JP2018172230A - Silver acetylide and method of producing the same - Google Patents

Silver acetylide and method of producing the same Download PDF

Info

Publication number
JP2018172230A
JP2018172230A JP2017070828A JP2017070828A JP2018172230A JP 2018172230 A JP2018172230 A JP 2018172230A JP 2017070828 A JP2017070828 A JP 2017070828A JP 2017070828 A JP2017070828 A JP 2017070828A JP 2018172230 A JP2018172230 A JP 2018172230A
Authority
JP
Japan
Prior art keywords
silver
acetylide
carbon
carbon material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017070828A
Other languages
Japanese (ja)
Other versions
JP6815918B2 (en
Inventor
孝 飯島
Takashi Iijima
孝 飯島
健一郎 田所
Kenichiro Tadokoro
健一郎 田所
正孝 日吉
Masataka Hiyoshi
正孝 日吉
晋也 古川
Shinya Furukawa
晋也 古川
田中 智子
Tomoko Tanaka
智子 田中
一嘉 正木
Kazuyoshi Masaki
一嘉 正木
若菜 多田
wakana Tada
若菜 多田
広幸 林田
Hiroyuki Hayashida
広幸 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd, Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2017070828A priority Critical patent/JP6815918B2/en
Publication of JP2018172230A publication Critical patent/JP2018172230A/en
Application granted granted Critical
Publication of JP6815918B2 publication Critical patent/JP6815918B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide silver acetylide which is capable of producing a porous carbon material comprised of a dendritic carbon nano structure of a large specific surface area and a large mesopore volume (especially mesopore volume of mesopores having a pore diameter of 2 to 5 nm) and is useful in producing a carrier carbon material for preparing a catalyst for use in a solid polymer type fuel cell excellent in durability and power generation characteristics (especially output voltage characteristics at a low current density), and a method of producing the same.SOLUTION: The silver acetylide is of a MCtype derived from acetylene by substituting hydrogen atoms thereof with monovalent silver atoms, is of a three dimensional dendritic structure, and has a silver-carbon molar ratio, i.e., (M/M) in a range of 1.0≤M/M≤1.06, provided that (M) represents the molar amount of silver calculated from the residual amount at about 400°C in a thermogravimetric analysis under an air atmosphere up to 400°C using a decomposition product resulting from an autolytic explosion reaction as a measurement sample, and (M) represents the molar amount of carbon which is the molar amount thereof other than the molar amount of silver. The method of producing silver acetylide as described above is provided.SELECTED DRAWING: None

Description

この発明は、銀アセチリド及びその製造方法に係り、特に限定するものではないが、固体高分子形燃料電池の触媒を製造する際に用いられる担体炭素材料として好適な炭素ナノ構造体、特にその調製時に3次元樹状構造を有する樹状炭素ナノ構造体を製造する上で有用な銀アセチリド及びその製造方法に関するものである。   The present invention relates to silver acetylide and a method for producing the same, and is not particularly limited. However, the present invention relates to a carbon nanostructure suitable as a carrier carbon material used for producing a catalyst for a polymer electrolyte fuel cell, and particularly to the preparation thereof. The present invention relates to a silver acetylide useful for producing a dendritic carbon nanostructure sometimes having a three-dimensional dendritic structure and a method for producing the same.

近年、100℃以下の低温で作動可能な固体高分子形燃料電池が注目され、車両用駆動電源や定置型発電装置として開発や実用化が進められている。そして、一般的な固体高分子形燃料電池は、プロトン伝導性の電解質膜を挟んでその両外側にそれぞれアノード及びカソードとなる触媒層が配置された膜電極接合体(MEA: Membrane Electrode Assembly)を構成し、更にこの膜電極接合体を挟んでその両外側にガス拡散層が配置され、更にその両外側にセパレーターが配置された構造を基本構造(単位セル)とし、通常は、必要な出力を達成するために必要な数の単位セルをスタックすることにより構成されている。   In recent years, polymer electrolyte fuel cells that can operate at a low temperature of 100 ° C. or less have attracted attention, and are being developed and put into practical use as driving power sources for vehicles and stationary power generators. A general polymer electrolyte fuel cell has a membrane electrode assembly (MEA) in which a catalyst layer serving as an anode and a cathode is disposed on both sides of a proton conductive electrolyte membrane, respectively. In addition, the basic structure (unit cell) is a structure in which gas diffusion layers are arranged on both sides of the membrane electrode assembly and separators are arranged on both sides of the membrane electrode assembly. It is configured by stacking as many unit cells as necessary to achieve.

そして、このような固体高分子形燃料電池の単位セルにおいては、アノード側とカソード側にそれぞれ配されたセパレーターのガス流路から、カソード側には酸素や空気等の酸化性ガスを、また、アノード側には水素等の還元性ガスをそれぞれ供給し、これら供給された酸化性ガス及び還元性ガス(これらを「反応ガス」ということがある。)を、それぞれガス拡散層を介して触媒層まで供給し、アノードの触媒層で起こる化学反応とカソードの触媒層で起こる化学反応との間のエネルギー差(電位差)を利用して、外部に仕事を取出すことができる。例えば、燃料ガスとして水素ガスが、また、酸化性ガスとして酸素ガスが使用される場合には、アノードの触媒層で起こる化学反応〔酸化反応:H2→2H++2e-(E0=0V)〕と、カソードの触媒層で起こる化学反応〔還元反応:O2+4H++4e-→2H2O(E0=1.23V)〕とのエネルギー差(電位差)を利用して外部に仕事を取出すことができる。 In the unit cell of such a polymer electrolyte fuel cell, from the gas flow path of the separator disposed on the anode side and the cathode side, an oxidizing gas such as oxygen or air is provided on the cathode side, A reducing gas such as hydrogen is supplied to the anode side, and the supplied oxidizing gas and reducing gas (which may be referred to as “reactive gas”) are respectively supplied to the catalyst layer via the gas diffusion layer. Work can be taken out by utilizing the energy difference (potential difference) between the chemical reaction occurring in the anode catalyst layer and the chemical reaction occurring in the cathode catalyst layer. For example, when hydrogen gas is used as the fuel gas and oxygen gas is used as the oxidizing gas, a chemical reaction occurring in the catalyst layer of the anode [oxidation reaction: H 2 → 2H + + 2e (E 0 = 0V) And the chemical reaction [reduction reaction: O 2 + 4H + + 4e → 2H 2 O (E 0 = 1.23 V)] that takes place in the catalyst layer of the cathode to take out work to the outside. be able to.

ここで、上記の触媒層を形成して化学反応を生起させる触媒については、通常、触媒担体としては電子伝導性、化学的安定性、電気化学的安定性の観点から多孔質炭素材料が用いられ、また、触媒金属としては強酸性環境下での使用が可能であって酸化反応及び還元反応に対して共に高い反応活性を示すPt又はPt合金が主として用いられている。そして、触媒金属については、一般に上記の酸化反応及び還元反応が触媒金属上で起きるので、この触媒金属の利用率を高めるためには、質量当りの比表面積を大きくすることが必要になり、一般的には数nm程度の大きさの粒子が用いられている。   Here, for the catalyst that forms the catalyst layer and causes a chemical reaction, a porous carbon material is usually used as the catalyst carrier from the viewpoint of electronic conductivity, chemical stability, and electrochemical stability. Further, Pt or a Pt alloy that can be used in a strongly acidic environment and exhibits high reaction activity for both oxidation and reduction reactions is mainly used as the catalyst metal. For catalytic metals, the above oxidation and reduction reactions generally occur on the catalytic metal. In order to increase the utilization of the catalytic metal, it is necessary to increase the specific surface area per mass. Specifically, particles having a size of about several nm are used.

そして、このような触媒金属を担持する触媒担体については、担体としての担持能力を高めるために、すなわち、上記の数nm程度の触媒金属を吸着して担持するためのサイトを多くするために、比表面積の大きな多孔質炭素材料であることが必要であると共に、上記の触媒金属を高分散状態で担持し易いように、細孔直径2〜50nmのメソ孔の容積、すなわちメソ孔容積の大きな多孔質炭素材料であることが求められ、同時に、アノード及びカソードとなる触媒層を形成した際に、反応ガスがこの触媒層中を抵抗なく拡散するための細孔形成が求められている。   And about the catalyst support | carrier which carry | supports such a catalyst metal, in order to raise the carrying | supporting capability as a support | carrier, ie, in order to increase the site for adsorb | sucking and carrying | supporting said catalyst metal of about several nanometers, It is necessary that the porous carbon material has a large specific surface area, and the mesopore volume having a pore diameter of 2 to 50 nm, that is, the mesopore volume is large so that the catalyst metal can be easily supported in a highly dispersed state. It is required to be a porous carbon material, and at the same time, when a catalyst layer to be an anode and a cathode is formed, formation of pores is required for the reaction gas to diffuse through the catalyst layer without resistance.

そこで、従来においては、比較的大きな比表面積及びメソ孔容積を有し、同時に、立体的に枝が発達した樹状構造を持つ多孔質炭素材料として、例えばCABOT社製バルカンXC-72や、ライオン社製EC600JD及びライオン社製EC300が用いられている。また、担体炭素材料としてより好適な比表面積及びメソ孔容積を有すると共に、より好適な樹状炭素ナノ構造を持つ多孔質炭素材料を開発するための試みも行われており、近年、特に注目され始めたものとして、樹状構造を持つ銀アセチリド等の金属アセチリドを中間体として製造される樹状炭素ナノ構造体があり、これまでにも幾つかの提案がされている。   Therefore, conventionally, as a porous carbon material having a relatively large specific surface area and mesopore volume, and at the same time having a tree-like structure with three-dimensionally developed branches, for example, CABOT Vulcan XC-72, Lion EC600JD made by the company and EC300 made by Lion Corporation are used. In addition, attempts have been made to develop a porous carbon material having a more suitable specific surface area and mesopore volume as a support carbon material and a more suitable dendritic carbon nanostructure, and has recently received particular attention. As a starting material, there is a dendritic carbon nanostructure produced using a metal acetylide such as silver acetylide having a dendritic structure as an intermediate, and several proposals have been made so far.

例えば、特許文献1には、金属又は金属塩を含む溶液を準備する工程と、前記溶液にアセチレンガスを吹き込んで金属アセチリドからなる樹状の炭素ナノ構造体を生成させる工程と、この炭素ナノ構造体を60〜80℃で加熱して前記樹状の炭素ナノ構造体中に金属が内包された金属内包樹状炭素ナノ構造物を作製する工程と、この金属内包樹状炭素ナノ構造物を160〜200℃に加熱して金属を噴出させ、樹状の炭素メソポーラス構造体を作製する工程と、この炭素メソポーラス構造体を減圧雰囲気下又は不活性ガス雰囲気下で1600〜2200℃に加熱する工程とからなる製造方法で調製された多孔質炭素材料であって、窒素吸着等温線をDollimore-Heal法で解析して求められる細孔径1〜20nm及び積算細孔容積0.2〜1.5cc/gを有すると共に、BET比表面積200〜1300m2/gを有して、長期に亘って電流量の低下率が低く、耐久性に優れた固体高分子形燃料電池用の触媒を調製可能な担体炭素材料が提案されている。 For example, Patent Document 1 discloses a step of preparing a solution containing a metal or a metal salt, a step of blowing acetylene gas into the solution to generate a dendritic carbon nanostructure made of metal acetylide, and the carbon nanostructure. A step of heating the body at 60 to 80 ° C. to produce a metal-encapsulated dendritic carbon nanostructure in which metal is encapsulated in the dendritic carbon nanostructure, and 160 of the metal-encapsulated dendritic carbon nanostructure. Heating to 200 ° C. to eject metal to produce a dendritic carbon mesoporous structure, heating the carbon mesoporous structure to 1600-2200 ° C. under a reduced pressure atmosphere or an inert gas atmosphere, A porous carbon material prepared by a production method comprising: a pore diameter of 1 to 20 nm and an integrated pore volume of 0.2 to 1.5 cc / g determined by analyzing a nitrogen adsorption isotherm by a Dollimore-Heal method Have Rutotomoni, a BET specific surface area 200~1300m 2 / g, low reduction rate of the current amount for a long time, the catalyst can be prepared carrier carbon material for a solid polymer fuel cell having excellent durability Has been proposed.

