。以下、各部材の調製及び発電試験によるセル評価について詳細に説明する。
<Preparation of catalyst, preparation of catalyst layer, preparation of MEA, assembly of fuel cell, and evaluation of cell performance>
Next, using the catalyst support carbon material prepared and prepared as described above, a polymer electrolyte fuel cell catalyst supporting a catalyst metal is prepared and obtained as follows. A catalyst layer ink liquid is prepared using the obtained catalyst, then a catalyst layer is formed using this catalyst layer ink liquid, and a membrane electrode assembly (MEA: Membrane Electrode Assembly) is formed using the formed catalyst layer. The manufactured MEA was assembled into a fuel cell, and a power generation test was performed using a fuel cell measuring device. Hereinafter, cell evaluation by preparation of each member and power generation test will be described in detail.

(1) 固体高分子型燃料電池用触媒(白金担持炭素材料)の作製
上記で作製した触媒担体用多孔質炭素材料、或いは、市販の炭素材料を、蒸留水中に分散させ、この分散液にホルムアルデヒドを加え、40℃に設定したウォーターバスにセットし、分散液の温度がバスと同じ40℃になってから、撹拌下にこの分散液中にジニトロジアミンPt錯体硝酸水溶液をゆっくりと注ぎ入れた。その後、約2時間撹拌を続けた後、濾過し、得られた固形物の洗浄を行った。このようにして得られた固形物を90℃で真空乾燥した後、乳鉢で粉砕し、次いで水素を5体積%含むアルゴン雰囲気中200℃で1時間熱処理をして白金触媒粒子担持炭素材料を作製した。
なお、この白金担持炭素材料の白金担持量については、触媒担体用炭素材料と白金粒子の合計質量に対して40質量%となるように調整し、誘導結合プラズマ発光分光分析(ICP-AES: Inductively Coupled Plasma - Atomic Emission Spectrometry)により測定して確認した。
(1) Preparation of polymer electrolyte fuel cell catalyst (platinum-supporting carbon material) The porous carbon material for catalyst support prepared above or a commercially available carbon material is dispersed in distilled water, and formaldehyde is added to the dispersion. was added, and set in a water bath set at 40°C. After the temperature of the dispersion reached 40°C, the same as that of the bath, the dinitrodiamine Pt complex nitric acid aqueous solution was slowly poured into the dispersion while stirring. Then, after continuing stirring for about 2 hours, it filtered and the solid substance obtained was washed. The solid thus obtained was vacuum-dried at 90° C., pulverized in a mortar, and then heat-treated at 200° C. for 1 hour in an argon atmosphere containing 5% by volume of hydrogen to produce a carbon material supporting platinum catalyst particles. bottom.
The amount of platinum supported by the platinum-supporting carbon material was adjusted to 40% by mass with respect to the total mass of the carbon material for catalyst support and platinum particles, and inductively coupled plasma atomic emission spectrometry (ICP-AES: Inductively Measured and confirmed by Coupled Plasma—Atomic Emission Spectrometry).

(2) 触媒層の調製
以上のようにして調製された白金担持炭素材料(Pt触媒)を用い、また、電解質樹脂としてDupont社製ナフィオン(登録商標:Nafion;パースルホン酸系イオン交換樹脂)を用い、Ar雰囲気下でこれらPt触媒とナフィオンとを白金触媒粒子担持炭素材料の質量に対してナフィオン固形分の質量が1.0倍、非多孔質炭素に対しては0.5倍の割合で配合し、軽く撹拌した後、超音波でPt触媒を解砕し、更にエタノールを加えてPt触媒と電解質樹脂とを合わせた合計の固形分濃度が1.0質量%となるように調整し、Pt触媒と電解質樹脂とが混合した触媒層インク液を調製した。
(2) Preparation of catalyst layer Using the platinum-supported carbon material (Pt catalyst) prepared as described above, Nafion manufactured by Dupont (registered trademark: Nafion; persulfonic acid-based ion exchange resin) was used as the electrolyte resin. Using these Pt catalysts and Nafion in an Ar atmosphere, the mass of the Nafion solid content is 1.0 times the mass of the platinum catalyst particle-supporting carbon material, and the mass of the non-porous carbon is 0.5 times. After blending and stirring lightly, the Pt catalyst is crushed with ultrasonic waves, and ethanol is added to adjust the total solid content concentration of the Pt catalyst and the electrolyte resin to be 1.0% by mass, A catalyst layer ink liquid in which the Pt catalyst and the electrolyte resin were mixed was prepared.

