WO2023276136A1 - フィルタ処理装置、フィルタ処理方法、通信システム、および記録媒体 - Google Patents

フィルタ処理装置、フィルタ処理方法、通信システム、および記録媒体 Download PDF

Info

Publication number
WO2023276136A1
WO2023276136A1 PCT/JP2021/025091 JP2021025091W WO2023276136A1 WO 2023276136 A1 WO2023276136 A1 WO 2023276136A1 JP 2021025091 W JP2021025091 W JP 2021025091W WO 2023276136 A1 WO2023276136 A1 WO 2023276136A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
subcarrier
compensation
fourier transform
address
Prior art date
Application number
PCT/JP2021/025091
Other languages
English (en)
French (fr)
Inventor
栄太 小林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/025091 priority Critical patent/WO2023276136A1/ja
Priority to JP2023531315A priority patent/JPWO2023276136A5/ja
Publication of WO2023276136A1 publication Critical patent/WO2023276136A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks

Definitions

  • the present disclosure relates to filter devices and the like used in optical communication.
  • Multi-subcarrier communications are being developed to support longer distances and larger capacities of optical communications.
  • optical communication is performed using a plurality of carriers called subcarriers. Therefore, in multi-subcarrier communication, it is necessary to separate subcarriers from optical signals used in optical communication.
  • Patent Document 1 discloses a communication device that frequency-multiplexes and transmits a plurality of optical signals.
  • the apparatus of Patent Document 1 sets the transmission band of the optical filter unit according to the signal band of the transmission signal after band narrowing in the transmission path to the communication device on the receiving side.
  • the apparatus of Patent Document 1 inputs a transmission signal before transmission to an optical filter unit to limit the signal band, and transmits the transmission signal with the limited signal band.
  • An object of the present disclosure is to provide a filter processing device or the like that can perform subcarrier separation without adding a dedicated storage unit.
  • a filter processing device is a write address and a read address of a plurality of data included in Fourier transform data based on an optical signal, based on a light source frequency offset amount and a subcarrier center point for each subcarrier. and a storage unit in which a plurality of data are written to the write address specified by the address control unit and the data is read from the read address specified by the address control unit.
  • the address control section designates a write address and a read address so that offset amount compensation and subcarrier separation are performed in the same storage section.
  • the computer performs offset amount compensation and subcarrier separation based on the offset amount of the light source frequency and the subcarrier center point for each subcarrier.
  • a plurality of data write addresses and read addresses included in the Fourier transform data based on the optical signal are specified in the storage unit, the plurality of data are written to the specified write addresses in the storage unit, and the specified Data is read from the read address of the storage unit.
  • a program is based on a light source frequency offset amount and a subcarrier center point for each subcarrier, so that offset amount compensation and subcarrier separation are performed in the same storage unit, A process of specifying a write address and a read address of a plurality of data included in Fourier transform data based on an optical signal to a storage section, a process of writing a plurality of data to the specified write address of the storage section, and a specified storage section. and a process of reading data from the read address of the computer.
  • FIG. 1 is a block diagram showing an example of the configuration of a communication system according to a first embodiment
  • FIG. FIG. 4 is a conceptual diagram showing an example of FFT (Fast Fourier Transform) data input to the filtering device according to the first embodiment
  • FIG. 4 is a conceptual diagram for explaining a light source frequency offset compensation process executed by the filter processing device according to the first embodiment
  • FIG. 4 is a conceptual diagram for explaining subcarrier separation processing executed by the filter processing device according to the first embodiment
  • FIG. 10 is a conceptual diagram for explaining the arrangement of data before and after subcarrier separation processing by the filter processing device according to Related Art 1;
  • FIG. 11 is a block diagram showing an example of the configuration of a communication system according to a second embodiment; FIG. FIG.
  • FIG. 11 is a block diagram showing an example of the configuration of a coefficient arithmetic processing unit of the filter processing device according to the second embodiment; 9 is a flowchart for explaining an example of the operation of the filter processing device according to the second embodiment;
  • FIG. 11 is a block diagram showing an example of a configuration of a filter processing device according to Related Art 2;
  • FIG. 11 is a conceptual diagram for explaining compensation coefficients used in compensation processes other than offset compensation and subcarrier separation by the filtering device according to the second embodiment;
  • FIG. 11 is a block diagram showing an example of the configuration of a communication system according to a third embodiment;
  • FIG. FIG. 11 is a block diagram showing an example of the configuration of a storage unit of a filtering device according to a third embodiment;
  • FIG. 12 is a block diagram showing an example of the internal configuration of a partial storage unit included in the storage unit of the filter processing device according to the third embodiment;
  • FIG. 11 is a conceptual diagram for explaining offset compensation processing executed by the filter processing device according to the third embodiment;
  • FIG. 11 is a conceptual diagram for explaining the arrangement of data before and after offset compensation processing and subcarrier separation processing by the filtering device according to the third embodiment;
  • FIG. 12 is a conceptual diagram for explaining an example of writing data to a plurality of partial storage units included in the storage unit of the filtering device according to the third embodiment;
  • FIG. 12 is a conceptual diagram for explaining another example of writing data to a plurality of partial storage units included in the storage unit of the filtering device according to the third embodiment;
  • FIG. 14 is a conceptual diagram for explaining an example of reading data from a plurality of partial storage units included in the storage unit of the filtering device according to the third embodiment;
  • FIG. 14 is a block diagram showing an example of the configuration of a filter processing device according to a fourth embodiment;
  • FIG. It is a block diagram showing an example of hardware constitutions which realize control and processing of a filter processor concerning each embodiment.
  • the communication system of this embodiment is used for optical communication.
  • the communication system of the present embodiment performs offset compensation processing and subcarrier separation processing on digital data (hereinafter also referred to as data) that has undergone Fast Fourier Transform (FFT) processing.
  • FFT Fast Fourier Transform
  • attention is focused on offset compensation processing and subcarrier separation processing, and filter processing that is normally performed is omitted.
  • FIG. 1 is a block diagram showing an example of the configuration of a communication system 1 of this embodiment.
  • the communication system 1 includes a Fourier transform device 110 , a filtering device 10 and an inverse Fourier transform device 120 .
  • the filtering device 10 is connected to a Fourier transform device 110 and an inverse Fourier transform device 120 .
  • the Fourier transform device 110 performs FFT processing on the AD (Analog Digital) converted time domain signal and converts it into frequency domain data (also referred to as FFT data).
  • the Fourier transform device 110 outputs FFT data to the filtering device 10 .
  • FIG. 2 is a conceptual diagram for explaining the FFT data X( ⁇ ) input to the filtering device 10.
  • the FFT data X( ⁇ ) is composed of 16 discrete data.
  • One cycle includes four data.
  • Data numbers 1 to 4 are attached to the data for each cycle.
  • 16 data included in the FFT data X( ⁇ ) before rearrangement are numbered from 0 to 15 (also referred to as sample numbers).
  • sample numbers are also referred to as sample numbers.
  • a sample number is given to each of a plurality of data based on the arrangement of data in the FFT data X( ⁇ ) before being rearranged.
  • a sample number is attached according to the frequency of the data.
  • the data of data number 2 in cycle 2 is expressed as data 5 .
  • the sample numbers attached to the data are maintained as they are.
  • the number of data constituting the FFT data X( ⁇ ) is 16, but the number of data constituting the FFT data X( ⁇ ) is not particularly limited. For example, when processing 256 data in parallel in 16 cycles, the number of data is 4096.
  • the filter processing device 10 has an address control section 11 and a storage section 13 . 16 pieces of data forming the FFT data X( ⁇ ) are input in parallel to the filtering device 10 in four cycles.
  • data 0, data 4, data 8, and data 12 are input to the filtering device 10 in the first cycle.
  • Data 1, data 5, data 9, and data 13 are input to the filtering device 10 in the second cycle.
  • Data 2, data 6, data 10, and data 14 are input to the filtering device 10 in the third cycle.
  • Data 3, data 7, data 11, and data 15 are input to the filtering device 10 in the fourth cycle.
  • the data input to the filter processing device 10 is stored in the storage section 13 upon receipt of address designation by the address control section 11 .
  • the data input to the filtering device 10 is stored at the write address designated by the address control section 11 .
  • Data stored in the storage unit 13 is read from a read address specified by the address control unit 11 .
  • the offset amount based on the transmission frequency (also called light source frequency) of the local light source of the communication system 1 including the filter processing device 10 is input to the address control unit 11 .
  • the offset amount is input to the address control section 11 via an input device (not shown).
  • the offset amount may be registered in the address control section 11 in advance.