また、特許文献2においては、金属又は金属塩を含むアンモニア性水溶液中にアセチレンガスを吹き込んで金属アセチリドを生成させるアセチリド生成工程と、前記金属アセチリドを60〜80℃の温度で加熱して金属粒子内包中間体を作成する第1の加熱処理工程と、前記金属粒子内包中間体を120〜200℃の温度で加熱してこの金属粒子内包中間体から金属粒子を噴出させ、炭素材料中間体を得る第2の加熱処理工程と、前記炭素材料中間体を熱濃硫酸と接触させてこの炭素材料中間体を清浄化する洗浄処理工程と、更に清浄化された炭素材料中間体を1000〜2100℃で加熱処理して担体炭素材料を得る第3の加熱処理工程とからなる製造方法で調製された多孔質炭素材料であって、所定の水素含有量を有すると共に、BET比表面積600〜1500m2/g、及びラマン分光スペクトルから得られるD-バンド1200〜1400cm-1の範囲のピーク強度(lD)とG-バンド1500〜1700cm-1の範囲のピーク強度(lG)との相対強度比(lD/lG)1.0〜2.0を有し、高加湿条件下で高い電池性能を発揮し得る固体高分子形燃料電池用触媒を調製可能な担体炭素材料が提案されている。 Moreover, in patent document 2, the acetylene production | generation process which blows in acetylene gas in the ammoniacal aqueous solution containing a metal or a metal salt, and produces | generates a metal acetylide, the said metal acetylide is heated at the temperature of 60-80 degreeC, and a metal particle A first heat treatment step for creating an inclusion intermediate, and heating the metal particle inclusion intermediate at a temperature of 120 to 200 ° C. to eject metal particles from the metal particle inclusion intermediate to obtain a carbon material intermediate A second heat treatment step, a washing treatment step of bringing the carbon material intermediate into contact with hot concentrated sulfuric acid to purify the carbon material intermediate, and further cleaning the carbon material intermediate at 1000 to 2100 ° C. A porous carbon material prepared by a manufacturing method comprising a third heat treatment step for obtaining a support carbon material by heat treatment, having a predetermined hydrogen content, and a BET ratio table Product 600~1500m 2 / g, and the range of the peak intensity of Raman range of peak intensity of the spectrum obtained from D- band 1200~1400cm -1 (l D) and G- band 1500~1700cm -1 (l G) Carbon material having a relative strength ratio (l D / l G ) of 1.0 to 2.0 and capable of preparing a catalyst for a polymer electrolyte fuel cell capable of exhibiting high battery performance under high humidification conditions Has been proposed.

更に、特許文献3においては、金属又は金属塩を含むアンモニア性水溶液中にアセチレンガスを吹き込んで金属アセチリドを生成させるアセチリド生成工程と、前記金属アセチリドを40〜80℃の温度で加熱して金属粒子内包中間体を作成する第1の加熱処理工程と、前記金属粒子内包中間体を圧密成形し、得られた成形体を毎分100℃以上の昇温速度で400℃以上まで加熱してこの金属粒子内包中間体から金属粒子を噴出させ、炭素材料中間体を得る第2の加熱処理工程と、前記炭素材料中間体を熱濃硝酸又は熱濃硫酸と接触させてこの炭素材料中間体を清浄化する洗浄処理工程と、更に清浄化された炭素材料中間体を真空中又は不活性ガス雰囲気中1400〜2100℃で加熱処理して担体炭素材料を得る第3の加熱処理工程とからなる製造方法で調製された多孔質炭素材料であって、吸着過程の窒素吸着等温線をDollimore-Heal法で解析して求められる細孔直径2〜50nmのメソ孔の比表面積SAが600〜1600m2/gであり、ラマン分光スペクトルにおけるG’-バンド2650〜2700cm-1の範囲のピーク強度(lG’)とG-バンド1550〜1650cm-1の範囲のピーク強度(lG)との相対強度比(lG’/lG)が0.8〜2.2であり、メソ孔の内の細孔直径2nm以上10nm未満のメソ孔の比細孔面積S2-10が400〜1100m2/gであって比細孔容積V2-10が0.4〜1.6cc/gであり、メソ孔の内の細孔直径10nm以上50nm以下のメソ孔の比細孔面積S10-50が20〜150m2/gであって比細孔容積V2-10が0.4〜1.6cc/gであり、また、吸着過程の窒素吸着等温線をHorvath-Kawazoe法で解析して求められる細孔直径2nm未満の細孔の比細孔面積S2が250〜550m2/gであって、高い発電性能を維持しつつ電位変動に対して優れた耐久性を発現し得る固体高分子形燃料電池用触媒を調製可能な担体炭素材料が提案されている。 Furthermore, in Patent Document 3, an acetylide generating step of generating acetylene gas by blowing acetylene gas into an ammoniacal aqueous solution containing a metal or a metal salt, and heating the metal acetylide at a temperature of 40 to 80 ° C. to form metal particles A first heat treatment step for producing an inclusion intermediate, the metal particle inclusion intermediate is compacted, and the resulting molded article is heated to 400 ° C. or higher at a temperature rising rate of 100 ° C. or more per minute. A second heat treatment step of ejecting metal particles from the particle inclusion intermediate to obtain a carbon material intermediate; and contacting the carbon material intermediate with hot concentrated nitric acid or hot concentrated sulfuric acid to clean the carbon material intermediate And a third heat treatment step for obtaining a carrier carbon material by heat-treating the cleaned carbon material intermediate in a vacuum or in an inert gas atmosphere at 1400 to 2100 ° C. A porous carbon material prepared by the manufacturing process comprising, the specific surface area S A of the mesopores of pore diameters 2~50nm obtained by analyzing the nitrogen adsorption isotherm of adsorption process in Dollimore-Heal method 600 1600 m 2 / g, and the peak intensity (l G ′ ) in the range of G′-band 2650-2700 cm −1 and the peak intensity (l G ) in the range of 1550-1650 cm −1 in the Raman spectrum. The relative intensity ratio (l G ′ / l G ) is 0.8 to 2.2, and the specific pore area S 2-10 of the mesopores having a pore diameter of 2 nm or more and less than 10 nm in the mesopores is 400 to 1100 m. 2 / g, the specific pore volume V 2-10 is 0.4 to 1.6 cc / g, and the specific pore area S 10− of the mesopores having a pore diameter of 10 nm or more and 50 nm or less in the mesopores. 50 is 20-150 m 2 / g, specific pore volume V 2-10 is 0.4-1.6 cc / g, and the nitrogen adsorption isotherm of the adsorption process is Horva The specific pore area S 2 of pores having a pore diameter of less than 2 nm determined by analysis by th-Kawazoe method is 250 to 550 m 2 / g, which is excellent against potential fluctuations while maintaining high power generation performance. A support carbon material capable of preparing a catalyst for a polymer electrolyte fuel cell capable of exhibiting durability has been proposed.

更にまた、特許文献4においては、金属アセチリドを中間体として自己分解爆発反応を経て調製された樹状炭素ナノ構造を有する多孔質炭素材料〔新日鉄住金化学社製商品名:エスカーボン(ESCARBON)(登録商標)-MCND〕を原料として用い、黒鉛化処理を行った後に、更に過酸化水素、硝酸、液中プラズマ装置等を用いた酸化処理を行って得られた担体炭素材料であって、酸素含有量OICP0.1〜3.0質量%、不活性ガス(又は真空)雰囲気中1200℃の熱処理後に残存する酸素残存量O1200℃0.1〜1.5質量%、BET比表面積300〜1500m2/g、ラマン分光スペクトルの1550〜1650cm-1の範囲に検出されるG-バンドの半値幅ΔG30〜70cm-1、及び不活性ガス(又は真空)雰囲気中1200℃の熱処理後に残存する水素残存量H1200℃0.005〜0.080質量%であり、起動・停止といった負荷変動の繰り返しに対する耐久性に優れ、また、低加湿時の運転条件下での発電性能に優れている固体高分子形燃料電池用触媒を調製可能な担体炭素材料が提案されている。 Furthermore, in Patent Document 4, a porous carbon material having a dendritic carbon nanostructure prepared through a self-decomposing explosion reaction using metal acetylide as an intermediate [trade name: ESCARBON, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.] (Registered trademark) -MCND] as a raw material, and after carrying out graphitization treatment, the carrier carbon material obtained by further performing oxidation treatment using hydrogen peroxide, nitric acid, a submerged plasma device, etc. Content O ICP 0.1-3.0% by mass, oxygen remaining amount remaining after heat treatment at 1200 ° C. in an inert gas (or vacuum) atmosphere O 1200 ° C. 0.1-1.5% by mass, BET specific surface area 300 ˜1500 m 2 / g, G-band half-value width ΔG30-70 cm −1 detected in the range of 1550-1650 cm −1 of the Raman spectrum, and remaining after heat treatment at 1200 ° C. in an inert gas (or vacuum) atmosphere Hydrogen remaining amount 1200 ° C. is 0.005 to 0.080 wt%, excellent durability against repeated load fluctuations such starting and stopping, also a solid polymer fuel that has excellent power generation performance under operating conditions at the time of low humidification Support carbon materials capable of preparing battery catalysts have been proposed.

WO 2014/129597 A1号公報WO 2014/129597 A1 Publication WO 2015/088025 A1号公報WO 2015/088025 A1 Publication WO 2015/141810 A1号公報WO 2015/141810 A1 Publication WO 2016/133132 A1号公報WO 2016/133132 A1 Publication

上記の特許文献1〜4に記載された担体炭素材料は、いずれも固体高分子形燃料電池用触媒を調製する上でそれぞれ所望の発電特性を発揮するものではあるが、本発明者らがその発電特性について詳細に検討したところ、低電流密度(0.1A/cm2)における出力電圧において更に改善の余地があることが判明した。
そして、この低電流密度での出力電圧を改善するためには、担体炭素材料の比表面積を大きくすると共に、細孔径2〜50nmのメソ孔容積を大きくすることが重要であるが、触媒金属、特にPt又はPt合金の高分散状態で担持させ、その利用率を向上させるためには、細孔面積を大きくすると共にメソ孔の内の特に細孔径2〜5nmのメソ孔容積V2-5を大きくすることが重要であることを突き止めた。
The carrier carbon materials described in the above-mentioned Patent Documents 1 to 4 each exhibit desired power generation characteristics in preparing a polymer electrolyte fuel cell catalyst. A detailed examination of the power generation characteristics revealed that there was room for further improvement in the output voltage at a low current density (0.1 A / cm 2 ).
In order to improve the output voltage at the low current density, it is important to increase the specific surface area of the support carbon material and increase the mesopore volume of the pore diameter of 2 to 50 nm. In particular, in order to support Pt or a Pt alloy in a highly dispersed state and improve the utilization rate, the mesopore volume V 2-5 having a pore diameter of 2 to 5 nm, particularly a mesopore, is increased while increasing the pore area. I found it important to make it bigger.

すなわち、触媒の利用率は、硫酸電解液中での電位掃引による水素吸着脱離の電気量から求める触媒面積と、セルに組み込んだ状態での同様の触媒面積との対比で評価されるが、前者の硫酸電解液中での触媒面積に対する後者のセルに組み込んだ状態での触媒面積の割合(利用率)は20〜30%程度に過ぎない。その原因の一つは、プロトン伝導樹脂が担体炭素の細孔を塞いで反応ガスが細孔内へ拡散し難いことにある。これは、プロトン伝導樹脂は、細孔が大きいとこの細孔内に入り込むが、細孔が数nm程度になると、高分子の配置の自由度が減少し、細孔内に侵入した時のエントロピー損失が大きくて殆ど侵入しないと考えられるからである。細孔径2〜5nmのメソ孔は、プロトン伝導樹脂は侵入しないが、数nmサイズの触媒粒子は担持され、また、この触媒粒子が担持された後でもガス拡散に支障の少ない空隙が確保される最適なサイズであるとの考えから、細孔径2〜5nmの細孔容積を大きくすることにより、Pt利用率を高めることができることを突き止めた。   That is, the utilization factor of the catalyst is evaluated by comparing the catalyst area obtained from the amount of electricity of hydrogen adsorption / desorption by potential sweep in the sulfuric acid electrolyte and the similar catalyst area in the state of being incorporated in the cell. The ratio (utilization rate) of the catalyst area in the state incorporated in the latter cell with respect to the catalyst area in the former sulfuric acid electrolyte is only about 20 to 30%. One of the causes is that the proton conductive resin blocks the pores of the carrier carbon and the reaction gas is difficult to diffuse into the pores. This is because proton conductive resin enters the pores when the pores are large, but when the pores are about several nanometers, the degree of freedom of arrangement of the polymer decreases and the entropy when entering the pores is reduced. This is because it is considered that the loss is so large that it hardly penetrates. The mesopores having a pore diameter of 2 to 5 nm do not infiltrate the proton conductive resin, but support a catalyst particle having a size of several nanometers, and a void with little hindrance to gas diffusion is secured even after the catalyst particle is supported. From the idea that it is the optimum size, it was found that the Pt utilization rate can be increased by increasing the pore volume with a pore diameter of 2 to 5 nm.