このようにして調製された固形分濃度1.0質量%の各触媒層インク液に更にエタノールを加え、白金濃度が0.5質量%のスプレー塗布用触媒層インク液を作製し、白金の触媒層単位面積当たりの質量(以下、「白金目付量」という。)が0.2mg/cm2となるようにスプレー条件を調節し、上記スプレー塗布用触媒層インクをテフロン(登録商標)シート上にスプレーした後、アルゴン中120℃で60分間の乾燥処理を行い、触媒層を作製した。 Ethanol was further added to each catalyst layer ink solution having a solid content concentration of 1.0% by mass thus prepared to prepare a catalyst layer ink solution for spray coating having a platinum concentration of 0.5% by mass. The spray conditions were adjusted so that the mass per unit area of the layer (hereinafter referred to as "platinum coating weight") was 0.2 mg/cm2, and the catalyst layer ink for spray coating was sprayed onto a Teflon (registered trademark) sheet. After that, drying treatment was performed in argon at 120° C. for 60 minutes to prepare a catalyst layer.

(3) MEAの作製
以上のようにして作製した触媒層を用い、以下の方法でMEA(膜電極複合体)を作製した。
ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。また、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層については、それぞれカッターナイフで一辺2.5cmの正方形状に切り出した。
このようにして切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが無いように、この電解質膜を挟み込み、120℃、100kg/cm2で10分間プレスし、次いで室温まで冷却した後、アノード及びカソード共にテフロンシートのみを注意深く剥ぎ取り、アノード及びカソードの各触媒層が電解質膜に定着した触媒層-電解質膜接合体を調製した。
(3) Production of MEA Using the catalyst layer produced as described above, an MEA (membrane electrode assembly) was produced by the following method.
A 6 cm square electrolyte membrane was cut from a Nafion membrane (NR211 manufactured by Dupont). Further, each of the catalyst layers of the anode and cathode coated on the Teflon (registered trademark) sheet was cut into a square shape of 2.5 cm on each side with a utility knife.
The electrolyte membrane was sandwiched between the catalyst layers of the anode and the cathode cut out in this way so that the catalyst layers were in contact with each other with the central part of the electrolyte membrane sandwiched therebetween and there was no displacement with each other. /cm2 for 10 minutes, then cooled to room temperature, and then carefully peeled off only the Teflon sheet on both the anode and cathode to prepare a catalyst layer-electrolyte membrane assembly in which each catalyst layer of the anode and cathode was fixed to the electrolyte membrane. .

次に、ガス拡散層として、カーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの大きさで一対の正方形状カーボンペーパーを切り出し、これらのカーボンペーパーの間に、アノード及びカソードの各触媒層が一致してずれが無いように、上記触媒層-電解質膜接合体を挟み、120℃、50kg/cm2で10分間プレスしてMEAを作製した。
なお、作製された各MEAにおける触媒金属成分、炭素材料、電解質材料の各成分の目付量については、プレス前の触媒層付テフロンシートの質量とプレス後に剥がしたテフロンシートの質量との差からナフィオン膜(電解質膜)に定着させた触媒層の質量を求め、触媒層の組成の質量比より算出した。
Next, as gas diffusion layers, carbon paper (35BC manufactured by SGL Carbon Co., Ltd.) was cut into a pair of square-shaped carbon papers with a size of 2.5 cm on each side. The catalyst layer-electrolyte membrane assembly was sandwiched so that there was no deviation, and pressed at 120° C. and 50 kg/cm 2 for 10 minutes to prepare an MEA.
The basis weight of each component of the catalyst metal component, the carbon material, and the electrolyte material in each MEA produced was calculated from the difference between the mass of the Teflon sheet with the catalyst layer before pressing and the mass of the Teflon sheet peeled off after pressing. The mass of the catalyst layer fixed to the membrane (electrolyte membrane) was obtained, and calculated from the mass ratio of the composition of the catalyst layer.