  • the offset amount may be configured to be estimated by an offset estimation circuit (not shown).
  • FIG. 3 is a conceptual diagram for explaining the light source frequency offset compensation process.
  • a plurality of data constituting the FFT data X( ⁇ ) are distributed around data 0 of the DC (Direct Current) component with the highest intensity.
  • the order of compensation processing before offset (1) is the order of data 0, data 1, data 2, .
  • the signal input to the filter processing device 10 is compensated for the amount of offset according to the light source frequency of the communication system 1 .
  • the offset amount is +2.
  • the order of compensation processing after offset (2) is the order of data 14, data 15, data 0, .
  • the signal values of data with low intensity (data 7, data 8, and data 9) are set to 0. Setting the signal value of unnecessary data to 0 is also called 0-filling.
  • the center point of each subcarrier (referred to as the subcarrier center point) is input to the address control unit 11 .
  • subcarrier center points are input via an input device (not shown).
  • the subcarrier center point may be registered in the address control section 11 in advance. In this embodiment, an example including two subcarriers is given, but the number of subcarriers is not particularly limited.
  • FIG. 3 is a conceptual diagram for explaining subcarriers included in FFT data X( ⁇ ).
  • FFT data X( ⁇ ) includes subcarrier data SC0 and subcarrier data SC1.
  • the subcarrier data SC0 consists of eight data (15, 0, 1, 2, 3, 4, 5, 6) before and after (-4, +3) data 3 (frequency ⁇ 0 ) at the center point of the subcarrier. include.
  • the subcarrier data SC1 consists of eight data (9, 10, 11, 12, 13, 14, 15, 0) before and after (-4, +3) data 13 (frequency ⁇ 1 ) at the center point of the subcarrier. include. Note that when frequency offset compensation is performed, the sample number of data included in each subcarrier data is shifted by +2. In the example of FIG. 3, subcarrier data SC0 and subcarrier data SC1 partially overlap each other. In this embodiment, the number of data for each subcarrier is set in advance, and the subcarrier data can be specified by specifying the frequency of the center point of the subcarrier.
  • the address control unit 11 generates a data write address and a data read address based on the offset amount of the light source frequency and the center point of each subcarrier.
  • the address control unit 11 designates the generated write address and read address to the storage unit 13 .
  • the data written in the storage unit 13 according to the designation of the address control unit 11 is read out from the storage unit 13 in an arrangement in which the offset compensation processing and the subcarrier separation processing are performed collectively.
  • a plurality of data constituting FFT data X( ⁇ ) Fourier-transformed by the Fourier transform device 110 are input to the storage unit 13 .
  • the storage unit 13 is implemented by a memory such as a RAM (Random Access Memory) or a storage device such as a register.
  • the storage unit 13 stores a plurality of data constituting the input FFT data X( ⁇ ) at the write address designated by the address control unit 11 .
  • a plurality of data stored in the storage unit 13 are read according to read addresses specified by the address control unit 11 .
  • a plurality of data stored in the storage unit 13 are offset-compensated according to the designation by the address control unit 11, separated for each subcarrier, and output.
  • the subcarrier data SC0 and the subcarrier data SC1 are output from the storage unit 13.
  • FIG. 13 For example, a configuration for performing serial-parallel conversion processing may be added as preprocessing for subcarrier separation. Also, a circuit or process for compensating skew of data after parallel conversion may be added.
  • FIG. 5 is a conceptual diagram showing a situation in which the data constituting the FFT data X( ⁇ ) input to the storage unit 13 are rearranged from the arrangement before rearrangement (1) to the arrangement after rearrangement (2). It is a diagram.
  • the order of data in the array (1) before rearrangement is continuous in the time direction of the output of the Fourier transform device 110 .
  • the order of data in the array (2) after rearrangement is continuous in the parallel direction at the same time.
  • data is rearranged in an array in which offset compensation processing and subcarrier separation processing have been performed by executing data write and read operations to and from the storage unit 13 in parallel under address control.
  • the FFT data X( ⁇ ) are offset-compensated and separated for each subcarrier.
  • the data of subcarrier data SC0 are rearranged in cycles 1-2, and the data of subcarrier data SC1 are rearranged in cycles 3-4.
  • the array of data that constitutes the subcarrier data is rearranged in an order that facilitates processing in the inverse Fourier transform device 120 .
  • the filter processing device 10 outputs subcarrier data separated for each of a plurality of subcarriers.
  • the arrangement of the data that constitutes the subcarrier data is rearranged in an order that facilitates processing in the inverse Fourier transform device 120 .
  • a plurality of subcarrier data output from filtering device 10 are input to inverse Fourier transform device 120 .
  • a plurality of subcarrier data output from the filtering device 10 are input to the inverse Fourier transform device 120 .
  • the inverse Fourier transform unit 120 includes a transform circuit for each subcarrier.
  • the inverse Fourier transform device 120 inverse Fourier transforms a plurality of subcarrier data for each subcarrier and converts it into a signal in the time domain.
  • the inverse Fourier transform device 120 outputs subcarrier data transformed into a time domain signal.
  • FIG. 6 is a flowchart for explaining the operation of the filtering device 10.
  • FIG. 6 In the following processing according to the flowchart of FIG. 6, the filter processing device 10 will be described as an operating entity.
  • the filter processing device 10 acquires FFT data output from the Fourier transform device 110 (step S11).
  • the filtering device 10 generates a write address and a read address for FFT data based on the offset amount of the light source frequency and the subcarrier center point of each subcarrier (step S12).
  • the filtering device 10 stores the data forming the FFT data in the storage unit 13 according to the set write address (step S13).
  • the filtering device 10 outputs the data stored in the storage unit 13 according to the set readout address (step S14).
  • the data output in step S14 is offset-compensated subcarrier data separated for each subcarrier.
  • the subcarrier data output from filtering device 10 is input to inverse Fourier transform device 120 .
  • the subcarrier data input to the inverse Fourier transform device 120 is inverse Fourier transformed for each subcarrier.
  • FIG. 7 is a block diagram showing an example of the configuration of the communication system 100 of this related technology.
  • Communication system 100 comprises Fourier transform unit 115 , filtering unit 150 and inverse Fourier transform unit 125 .
  • Filter processing device 150 includes first storage unit 151 and second storage unit 152 .
  • Filtering device 150 is connected to Fourier transform device 115 and inverse Fourier transform device 125 .
  • the Fourier transform device 115 has the same configuration as the Fourier transform device 110 of the first embodiment.
  • the inverse Fourier transform device 125 has the same configuration as the inverse Fourier transform device 120 of the first embodiment.
  • Data forming the FFT data X( ⁇ ) is input to the first storage unit 151 .
  • the first storage unit 151 is a storage unit for offset compensation processing.
  • the data input to the first storage unit 151 is rearranged according to the set offset amount and output.
  • offset-compensated data Y( ⁇ ) is output from the first storage unit 151 .
  • Data constituting offset-compensated data Y( ⁇ ) is input to the second storage unit 152 .
  • the second storage unit 152 is a storage unit for subcarrier separation.
  • the data input to the second storage unit 152 is rearranged according to the frequency of the center point of each subcarrier and output.
  • the subcarrier-separated subcarrier data SC0′ and subcarrier data SC1′ are output from the second storage unit 152 to the inverse Fourier transform device 120 .
  • the array of data that constitutes the subcarrier data is rearranged in an order that facilitates processing in the inverse Fourier transform device 120 .
  • Subcarrier data SC0′ and subcarrier data SC1′ output from second storage section 152 are subjected to inverse Fourier transform processing for each subcarrier in inverse Fourier transform device 120 .
  • FIG. 8 shows a state in which the data constituting the FFT data X( ⁇ ) input to the first storage unit 151 are rearranged from the arrangement before rearrangement (1) to the arrangement during rearrangement (2). It is a conceptual diagram showing.
  • the data array (2) in the middle of the rearrangement is the data configuration of the offset-compensated data Y( ⁇ ).
  • the data array in the middle of rearrangement (2) is obtained by compensating the data array in (1) before rearrangement by +2 offset.
  • FIG. 9 shows a state in which the data constituting the data Y( ⁇ ) input to the second storage unit 152 are rearranged from the arrangement during rearrangement (2) to the arrangement after rearrangement (3). It is a conceptual diagram. Data Y( ⁇ ) is separated for each subcarrier. In the example of FIG. 9, the data of subcarrier data SC0 are rearranged in cycles 1-2, and the data of subcarrier data SC1 are rearranged in cycles 3-4.
  • Subcarrier data SC0 includes data 13, data 14, data 15, data 0, data 1, data 2, data 3, and data 4.