ところで、上記特許文献1〜4で提案された担体炭素材料の製造方法について詳細に検討してみると、銀アセチリドの合成工程においては、硝酸銀のアンモニア性水溶液中にアセチレンガスを導入して銀アセチリドを合成しているが、このアセチレンガスの導入に際しては、反応系内の硝酸銀とこの反応系内で硝酸銀と反応するアセチレンとのモル比を考慮し、反応系内に導入されたアセチレンが若干過剰となるようにアセチレンガスの吹込み量を制御し、30分程度の時間をかけて反応系からアセチレンガスが放出され始めるまでアセチレンガスを吹き込み、アセチレンガスが放出され始めた時点を硝酸銀の反応終了点と判断して反応系内へのアセチレンガスの吹込みを停止している。そして、この合成工程で得られた銀アセチリドについては、銀アセチリドが爆発性物質であることから、通常は、例えば、反応系内に沈殿物として生成した反応混合物をメンブランフィルターで濾過して回収し、この反応混合物をメタノール等の溶剤中に再分散させて再び濾過する再分散-濾過の洗浄操作を行って洗浄しており、そして、この洗浄後に得られた「洗浄後の反応生成物」をそのまま次の工程で使用している。   By the way, when the method for producing the carrier carbon material proposed in Patent Documents 1 to 4 above is examined in detail, in the silver acetylide synthesis step, acetylene gas is introduced into an ammoniacal aqueous solution of silver nitrate to produce silver acetylide. However, when this acetylene gas was introduced, the molar ratio of silver nitrate in the reaction system to acetylene that reacts with silver nitrate in this reaction system was taken into account, and the acetylene introduced into the reaction system was slightly excessive. The amount of acetylene gas blown was controlled so that the acetylene gas was blown out until the acetylene gas began to be released from the reaction system over a period of about 30 minutes, and when the acetylene gas began to be released, the reaction of silver nitrate was completed Judging from the point, the injection of acetylene gas into the reaction system was stopped. For the silver acetylide obtained in this synthesis step, since silver acetylide is an explosive substance, usually, for example, the reaction mixture formed as a precipitate in the reaction system is collected by filtration through a membrane filter. The reaction mixture is washed by performing a redispersion-filtration washing operation in which the reaction mixture is redispersed in a solvent such as methanol and then filtered again, and the “reaction product after washing” obtained after this washing is washed. Used as it is in the next step.

このため、得られた銀アセチリドを所定の温度に加熱し自己分解爆発反応を誘発させて得られた分解生成物(洗浄処理前の炭素材料中間体)中の銀の量と炭素の量とを測定してみると、銀アセチリドの分子式(Ag-C≡C-Ag)から求められる銀と炭素の理論モル比が1.0であるのに対して、実際には合成された銀アセチリドの銀−炭素モル比は1.1前後になっており、銀に対して炭素の存在量が過剰になっていることが判明し、本発明者らはこのような銀アセチリド中に存在する余分な炭素(C)はアセチレン分子であると推定した。
なお、本発明において「銀アセチリド」とは、分子構造式Ag-C≡C-Agで表される化合物そのものではなく、上述の如き銀アセチリド合成工程で得られた洗浄後の反応生成物をいう。
For this reason, the amount of silver and the amount of carbon in the decomposition product (carbon material intermediate before cleaning treatment) obtained by heating the obtained silver acetylide to a predetermined temperature and inducing an autolytic explosion reaction are obtained. When measured, the theoretical molar ratio of silver to carbon obtained from the molecular formula of silver acetylide (Ag-C≡C-Ag) is 1.0, whereas the actual silver acetylide synthesized is silver. -The carbon molar ratio is around 1.1, and it has been found that the abundance of carbon is excessive with respect to silver, and the present inventors have found that excess carbon present in such silver acetylide. (C) was estimated to be an acetylene molecule.
In the present invention, “silver acetylide” refers to the reaction product after washing obtained in the silver acetylide synthesis step as described above, not the compound itself represented by the molecular structural formula Ag—C≡C—Ag. .

そこで、本発明者らは、銀アセチリドの自己分解爆発反応の際における銀アセチリドの銀−炭素モル比と、銀アセチリドの分解エネルギーと、分解生成物におけるメソ孔の細孔径の大きさとの間に何らかの関連性が存在するものと考え、製造中間体としての銀アセチリドの合成に際して、合成される銀アセチリドの3次元樹状構造中における銀−炭素モル比を制御することにより、銀アセチリドの自己分解爆発反応の際の分解エネルギーを制御し、この自己分解爆発反応によって生成する分解生成物の、ひいてはこの分解生成物から銀粒子等を洗浄・除去して得られる樹状炭素ナノ構造体のメソ孔容積を制御することが可能ではないかとの考えに到達した。   Therefore, the present inventors have determined between the silver-carbon molar ratio of silver acetylide during the self-decomposition explosion reaction of silver acetylide, the decomposition energy of silver acetylide, and the size of the pore diameter of mesopores in the decomposition product. Considering that there is some relationship, the self-decomposition of silver acetylide is controlled by controlling the silver-carbon molar ratio in the three-dimensional dendritic structure of silver acetylide synthesized in the synthesis of silver acetylide as a production intermediate. Mesopores of dendritic carbon nanostructures obtained by washing and removing silver particles, etc., from the decomposition products generated by this self-decomposition explosion reaction by controlling the decomposition energy during the explosion reaction We have reached the idea that it is possible to control the volume.

そして、この考えの下に、銀アセチリドの合成に際して、合成される銀アセチリドの3次元樹状構造中に存在する炭素の量をこれまでの炭素の存在量よりも少ない範囲内に制御しつつ、また、敢えて僅かに余分な炭素(C)を導入し、これによって銀アセチリドの自己分解爆発反応の際の分解エネルギーを制御することにより、この銀アセチリドを自己分解爆発反応させて製造される樹状炭素ナノ構造体におけるメソ孔容積を制御することを試みた結果、メソ孔容積を制御すること、特に細孔径2〜5nmのメソ孔容積を大きくすることに成功した。これは、銀アセチリドの製造過程で導入された余分な炭素(C)の量が制御されて分解エネルギーが制御され、銀アセチリドの自己分解爆発反応の際における枝の形成、銀粒子放出の激しさ等が制御され、形成される銀粒子のサイズが過度に成長しないまま外部に放出されて相対的に細孔径が比較的小さくなり、細孔径2〜50nmのメソ孔の細孔径の大きさの分布が比較的小さい方向にずれ、細孔径2〜5nmのメソ孔容積が大きくなったものと考えられる。   And under this idea, when synthesizing silver acetylide, while controlling the amount of carbon present in the synthesized three-dimensional tree structure of silver acetylide within a range smaller than the existing amount of carbon, Also, a dendritic tree produced by self-decomposing explosion reaction of silver acetylide by introducing a slight excess of carbon (C) and controlling the decomposition energy during the self-decomposing explosion reaction of silver acetylide. As a result of trying to control the mesopore volume in the carbon nanostructure, the inventors succeeded in controlling the mesopore volume, in particular, increasing the mesopore volume having a pore diameter of 2 to 5 nm. This is because the amount of excess carbon (C) introduced in the production process of silver acetylide is controlled to control the decomposition energy, the formation of branches during the silver acetylide self-decomposition explosion reaction, the intensity of silver particle emission Etc., and the size of the silver particles formed is released to the outside without excessive growth, and the pore diameter is relatively small, and the distribution of the pore diameters of the mesopores having a pore diameter of 2 to 50 nm. It is considered that the mesopore volume with a pore diameter of 2 to 5 nm was increased.

更に、本発明者らは、合成された銀アセチリドの銀−炭素モル比について、自己分解爆発反応後の分解生成物(洗浄処理前の炭素材料中間体)について、空気雰囲気下の熱重量分析において測定される最終残量から求められる銀のモル量(MAg)に対してこの銀以外のものを炭素であるとして求められる炭素のモル量(MC)とから算出される銀−炭素モル比(MC/MAg)が理論モル比とよく整合することを見出し、銀アセチリドの銀の量と炭素の量とを上記の銀−炭素モル比(MC/MAg)で定量化できることを見出した。なお、上記の「銀以外のもの」には、酸素、水素等の炭素以外の元素が僅かに含まれていることがある。 Furthermore, the present inventors conducted a thermogravimetric analysis in an air atmosphere for a decomposition product after the autolysis explosion reaction (carbon material intermediate before washing treatment) with respect to the silver-carbon molar ratio of the synthesized silver acetylide. The silver-carbon molar ratio calculated from the molar amount of carbon (M C ) determined as the carbon other than this silver relative to the molar amount of silver (M Ag ) determined from the final remaining amount to be measured. We found that (M C / M Ag ) is in good agreement with the theoretical molar ratio, and that the amount of silver and the amount of carbon in silver acetylide can be quantified by the above silver-carbon molar ratio (M C / M Ag ). I found it. The “other than silver” may slightly contain elements other than carbon such as oxygen and hydrogen.

そして、本発明者らは、銀アセチリドの合成に際して、如何にして合成される銀アセチリド中に存在する炭素の存在量を制御するかについて更に検討した結果、銀アセチリドの製造に際して、硝酸銀のアンモニア性水溶液中に導入するアセチレンガスの吹込み速度を制御して従来よりも反応時間を長くし、また、必要により従来よりも反応温度を低くすることにより、反応系内に導入されるアセチレン分子を無駄なく確実に硝酸銀と反応させることができることを見出し、本発明を完成した。   As a result of further study on how to control the amount of carbon present in the synthesized silver acetylide during the synthesis of silver acetylide, the present inventors have determined that the ammoniacal nature of silver nitrate is not limited. By controlling the blowing rate of the acetylene gas introduced into the aqueous solution, the reaction time is made longer than before, and if necessary, the reaction temperature is made lower than before to waste the acetylene molecules introduced into the reaction system. The present invention has been completed by finding that it can be reliably reacted with silver nitrate.

本発明は、上述した各知見に基づいて発明されてものであり、その目的とするところは、固体高分子形燃料電池の触媒を製造する際に用いられる担体炭素材料として好適な3次元樹状構造を有する樹状炭素ナノ構造体を製造する上で有用な銀アセチリドを提供することにある。
また、本発明の他の目的は、このような固体高分子形燃料電池の触媒を製造する際に用いられる担体炭素材料として好適な3次元樹状構造を有する樹状炭素ナノ構造体を製造する上で有用な銀アセチリドの製造方法を提供することにある。
The present invention has been invented based on each of the above-mentioned findings, and the object of the present invention is a three-dimensional dendritic tree suitable as a support carbon material used for producing a catalyst for a polymer electrolyte fuel cell. An object of the present invention is to provide a silver acetylide useful for producing a dendritic carbon nanostructure having a structure.
Another object of the present invention is to produce a dendritic carbon nanostructure having a three-dimensional dendritic structure suitable as a support carbon material used in producing such a polymer electrolyte fuel cell catalyst. It is to provide a method for producing silver acetylide useful above.

すなわち、本発明は以下の通りである。
(1) アセチレンの水素原子が1価の銀原子と置換したM22型の銀アセチリドであって、
3次元樹状構造を有し、自己分解爆発反応後の分解生成物を測定用試料とする空気雰囲気下での400℃までの熱重量分析において、400℃近傍での残量から算出される銀のモル量(MAg)に対して銀以外のものを炭素のモル量(MC)として求められる銀−炭素モル比(MC/MAg)が1.0≦MC/MAg≦1.06であることを特徴とする銀アセチリド。
(2) 前記自己分解爆発反応後の分解生成物を測定用試料とする空気雰囲気下での熱重量分析において、質量減少率が0.5%になるときの温度T0.5(0.5%質量減少温度)が130℃以上であることを特徴とする前記(1)に記載の銀アセチリド。
That is, the present invention is as follows.
(1) M 2 C 2 type silver acetylide in which hydrogen atoms of acetylene are substituted with monovalent silver atoms,
Silver having a three-dimensional dendritic structure and calculated from the remaining amount in the vicinity of 400 ° C. in a thermogravimetric analysis up to 400 ° C. in an air atmosphere using the decomposition product after the self-decomposing explosion reaction as a measurement sample the molar amount (M Ag) obtained something other than silver as the molar amount of carbon (M C) of silver - carbon molar ratio (M C / M Ag) is 1.0 ≦ M C / M Ag ≦ 1 Silver acetylide, characterized by 0.06.
(2) In the thermogravimetric analysis in an air atmosphere using the decomposition product after the self-decomposition explosion reaction as a measurement sample, the temperature T 0.5 when the mass reduction rate becomes 0.5% (0.5% mass reduction temperature) ) Is 130 ° C. or higher. The silver acetylide as described in (1) above.

(3) 硝酸銀のアンモニア水溶液中にアセチレンガスを吹き込んで硝酸銀とアセチレンガスとを反応させて3次元樹状構造を有する銀アセチリドを製造するに際し、
前記硝酸銀に対するアセチレンガスのモル比を0.50〜0.53の範囲に制御すると共に、前記アセチレンガスの吹込み時間を10〜30時間に調整することを特徴とする銀アセチリドの製造方法。
(4) 前記硝酸銀とアセチレンガスとの反応の際における反応温度を0〜20℃に調整することを特徴とする前記(3)に記載の銀アセチリドの製造方法。
(3) In producing silver acetylide having a three-dimensional dendritic structure by injecting acetylene gas into an aqueous ammonia solution of silver nitrate to react silver nitrate with acetylene gas.
A method for producing silver acetylide, wherein the molar ratio of acetylene gas to silver nitrate is controlled in the range of 0.50 to 0.53, and the blowing time of the acetylene gas is adjusted to 10 to 30 hours.
(4) The method for producing silver acetylide according to (3) above, wherein the reaction temperature in the reaction between the silver nitrate and acetylene gas is adjusted to 0 to 20 ° C.