(4) 燃料電池の発電特性評価
(耐久前評価:低電流特性の評価)
各試験例で調製され、また、準備された触媒担体用多孔質炭素材料を用いて作製したMEAについて、それぞれセルに組み込み、燃料電池測定装置にセットして、次の手順で燃料電池の性能評価を行った。
反応ガスについては、カソード側に空気を、また、アノード側に純水素を、それぞれ利用率が40%と70%となるように、大気圧下にセル下流に設けられた背圧弁で圧力調整し、背圧0.04MPaで供給した。また、セル温度は80℃に設定し、また、供給する反応ガスについては、カソード及びアノード共に、加湿器中で60℃に保温された蒸留水でバブリングを行い、80℃のセルに対し、60℃加湿のガスを供給し発電評価を行った。
(4) Evaluation of fuel cell power generation characteristics (evaluation before endurance: evaluation of low current characteristics)
Each of the MEAs prepared in each test example and prepared using the prepared porous carbon material for catalyst support is assembled into a cell, set in a fuel cell measurement device, and evaluated for fuel cell performance by the following procedure. did
The reaction gas was air on the cathode side, and pure hydrogen on the anode side, and the pressure was adjusted by a back pressure valve provided downstream of the cell under atmospheric pressure so that the utilization rates were 40% and 70%, respectively. , at a back pressure of 0.04 MPa. The cell temperature was set to 80° C., and both the cathode and the anode were supplied with distilled water kept at 60° C. in a humidifier by bubbling. ℃ humidified gas was supplied and power generation evaluation was performed.

このような設定の下にセルに反応ガスを供給した条件下で、負荷を徐々に増やし、電流密度100mA/cmにおけるセル端子間電圧を出力電圧として記録し、燃料電池の性能評価を実施し、下記の合格ランクと不合格ランクの基準で評価を行った。結果を表1に示す。
〔合格ランク〕
5:100mA/cmにおける出力電圧が0.880V以上であるもの。
4:100mA/cmにおける出力電圧が0.875V以上であるもの。
3:100mA/cmにおける出力電圧が0.870V以上であるもの。
〔不合格ランク〕
2:100mA/cmにおける出力電圧が0.850V以上0.870V未満であるもの。
1:100mA/cmにおける出力電圧が0.850V未満であるもの。
Under the condition that the reactant gas was supplied to the cell under such settings, the load was gradually increased, and the voltage between the cell terminals at a current density of 100 mA/cm 2 was recorded as the output voltage to evaluate the performance of the fuel cell. , was evaluated according to the criteria for the following pass rank and fail rank. Table 1 shows the results.
[passing rank]
5: Output voltage at 100 mA/cm 2 is 0.880 V or more.
4: An output voltage of 0.875 V or higher at 100 mA/cm 2 .
3: The output voltage at 100 mA/cm 2 is 0.870 V or higher.
[Fail rank]
2: The output voltage at 100 mA/cm 2 is 0.850 V or more and less than 0.870 V.
1: Output voltage at 100mA/cm 2 is less than 0.850V.

(耐久後評価:耐久性の評価)
上記セルにおいて、アノードはそのままに、カソードには上記と同じ加湿条件のアルゴンガスを流しながら、セル電圧を1.0Vにして4秒間保持する操作とセル電圧を1.3Vにして4秒間保持する操作とを繰り返す操作(矩形波的電圧変動の繰返し操作)を1サイクルとし、この矩形波的電圧変動の繰返し操作を4000サイクル実施した後、上記の低電流特性の評価と同様にして耐久性を調査した。下記の合格ランクと不合格ランクの基準で評価を行った。結果を表1に示す。
〔合格ランク〕
5:100mA/cmにおける出力電圧が0.880V以上であるもの。
4:100mA/cmにおける出力電圧が0.875V以上であるもの。
3:100mA/cmにおける出力電圧が0.870V以上であるもの。
〔不合格ランク〕
2:100mA/cmにおける出力電圧が0.850V以上0.870V未満であるもの。
1:100mA/cmにおける出力電圧が0.850V未満であるもの。
(Evaluation after endurance: Evaluation of durability)
In the above cell, while leaving the anode as it is and flowing argon gas under the same humidified conditions as above to the cathode, the cell voltage is set to 1.0 V and held for 4 seconds, and the cell voltage is set to 1.3 V and held for 4 seconds. (repeated operation of rectangular wave voltage fluctuation) is defined as one cycle, and after performing this repeated operation of rectangular wave voltage fluctuation for 4000 cycles, durability is evaluated in the same manner as the above evaluation of low current characteristics. investigated. Evaluation was performed according to the criteria for the following pass rank and fail rank. Table 1 shows the results.
[passing rank]
5: Output voltage at 100 mA/cm 2 is 0.880 V or higher.
4: An output voltage of 0.875 V or higher at 100 mA/cm 2 .
3: The output voltage at 100 mA/cm 2 is 0.870 V or higher.
[Fail rank]
2: The output voltage at 100 mA/cm 2 is 0.850 V or more and less than 0.870 V.
1: Output voltage at 100mA/cm 2 is less than 0.850V.