  • the subcarrier data SC1 includes data 7, data 8, data 9, data 10, data 11, data 12, data 13, and data 14.
  • a first storage unit 151 dedicated to offset compensation processing and a second storage unit 152 dedicated to subcarrier separation processing are installed. Also, in the method of Related Technology 1, offset compensation processing and subcarrier separation processing are performed in two stages. On the other hand, according to the method of the first embodiment, the write address and the read address of the data forming the FFT data to the storage unit 13 are controlled according to the designation of the address control unit 11 . Therefore, according to the method of the first embodiment, the offset compensation process and the subcarrier separation process can be collectively performed without adding a dedicated storage unit for each process.
  • the communication system of this embodiment includes a Fourier transform device, a filter processing device, and an inverse Fourier transform device.
  • a Fourier transform device Fourier transforms a signal based on the optical signal.
  • the Fourier transform device outputs Fourier transform data including a plurality of data after Fourier transform to the filtering device.
  • the filtering device includes an address control section and a storage section.
  • the address control unit specifies write addresses and read addresses for a plurality of data included in Fourier transform data based on the optical signal, based on the offset amount of the light source frequency and the subcarrier center point of each subcarrier.
  • the address control section designates a write address and a read address so that offset amount compensation and subcarrier separation are performed in the same storage section.
  • a plurality of data are written in the storage unit at a write address specified by the address control unit.
  • Data is read from the storage unit from a read address specified by the address control unit.
  • An inverse Fourier transform device acquires a plurality of data that have undergone offset compensation processing and subcarrier separation processing by the filter processing device.
  • An inverse Fourier transform device inverse Fourier transforms a plurality of data that have undergone offset compensation processing and subcarrier separation processing.
  • subcarrier separation by specifying addresses so that offset compensation processing and subcarrier separation processing are performed, subcarrier separation can be performed without adding a dedicated storage unit. That is, according to this embodiment, since the number of storage units is not increased for subcarrier separation processing, subcarrier separation processing can be performed while suppressing an increase in power consumption.
  • writing/reading to/from the storage unit is performed twice each. According to the method of the present embodiment, writing/reading to/from the same storage unit only needs to be performed once. Therefore, according to the method of this embodiment, the overall processing speed in the filtering process is improved by reducing the number of times of writing/reading to/from the storage unit.
  • the address control unit designates a write address and a read address so that offset amount compensation and subcarrier separation are performed collectively.
  • the offset compensation process and the subcarrier separation process can be collectively performed by writing/reading data to/from the address specified by the address control unit.
  • the address control unit sets the value of data that becomes unnecessary due to the frequency offset compensation process to 0. According to this aspect, unnecessary data values included in a plurality of data can be deleted.
  • An optical signal used in optical communication is AD (Analog Digital) converted and then FFT (Fast Fourier Transform) converted. Multiple processes are performed on the FFT-transformed signal in the frequency domain.
  • the communication system of the present embodiment differs from the first embodiment in that the processes other than the offset compensation process and the subcarrier separation process are collectively performed after the offset compensation process and the subcarrier separation process.
  • FIG. 10 is a block diagram showing an example of the configuration of the communication system 2 of this embodiment.
  • the communication system 2 comprises a Fourier transform device 210 , a filtering device 20 and an inverse Fourier transform device 220 .
  • the filtering device 20 is connected to a Fourier transform device 210 and an inverse Fourier transform device 220 .
  • the Fourier transform device 210 has the same configuration as the Fourier transform device 110 of the first embodiment.
  • the Fourier transform device 210 performs FFT on the AD-converted signal to convert it into frequency domain data (also called FFT data).
  • the Fourier transform device 210 outputs FFT data to the filtering device 20 .
  • the filter processing device 20 has an address control section 21 , a storage section 23 , a coefficient calculation processing section 25 and a calculation section 27 .
  • Output data (also called FFT data) of the Fourier transform device 210 is input to the filtering device 20 .
  • the address control unit 21 has the same configuration as the address control unit 11 of the first embodiment.
  • the offset amount of the light source frequency and the center point of each subcarrier (subcarrier center point) are input to the address control unit 21 .
  • the offset amount and the subcarrier center point may be input via an input device (not shown) or preset in the address control section 21 .
  • the address control unit 21 generates a data write address and a data read address based on the offset amount of the light source frequency and the center frequency of each subcarrier.
  • the address control unit 21 designates the generated write address and read address to the storage unit 23 .
  • the storage unit 23 has the same configuration as the storage unit 13 of the first embodiment.
  • a plurality of data constituting FFT data X( ⁇ ) Fourier-transformed by the Fourier transform device 210 are input to the storage unit 23 .
  • the storage unit 23 stores a plurality of data constituting the input FFT data X( ⁇ ) at the write address designated by the address control unit 21 .
  • a plurality of data stored in the storage unit 23 are read according to read addresses specified by the address control unit 21 .
  • a plurality of data stored in the storage unit 23 are offset-compensated according to the designation by the address control unit 21, separated for each subcarrier, and output.
  • the coefficient calculation processing unit 25 calculates coefficients (also referred to as compensation coefficients) for compensation processing (also referred to as other compensation processing) different from the offset compensation processing and subcarrier separation processing.
  • the coefficient arithmetic processor 25 calculates a compensation coefficient for each subcarrier data based on the offset amount and the frequency of the subcarrier center point.
  • Other compensation processing is not particularly limited as long as it depends on the offset amount and the frequency of the subcarrier center point.
  • other compensation processing includes skew compensation processing for compensating for deviations in arrival times of XY polarized waves and phase-orthogonal I/Q signals.
  • the other compensation processing includes normalization processing for correcting variations according to the degree of deterioration of the signal values (X i , X q , Y i , Y q ) of the I/Q signals.
  • other compensation processes include frequency response adjustment processes that compensate for frequency response degradation due to manufacturing variations in the receive analog front end, environmental variations, and the like.
  • other compensation processing includes chromatic dispersion compensation processing and spectral shaping processing.
  • the coefficient calculation processing unit 25 may perform 0-filling processing.
  • the offset amount of the light source frequency and the subcarrier center point are input to the coefficient calculation processing unit 25 .
  • the offset amount and the subcarrier center point may be input via an input device (not shown) or may be registered in the coefficient calculation processing section 25 in advance.
  • the coefficient calculation processing unit 25 calculates compensation coefficients for processes other than the offset compensation process and subcarrier separation process based on the offset amount of the light source frequency and the center frequency of each subcarrier. For example, the coefficient calculator 25 calculates a compensation coefficient for each subcarrier.
  • f the offset frequency of the light source compensation
  • ⁇ 0 of the subcarrier center point of subcarrier 0 the frequency ⁇ 1 of the subcarrier center point of subcarrier 1
  • the frequency of a plurality of data constituting the FFT data.
  • the coefficient calculation processing unit 25 calculates the compensation coefficient C0 of the subcarrier data SC0 and the compensation coefficient C1 of the subcarrier data SC1 using Equations 1 and 2 below.
  • the above formulas 1 and 2 are examples of the compensation coefficients calculated by the coefficient calculation processing unit 25, and do not limit the calculation formulas of the compensation coefficients by the coefficient calculation processing unit 25.
  • the compensation coefficient may depend on the offset frequency f of the light source compensation and the frequencies ⁇ 0 and ⁇ 1 of the subcarrier center points.
  • the calculation unit 27 uses the compensation coefficient for each subcarrier calculated by the coefficient calculation processing unit 25 to perform compensation processing on the subcarrier data. For example, the coefficient calculation processing unit 25 performs compensation processing by multiplying subcarrier data by a compensation coefficient for each subcarrier.
  • FIG. 11 is a conceptual diagram for explaining how compensation coefficients calculated for each subcarrier are separately multiplied for each subcarrier.
  • Operation unit 27 includes multipliers 270-0 and 270-1.
  • Compensation coefficient C0 for subcarrier 0 is set in multiplier 270-0.
  • Multiplier 270-0 multiplies input subcarrier data SC0 by compensation coefficient C0 in response to input of subcarrier data SC0.
  • Multiplier 270-0 outputs subcarrier data SC0' obtained by multiplying subcarrier data SC0 by compensation coefficient C0.
  • compensation coefficient C1 for subcarrier 0 is set in multiplier 270-1.
  • Multiplier 270-1 multiplies input subcarrier data SC1 by compensation coefficient C1 in response to input of subcarrier data SC1.
  • Multiplier 270-1 outputs subcarrier data SC1' obtained by multiplying subcarrier data SC1 by compensation coefficient C1.