本発明の銀アセチリドによれば、これを自己分解爆発反応させることにより、比表面積及びメソ孔容積が大きい、特に細孔径2〜5nmのメソ孔容積が大きい樹状炭素ナノ構造体からなり、耐久性に優れていると共に発電特性、特に低電流密度での出力電圧特性に優れた固体高分子形燃料電池用触媒の担体炭素材料として有用な多孔質炭素材料を製造することができる。
また、本発明の銀アセチリドの製造方法によれば、上記の比表面積及びメソ孔容積、特に細孔径2〜5nmのメソ孔容積が大きい樹状炭素ナノ構造体からなり、固体高分子形燃料電池用触媒の担体炭素材料用製造原料として有用な銀アセチリドを容易に製造することができる。
According to the silver acetylide of the present invention, it is composed of a dendritic carbon nanostructure having a large specific surface area and a large mesopore volume, particularly a mesopore volume having a pore diameter of 2 to 5 nm, and is durable by subjecting it to an autolytic explosion reaction. It is possible to produce a porous carbon material that is useful as a support carbon material for a catalyst for a polymer electrolyte fuel cell that has excellent power generation characteristics, in particular, excellent output voltage characteristics at a low current density.
In addition, according to the method for producing silver acetylide of the present invention, the solid polymer fuel cell comprising the dendritic carbon nanostructure having the above specific surface area and mesopore volume, particularly the mesopore volume having a pore diameter of 2 to 5 nm is large. Silver acetylide useful as a raw material for producing a support carbon material for a catalyst can be easily produced.

図1は、本発明において、熱重量分析を実施する際の方法を説明するためのグラフ図である。FIG. 1 is a graph for explaining a method for performing thermogravimetric analysis in the present invention. 図2は、本発明の実施例17〜20において測定された熱重量分析の結果を示すグラフ図である。FIG. 2 is a graph showing the results of thermogravimetric analysis measured in Examples 17 to 20 of the present invention.

以下、本発明の銀アセチリド及びその製造方法について、詳細に説明する。
本発明の銀アセチリドは、アセチレンの水素原子が1価の銀原子と置換したM22型の銀アセチリドであって、3次元樹状構造を有すると共に、自己分解爆発反応後の分解生成物 (金属状態の銀と炭素との複合体)についての空気雰囲気下での熱重量分析において、最終残量から算出される銀のモル量(MAg)と銀以外のものを炭素のモル量(MC)として求められる銀−炭素モル比(MC/MAg)が1.0≦MC/MAg≦1.06の範囲内である。なお、上記の「銀以外のもの」には、酸素、水素等の炭素以外の元素が僅かに含まれていることがある。
Hereinafter, the silver acetylide of the present invention and the production method thereof will be described in detail.
The silver acetylide of the present invention is an M 2 C 2 type silver acetylide in which a hydrogen atom of acetylene is substituted with a monovalent silver atom, has a three-dimensional tree-like structure, and is a decomposition product after an autolytic explosion reaction In thermogravimetric analysis under air atmosphere for (composite of metallic silver and carbon), the molar amount of silver (M Ag ) calculated from the final remaining amount and the molar amount of carbon other than silver (M Ag ) silver is determined as M C) - carbon molar ratio (M C / M Ag) is in the range of 1.0 ≦ M C / M Ag ≦ 1.06. The “other than silver” may slightly contain elements other than carbon such as oxygen and hydrogen.

銀アセチリドは、アセチレンの水素原子が1価の銀原子と置換したM22型であって、分子式(Ag-C≡C-Ag)を有し、この分子式から求められる銀と炭素のモル比(銀−炭素モル比)が理論的には1.0であるのに対して、本発明の銀アセチリドは、空気雰囲気下での熱重量分析において、最終残量から算出される銀のモル量(MAg)とそれ以外を炭素のモル量(MC)とした場合に、これら銀のモル量(MAg)と炭素のモル量(MC)との銀−炭素モル比(MC/MAg)が1.0≦MC/MAg≦1.06の範囲内であり、好ましくは1.01≦MC/MAg≦1.06、より好ましくは1.02≦MC/MAg≦1.06の範囲内である。この銀−炭素モル比(MC/MAg)が1.0未満であると、銀アセチリドの中に硝酸銀が取り込まれて爆発力が弱くなり、細孔容積が小さくなって触媒担体として適さなくなり、反対に、銀−炭素モル比(MC/MAg)が1.06を超えて大きくなると、この銀アセチリドを自己分解爆発反応させて得られる樹状炭素ナノ構造体の細孔径2〜5nmのメソ孔容積V2-5が低下し、低電流密度での出力電圧特性に優れた固体高分子形燃料電池用触媒の調製に有用な担体炭素材料としての多孔質炭素材料が得られない。 Silver acetylide is an M 2 C 2 type in which the hydrogen atom of acetylene is replaced with a monovalent silver atom, and has a molecular formula (Ag-C≡C-Ag). While the ratio (silver-carbon molar ratio) is theoretically 1.0, the silver acetylide of the present invention is a silver mole calculated from the final remaining amount in thermogravimetric analysis under an air atmosphere. the amount (M Ag) and the molar amount of carbon than it when the (M C), silver molar amount of silver and (M Ag) molar amount of carbon and (M C) - carbon molar ratio (M C / M Ag ) is in the range of 1.0 ≦ M C / M Ag ≦ 1.06, preferably 1.01 ≦ M C / M Ag ≦ 1.06, more preferably 1.02 ≦ M C / It is in the range of M Ag ≦ 1.06. When the silver-carbon molar ratio (M C / M Ag ) is less than 1.0, silver nitrate is taken into silver acetylide, the explosive force becomes weak, the pore volume becomes small, and it becomes unsuitable as a catalyst support. On the contrary, when the silver-carbon molar ratio (M C / M Ag ) exceeds 1.06, the pore diameter of the dendritic carbon nanostructure obtained by subjecting the silver acetylide to a self-decomposing explosion reaction is 2 to 5 nm. The mesopore volume V 2-5 is reduced, and a porous carbon material as a carrier carbon material useful for preparing a catalyst for a polymer electrolyte fuel cell excellent in output voltage characteristics at a low current density cannot be obtained.

≪熱重量分析の方法≫
本発明において、銀アセチリドの特性を調べるために行うその自己分解爆発反応の分解生成物を測定用試料とする空気雰囲気下での400℃までの熱重量分析(以下、この熱重量分析を単に「銀アセチリドの熱重量分析」ということがある。)については、銀アセチリドの銀−炭素モル比(MC/MAg)を正確に測定するために、熱重量分析を以下の方法に従って行う必要がある。
先ず、熱重量分析装置には測定試料をその装置の仕込み量の上限値近くまで使用し、0.01質量%程度までの重量減少をできる限り正確に検出できるようにすると共に、使用する空気については、圧縮乾燥空気を用いて流量を一定に管理し、測定中に測定試料が動くのを極力抑制する。また、測定試料中に含まれる水分を予め十分に除去するために、測定試料を装置にセットした後、例えば窒素ガスフロー下で一晩50℃に保持して十分に乾燥させた後、室温に降温させ、乾燥空気に切り替えて測定する。更に、実際の測定及び解析に際しては、空気流量200cc/分及び昇温速度10℃/分の測定条件で室温から400℃まで行い、60℃以下の温度域での急激な重量減少は水分と推察されるため、質量の原点を70℃での値として解析する。そして、例えば、図1に示す例では、400℃近傍での残量が89.62質量%なので、炭素の原子量12.01と銀の原子量107.87を考慮し、銀−炭素モル比(MC/MAg)は1.04と計算される。
≪Method of thermogravimetric analysis≫
In the present invention, thermogravimetric analysis up to 400 ° C. in an air atmosphere using the decomposition product of the self-decomposing explosion reaction performed for examining the characteristics of silver acetylide as a measurement sample (hereinafter, this thermogravimetric analysis is simply referred to as “ In order to accurately measure the silver-carbon molar ratio (M C / M Ag ) of silver acetylide, thermogravimetric analysis must be performed according to the following method. is there.
First, in the thermogravimetric analyzer, the measurement sample is used up to the upper limit of the charged amount of the apparatus so that the weight loss up to about 0.01% by mass can be detected as accurately as possible, and the air used Uses the compressed dry air to keep the flow rate constant and suppress the movement of the measurement sample during measurement as much as possible. In addition, in order to sufficiently remove moisture contained in the measurement sample in advance, after setting the measurement sample in the apparatus, for example, holding at 50 ° C. overnight under a nitrogen gas flow and sufficiently drying, Lower the temperature and switch to dry air for measurement. Furthermore, in actual measurement and analysis, the measurement was performed from room temperature to 400 ° C. under the measurement conditions of an air flow rate of 200 cc / min and a heating rate of 10 ° C./min. Therefore, the origin of mass is analyzed as a value at 70 ° C. For example, in the example shown in FIG. 1, since the remaining amount in the vicinity of 400 ° C. is 89.62% by mass, the silver atomic weight ratio (M) is considered in consideration of the atomic weight of carbon 12.01 and the atomic weight 107.87 of silver. C / M Ag ) is calculated to be 1.04.

また、本発明の銀アセチリドは、好ましくは、上記の銀アセチリドの熱重量分析において、70℃での質量を100%としてそこからの質量減少率が0.5%になるときの温度(0.5%質量減少温度)が130℃以上、より好ましくは140℃以上である。銀−炭素モル比(MC/MAg)は、銀アセチリド合成工程で得られる分解生成物中に含まれるアセチレンの量を示し、爆発のエネルギーの大きさに関する制御の指標であるが、この0.5%質量減少温度は、自己分解爆発反応後の分解生成物中に含まれる過剰な炭素の性状を示すものである。アセチレンに由来する過剰な炭素は銀との接触が弱いため爆発反応時に芳香族炭素になり難く、その後の多孔質炭素材料の製造工程を経て非晶質の煤状物質になり易く、多孔質炭素材料の細孔を潰し、あるいは細孔容積を減少させる等、銀アセチリドから製造される多孔質炭素材料の特性を損なう虞があり、更には、その結果として固体高分子形燃料電池用触媒の担体炭素材料として用いた場合にその発電特性、特にPt利用率の低下を招来する虞がある。 Further, the silver acetylide of the present invention is preferably a temperature (0.5%) when the mass reduction rate is 0.5% when the mass at 70 ° C. is 100% in the thermogravimetric analysis of the silver acetylide. Mass decreasing temperature) is 130 ° C. or higher, more preferably 140 ° C. or higher. The silver-carbon molar ratio (M C / M Ag ) indicates the amount of acetylene contained in the decomposition product obtained in the silver acetylide synthesis step, and is an index of control regarding the magnitude of the explosion energy. The% mass reduction temperature indicates the property of excess carbon contained in the decomposition product after the autolytic explosion reaction. Excess carbon derived from acetylene is not easily converted into aromatic carbon during the explosion reaction due to weak contact with silver, and easily becomes an amorphous rod-like substance through the subsequent manufacturing process of porous carbon material. There is a risk of impairing the properties of the porous carbon material produced from silver acetylide, such as crushing the pores of the material or reducing the pore volume, and as a result, the support for the catalyst for the polymer electrolyte fuel cell When used as a carbon material, the power generation characteristics, particularly the Pt utilization rate, may be reduced.

このようなメソ孔容積V2-5の大きい銀アセチリドを製造するためには、銀アセチリドを生成させる銀アセチリド生成工程において、反応系内に存在する銀イオンに対して、可及的に制御されたアセチレン量を導入し、この導入されたアセチレンを可及的に確実に銀イオンと反応させてアセチレンの水素を銀に置換させる必要があり、このためには、硝酸銀のアンモニア性水溶液中、すなわち反応系内に存在する銀の量に対して、アセチレンガスとして導入される炭素の量を目標とする銀と炭素の理論モル比を考慮して制御し、同時に、反応時間を長くし、すなわち、反応系内に導入するアセチレンガスの吹込み速度を遅くし、反応系内での銀イオンとアセチレンとの接触を確実にさせることが必要である。そして、より安定して本発明による銀アセチリドを得るために、好ましくは、反応系内の硝酸銀に対してこの反応系内に導入されるアセチレンの硝酸銀-アセチレンモル比(C2H2/AgNO3)が0.50以上0.53以下、より好ましくは0.505以上0.53以下の範囲になるように制御すると共に、前記アセチレンガスの吹込み時間を1時間以上30時間以下、より好ましくは10時間以上30時間以下、より好ましくは20時間以上30時間以下とするのがよい。 In order to produce such a silver acetylide having a large mesopore volume V 2-5 , the silver acetylide production step for producing silver acetylide is controlled as much as possible with respect to the silver ions present in the reaction system. It is necessary to replace the acetylene hydrogen with silver by reliably reacting the introduced acetylene with silver ions as much as possible, and for this purpose, in the ammoniacal aqueous solution of silver nitrate, that is, The amount of carbon introduced as the acetylene gas is controlled with respect to the amount of silver present in the reaction system in consideration of the target silver / carbon theoretical molar ratio, and at the same time, the reaction time is increased, that is, It is necessary to slow down the blowing rate of the acetylene gas introduced into the reaction system to ensure contact between silver ions and acetylene in the reaction system. In order to obtain the silver acetylide according to the present invention more stably, it is preferable that the silver nitrate-acetylene molar ratio of acetylene introduced into the reaction system (C 2 H 2 / AgNO 3) with respect to silver nitrate in the reaction system. ) Is 0.50 or more and 0.53 or less, more preferably 0.505 or more and 0.53 or less, and the acetylene gas blowing time is 1 hour or more and 30 hours or less, more preferably It is good to set it as 10 hours or more and 30 hours or less, More preferably, it is 20 hours or more and 30 hours or less.