Figure 0007277770000001
Figure 0007277770000001

上記結果から、本発明例の多孔質炭素材料は、現在の世界標準と思慮される多孔質炭素材料であるケッチェンブラック「EC600JD」を通常の熱処理(2000℃以下)よりも一層高い温度(2100、2300℃)で熱処理して耐久性を大幅に高めた試験例48、49よりも、低電流時の出力特性と共に、高い温度で運転しても、低電流時の出力特性の経時変化が少なく耐久性(特に、炭素の酸化消耗耐性)に優れた固体高分子形燃料電池の触媒層を製造できることがわかる。 From the above results, the porous carbon material of the example of the present invention is a porous carbon material considered to be the current world standard Ketjenblack "EC600JD" at a temperature higher than normal heat treatment (2000 ° C. or less) (2100 , 2300 ° C)), the output characteristics at low current and the output characteristics at low current change over time even when operated at high temperatures, compared to Test Examples 48 and 49, which were heat-treated at 2300 ° C.) to greatly improve durability. It can be seen that a polymer electrolyte fuel cell catalyst layer having excellent durability (especially resistance to oxidation and consumption of carbon) can be produced.

100 固体高分子形燃料電池
110、120 セパレータ
130、140 ガス拡散層
150、160 触媒層
170 電解質膜
100 polymer electrolyte fuel cell 110, 120 separator 130, 140 gas diffusion layer 150, 160 catalyst layer 170 electrolyte membrane

Claims (7)