  • the filter processing device 20 outputs subcarrier data that has been separated for each of a plurality of subcarriers and subjected to other compensation processing.
  • the arrangement of the data that constitutes the subcarrier data is rearranged in the order that facilitates processing in the inverse Fourier transform device 220 .
  • a plurality of subcarrier data output from filtering device 20 are input to inverse Fourier transform device 220 .
  • the inverse Fourier transform device 220 has the same configuration as the inverse Fourier transform device 120 of the first embodiment.
  • the inverse Fourier transform device 220 inverse Fourier transforms the plurality of subcarrier data for each subcarrier and transforms it into a signal in the time domain.
  • the inverse Fourier transform device 220 outputs subcarrier data transformed into a time domain signal.
  • FIG. 12 is a flowchart for explaining the operation of the filtering device 20.
  • FIG. 12 In the following description according to the flowchart of FIG. 12, the filter processing device 20 will be described as an operating entity.
  • the filtering device 20 acquires FFT data output from the Fourier transform device 210 (step S21).
  • the filtering device 20 generates a write address and a read address for FFT data based on the offset amount of the light source frequency and the subcarrier center point for each subcarrier (step S22).
  • the filtering device 20 stores the data forming the FFT data in the storage unit 23 according to the set write address (step S23).
  • step S24 the filtering device 20 calculates a compensation coefficient for each subcarrier.
  • the process of step S24 may be performed after step S25, or may be performed in advance.
  • the filtering device 20 outputs the data stored in the storage unit 23 according to the set read address (step S25).
  • the data output in step S25 is offset-compensated subcarrier data separated for each subcarrier.
  • the filtering device 20 multiplies the subcarrier data by the calculated compensation coefficient for each subcarrier (step S26).
  • the filter processing device 20 outputs the subcarrier data that has undergone the compensation processing (step S27).
  • the subcarrier data output from filter processing device 10 is input to inverse Fourier transform device 220 .
  • the subcarrier data input to the inverse Fourier transform device 220 is inverse Fourier transformed for each subcarrier.
  • FIG. 13 is a block diagram showing an example of the configuration of a communication system 200 of related technology.
  • Communication system 200 comprises Fourier transform unit 215 , filtering unit 250 and inverse Fourier transform unit 225 .
  • Filter processing device 250 includes first multiplier 251 , first storage section 252 , second multiplier 253 , and second storage section 254 .
  • Filtering unit 250 is connected to Fourier transform unit 215 and inverse Fourier transform unit 225 .
  • the Fourier transform device 215 has the same configuration as the Fourier transform device 210 of the second embodiment.
  • the inverse Fourier transform device 225 has the same configuration as the inverse Fourier transform device 220 of the second embodiment.
  • Data forming the FFT data X( ⁇ ) is input to the first multiplier 251 .
  • the first multiplier 251 multiplies the data forming the FFT data X( ⁇ ) by the compensation coefficient H1.
  • the first multiplier 251 outputs data multiplied by the compensation coefficient H1 to the first storage unit 252 .
  • the first storage unit 252 is a storage unit for offset compensation processing.
  • the data input to the first storage unit 252 is rearranged according to the set offset amount and output.
  • offset-compensated data Y′( ⁇ ) is output from the first storage unit 252 .
  • the offset-compensated data Y'( ⁇ ) is input to the second multiplier 253 .
  • the second multiplier 253 multiplies the data forming the FFT data X( ⁇ ) by the compensation coefficient H2.
  • the second multiplier 253 outputs data multiplied by the compensation coefficient H2 to the second storage unit 254 .
  • the second storage unit 254 is a storage unit for subcarrier separation.
  • the data input to the second storage unit 254 is rearranged according to the frequency of the center point of each subcarrier and output.
  • the subcarrier-separated subcarrier data SC0′ and subcarrier data SC1′ are output from the second storage unit 254 to the inverse Fourier transform device 220 .
  • the array of data that constitutes the subcarrier data is rearranged in an order that facilitates processing in the inverse Fourier transform device 220 .
  • Subcarrier data SC0′ and subcarrier data SC1′ output from second storage unit 254 are individually subjected to inverse Fourier transform processing in inverse Fourier transform device 220 .
  • FIG. 14 is a table for explaining compensation coefficients used in the technique of the second embodiment.
  • the compensation coefficients used for each of the 16 data constituting the FFT data similar to that of the first embodiment are summarized.
  • the table of FIG. 14 shows compensation coefficients for collectively performing the compensation processing in related technique 2.
  • H1( ⁇ ) and H2( ⁇ ) are compensation coefficients used for data ⁇ when using the method of Related Art 2.
  • C( ⁇ ) is a compensation coefficient used when performing compensation similar to related technique 2 when using the technique of the second embodiment.
  • Compensation coefficient C(13) is the compensation coefficient for data 13 .
  • compensation coefficient C(13) is obtained by multiplying compensation coefficient H1(12) and compensation coefficient H2(13).
  • compensation coefficient C(14) is obtained by multiplying compensation coefficient H1(13) and compensation coefficient H2(14).
  • the communication system of this embodiment includes a Fourier transform device, a filter processing device, and an inverse Fourier transform device.
  • a Fourier transform device Fourier transforms a signal based on the optical signal.
  • the Fourier transform device outputs Fourier transform data including a plurality of data after Fourier transform to the filtering device.
  • the filter processing device includes an address control section, a storage section, a coefficient calculation processing section, and a calculation section.
  • the address control unit specifies write addresses and read addresses for a plurality of data included in Fourier transform data based on the optical signal, based on the offset amount of the light source frequency and the subcarrier center point of each subcarrier.
  • the address control section designates a write address and a read address so that offset amount compensation and subcarrier separation are performed in the same storage section.
  • a plurality of data are written in the storage unit at a write address specified by the address control unit.
  • Data is read from the storage unit from a read address specified by the address control unit.
  • a coefficient calculation processing unit calculates, for each subcarrier, a compensation coefficient used for other compensation processing based on the offset amount and the subcarrier center point.
  • the calculation unit collectively performs compensation processing other than offset compensation processing and subcarrier separation processing on each of a plurality of subcarrier data separated for each subcarrier.
  • the calculation unit multiplies each of the plurality of subcarrier data separated for each subcarrier by the compensation coefficient calculated for each subcarrier by the coefficient calculation processing unit.
  • An inverse Fourier transform device acquires a plurality of data that have undergone offset compensation processing and subcarrier separation processing by the filter processing device.
  • An inverse Fourier transform device inverse Fourier transforms a plurality of data that have undergone offset compensation processing and subcarrier separation processing.
  • the coefficient calculation processing unit uses the first compensation coefficient and the second compensation coefficient to calculate the compensation coefficient for each subcarrier.
  • the first compensation coefficient is a coefficient used in the first compensation process performed before the offset compensation process.
  • the second compensation coefficient is a coefficient used in the second compensation process that is performed before the subcarrier separation process.
  • the coefficient calculation processing unit calculates the compensation coefficient using the first compensation coefficient dependent on the offset amount and the subcarrier center point and the second compensation coefficient dependent on the subcarrier center point. According to this aspect, it is possible to collectively perform the compensation processes performed in the pre-stage and the post-stage of the offset compensation process, so that the circuit scale and arithmetic processing can be simplified.
  • the coefficient calculation processing unit sets the value of data that becomes unnecessary due to the frequency offset compensation processing to 0. According to this aspect, unnecessary data values included in a plurality of data can be deleted.
  • the filter processing device of the communication system of this embodiment has a storage section including a plurality of partial storage sections.
  • An example in which the filter processing device of this embodiment is incorporated in the communication system of the first embodiment will be described below.
  • the filter processing device of this embodiment may be incorporated into the communication system of the second embodiment.
  • FIG. 15 is a block diagram showing an example of the configuration of the communication system 3 of this embodiment.
  • the communication system 3 comprises a Fourier transform device 310 , a filtering device 30 and an inverse Fourier transform device 320 .
  • the filtering device 30 is connected to a Fourier transform device 310 and an inverse Fourier transform device 320 .
  • the Fourier transform device 310 has the same configuration as the Fourier transform device 110 of the first embodiment.
  • the Fourier transform device 310 performs FFT on the AD-converted signal to convert it into frequency domain data (also referred to as FFT data).
  • the Fourier transform device 310 outputs FFT data to the filtering device 30 .
  • the filter processing device 30 has an address control section 31 and a storage section 33 .
  • Output data (also called FFT data) of the Fourier transform device 310 is input to the filter processing device 30 .
  • the offset amount of the light source frequency and the center point of each subcarrier are input to the address control unit 31 .