また、反応系内での銀イオンとアセチレンとの反応をより正確に制御する上で、反応温度を低くして反応系内でのアセチレンの溶存量を多くすることも効果的であり、好ましくは前記硝酸銀とアセチレンガスとの反応の際における反応温度を0℃以上30℃以下、より好ましくは0℃以上20℃以下に調整するのがよく、より好ましくは、10時間以上の長時間をかけてゆっくりと反応させるのがよい。反応温度を従来行われていた室温(25℃)よりも低くすることにより、銀−炭素モル比(MC/MAg)を1.0≦MC/MAg≦1.06の範囲内でより正確に制御することができる。更に、低温で10時間以上の長時間をかけてゆっくりと反応させることにより、アセチレン分子が銀アセチリド分子集合体の中に均一に分散し、自己分解爆発反応時に芳香族性の骨格炭素に転換する割合が高くなって煤状物質の生成が抑制される。 In order to more accurately control the reaction between silver ions and acetylene in the reaction system, it is also effective to lower the reaction temperature and increase the amount of acetylene dissolved in the reaction system. The reaction temperature in the reaction between the silver nitrate and the acetylene gas should be adjusted to 0 ° C. or higher and 30 ° C. or lower, more preferably 0 ° C. or higher and 20 ° C. or lower, more preferably 10 hours or longer. It is better to react slowly. By making the reaction temperature lower than the room temperature (25 ° C.) conventionally performed, the silver-carbon molar ratio (M C / M Ag ) is within the range of 1.0 ≦ M C / M Ag ≦ 1.06. It can be controlled more accurately. Furthermore, by slowly reacting over a long period of time of 10 hours or more at low temperature, the acetylene molecules are uniformly dispersed in the silver acetylide molecular aggregate and converted to aromatic skeleton carbon during the self-decomposing explosion reaction. A ratio becomes high and the production | generation of a soot-like substance is suppressed.

本発明の銀アセチリドによれば、従来の方法と同様の方法により、この銀アセチリドを40〜80℃、好ましくは60〜80℃の温度で加熱処理して銀粒子内包中間体を作成し(第1の加熱処理工程)、得られた銀粒子内包中間体を120〜400℃、好ましくは160〜200℃の温度で加熱処理して自己分解爆発反応により銀粒子を噴出させ、分解生成物(洗浄処理前の炭素材料中間体)を調製し(第2の加熱処理工程)、次いで得られた分解生成物(洗浄処理前の炭素材料中間体)を硝酸、硫酸等の酸と接触させてこの炭素材料中間体中の銀粒子等を除去して清浄化し(洗浄処理工程)、この清浄化された炭素材料中間体を真空中又は不活性ガス雰囲気中1400〜2400℃、好ましくは1500〜2300℃で加熱処理すること(第3の加熱処理工程)により、固体高分子形燃料電池用触媒の担体炭素材料として好適な3次元樹状構造を有する樹状炭素ナノ構造体からなる多孔質炭素材料を容易に製造することができる。   According to the silver acetylide of the present invention, this silver acetylide is heat-treated at a temperature of 40 to 80 ° C., preferably 60 to 80 ° C., in the same manner as in the conventional method to produce a silver particle encapsulating intermediate (first 1 heat treatment step), the obtained silver particle-containing intermediate is heat-treated at a temperature of 120 to 400 ° C., preferably 160 to 200 ° C., and silver particles are ejected by a self-decomposing explosion reaction to produce a decomposition product (washing). Carbon material intermediate before treatment) (second heat treatment step), and then the obtained decomposition product (carbon material intermediate before washing treatment) is contacted with an acid such as nitric acid or sulfuric acid to produce this carbon. Silver particles and the like in the material intermediate are removed and cleaned (cleaning process step), and the cleaned carbon material intermediate is vacuumed or in an inert gas atmosphere at 1400 to 2400 ° C, preferably 1500 to 2300 ° C. Heat treatment ( 3), a porous carbon material comprising a dendritic carbon nanostructure having a three-dimensional dendritic structure suitable as a carrier carbon material for a catalyst for a polymer electrolyte fuel cell can be easily produced. .

そして、本発明の銀アセチリドを製造中間体として得られた多孔質炭素材料は、従来のこの種の樹状炭素ナノ構造体に比べて、BET比表面積や耐久性において同等あるいはより優れているだけでなく、メソ孔容積、特に触媒金属のPt又はPt合金を高分散状態で担持してその利用率を向上させる上で重要な細孔径2〜5nmのメソ孔容積がより大きくなり、その結果、固体高分子形燃料電池用触媒の担体炭素材料として用いた場合には、低電流密度での出力電圧特性を顕著に改善することができるものである。   And the porous carbon material obtained by using the silver acetylide of the present invention as a production intermediate is only equivalent or superior in BET specific surface area and durability as compared with the conventional dendritic carbon nanostructure of this type. In addition, the mesopore volume, particularly the mesopore volume with a pore diameter of 2 to 5 nm, which is important in improving the utilization by supporting Pt or a Pt alloy of a catalytic metal in a highly dispersed state, is increased. When used as a carrier carbon material for a catalyst for a polymer electrolyte fuel cell, the output voltage characteristics at a low current density can be remarkably improved.

以下、実施例及び比較例に基づいて、本発明の銀アセチリド及びその製造方法を具体的に説明する。
なお、以下の実施例及び比較例において、調製された銀アセチリドの銀−炭素モル比(MC/MAg)及び0.5%質量減少温度と、各実施例及び比較例の銀アセチリドを用いて得られた担体炭素材料のBET比表面積及びメソ孔容積V2-5とを、それぞれ以下のようにして測定した。
Hereinafter, based on an Example and a comparative example, the silver acetylide of this invention and its manufacturing method are demonstrated concretely.
In the following examples and comparative examples, the silver-carbon molar ratio (M C / M Ag ) and 0.5% mass reduction temperature of the prepared silver acetylide and the silver acetylide of each example and comparative example were used. The BET specific surface area and mesopore volume V 2-5 of the obtained support carbon material were measured as follows.

〔銀アセチリドの銀−炭素モル比(MC/MAg)の測定〕
各実施例及び比較例で得られた銀アセチリドを用い、後述する第1の加熱処理工程及び第2の加熱処理工程により自己分解爆発反応させて分解生成物(洗浄処理前の炭素材料中間体)を調製し、得られた分解生成物から測定用試料約10mgを測り採り、また、熱重量分析装置〔(株)日立ハイテクサイエンス製STA7200〕を用い、前述した方法で測定と解析を行った。最終残量から算出される銀のモル量(MAg)と、この銀以外のものを炭素とみなして測定される炭素のモル量(MC)とを測定し、測定された銀のモル量(MAg)に対する炭素のモル量(MC)とのモル比(MC/MAg)を求めた。なお、熱重量分析は、同じ測定用試料に対して同じ測定条件で3回実施し、その平均値を測定値としているが、3回の測定結果は数%以内で一致していた。
[Measurement of silver-carbon molar ratio (M C / M Ag ) of silver acetylide]
Using the silver acetylide obtained in each of the examples and comparative examples, a decomposition product (carbon material intermediate before washing treatment) was subjected to a self-decomposing explosion reaction in a first heat treatment step and a second heat treatment step described later. Was measured, and about 10 mg of a measurement sample was measured from the obtained decomposition product, and measurement and analysis were performed by the above-described method using a thermogravimetric analyzer [STA7200 manufactured by Hitachi High-Tech Science Co., Ltd.]. The molar amount of silver measured by measuring the molar amount of silver (M Ag ) calculated from the final remaining amount and the molar amount of carbon (M C ) measured by regarding this other than silver as carbon calculated molar ratio of the molar amount of carbon (M C) for (M Ag) to (M C / M Ag). The thermogravimetric analysis was performed three times on the same measurement sample under the same measurement conditions, and the average value was taken as the measurement value, but the three measurement results were consistent within a few percent.

〔銀アセチリドの0.5%質量減少温度の測定〕
前記の銀アセチリドの熱重量分析における銀−炭素モル比(MC/MAg)の測定の結果を用い、残重量が100%から99.5%に減少したときの温度を読み、その温度を0.5%質量減少温度とした。
(Measurement of 0.5% mass loss temperature of silver acetylide)
Using the result of the silver-carbon molar ratio (M C / M Ag ) measurement in the thermogravimetric analysis of silver acetylide, read the temperature when the remaining weight was reduced from 100% to 99.5%, The temperature was reduced by 0.5%.

〔担体炭素材料のBET比表面積及びメソ孔容積V2-5の測定〕
各実施例及び比較例で得られた銀アセチリドを用い、後述する第1の加熱処理工程、第2の加熱処理工程、洗浄工程、及び第3の加熱処理工程により調製された樹状炭素ナノ構造体からなる担体炭素材料について、約30mgを測り採り、120℃で2時間真空乾燥した後に、自動比表面積測定装置(マイクロトラックベル社製BELSORP MAX)を用い、窒素ガスを吸着質に用いて窒素ガス吸着等温線を測定した。吸着時の等温線のp/p0が0.05〜0.15の範囲において、装置に付属の解析ソフトを用いてBET解析を実施しBET比表面積を算出した。
[Measurement of BET specific surface area and mesopore volume V 2-5 of support carbon material]
Dendritic carbon nanostructures prepared by a first heat treatment step, a second heat treatment step, a washing step, and a third heat treatment step, which will be described later, using the silver acetylide obtained in each Example and Comparative Example About 30 mg of the carrier carbon material consisting of the body is weighed and vacuum-dried at 120 ° C. for 2 hours. Then, using an automatic specific surface area measurement device (BELSORP MAX manufactured by Microtrack Bell), nitrogen is used as the adsorbate and nitrogen. The gas adsorption isotherm was measured. In the range of p / p 0 of the isotherm at the time of adsorption, 0.05 to 0.15, BET analysis was performed using analysis software attached to the apparatus, and the BET specific surface area was calculated.

≪実施例1〜6及び比較例1≫
(1) 銀アセチリド生成工程
アンモニア濃度2.0質量%のアンモニア水溶液中に硝酸銀を濃度2.0質量%の割合で溶解して硝酸銀含有アンモニア水溶液を調製し、この硝酸銀含有アンモニア水溶液中にアルゴンや窒素等の不活性ガスを40〜60分間吹き込んで、溶存する酸素を不活性ガスに置換し、この銀アセチリド生成工程で生成した銀アセチリドが分解爆発を起こす危険性を排除した。
このようにして調製された硝酸銀濃度2.0質量%の硝酸銀含有アンモニア水溶液中に、反応系内の硝酸銀に対してこの反応系内に導入されるアセチレンのモル比(C2H2/AgNO3)が表1に示す値となるように、アセチレンガスの吹込み量及び吹込み速度を設定し、撹拌下に室温(25℃)で30時間をかけてアセチレンガスをゆっくりと一定の吹込み速度で吹き込み、反応系内に銀アセチリドの白い沈殿物を生成させた。
生成した銀アセチリドの沈殿物については、メンブレンフィルターで濾過して沈殿物を回収し、この回収された沈殿物をメタノールに再分散させ、再び濾過して得られた沈殿物をシャーレに取り出し、少量のメタノールを含浸させ、実施例1〜6及び比較例1(実験記号E1-1〜E1-6及びC1-1)の銀アセチリドを調製した。
<< Examples 1 to 6 and Comparative Example 1 >>
(1) Silver acetylide production step A silver nitrate-containing ammonia aqueous solution is prepared by dissolving silver nitrate in a 2.0 mass% ammonia solution in an ammonia aqueous solution having an ammonia concentration of 2.0 mass%. An inert gas such as nitrogen was blown for 40 to 60 minutes to replace the dissolved oxygen with an inert gas, and the risk that the silver acetylide produced in this silver acetylide production step would decompose and explode was eliminated.
The molar ratio of acetylene introduced into the reaction system (C 2 H 2 / AgNO 3) with respect to silver nitrate in the reaction system in the silver nitrate-containing aqueous ammonia solution having a silver nitrate concentration of 2.0% by mass prepared as described above. ) Is set to the value shown in Table 1, the acetylene gas blowing rate and blowing speed are set, and the acetylene gas is slowly and constantly blown at room temperature (25 ° C) over 30 hours under stirring. And a white precipitate of silver acetylide was produced in the reaction system.
The produced silver acetylide precipitate is filtered through a membrane filter to collect the precipitate. The collected precipitate is redispersed in methanol, filtered again, and the resulting precipitate is taken out into a petri dish and added to a small amount. The silver acetylide of Examples 1 to 6 and Comparative Example 1 (experimental symbols E1-1 to E1-6 and C1-1) was prepared.