下記(A)、(B)、(C)、及び(D)の要件を満たす固体高分子形燃料電池の触媒担体用多孔質炭素材料。
(A)窒素吸着等温線のBET解析による比表面積が、450~700m/gである。
(B)窒素吸脱着等温線における、相対圧0.9の吸着量から相対圧0.4の吸着量を差し引いた吸着量の差分V0.4-0.9が、150~450mL/gである。
(C)窒素吸脱着等温線における、相対圧0.4の吸着量から相対圧0.1の吸着量を差し引いた吸着量の差分をV0.1-0.4としたとき、2400℃で熱処理した後のV0.1-0.4から2200℃で熱処理した後のV0.1-0.4を差し引いた吸着量の差分ΔV0.1-0.4が、10~30mL/gである。
(D)ラマン分光測定により1500~1700cm-1の範囲で検出されるGバンドの半値幅が、35~45cm-1である。
A porous carbon material for a catalyst carrier for polymer electrolyte fuel cells that satisfies the following requirements (A), (B), (C), and (D).
(A) Specific surface area determined by BET analysis of nitrogen adsorption isotherm is 450 to 700 m 2 /g.
(B) The adsorption amount difference V 0.4-0.9 obtained by subtracting the adsorption amount at a relative pressure of 0.4 from the adsorption amount at a relative pressure of 0.9 in the nitrogen adsorption/desorption isotherm is 150 to 450 mL/g.
(C) After heat treatment at 2400 ° C., when the difference in the adsorption amount obtained by subtracting the adsorption amount at a relative pressure of 0.1 from the adsorption amount at a relative pressure of 0.4 in the nitrogen adsorption and desorption isotherm is V 0.1-0.4 The difference ΔV 0.1-0.4 in adsorption amount obtained by subtracting V 0.1-0.4 after heat treatment at 2200 ° C. from V 0.1-0.4 is 10 to 30 mL/g.
(D) The half width of the G band detected in the range of 1500 to 1700 cm -1 by Raman spectroscopy is 35 to 45 cm -1 .
下記(E)の要件を満たす請求項1に記載の固体高分子形燃料電池の触媒担体用多孔質炭素材料。
(E)ラマン分光スペクトルから得られる、Gバンド1500~1700cm-1の範囲のピーク強度IとDバンド1200~1400cm-1の範囲のピーク強度Iとの強度比l/lが、1.0~1.7である。
2. The porous carbon material for a catalyst carrier for polymer electrolyte fuel cells according to claim 1, which satisfies the following requirement (E).
(E) The intensity ratio l D /l G of the peak intensity I G in the range of G band 1500 to 1700 cm −1 and the peak intensity I D in the range of D band 1200 to 1400 cm −1 obtained from the Raman spectroscopy spectrum is 1.0 to 1.7.
前記吸着量の差分V0.4-0.9が、200~400mL/gである請求項1又は請求項2に記載の固体高分子形燃料電池の触媒担体用多孔質炭素材料。 3. The porous carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to claim 1, wherein the adsorption amount difference V 0.4-0.9 is 200 to 400 mL/g. 前記吸着量の差分ΔV0.1-0.4が、15~25mL/gである請求項1~請求項3のいずれか1項に記載の固体高分子形燃料電池の触媒担体用多孔質炭素材料。 4. The porous carbon material for a catalyst carrier of a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the difference ΔV 0.1-0.4 in adsorption amount is 15 to 25 mL/g. 請求項1~請求項4のいずれか1項に記載の固体高分子形燃料電池の触媒担体用多孔質炭素材料を含む固体高分子形燃料電池用触媒層。 A catalyst layer for a polymer electrolyte fuel cell, comprising the porous carbon material for a catalyst carrier for a polymer electrolyte fuel cell according to any one of claims 1 to 4. 請求項5に記載の固体高分子形燃料電池用触媒層を含む燃料電池。 A fuel cell comprising the polymer electrolyte fuel cell catalyst layer according to claim 5 . 前記固体高分子形燃料電池用触媒層は、カソード側の触媒層である請求項6に記載の燃料電池。 7. The fuel cell according to claim 6, wherein the polymer electrolyte fuel cell catalyst layer is a cathode-side catalyst layer.
JP2019184024A 2019-10-04 2019-10-04 Porous carbon material for catalyst carrier for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and fuel cell Active JP7277770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019184024A JP7277770B2 (en) 2019-10-04 2019-10-04 Porous carbon material for catalyst carrier for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019184024A JP7277770B2 (en) 2019-10-04 2019-10-04 Porous carbon material for catalyst carrier for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and fuel cell

Publications (2)

Publication Number Publication Date
JP2021061142A JP2021061142A (en) 2021-04-15
JP7277770B2 true JP7277770B2 (en) 2023-05-19

Family

ID=75380391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019184024A Active JP7277770B2 (en) 2019-10-04 2019-10-04 Porous carbon material for catalyst carrier for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and fuel cell

Country Status (1)

Country Link
JP (1) JP7277770B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088025A1 (en) 2013-12-13 2015-06-18 新日鐵住金株式会社 Supporting carbon material for solid polymer fuel cell, metal-catalyst-particle-supporting carbon material, and method for manufacturing said materials
JP2017208224A (en) 2016-05-18 2017-11-24 新日鐵住金株式会社 Carbon material for catalyst carrier, method for evaluation and test of resin adsorption of polyethylene glycol resin of carbon material for catalyst carrier, catalyst for solid polymer type fuel battery, catalyst layer for solid polymer type fuel battery, and solid polymer type fuel battery
WO2017208742A1 (en) 2016-05-31 2017-12-07 ライオン・スペシャリティ・ケミカルズ株式会社 Carbon for supporting catalyst and production process therefor
JP2018012626A (en) 2016-07-21 2018-01-25 新日鉄住金化学株式会社 Porous carbon material, catalyst for solid polymer shaped fuel cell, solid polymer shaped fuel cell and manufacturing method of porous carbon material
WO2018182048A1 (en) 2017-03-31 2018-10-04 新日鐵住金株式会社 Carbon material for catalyst carrier of solid polymer fuel cell, and method for manufacturing same
WO2019004472A1 (en) 2017-06-29 2019-01-03 新日鐵住金株式会社 Solid polymer-type fuel cell catalyst carrier, method for manufacturing solid polymer-type fuel cell catalyst carrier, catalyst layer for solid polymer-type fuel cell, and fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015088025A1 (en) 2013-12-13 2015-06-18 新日鐵住金株式会社 Supporting carbon material for solid polymer fuel cell, metal-catalyst-particle-supporting carbon material, and method for manufacturing said materials
JP2017208224A (en) 2016-05-18 2017-11-24 新日鐵住金株式会社 Carbon material for catalyst carrier, method for evaluation and test of resin adsorption of polyethylene glycol resin of carbon material for catalyst carrier, catalyst for solid polymer type fuel battery, catalyst layer for solid polymer type fuel battery, and solid polymer type fuel battery
WO2017208742A1 (en) 2016-05-31 2017-12-07 ライオン・スペシャリティ・ケミカルズ株式会社 Carbon for supporting catalyst and production process therefor
JP2018012626A (en) 2016-07-21 2018-01-25 新日鉄住金化学株式会社 Porous carbon material, catalyst for solid polymer shaped fuel cell, solid polymer shaped fuel cell and manufacturing method of porous carbon material
WO2018182048A1 (en) 2017-03-31 2018-10-04 新日鐵住金株式会社 Carbon material for catalyst carrier of solid polymer fuel cell, and method for manufacturing same
WO2019004472A1 (en) 2017-06-29 2019-01-03 新日鐵住金株式会社 Solid polymer-type fuel cell catalyst carrier, method for manufacturing solid polymer-type fuel cell catalyst carrier, catalyst layer for solid polymer-type fuel cell, and fuel cell