  • the offset amount and the subcarrier center point may be input via an input device (not shown) or preset in the address control section 31 .
  • Address control section 31 outputs the offset amount and the subcarrier center point to storage section 33 .
  • the address control unit 31 may generate the write address and read address of the data to the storage unit 33 based on the offset amount of the light source frequency and the center frequency of each subcarrier. In that case, the address control unit 31 designates the generated write address and read address to the storage unit 33 .
  • a plurality of data constituting FFT data X( ⁇ ) Fourier-transformed by the Fourier transform device 310 are input to the storage unit 33 .
  • the FFT data X( ⁇ ) includes multiple subcarrier data.
  • a plurality of data constituting the FFT data X( ⁇ ) are input every cycle.
  • Storage unit 33 includes a plurality of partial storage units (described later). The plurality of partial storage units are configured in association with cycles.
  • the storage unit 33 stores a plurality of data constituting the input FFT data X( ⁇ ) in the partial storage unit for each cycle.
  • a plurality of data constituting the subcarrier data are input to the storage unit 33 in different cycles because the sample numbers are continuous. Therefore, the data forming the subcarrier data are distributed and stored in different partial storage units.
  • the storage unit 33 stores the data in the specified write address.
  • a plurality of data stored in the storage section 33 are read from each of the plurality of partial storage sections in the order in which offset compensation and subcarrier separation were performed based on the offset amount and the subcarrier center point.
  • Data constituting subcarrier data are stored in different partial storage units. Therefore, by reading a plurality of data constituting the subcarrier data from each of the plurality of partial storage units, the subcarrier data whose offset amount is compensated can be separated.
  • the read address is specified by the address control unit 31
  • the multiple data stored in the storage unit 33 are read according to the read address specified by the address control unit 31 .
  • the plurality of data stored in the storage unit 33 are offset-compensated, separated for each subcarrier, and output.
  • the filter processing device 30 outputs subcarrier data separated for each of a plurality of subcarriers.
  • the filter processing device 30 performs sub-subcarrier compensation processing other than offset compensation and subcarrier separation (also referred to as other compensation processing).
  • Output carrier data The arrangement of the data that constitutes the subcarrier data is rearranged in order of ease of processing in the inverse Fourier transform device 320 .
  • a plurality of subcarrier data output from filtering device 30 are input to inverse Fourier transform device 320 .
  • 15 conceptually illustrates how a plurality of subcarrier data (SC0, SC1, . . . , SCn) are output from the storage unit 33 (n is a natural number).
  • a plurality of subcarrier data may be output serially for each subcarrier, or may be output in parallel.
  • the inverse Fourier transform device 320 has the same configuration as the inverse Fourier transform device 120 of the first embodiment.
  • the inverse Fourier transform device 320 inverse Fourier transforms the plurality of subcarrier data for each subcarrier and converts it into a signal in the time domain.
  • the inverse Fourier transform device 320 outputs subcarrier data transformed into a time domain signal.
  • FIG. 16 is a block diagram showing an example of the detailed configuration of the storage unit 33.
  • the storage unit 33 has a write destination selection unit 331, a first selection unit 332, a plurality of partial storage units 335-1 to m, an output data selection unit 336, and a rearrangement unit 337 (m is a natural number of 2 or more).
  • a plurality of partial storage units 335 - 1 to 335 - m constitute a partial storage device group 350 .
  • the plurality of partial storage units 335-1 to 335-m may be referred to as the partial storage unit 335 without distinguishing between them. be.
  • the write destination selection unit 331 outputs to the first selection unit 332 a selection control signal (also called an input control signal) that designates the partial storage unit 335 to which the plurality of data constituting the FFT data X( ⁇ ) are written. .
  • the partial storage unit 335 to which the plurality of data constituting the FFT data X( ⁇ ) are written is set for each cycle.
  • the write destination selection unit 331 may be omitted, and the address control unit 31 may be configured to output a selection control signal.
  • a plurality of data constituting the FFT data X( ⁇ ) are input to the first selection unit 332 for each cycle.
  • the first selection section 332 distributes a plurality of data to the partial storage section 335 for each cycle according to the selection control signal from the write destination selection section 331 .
  • the first selector 332 functions as a distributor.
  • the first selection unit 332 is realized by a demultiplexer (selector).
  • Each of the plurality of partial storage units 335-1 to 335-m is configured in association with the input cycle of the plurality of data forming the FFT data X( ⁇ ).
  • a plurality of data constituting the FFT data X( ⁇ ) are sequentially input to the partial storage section 335 for each cycle.
  • Each of the partial storage units 335-1 to 335-m stores cycle data associated with each of the partial storage units 335-1 to 335-m. For example, let the input cycle of a plurality of data constituting the FFT data X( ⁇ ) be 0 to m ⁇ 1 (m is a natural number of 2 or more). In this case, data in cycle 0 is stored in partial storage unit 335-1. Also, the data of cycle m ⁇ 1 is stored in the partial storage section 335-m.
  • the multiple data that make up the subcarrier data have consecutive sample numbers. Therefore, a plurality of data constituting subcarrier data are input to separate storage units 33 in different cycles. Therefore, the data forming the subcarrier data are distributed and stored in different partial storage units 335 . When the number of data constituting subcarrier data exceeds the number of data for one cycle, a plurality of data constituting the same subcarrier data may be stored in the same partial storage section 335 . When a write address is specified by the address control unit 31 , data is stored at the specified write address of the partial storage unit 335 .
  • the output data selection unit 336 is connected to each of the plurality of partial storage units 335-1 to 335-m. Although FIG. 16 shows that it is connected to the partial storage device group 350, the output data selection unit 336 is connected to each of the plurality of partial storage units 335-1 to 335-m.
  • the output data selection unit 336 outputs a selection control signal (also called an output control signal) designating data to be read to each of the plurality of partial storage units 335-1 to 335-m based on the offset amount and the subcarrier center point. do.
  • the output data selection section 336 may be omitted and the selection control signal may be output from the address control section 31 .
  • FIG. 17 is a conceptual diagram for explaining an example of the internal configuration of the partial storage unit 335. As shown in FIG. FIG. 17 shows only the internal configuration of the partial storage unit 335-1, and the internal configurations of the other partial storage units 335-2 to 335-m are omitted.
  • the partial storage section 335 has a storage element array 351 and a second selection section 353 .
  • the memory element array 351 is a memory structure in which a plurality of memory elements are arranged in an array. A plurality of data forming the FFT data X( ⁇ ) are stored in the storage element array 351 .
  • the partial storage unit 335 is implemented by a storage device such as a memory or a register. In this embodiment, a memory is assumed as the partial storage unit 335, but the partial storage unit 335 may be realized by a storage device other than the memory.
  • the partial storage unit 335 may be implemented by an auxiliary storage device including a hard disk drive, solid state drive, magnetic disk, optical disk, magneto-optical disk, flash memory, and the like.
  • the second selection section 353 reads a plurality of data constituting subcarrier data from each of the plurality of partial storage sections 335-1 to 335-m according to the selection control signal from the output data selection section 336.
  • a plurality of data read out from each of the plurality of partial storage sections 335-1 to 335-m in accordance with the selection control signal from the output data selection section 336 are data forming subcarrier data whose offset amount is compensated.
  • the second selector 353 functions as a multiplexer.
  • the second selection unit 353 is implemented by a multiplexer (selector).
  • the second selection unit 353 may be arranged between the plurality of partial storage units 335 - 1 to 335 - m and the rearrangement unit 337 . In that case, the plurality of data distributed and stored in the plurality of partial storage units 335-1 to 335-m are read out via the single second selection unit 353.
  • the selection control signal input to the second selection section 353 data for each subcarrier is read at the same timing from each of the plurality of partial storage sections 335-1 to 335-m.
  • a plurality of pieces of data forming the same subcarrier data are output at the same timing from each of the plurality of partial storage units 335-1 to 335-m. For example, when a plurality of data constituting subcarrier data has a data amount for one cycle, those data are output from different partial storage units 335-1 to 335-m at the same timing.
  • a plurality of data constituting subcarrier data has a data amount for a plurality of cycles
  • those data are output from different partial storage units 335-1 to 335-m at a plurality of consecutive timings.
  • the data output from each of the plurality of partial storage units 335-1 to 335-m is output to rearrangement unit 337 in accordance with the selection control signal.
  • the data output from each of the plurality of partial storage units 335-1 to 335-m is input to the rearrangement unit 337.
  • the plurality of data input to rearrangement section 337 are not arranged in the order of the subcarrier data.
  • the rearrangement unit 337 rearranges the plurality of input data in the order of arrangement of the subcarrier data and outputs the rearranged data.