(2) 第1の加熱処理工程
上記の銀アセチリド生成工程で得られた各実施例及び比較例の銀アセチリドについて、メタノールが含浸された状態のまま約0.5gを直径5mmのステンレス製ペレット成形金型内に装入し、ゆっくりと圧力を高めて0.5kg/cm2まで加圧しペレットに成形した。
このようにして成形されたペレットを直径5cm程度のステンレス製円筒容器内に移し、これを真空加熱電気炉に入れ、60℃で約15〜30分間かけて真空乾燥し、各実施例及び比較例の銀アセチリド由来の銀粒子内包中間体を調製した。
(2) First heat treatment step About 0.5 g of a stainless steel pellet formed with about 0.5 g of the silver acetylide of each example and comparative example obtained in the above silver acetylide production step while being impregnated with methanol. The product was placed in a mold, and the pressure was slowly increased to 0.5 kg / cm 2 to form pellets.
The pellets thus formed are transferred into a stainless steel cylindrical container having a diameter of about 5 cm, placed in a vacuum heating electric furnace, and vacuum dried at 60 ° C. for about 15 to 30 minutes. A silver particle encapsulating intermediate derived from silver acetylide was prepared.

(3) 第2の加熱処理工程
次に、上記第1の加熱処理工程で得られた真空乾燥直後の60℃の銀粒子内包中間体を、そのまま更に真空加熱電気炉から取り出すことなく、昇温速度約10℃/分で200℃まで昇温させて加熱し、この過程で、銀アセチリドの自己分解爆発反応を誘発させ、銀と炭素との複合物からなる分解生成物(洗浄処理前の炭素材料中間体)を調製した。
(3) Second heat treatment step Next, the 60 ° C silver particle inclusion intermediate immediately after vacuum drying obtained in the first heat treatment step is heated without taking it out of the vacuum heating electric furnace as it is. The temperature is raised to 200 ° C. at a rate of about 10 ° C./minute, and in this process, a self-decomposition explosion reaction of silver acetylide is induced, and a decomposition product composed of a composite of silver and carbon (carbon before washing treatment) Material intermediate) was prepared.

(4) 洗浄処理工程
上記第2の加熱処理工程で得られた銀と炭素との複合物からなる分解生成物の炭素材料中間体について、濃度60質量%の濃硝酸による洗浄処理を実施し、炭素材料中間体の表面に残存した銀粒子やその他の不安定な炭素化合物を除去し清浄化した。
(4) Cleaning treatment step For the carbon material intermediate of the decomposition product composed of the composite of silver and carbon obtained in the second heat treatment step, a washing treatment with concentrated nitric acid having a concentration of 60% by mass is performed. Silver particles remaining on the surface of the carbon material intermediate and other unstable carbon compounds were removed and cleaned.

(5) 第3の加熱処理工程
上記洗浄処理工程で清浄化された炭素材料中間体について、不活性ガス雰囲気中で表1に示す加熱温度条件で2時間加熱処理を実施し、各実施例及び比較例の銀アセチリド由来の担体炭素材料を得た。この第3の加熱処理工程での熱処理温度は、結晶性の制御のためにこれまで一般的に採用されている温度であり、この加熱処理により各実施例及び比較例の銀アセチリド由来の炭素材料の物性変化と電池特性への影響を調べたものである。
(5) Third heat treatment step The carbon material intermediate cleaned in the above washing treatment step is subjected to a heat treatment for 2 hours under the heating temperature conditions shown in Table 1 in an inert gas atmosphere. The carrier carbon material derived from the silver acetylide of the comparative example was obtained. The heat treatment temperature in the third heat treatment step is a temperature generally employed so far for controlling the crystallinity, and the carbon material derived from silver acetylide in each of Examples and Comparative Examples by this heat treatment. The effect on the physical property change and battery characteristics was investigated.

以上のようにして調製された各実施例1〜6及び比較例1の銀アセチリドの銀−炭素モル比(MC/MAg)及び0.5%質量減少温度と、これら各実施例1〜6及び比較例1の銀アセチリド由来の担体炭素材料のBET比表面積及び細孔径メソ孔容積V2-5とを測定した。
結果を表1に示す。
The silver-carbon molar ratio (M C / M Ag ) and 0.5% mass reduction temperature of each of Examples 1 to 6 and Comparative Example 1 prepared as described above, and each of Examples 1 to 6 and The BET specific surface area and pore diameter mesopore volume V 2-5 of the carrier carbon material derived from silver acetylide of Comparative Example 1 were measured.
The results are shown in Table 1.

≪実施例7〜12≫
上記の銀アセチリド生成工程において、硝酸銀-アセチレンモル比(C2H2/AgNO3)を0.53に固定し、また、アセチレンガス吹込み時の反応温度を室温(25℃)に固定し、アセチレンガス吹込み時のアセチレンガス吹込み時間を表1に示す時間に変化させて銀アセチリドの合成を行ったこと以外は、実施例1〜6及び比較例1の場合と同様にして、銀アセチリド生成工程、第1の加熱処理工程、第2の加熱処理工程、洗浄処理工程、及び第3の加熱処理工程を実施し、それぞれ各実施例7〜12(実験記号E2-1〜E2-6)の銀アセチリドを調製すると共に、これら銀アセチリド由来の担体炭素材料を調製した。
<< Examples 7 to 12 >>
In the above silver acetylide production step, the silver nitrate-acetylene molar ratio (C 2 H 2 / AgNO 3 ) is fixed at 0.53, and the reaction temperature at the time of blowing acetylene gas is fixed at room temperature (25 ° C.). Silver acetylide was the same as in Examples 1 to 6 and Comparative Example 1 except that the acetylene gas blowing time during acetylene gas blowing was changed to the time shown in Table 1 to synthesize silver acetylide. The production step, the first heat treatment step, the second heat treatment step, the washing treatment step, and the third heat treatment step were carried out, and each of Examples 7 to 12 (experiment symbols E2-1 to E2-6) In addition to the silver acetylide, a carrier carbon material derived from these silver acetylides was prepared.

このようにして調製された各実施例7〜12の銀アセチリドの銀−炭素モル比(MC/MAg)及び0.5%質量減少温度と、これら各実施例7〜12の銀アセチリド由来の担体炭素材料のBET比表面積及び細孔径メソ孔容積V2-5とを測定した。
結果を表1に示す。
The silver-carbon molar ratio (M C / M Ag ) and 0.5% mass reduction temperature of the silver acetylide of each of Examples 7 to 12 prepared in this way, and the carrier derived from the silver acetylide of each of these Examples 7 to 12 The BET specific surface area and pore diameter mesopore volume V 2-5 of the carbon material were measured.
The results are shown in Table 1.

≪実施例13〜16≫
上記の銀アセチリド生成工程において、硝酸銀-アセチレンモル比(C2H2/AgNO3)を0.53に固定し、また、アセチレンガス吹込み時のアセチレンガス吹込み時間を20時間に固定し、アセチレンガス吹込み時の反応温度を表1に示す時間に変化させて銀アセチリドの合成を行ったこと以外は、実施例1〜6及び比較例1の場合と同様にして、銀アセチリド生成工程、第1の加熱処理工程、第2の加熱処理工程、洗浄処理工程、及び第3の加熱処理工程を実施し、それぞれ各実施例13〜16(実験記号E3-1〜E3-4)の銀アセチリドを調製すると共に、これら銀アセチリド由来の担体炭素材料を調製した。
<< Examples 13 to 16 >>
In the above silver acetylide production step, the silver nitrate-acetylene molar ratio (C 2 H 2 / AgNO 3 ) is fixed at 0.53, and the acetylene gas blowing time at the time of blowing acetylene gas is fixed at 20 hours. In the same manner as in Examples 1 to 6 and Comparative Example 1, except that the reaction temperature at the time of blowing acetylene gas was changed to the time shown in Table 1 to synthesize silver acetylide, a silver acetylide production step, The first heat treatment step, the second heat treatment step, the washing treatment step, and the third heat treatment step were performed, and the silver acetylides of Examples 13 to 16 (experimental symbols E3-1 to E3-4), respectively. And a carrier carbon material derived from these silver acetylides.

このようにして調製された各実施例13〜16の銀アセチリドの銀−炭素モル比(MC/MAg)及び0.5%質量減少温度と、これら各実施例13〜16の銀アセチリド由来の担体炭素材料のBET比表面積及び細孔径メソ孔容積V2-5とを測定した。
結果を表1に示す。
The silver-carbon molar ratio (M C / M Ag ) and the 0.5% mass reduction temperature of the silver acetylide of Examples 13 to 16 prepared in this way, and the carrier derived from the silver acetylide of these Examples 13 to 16 The BET specific surface area and pore diameter mesopore volume V 2-5 of the carbon material were measured.
The results are shown in Table 1.

≪比較例2〜8≫
上記の銀アセチリド生成工程において、硝酸銀-アセチレンモル比(C2H2/AgNO3)を0.60とし、また、アセチレンガス吹込み時のアセチレンガス吹込み時間及び反応温度を表1に示す時間に変化させて銀アセチリドの合成を行ったこと以外は、実施例1〜6及び比較例1の場合と同様にして、銀アセチリド生成工程、第1の加熱処理工程、第2の加熱処理工程、洗浄処理工程、及び第3の加熱処理工程を実施し、それぞれ各比較例2〜8(実験記号C4-1〜C4-7)の銀アセチリドを調製すると共に、これら銀アセチリド由来の担体炭素材料を調製した。
«Comparative Examples 2-8»
In the above silver acetylide production step, the silver nitrate-acetylene molar ratio (C 2 H 2 / AgNO 3 ) is set to 0.60, and the acetylene gas blowing time and reaction temperature during acetylene gas blowing are shown in Table 1. In the same manner as in Examples 1 to 6 and Comparative Example 1, except that the synthesis of silver acetylide was carried out by changing to the silver acetylide production step, the first heat treatment step, the second heat treatment step, The cleaning treatment step and the third heat treatment step are carried out to prepare silver acetylides of Comparative Examples 2 to 8 (experimental symbols C4-1 to C4-7), respectively, and the carrier carbon material derived from these silver acetylides is prepared. Prepared.

このようにして調製された各比較例2〜8の銀アセチリドの銀−炭素モル比(MC/MAg)及び0.5%質量減少温度と、これら各比較例2〜8の銀アセチリド由来の担体炭素材料のBET比表面積及び細孔径メソ孔容積V2-5とを測定した。
結果を表1に示す。
The silver-carbon molar ratio (M C / M Ag ) and 0.5% mass reduction temperature of the silver acetylides of Comparative Examples 2 to 8 prepared in this way, and the carrier derived from the silver acetylide of each of Comparative Examples 2 to 8 The BET specific surface area and pore diameter mesopore volume V 2-5 of the carbon material were measured.
The results are shown in Table 1.

≪実施例17〜20≫
上記の銀アセチリド生成工程において、硝酸銀-アセチレンモル比(C2H2/AgNO3)を0.53とし、アセチレンガス吹込み時のアセチレンガス吹込み時間を30時間とし、また、アセチレンガス吹込み時の反応温度を5℃とし、第3の加熱処理工程での熱処理温度を表1に示す温度に変化させたこと以外は、実施例1〜6及び比較例1の場合と同様にして、銀アセチリド生成工程、第1の加熱処理工程、第2の加熱処理工程、洗浄処理工程、及び第3の加熱処理工程を実施し、それぞれ各実施例17〜20(実験記号E5-2〜E5-5)の銀アセチリドを調製すると共に、これら銀アセチリド由来の担体炭素材料を調製した。
<< Examples 17 to 20 >>
In the above silver acetylide production step, the silver nitrate-acetylene molar ratio (C 2 H 2 / AgNO 3 ) is set to 0.53, the acetylene gas blowing time at the time of blowing acetylene gas is set to 30 hours, and the acetylene gas blowing is performed. In the same manner as in Examples 1 to 6 and Comparative Example 1, except that the reaction temperature was 5 ° C. and the heat treatment temperature in the third heat treatment step was changed to the temperature shown in Table 1, silver was used. An acetylide production step, a first heat treatment step, a second heat treatment step, a washing treatment step, and a third heat treatment step were carried out, and each of Examples 17 to 20 (Experimental symbols E5-2 to E5-5) ) And a support carbon material derived from these silver acetylides.