Also Published As

Publication number Publication date
JP2021061142A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
Zheng et al. Metal‐Free Multi‐Heteroatom‐Doped Carbon Bifunctional Electrocatalysts Derived from a Covalent Triazine Polymer
JP6198810B2 (en) Carbon material for catalyst support
JP4912044B2 (en) Mesoporous carbon and production method thereof, supported catalyst for fuel cell electrode and fuel cell using the same
Peng et al. Ultra-high-performance doped carbon catalyst derived from o-phenylenediamine and the probable roles of Fe and melamine
CN110476286B (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and method for producing same
JPWO2008093731A1 (en) Fuel cell electrode catalyst and fuel cell using the same
US10103398B2 (en) Support carbon material and catalyst for solid polymer type fuel cell use
JP2016100262A (en) Catalyst for solid polymer fuel cell
JP2016201314A (en) Method of manufacturing electrode for fuel battery
JP2018012626A (en) Porous carbon material, catalyst for solid polymer shaped fuel cell, solid polymer shaped fuel cell and manufacturing method of porous carbon material
JP6964448B2 (en) Mold carbon material for fuel cell catalyst carrier, catalyst layer for fuel cell, and fuel cell
JP2017165823A (en) Phenol resin composition for porous carbon material, porous carbon material, and method for producing the same
JP7110377B2 (en) CARBON MATERIAL FOR CATALYST CARRIER FOR PROTEIN POLYMER FUEL CELL AND METHOD FOR MANUFACTURING THE SAME
JP7277770B2 (en) Porous carbon material for catalyst carrier for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and fuel cell
JP6854685B2 (en) A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier.
WO2018182047A1 (en) Carbon material for catalyst carrier of solid polymer fuel cell, and method for manufacturing same
JP2013020793A (en) Catalyst supporting carbon material for solid polymer fuel cell catalyst layer and solid polymer fuel cell manufactured using the same
JP2018172230A (en) Silver acetylide and method of producing the same
JP2023084552A (en) Method for producing templated carbon material, method for producing catalyst, method for producing catalyst layer for polymer electrolyte fuel cell, and method for producing fuel cell
JP2023084553A (en) Method for producing templated carbon material, method for producing catalyst, method for producing catalyst layer for polymer electrolyte fuel cell, and method for producing fuel cell
JP7323714B2 (en) Method for producing mixed catalyst for fuel cell, and method for forming electrode
JPWO2018182045A1 (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and method for producing the same
JP7416938B2 (en) Carbon-based carrier for fuel cell catalyst, catalyst including the same, membrane electrode assembly including the same, and method for manufacturing the same
WO2022085693A1 (en) Carbon material for polymer electrolyte fuel cell catalyst carriers, catalyst layer for polymer electrolyte fuel cells, and fuel cell
JP2023128418A (en) Platinum-supported onion-like carbonized nanodiamond, fuel cell catalyst, fuel cell electrode layer, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R151 Written notification of patent or utility model registration

Ref document number: 7277770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151