  • a plurality of data output from rearrangement section 337 constitute subcarrier data whose offset amount is compensated.
  • the subcarrier data (SC 0 , SC 1 , . 16 conceptually illustrates how a plurality of subcarrier data (SC0, SC1, . . . , SCn) are output from the sorting section 337 (n is a natural number).
  • a plurality of subcarrier data may be output serially for each subcarrier, or may be output in parallel.
  • the rearrangement unit 337 may be omitted.
  • FIG. 18 is a conceptual diagram for explaining offset compensation processing.
  • FFT data X( ⁇ ) is composed of 64 discrete data (data 0 to 63).
  • data 0 to 63 data 0 to 63.
  • the 64 data included in the FFT data X( ⁇ ) before rearrangement are numbered from 0 to 63 (also called sample numbers).
  • a sample number is given to each of a plurality of data based on the arrangement of data in the FFT data X( ⁇ ) before being rearranged.
  • a sample number is attached according to the frequency of the data. Even after the data constituting the FFT data X( ⁇ ) are rearranged, the sample numbers attached to the data are maintained as they are.
  • the offset amount based on the light source frequency is +4.
  • the sample numbers of most of the data are omitted and only the sample numbers of some data are illustrated.
  • the arrows indicating subcarrier data are conceptual and the ends of those arrows do not coincide with exact sample numbers.
  • the FFT data X( ⁇ ) includes four subcarrier data (SC0, SC1, SC2, SC3). Each of the four subcarrier data (SC0, SC1, SC2, SC3) contains 16 data.
  • the four subcarrier data (SC0, SC1, SC2, SC3) contain overlapping data.
  • the subcarrier data SC0 before offset compensation has data 6 as the subcarrier center point and includes 16 data (data 62 to 13).
  • the subcarrier data SC1 before offset compensation has data 16 as the subcarrier center point and includes 16 data (data 8 to 23).
  • the subcarrier data SC2 before offset compensation has data 48 as the subcarrier center point and includes 16 data (data 40 to 55).
  • the subcarrier data SC3 before offset compensation has data 58 as the subcarrier center point and includes 16 data (data 50 to 1).
  • a plurality of data after offset compensation are data after offset compensation by the offset compensation processing (+4) based on the light source frequency.
  • a plurality of data after offset compensation (lower row) are distributed around data 4 by the offset compensation processing (+4) based on the light source frequency.
  • the ends of a plurality of data are filled with zeros.
  • the subcarrier data SC0 after offset compensation has data 10 as the subcarrier center point and includes 16 data (data 2 to 17).
  • Subcarrier data SC1 after offset compensation has data 20 as the subcarrier center point and includes 16 data (data 12 to 27).
  • Subcarrier data SC2 after offset compensation has data 52 as the subcarrier center point and includes 16 data (data 44 to 59).
  • Subcarrier data SC3 after offset compensation has data 62 as the subcarrier center point and includes 16 data (data 54 to 5).
  • FIG. 19 is a conceptual diagram for explaining the arrangement of a plurality of data (data 0 to 63) forming FFT data X( ⁇ ) before and after offset compensation processing and subcarrier separation processing by filter processing device 30.
  • FIG. . FIG. 19 shows the arrangement of data (1) before rearrangement and (2) after rearrangement. Eight pieces of data are sequentially input to the storage unit 33 in cycles 0 to 7 per cycle. In the example of FIG. 19, eight data are included per cycle.
  • (2) The rearranged data arrangement indicates a state in which the subcarrier data are integrated for each cycle.
  • Subcarrier data SC0 is integrated in cycles 0-1. In cycles 2 and 3, subcarrier data SC1 is integrated. In cycles 4 and 5, subcarrier data SC2 is integrated. In cycles 6-7, subcarrier data SC3 is integrated.
  • FIG. 20 is a conceptual diagram for explaining an example of writing data to the plurality of partial storage units 335-1 to 335-8 included in the storage unit 33.
  • FIG. A plurality of data for each cycle are input to the first selection unit 332 .
  • a plurality of data input to the first selection unit 332 are distributed to the partial storage units 335 for each cycle according to the selection control signal from the write destination selection unit 331 .
  • Data 0, data 8, data 16, data 24, data 32, data 40, data 48, and data 56 input in the 0th cycle are stored in the partial storage unit 335-1.
  • Data 1, data 9, data 17, data 25, data 33, data 41, data 49, and data 57 input in the first cycle are stored in the partial storage unit 335-2 (in the second to sixth cycles).
  • Data 7, data 15, data 23, data 31, data 39, data 47, data 55, and data 63 input in the seventh cycle are stored in the partial storage section 335-8.
  • FIG. 21 is a conceptual diagram for explaining another example of writing data to the plurality of partial storage units 335-1 to 335-m included in the storage unit 33.
  • FIG. 21 a plurality of data shown in an 8 ⁇ 8 matrix are divided into upper and lower stages and input to partial storage units 335-1 to 335-m for each cycle.
  • the upper data group is input to the first selection unit 332 as it is.
  • a register 370 is arranged on the input side of the lower data group.
  • Register 370 functions as a buffer that causes a delay of one cycle.
  • the data group in the lower stage is input to the first selector 332 with an input timing delayed by one cycle due to the register 370 .
  • Register 370 may be included in filtering device 30 or may be located external to filtering device 30 .
  • register 370 may be included in storage unit 33 .
  • FIG. 21 shows an example in which a plurality of data are divided into two and input to the storage unit 33 for each cycle, but the number of divisions of the plurality of data may be three or more.
  • the amount of data to be written in one cycle can be reduced, so that the bit width of the write portion and the read portion of the storage section 33 and the partial storage section 335 can be reduced. Therefore, the areas of the storage section 33 and the partial storage section 335 can be reduced.
  • Amplifiers (not shown) and the like are arranged in the write portion and the read portion. If the bit width of the write portion and the read portion can be reduced, the number of amplifiers and the like can be reduced.
  • FIG. 22 is a conceptual diagram for explaining an example of reading data from a plurality of partial storage units 335-1 to 335-m included in the storage unit 33.
  • FIG. Data is read from the plurality of partial storage units 335-1 to 335-m according to the selection control signal from the output data selection unit 336.
  • FIG. FIG. 22 shows only the internal configuration of the partial storage unit 335-1, and the internal configurations of the other partial storage units 335-2 to 335-m are omitted.
  • the output data selection unit 336 sends a selection control signal for reading data in the order of subcarrier data SC0, subcarrier data SC1, subcarrier data SC2, and subcarrier data SC3 to each of the plurality of partial storage units 335-1 to 335-m. Output.
  • the offset-compensated subcarrier data SC0 is composed of 16 data (data 2 to 17) centered on the subcarrier center point .
  • Data 8 and data 16 are stored in partial storage unit 335-1.
  • Data 9 and data 17 are stored in partial storage unit 335-2.
  • Data 2 and data 10 are stored in partial storage unit 335-3.
  • Data 3 and data 11 are stored in the partial storage unit 335-4.
  • Data 4 and data 12 are stored in the partial storage unit 335-5.
  • Data 5 and data 13 are stored in the partial storage unit 335-6.
  • Data 6 and data 14 are stored in the partial storage unit 335-7.
  • Data 7 and data 15 are stored in the partial storage unit 335-8.
  • subcarrier data SC0 after offset compensation are read from partial storage units 335-1 to 335-8.
  • the data 2 to 9 read from the partial storage units 335-1 to 335-8 are sorted in ascending order by the sorting unit 337 and output.
  • data 10 to 17 included in subcarrier data SC0 after offset compensation are read from partial storage units 335-1 to 335-8.
  • the data 10 to 17 read from the partial storage units 335-1 to 335-8 are sorted in ascending order by the sorting unit 337 and output.
  • subcarrier data SC0 after offset compensation is separated into subcarriers and output. Similar to subcarrier data SC0, subcarrier data SC1, subcarrier data SC2, and subcarrier data SC3 are also offset-compensated and output after being separated into subcarriers.
  • the communication system of this embodiment includes a Fourier transform device, a filter processing device, and an inverse Fourier transform device.
  • a Fourier transform device Fourier transforms a signal based on the optical signal.
  • the Fourier transform device outputs Fourier transform data including a plurality of data after Fourier transform to the filtering device.
  • the filtering device includes an address control section and a storage section.
  • the address control unit specifies write addresses and read addresses for a plurality of data included in Fourier transform data based on the optical signal, based on the offset amount of the light source frequency and the subcarrier center point of each subcarrier.