このようにして調製された各実施例17〜20の銀アセチリドの銀−炭素モル比(MC/MAg)及び0.5%質量減少温度と、これら各実施例17〜20の銀アセチリド由来の担体炭素材料のBET比表面積及び細孔径メソ孔容積V2-5とを測定した。
結果を表1に示す。また、これらの実施例で得られた銀アセチリドの熱重量分析の結果を図2に示す。
The silver-carbon molar ratio (M C / M Ag ) and 0.5% mass reduction temperature of the silver acetylide of each of Examples 17 to 20 prepared in this manner, and the carrier derived from the silver acetylide of each of these Examples 17 to 20 The BET specific surface area and pore diameter mesopore volume V 2-5 of the carbon material were measured.
The results are shown in Table 1. Moreover, the result of the thermogravimetric analysis of the silver acetylide obtained in these Examples is shown in FIG.

≪比較例9〜12≫
また、市販の多孔質炭素材料も比較例9〜12として検討した。
用いた多孔質炭素材料は、樹状構造を持ち細孔も発達し比表面積が大きい多孔質炭素材料A(ライオン社製ケッチェンブラックEC600JD)(比較例9)、この多孔質炭素材料Aを1800℃で2時間アルゴン流通下で熱処理した多孔質炭素材料B(比較例10)、樹状構造を持たない典型的な多孔質炭素材料として多孔質炭素材料C(東洋炭素社製CNOVEL-MH)(比較例11)、及びこの多孔質炭素材料Cを不活性雰囲気中で2000℃及び2時間の加熱処理した多孔質炭素材料D(比較例12)である。
これら比較例9〜12の各多孔質炭素材料A〜DのBET比表面積及び細孔径メソ孔容積V2-5を測定した。
結果を表1に示す。
<< Comparative Examples 9-12 >>
Moreover, the commercially available porous carbon material was also examined as Comparative Examples 9-12.
The porous carbon material used was a porous carbon material A (Ketjen Black EC600JD manufactured by Lion Corporation) having a dendritic structure, developed fine pores, and a large specific surface area (Comparative Example 9). Porous carbon material B (Comparative Example 10) heat-treated under argon flow for 2 hours at ° C., porous carbon material C (CNOVEL-MH manufactured by Toyo Tanso Co., Ltd.) as a typical porous carbon material having no dendritic structure ( Comparative Example 11) and porous carbon material D (Comparative Example 12) obtained by heat-treating this porous carbon material C in an inert atmosphere at 2000 ° C. for 2 hours.
The BET specific surface area and the pore diameter mesopore volume V 2-5 of each of the porous carbon materials A to D of Comparative Examples 9 to 12 were measured.
The results are shown in Table 1.

≪触媒の調製、触媒層の作製、MEAの作製、燃料電池の組立、及び電池性能の評価≫
次に、以上のようにして調製され、また、準備された担体炭素材料を用い、以下のようにして触媒金属が担持された固体高分子型燃料電池用触媒を調製し、また、得られた触媒を用いて触媒層インク液を調製し、次いでこの触媒層インク液を用いて触媒層を形成し、更に形成された触媒層を用いて膜電極接合体(MEA: Membrane Electrode Assembly)を作製し、この作製されたMEAを燃料電池セルに組み込み、燃料電池測定装置を用いて発電試験を行った。以下、各部材の調製及び発電試験によるセル評価について詳細に説明する。
≪Catalyst preparation, catalyst layer preparation, MEA preparation, fuel cell assembly, and battery performance evaluation≫
Next, using the carrier carbon material prepared as described above and prepared, a catalyst for a polymer electrolyte fuel cell carrying a catalyst metal as described below was prepared and obtained. A catalyst layer ink solution is prepared using a catalyst, then a catalyst layer is formed using the catalyst layer ink solution, and a membrane electrode assembly (MEA: Membrane Electrode Assembly) is produced using the formed catalyst layer. The produced MEA was incorporated into a fuel cell, and a power generation test was performed using a fuel cell measuring device. Hereinafter, preparation of each member and cell evaluation by a power generation test will be described in detail.

(1) 固体高分子型燃料電池用触媒(白金担持炭素材料)の作製
上記で作製した担体炭素材料、或いは、市販の炭素材料を、蒸留水中に分散させ、この分散液にホルムアルデヒドを加え、40℃に設定したウォーターバスにセットし、分散液の温度がバスと同じ40℃になってから、撹拌下にこの分散液中にジニトロジアミンPt錯体硝酸水溶液をゆっくりと注ぎ入れた。その後、約2時間撹拌を続けた後、濾過し、得られた固形物の洗浄を行った。このようにして得られた固形物を90℃で真空乾燥した後、乳鉢で粉砕し、次いで水素を5体積%含むアルゴン雰囲気中200℃で1時間熱処理をして白金触媒粒子担持炭素材料を作製した。
なお、この白金担持炭素材料の白金担持量については、担体炭素材料と白金粒子の合計質量に対して30質量%となるように調整し、誘導結合プラズマ発光分光分析(ICP-AES: Inductively Coupled Plasma - Atomic Emission Spectrometry)により測定して確認した。
(1) Production of solid polymer fuel cell catalyst (platinum-supported carbon material) The carrier carbon material produced above or a commercially available carbon material is dispersed in distilled water, and formaldehyde is added to this dispersion. The mixture was set in a water bath set at 0 ° C., and after the temperature of the dispersion reached 40 ° C. which was the same as that in the bath, a dinitrodiamine Pt complex nitric acid aqueous solution was slowly poured into the dispersion with stirring. Thereafter, stirring was continued for about 2 hours, followed by filtration, and washing of the obtained solid was performed. The solid material thus obtained is vacuum-dried at 90 ° C., pulverized in a mortar, and then heat-treated at 200 ° C. for 1 hour in an argon atmosphere containing 5% by volume of hydrogen to produce a carbon material carrying platinum catalyst particles. did.
The platinum carrying amount of this platinum carrying carbon material is adjusted to 30% by mass with respect to the total mass of the carrier carbon material and the platinum particles, and inductively coupled plasma emission spectroscopy (ICP-AES: Inductively Coupled Plasma). -Confirmed by measuring with Atomic Emission Spectrometry.

(2) 触媒層の調製
以上のようにして調製された白金担持炭素材料(Pt触媒)を用い、また、電解質樹脂としてDupont社製ナフィオン(登録商標:Nafion;パースルホン酸系イオン交換樹脂)を用い、Ar雰囲気下でこれらPt触媒とナフィオンとを白金触媒粒子担持炭素材料の質量に対してナフィオン固形分の質量が1.0倍、非多孔質炭素に対しては0.5倍の割合で配合し、軽く撹拌した後、超音波でPt触媒を解砕し、更にエタノールを加えてPt触媒と電解質樹脂とを合わせた合計の固形分濃度が1.0質量%となるように調整し、Pt触媒と電解質樹脂とが混合した触媒層インク液を調製した。
(2) Preparation of catalyst layer The platinum-supported carbon material (Pt catalyst) prepared as described above was used, and Nafion (registered trademark: Nafion; persulfonic acid ion exchange resin) manufactured by Dupont was used as the electrolyte resin. Using these Pt catalyst and Nafion in an Ar atmosphere, the mass of Nafion solids is 1.0 times that of the platinum catalyst particle-supporting carbon material, and 0.5 times that of non-porous carbon. After blending and agitating lightly, the Pt catalyst is crushed with ultrasonic waves, and ethanol is further added to adjust the total solid concentration of the Pt catalyst and the electrolyte resin to 1.0% by mass. A catalyst layer ink liquid in which a Pt catalyst and an electrolyte resin were mixed was prepared.

このようにして調製された固形分濃度1.0質量%の各触媒層インク液に更にエタノールを加え、白金濃度が0.5質量%のスプレー塗布用触媒層インク液を作製し、白金の触媒層単位面積当たりの質量(以下、「白金目付量」という。)が0.1mg/cm2となるようにスプレー条件を調節し、上記スプレー塗布用触媒層インクをテフロン(登録商標)シート上にスプレーした後、アルゴン中120℃で60分間の乾燥処理を行い、触媒層を作製した。 Ethanol was further added to each catalyst layer ink liquid having a solid content concentration of 1.0% by mass thus prepared to produce a catalyst layer ink solution for spray coating having a platinum concentration of 0.5% by mass. The spray conditions were adjusted so that the mass per unit area of the layer (hereinafter referred to as “platinum weight”) was 0.1 mg / cm 2, and the above-mentioned catalyst layer ink for spray coating was placed on the Teflon (registered trademark) sheet. After spraying, a drying process was performed in argon at 120 ° C. for 60 minutes to prepare a catalyst layer.

(3) MEAの作製
以上のようにして作製した触媒層を用い、以下の方法でMEA(膜電極複合体)を作製した。
ナフィオン膜(Dupont社製NR211)から一辺6cmの正方形状の電解質膜を切り出した。また、テフロン(登録商標)シート上に塗布されたアノード及びカソードの各触媒層については、それぞれカッターナイフで一辺2.5cmの正方形状に切り出した。
このようにして切り出されたアノード及びカソードの各触媒層の間に、各触媒層が電解質膜の中心部を挟んでそれぞれ接すると共に互いにずれが無いように、この電解質膜を挟み込み、120℃、100kg/cm2で10分間プレスし、次いで室温まで冷却した後、アノード及びカソード共にテフロン(登録商標)シートのみを注意深く剥ぎ取り、アノード及びカソードの各触媒層が電解質膜に定着した触媒層−電解質膜接合体を調製した。
(3) Production of MEA Using the catalyst layer produced as described above, a MEA (membrane electrode assembly) was produced by the following method.
A square electrolyte membrane having a side of 6 cm was cut out from a Nafion membrane (NR211 manufactured by Dupont). In addition, each of the anode and cathode catalyst layers coated on the Teflon (registered trademark) sheet was cut into a square shape having a side of 2.5 cm with a cutter knife.
The electrolyte membranes are sandwiched between the anode and cathode catalyst layers thus cut out so that the catalyst layers are in contact with each other with the center of the electrolyte membrane interposed therebetween and are not displaced from each other. After pressing at 10 cm / cm 2 for 10 minutes and then cooling to room temperature, only the Teflon (registered trademark) sheet was carefully peeled off for both the anode and cathode, and the catalyst layer-electrolyte membrane junction in which the anode and cathode catalyst layers were fixed to the electrolyte membrane The body was prepared.

次に、ガス拡散層として、カーボンペーパー(SGLカーボン社製35BC)から一辺2.5cmの大きさで一対の正方形状カーボンペーパーを切り出し、これらのカーボンペーパーの間に、アノード及びカソードの各触媒層が一致してずれが無いように、上記触媒層−電解質膜接合体を挟み、120℃、50kg/cm2で10分間プレスしてMEAを作製した。
なお、作製された各MEAにおける触媒金属成分、炭素材料、電解質材料の各成分の目付量については、プレス前の触媒層付テフロン(登録商標)シートの質量とプレス後に剥がしたテフロン(登録商標)シートの質量との差からナフィオン膜(電解質膜)に定着させた触媒層の質量を求め、触媒層の組成の質量比より算出した。
Next, as a gas diffusion layer, a pair of square carbon paper having a side of 2.5 cm is cut out from carbon paper (35BC manufactured by SGL Carbon Co.), and the catalyst layers of the anode and the cathode are sandwiched between these carbon papers. So that there is no deviation and the catalyst layer-electrolyte membrane assembly was sandwiched, and pressed at 120 ° C. and 50 kg / cm 2 for 10 minutes to prepare an MEA.
In addition, about the estimated amount of each component of the catalyst metal component, carbon material, and electrolyte material in each produced MEA, the mass of the Teflon (registered trademark) sheet with the catalyst layer before pressing and the Teflon (registered trademark) peeled off after pressing The mass of the catalyst layer fixed on the Nafion membrane (electrolyte membrane) was determined from the difference from the mass of the sheet, and calculated from the mass ratio of the composition of the catalyst layer.

(4) 燃料電池の性能評価
各実施例及び比較例で調製され、また、準備された担体炭素材料を用いて作製したMEAについて、それぞれセルに組み込み、燃料電池測定装置にセットして、次の手順で燃料電池の性能評価を行った。
反応ガスについては、カソードに空気を、また、アノードに純水素を、それぞれ利用率が40%と70%となるように、セル下流に設けられた背圧弁で圧力調整し、背圧0.05MPaで供給した。また、セル温度は80℃に設定し、また、供給するガスについては、カソード及びアノード共に、加湿器中で65℃に保温された蒸留水でバブリングを行い、改質水素相当の水蒸気を含ませてセルに供給した。
(4) Performance evaluation of fuel cell MEAs prepared using the carrier carbon materials prepared and prepared in each of the examples and comparative examples were each incorporated into a cell, set in a fuel cell measurement device, and The fuel cell performance was evaluated according to the procedure.
Regarding the reaction gas, the pressure was adjusted by a back pressure valve provided downstream of the cell so that the utilization rate would be 40% and 70%, respectively, with air at the cathode and pure hydrogen at the anode, and a back pressure of 0.05 MPa. Supplied with. The cell temperature is set to 80 ° C., and the gas to be supplied is bubbled with distilled water kept at 65 ° C. in a humidifier for both the cathode and the anode to contain steam equivalent to reformed hydrogen. Supplied to the cell.

このような設定の下にセルにガスを供給した条件下で、負荷を徐々に増やし、100mA/cm2及び1000mA/cm2におけるセル端子間電圧を出力電圧として記録し、得られた燃料電池の性能について、各電流密度の電圧により、下記の合格ランク◎及び○と不合格ランク×の基準で評価を行った。結果を表1に示す。
〔合格ランク〕
◎:100mA/cm2における出力電圧が0.83V以上であって、且つ、1000mA/cm2における出力電圧が0.65V以上であるもの。
○:100mA/cm2における出力電圧が0.81V以上0.83未満であって、且つ、1000mA/cm2における出力電圧が0.60V以上0.65V未満であるもの。
〔不合格ランク〕
×:合格ランク○に満たないもの。
Under the conditions where gas was supplied to the cell under such settings, the load was gradually increased, and the voltage between the cell terminals at 100 mA / cm 2 and 1000 mA / cm 2 was recorded as the output voltage. The performance was evaluated according to the criteria of the following pass ranks ◎ and ○ and the fail ranks × by the voltage of each current density. The results are shown in Table 1.
[Acceptance rank]
A: The output voltage at 100 mA / cm 2 is 0.83 V or more, and the output voltage at 1000 mA / cm 2 is 0.65 V or more.
○: The output voltage at 100 mA / cm 2 is 0.81 V or more and less than 0.83, and the output voltage at 1000 mA / cm 2 is 0.60 V or more and less than 0.65 V.
[Failed rank]
X: Less than pass grade (circle).

〔耐久性の評価〕
上記セルにおいて、アノードはそのままに、カソードには上記と同じ加湿条件のアルゴンガスを流しながら、セル電圧を1.0Vにして4秒間保持する操作とセル電圧を1.3Vにして4秒間保持する操作とを繰り返す操作(矩形波的電圧変動の繰返し操作)を1サイクルとし、この矩形波的電圧変動の繰返し操作を400サイクル実施した後、1000mA/cm2における出力電圧を基に、サイクル前に対するサイクル後の1000mA/cm2における出力電圧の「維持率」を算出した。この維持率を下記の合格ランク◎及び○と不合格ランク×の基準で評価を行った。結果を表1に、維持率の評価結果を示す。
〔合格ランク〕
◎:1000mA/cm2における出力電圧の低下率が10%以下であるもの。
○:1000mA/cm2における出力電圧の低下率が10〜15%であるもの
〔不合格ランク〕
×:合格ランク○に満たないもの、即ち、出力電圧の低下率が15%以上であるもの。
[Evaluation of durability]
In the above cell, while maintaining the anode as it is and flowing argon gas under the same humidification condition as above to the cathode, the cell voltage is set to 1.0 V and held for 4 seconds and the cell voltage is set to 1.3 V and held for 4 seconds. The operation that repeats the operation (repetitive operation of rectangular wave voltage fluctuation) is one cycle, and after repeating this rectangular wave voltage fluctuation operation for 400 cycles, based on the output voltage at 1000 mA / cm 2 , The “maintenance ratio” of the output voltage at 1000 mA / cm 2 after the cycle was calculated. This maintenance rate was evaluated on the basis of the following pass ranks ◎ and ○ and a reject rank ×. The results are shown in Table 1, and the evaluation results of the maintenance rate are shown.
[Acceptance rank]
A: The decrease rate of the output voltage at 1000 mA / cm 2 is 10% or less.
○: The rate of decrease in output voltage at 1000 mA / cm 2 is 10 to 15% [failed rank]
X: Less than the pass rank ○, that is, the output voltage drop rate is 15% or more.

Figure 2018172230
Figure 2018172230

Claims (4)

アセチレンの水素原子が1価の銀原子と置換したM22型の銀アセチリドであって、
3次元樹状構造を有し、自己分解爆発反応後の分解生成物を測定用試料とする空気雰囲気下での400℃までの熱重量分析において、400℃近傍での残量から算出される銀のモル量(MAg)に対して銀以外のものを炭素のモル量(MC)として求められる銀−炭素モル比(MC/MAg)が1.0≦MC/MAg≦1.06であることを特徴とする銀アセチリド。
M 2 C 2 type silver acetylide in which hydrogen atoms of acetylene are substituted with monovalent silver atoms,
Silver having a three-dimensional dendritic structure and calculated from the remaining amount in the vicinity of 400 ° C. in a thermogravimetric analysis up to 400 ° C. in an air atmosphere using the decomposition product after the self-decomposing explosion reaction as a measurement sample the molar amount (M Ag) obtained something other than silver as the molar amount of carbon (M C) of silver - carbon molar ratio (M C / M Ag) is 1.0 ≦ M C / M Ag ≦ 1 Silver acetylide, characterized by 0.06.
前記自己分解爆発反応後の分解生成物を測定用試料とする空気雰囲気下での熱重量分析において、質量減少率が0.5%になるときの温度T0.5(0.5%質量減少温度)が130℃以上であることを特徴とする請求項1に記載の銀アセチリド。 In thermogravimetric analysis in an air atmosphere using the decomposition product after the self-decomposing explosion reaction as a measurement sample, the temperature T 0.5 (0.5% mass reduction temperature) when the mass reduction rate is 0.5% is 130. Silver acetylide according to claim 1, characterized in that it is at or above ° C. 硝酸銀のアンモニア水溶液中にアセチレンガスを吹き込んで硝酸銀とアセチレンガスとを反応させて3次元樹状構造を有する銀アセチリドを製造するに際し、
前記硝酸銀に対するアセチレンガスのモル比を0.50〜0.53の範囲に制御すると共に、前記アセチレンガスの吹込み時間を10〜30時間に調整することを特徴とする銀アセチリドの製造方法。
In producing silver acetylide having a three-dimensional dendritic structure by blowing acetylene gas into an aqueous ammonia solution of silver nitrate to react silver nitrate with acetylene gas,
A method for producing silver acetylide, wherein the molar ratio of acetylene gas to silver nitrate is controlled in the range of 0.50 to 0.53, and the blowing time of the acetylene gas is adjusted to 10 to 30 hours.
前記硝酸銀とアセチレンガスとの反応の際における反応温度を0〜20℃に調整することを特徴とする請求項3に記載の銀アセチリドの製造方法。
The method for producing a silver acetylide according to claim 3, wherein a reaction temperature in the reaction of the silver nitrate and the acetylene gas is adjusted to 0 to 20 ° C.
JP2017070828A 2017-03-31 2017-03-31 Silver acetylide and its manufacturing method Active JP6815918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017070828A JP6815918B2 (en) 2017-03-31 2017-03-31 Silver acetylide and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017070828A JP6815918B2 (en) 2017-03-31 2017-03-31 Silver acetylide and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018172230A true JP2018172230A (en) 2018-11-08
JP6815918B2 JP6815918B2 (en) 2021-01-20

Family

ID=64108215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017070828A Active JP6815918B2 (en) 2017-03-31 2017-03-31 Silver acetylide and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6815918B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876007A (en) * 2020-07-07 2020-11-03 北京环境特性研究所 Light high-performance conductive coating and preparation method thereof
WO2023243986A1 (en) * 2022-06-17 2023-12-21 희성촉매 주식회사 Method for preparing mesoporous carbon and mesoporous carbon prepared thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075264A1 (en) * 2007-12-12 2009-06-18 Nippon Steel Chemical Co., Ltd. Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
JP2010104958A (en) * 2008-10-31 2010-05-13 Nippon Steel Chem Co Ltd Hydrogen occlusion nanowire and method of manufacturing hydrogen occlusion nanowire
JP2012056833A (en) * 2010-08-10 2012-03-22 National Institutes Of Natural Sciences Carbon nanostructure, metal-supported carbon nanostructure, lithium ion secondary battery, method for producing carbon nanostructure, and method for producing metal-supported carbon nanostructure
JP2013178927A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Fuel cell
WO2015141810A1 (en) * 2014-03-19 2015-09-24 新日鐵住金株式会社 Supporting carbon material for solid polymer fuel cell and catalyst metal particle-supporting carbon material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009075264A1 (en) * 2007-12-12 2009-06-18 Nippon Steel Chemical Co., Ltd. Metal encapsulated dendritic carbon nanostructure, carbon nanostructure, process for producing metal encapsulated dendritic carbon nanostructure, process for producing carbon nanostructure, and capacitor
JP2010104958A (en) * 2008-10-31 2010-05-13 Nippon Steel Chem Co Ltd Hydrogen occlusion nanowire and method of manufacturing hydrogen occlusion nanowire
JP2012056833A (en) * 2010-08-10 2012-03-22 National Institutes Of Natural Sciences Carbon nanostructure, metal-supported carbon nanostructure, lithium ion secondary battery, method for producing carbon nanostructure, and method for producing metal-supported carbon nanostructure
JP2013178927A (en) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd Fuel cell
WO2015141810A1 (en) * 2014-03-19 2015-09-24 新日鐵住金株式会社 Supporting carbon material for solid polymer fuel cell and catalyst metal particle-supporting carbon material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111876007A (en) * 2020-07-07 2020-11-03 北京环境特性研究所 Light high-performance conductive coating and preparation method thereof
WO2023243986A1 (en) * 2022-06-17 2023-12-21 희성촉매 주식회사 Method for preparing mesoporous carbon and mesoporous carbon prepared thereby
KR20230173530A (en) * 2022-06-17 2023-12-27 희성촉매 주식회사 Method for preparing mesoporous carbon and mesoporous carbon prepared thereby
KR102695039B1 (en) 2022-06-17 2024-08-12 희성촉매 주식회사 Method for preparing mesoporous carbon and mesoporous carbon prepared thereby

Also Published As

Publication number Publication date
JP6815918B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
KR101679809B1 (en) Preparation method of N-doped carbon-supported Pt catalyst and N-doped carbon-supported Pt catalyst using the same
KR101197172B1 (en) Method for one-pot synthesizing of catalyst for fuel cell having nano structure shape
WO2014129597A1 (en) Carbon material for use as catalyst carrier
CN110476286B (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and method for producing same
Liu et al. A novel TiN coated CNTs nanocomposite CNTs@ TiN supported Pt electrocatalyst with enhanced catalytic activity and durability for methanol oxidation reaction
Hu et al. Reduction free room temperature synthesis of a durable and efficient Pd/ordered mesoporous carbon composite electrocatalyst for alkaline direct alcohols fuel cell
Wang et al. N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction
Naeimi et al. Enhanced electrocatalytic performance of Pt nanoparticles immobilized on novel electrospun PVA@ Ni/NiO/Cu complex bio-nanofiber/chitosan based on Calotropis procera plant for methanol electro-oxidation
Truong et al. Functionalized carbon black supported silver (Ag/C) catalysts in cathode electrode for alkaline anion exchange membrane fuel cells
Tan et al. High-performance polymer fiber membrane based direct methanol fuel cell system with non-platinum catalysts
JP6854685B2 (en) A carbon material for a catalyst carrier of a polymer electrolyte fuel cell and a method for producing the same, and a catalyst carrier for a polymer electrolyte fuel cell using the carbon material for the catalyst carrier.
Kim et al. Fe and N codoped mesoporous carbon nanofiber as a nonprecious metal catalyst for oxygen reduction reaction and a durable support for Pt nanoparticles
Beydaghi et al. Preparation and characterization of electrocatalyst nanoparticles for direct methanol fuel cell applications using β-D-glucose as a protection agent
Litkohi et al. Pt/Fe/Ni decorated CVD grown CNTs on carbon paper as electrocatalytic electrodes in polymer fuel cells: An investigation on H2 gas on the growth of CNTs and reduction of electrocatalysts
Nakagawa et al. PAN based carbon nanofibers as an active ORR catalyst for DMFC
Jiang et al. Reduced graphene oxide intercalated ZnS nanoparticles as an efficient and durable electrocatalyst for the oxygen reduction reaction
JP6815918B2 (en) Silver acetylide and its manufacturing method
JP2022156985A (en) Carbon material for catalyst carrier of solid polymer fuel cell, and production method thereof
CN112867564B (en) Carbon material for catalyst support of solid polymer fuel cell and method for producing same
CN110495029B (en) Carbon material for catalyst support of polymer electrolyte fuel cell and method for producing same
WO2019177060A1 (en) Electrode catalyst for fuel cell, and fuel cell using same
WO2018182045A1 (en) Catalyst-carrier carbon material for solid polymer fuel cell and method for manufacturing the same
KR20040104239A (en) Carbon nanoball supported Pt/Ru alloy electrode catalysts for direct methanol fuel cell and their preparation method
JP5862476B2 (en) Anode catalyst for fuel cell and fuel cell
Shen et al. Immobilizing ultrasmall Pt nanocrystals on 3D interweaving BCN nanosheet-graphene networks enables efficient methanol oxidation reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6815918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250