  • the address control section designates a write address and a read address so that offset amount compensation and subcarrier separation are performed in the same storage section.
  • the storage section has a plurality of partial storage sections in which a plurality of data constituting Fourier transform data are stored.
  • a data group composed of data of any cycle is written in accordance with an input control signal for allocating a plurality of data for each cycle.
  • Data for each subcarrier is sequentially read from each of the plurality of partial storage units in accordance with the output control signal based on the offset amount and the subcarrier center point.
  • An inverse Fourier transform device acquires a plurality of data that have undergone offset compensation processing and subcarrier separation processing by the filter processing device.
  • An inverse Fourier transform device inverse Fourier transforms a plurality of data that have undergone offset compensation processing and subcarrier separation processing.
  • a plurality of data included in Fourier transform data are stored in different partial storage units for each cycle.
  • a plurality of data constituting subcarrier data are distributed to different partial storage units associated with different cycles because the sample numbers are consecutive. Therefore, according to the method of the present embodiment, by sequentially reading a plurality of data constituting subcarrier data subjected to offset compensation processing from each of the plurality of partial storage units, offset compensation processing and subcarrier separation processing are performed. can run simultaneously. Therefore, according to the method of the present embodiment, subcarrier separation can be performed without adding a dedicated storage unit for performing subcarrier separation.
  • the storage section has a write destination selection section, a first selection section, an output data selection section, and a rearrangement section.
  • the write destination selector outputs an input control signal.
  • a plurality of data are input to the first selection unit.
  • the first selection section distributes the input data to the plurality of partial storage sections according to the input control signal.
  • the output data selector outputs an output control signal based on the offset amount and the subcarrier center point.
  • the rearrangement unit rearranges and outputs the data output from the plurality of partial storage units according to the data structure of the subcarrier data separated for each subcarrier, based on the offset amount and the subcarrier center point.
  • the partial memory portion includes a memory element array and a second selection portion.
  • the memory element array has a structure in which a plurality of memory elements are arranged in an array and stores data.
  • the second selection unit selects and outputs data stored in the storage element array according to the output control signal.
  • a plurality of data included in the Fourier transform data are stored in different partial storage units for each cycle.
  • a plurality of data constituting subcarrier data subjected to offset compensation processing are sequentially read from each of the plurality of partial storage units, and the read plurality of data are stored according to the data configuration of the subcarrier data. Sort and output.
  • the subcarrier data can be restored by rearranging the plurality of data read from each of the plurality of partial storage units according to the data configuration of the subcarrier data.
  • a communication system includes a buffer that delays the timing at which at least one of a plurality of data included in Fourier transform data is input to a filtering device by at least one cycle.
  • the bit width of the write portion and the read portion of the storage section and the partial storage section can be reduced, so the area of the storage section and the partial storage section can be reduced. Further, if the bit width of the write portion and the read portion can be reduced, the number of amplifiers arranged in the write portion and the read portion can be reduced.
  • FIG. 15 is a block diagram showing an example of the configuration of the filtering device 40 of this embodiment.
  • Filter processing device 40 includes address control section 41 and storage section 43 .
  • the address control unit 41 designates the write address and read address of a plurality of data contained in the Fourier transform data based on the optical signal based on the offset amount of the light source frequency and the subcarrier center point of each subcarrier.
  • the address control unit 41 designates a write address and a read address so that offset amount compensation and subcarrier separation are performed in the same storage unit 43 .
  • a plurality of data are written to the write address specified by the address control unit 41 in the storage unit 43 .
  • Data is read from the storage unit 43 from a read address specified by the address control unit 41 .
  • control and processing according to each embodiment of the present disclosure will be described by taking the information processing device 90 of FIG. 16 as an example.
  • the information processing apparatus 90 of FIG. 16 is a configuration example for executing control and processing of each embodiment, and does not limit the scope of the present disclosure.
  • control and processing according to each embodiment of the present disclosure may be performed by a microcomputer, microcontroller, or the like.
  • the information processing device 90 includes a processor 91, a main storage device 92, an auxiliary storage device 93, an input/output interface 95, and a communication interface 96.
  • the interface is abbreviated as I/F (Interface).
  • Processor 91 , main storage device 92 , auxiliary storage device 93 , input/output interface 95 , and communication interface 96 are connected to each other via bus 98 so as to enable data communication.
  • the processor 91 , the main storage device 92 , the auxiliary storage device 93 and the input/output interface 95 are connected to a network such as the Internet or an intranet via a communication interface 96 .
  • the processor 91 loads the program stored in the auxiliary storage device 93 or the like into the main storage device 92 .
  • the processor 91 executes programs developed in the main memory device 92 .
  • a configuration using a software program installed in the information processing device 90 may be used.
  • the processor 91 executes control and processing according to this embodiment.
  • the main storage device 92 has an area in which programs are expanded.
  • a program stored in the auxiliary storage device 93 or the like is developed in the main storage device 92 by the processor 91 .
  • the main memory device 92 is realized by a volatile memory such as a DRAM (Dynamic Random Access Memory). Further, as the main storage device 92, a non-volatile memory such as MRAM (Magnetoresistive Random Access Memory) may be configured/added.
  • the auxiliary storage device 93 stores various data such as programs.
  • the auxiliary storage device 93 is implemented by a local disk such as a hard disk or flash memory. It should be noted that it is possible to store various data in the main storage device 92 and omit the auxiliary storage device 93 .
  • the input/output interface 95 is an interface for connecting the information processing device 90 and peripheral devices based on standards and specifications.
  • a communication interface 96 is an interface for connecting to an external system or device through a network such as the Internet or an intranet based on standards and specifications.
  • the input/output interface 95 and the communication interface 96 may be shared as an interface for connecting with external devices.
  • Input devices such as a keyboard, mouse, and touch panel may be connected to the information processing device 90 as necessary. These input devices are used to enter information and settings.
  • a touch panel is used as an input device, the display screen of the display device may also serve as an interface of the input device. Data communication between the processor 91 and the input device may be mediated by the input/output interface 95 .
  • the information processing device 90 may be equipped with a display device for displaying information.
  • the information processing device 90 is preferably provided with a display control device (not shown) for controlling the display of the display device.
  • the display device may be connected to the information processing device 90 via the input/output interface 95 .
  • the information processing device 90 may be equipped with a drive device. Between the processor 91 and a recording medium (program recording medium), the drive device mediates reading of data and programs from the recording medium, writing of processing results of the information processing device 90 to the recording medium, and the like.
  • the drive device may be connected to the information processing device 90 via the input/output interface 95 .
  • the above is an example of the hardware configuration for enabling control and processing according to each embodiment of the present invention.
  • the hardware configuration of FIG. 16 is an example of a hardware configuration for executing control and processing according to each embodiment, and does not limit the scope of the present invention.
  • the scope of the present invention also includes a program that causes a computer to execute control and processing according to each embodiment.
  • the scope of the present invention also includes a program recording medium on which the program according to each embodiment is recorded.
  • the recording medium can be implemented as an optical recording medium such as a CD (Compact Disc) or a DVD (Digital Versatile Disc).
  • the recording medium may be implemented by a semiconductor recording medium such as a USB (Universal Serial Bus) memory or an SD (Secure Digital) card.
  • the recording medium may be realized by a magnetic recording medium such as a flexible disk, or other recording medium.
  • each embodiment may be combined arbitrarily. Also, the components of each embodiment may be realized by software or by circuits.
  • (Appendix 1) an address control unit that specifies a write address and a read address of a plurality of data included in Fourier transform data based on an optical signal based on a light source frequency offset amount and a subcarrier center point for each subcarrier; a storage unit in which a plurality of the data are written at the write address specified by the address control unit and the data is read from the read address specified by the address control unit;
  • the address control unit A filter processing device, wherein the write address and the read address are specified so that the compensation of the offset amount and the separation of the subcarriers are performed in the same storage unit.
  • (Appendix 2) The address control unit 1.
  • the filter processing device according to appendix 1, wherein the write address and the read address are specified so that the compensation of the offset amount and the separation of the subcarriers are performed collectively.
  • Appendix 3 3.
  • Appendix 4 a coefficient calculation processing unit that calculates, for each subcarrier, a compensation coefficient used in the other compensation processing based on the offset amount and the subcarrier center point; The calculation unit is 3.
  • each of the plurality of subcarrier data separated for each subcarrier is multiplied by the compensation coefficient calculated for each subcarrier by the coefficient calculation processing unit.
  • the coefficient calculation processing unit is Using a first compensation coefficient used in a first compensation process performed prior to the offset compensation process and a second compensation factor used in a second compensation process performed prior to the subcarrier separation process, 5.
  • the filter processing device according to appendix 4 wherein the compensation coefficient is calculated for each subcarrier.
  • the coefficient calculation processing unit is Filtering according to appendix 5, wherein the compensation coefficient is calculated using the first compensation coefficient dependent on the offset amount and the subcarrier center point, and the second compensation coefficient dependent on the subcarrier center point.
  • (Appendix 7) Either the address control unit or the coefficient calculation processing unit 7.
  • the filter processing device according to any one of appendices 4 to 6, wherein the value of the data that becomes unnecessary due to the offset compensation processing is set to 0.
  • (Appendix 8) The storage unit Having a plurality of partial storage units for storing a plurality of data constituting the Fourier transform data, In each of the plurality of partial storage units, writing a data group composed of the data of one of the cycles in response to an input control signal that distributes the plurality of data for each cycle; From each of the plurality of partial storage units, 8.
  • the filter processing device according to any one of appendices 1 to 7, wherein the data for each subcarrier is sequentially read according to an output control signal based on the offset amount and the subcarrier center point.
  • the storage unit a write destination selection unit that outputs the input control signal; a first selection unit to which a plurality of data are input and which distributes the input data to a plurality of partial storage units according to the input control signal; an output data selector that outputs the output control signal based on the offset amount and the subcarrier center point; an arrangement for rearranging and outputting the data output from the plurality of partial storage units according to the data configuration of the subcarrier data separated for each subcarrier, based on the offset amount and the subcarrier center point; a replacement part;
  • the partial storage unit a storage element array having a structure in which a plurality of storage elements are arranged in an array and storing the data; 9.
  • the filter processing device further comprising a second selection unit that selects and outputs the data stored in the storage element array in accordance with the output control signal.
  • Appendix 10 The filter processing device according to any one of Appendices 1 to 9; a Fourier transform device that Fourier transforms a signal based on an optical signal and outputs Fourier transform data including a plurality of data after the Fourier transform to the filtering device; An inverse Fourier transform device that obtains a plurality of the data that have undergone the offset compensation processing and the subcarrier separation processing by the filter processing device, and inverse Fourier transforms the plurality of the data that have undergone the offset compensation processing and the subcarrier separation processing. and a communication system. (Appendix 11) 11.
  • the communication system further comprising a buffer that delays timing at which at least one of the plurality of data included in the Fourier transform data is input to the filtering device by at least one cycle.
  • Appendix 12 the computer Fourier transform data based on an optical signal so that the compensation for the offset amount and the separation of the subcarriers are performed in the same storage unit based on the offset amount of the light source frequency and the subcarrier center point of each subcarrier. specifying the write address and read address of a plurality of data contained in the storage unit, writing a plurality of the data to the write address of the designated storage unit; A filtering method for reading the data from the read address of the designated storage unit.
  • Reference Signs List 10 20, 30, 40 filter processing device 11, 21, 31, 41 address control unit 13, 23, 33, 43 storage unit 25 coefficient operation processing unit 27 operation unit 110, 210, 310 Fourier transform device 120, 220, 320 Inverse Fourier Transform Device 270 Multiplier 331 Write Destination Selection Section 332 First Selection Section 335 Partial Storage Section 336 Output Data Selection Section 337 Sorting Section 350 Partial Storage Device Group 351 Storage Element Array 352 Second Selection Section

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Optical Communication System (AREA)

Abstract

専用の記憶部を追加せずにサブキャリア分離を行うために、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを指定するアドレス制御部と、アドレス制御部によって指定された書き込みアドレスに複数のデータが書き込まれ、アドレス制御部によって指定された読み出しアドレスからデータが読み出される記憶部と、を備えるフィルタ処理装置とする。アドレス制御部は、オフセット量の補償とサブキャリアの分離とが同一の記憶部で行われるように書き込みアドレスおよび読み出しアドレスを指定する。

Description

フィルタ処理装置、フィルタ処理方法、通信システム、および記録媒体
 本開示は、光通信に用いられるフィルタ装置等に関する。
 光通信の長距離化や大容量化に対応するために、マルチサブキャリア通信が開発されている。マルチサブキャリア通信においては、サブキャリアと呼ばれる複数の搬送波を用いて、光通信が行われる。そのため、マルチサブキャリア通信においては、光通信に用いられる光信号から、サブキャリアを分離する必要がある。
 特許文献1には、複数の光信号を周波数多重で伝送する通信装置について開示されている。特許文献1の装置は、受信側の通信装置までの伝送路において帯域狭窄を受けた後の伝送信号の信号帯域に合わせて、光フィルタ部の透過帯域を設定する。特許文献1の装置は、送信前の伝送信号を光フィルタ部に入力して信号帯域を制限し、信号帯域が制限された伝送信号を送信する。
国際公開第2018/134889号
 特許文献1の手法では、サブキャリア分離を行うために専用の記憶部が必要であった。サブキャリア分離を行うために専用の記憶部が配置されると、回路規模や消費電力が増大してしまう。そのため、専用の記憶部を追加せずに、サブキャリア分離を行う技術が求められる。
 本開示の目的は、専用の記憶部を追加せずに、サブキャリア分離を行うことができるフィルタ処理装置等を提供することにある。
 本開示の一態様のフィルタ処理装置は、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを指定するアドレス制御部と、アドレス制御部によって指定された書き込みアドレスに複数のデータが書き込まれ、アドレス制御部によって指定された読み出しアドレスからデータが読み出される記憶部と、を備える。アドレス制御部は、オフセット量の補償とサブキャリアの分離とが同一の記憶部で行われるように書き込みアドレスおよび読み出しアドレスを指定する。
 本開示の一態様のフィルタ処理方法においては、コンピュータが、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、オフセット量の補償とサブキャリアの分離とが同一の記憶部で行われるように、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを記憶部に指定し、指定された記憶部の書き込みアドレスに複数のデータを書き込み、指定された記憶部の読み出しアドレスからデータを読み出す。
 本開示の一態様のプログラムは、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、オフセット量の補償とサブキャリアの分離とが同一の記憶部で行われるように、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを記憶部に指定する処理と、指定された記憶部の書き込みアドレスに複数のデータを書き込む処理と、指定された記憶部の読み出しアドレスからデータを読み出す処理と、をコンピュータに実行させる。
 本開示によれば、専用の記憶部を追加せずに、サブキャリア分離を行うことができるフィルタ処理装置等を提供することが可能になる。
第1の実施形態に係る通信システムの構成の一例を示すブロック図である。 第1の実施形態に係るフィルタ処理装置に入力されるFFT(Fast Fourier Transform)データの一例を示す概念図である。 第1の実施形態に係るフィルタ処理装置によって実行される光源周波数のオフセット補償処理について説明するための概念図である。 第1の実施形態に係るフィルタ処理装置によって実行されるサブキャリア分離処理について説明するための概念図である。 第1の実施形態に係るフィルタ処理装置によるオフセット補償処理およびサブキャリア分離処理の前後におけるデータの配列について説明するための概念図である。 第1の実施形態に係るフィルタ処理装置の動作の一例について説明するためのフローチャートである。 関連技術1に係るフィルタ処理装置の構成の一例を示すブロック図である。 関連技術1に係るフィルタ処理装置によるオフセット補償処理の前後におけるデータの配列について説明するための概念図である。 関連技術1に係るフィルタ処理装置によるサブキャリア分離処理の前後におけるデータの配列について説明するための概念図である。 第2の実施形態に係る通信システムの構成の一例を示すブロック図である。 第2の実施形態に係るフィルタ処理装置の係数演算処理部の構成の一例を示すブロック図である。 第2の実施形態に係るフィルタ処理装置の動作の一例について説明するためのフローチャートである。 関連技術2に係るフィルタ処理装置の構成の一例を示すブロック図である。 第2の実施形態に係るフィルタ処理装置によるオフセット補償処理およびサブキャリア分離処理以外の補償処理に用いられる補償係数について説明するための概念図である。 第3の実施形態に係る通信システムの構成の一例を示すブロック図である。 第3の実施形態に係るフィルタ処理装置の記憶部の構成の一例を示すブロック図である。 第3の実施形態に係るフィルタ処理装置の記憶部に含まれる部分記憶部の内部構成の一例を示すブロック図である。 第3の実施形態に係るフィルタ処理装置によって実行されるオフセット補償処理について説明するための概念図である。 第3の実施形態に係るフィルタ処理装置によるオフセット補償処理およびサブキャリア分離処理の前後におけるデータの配列について説明するための概念図である。 第3の実施形態に係るフィルタ処理装置の記憶部に含まれる複数の部分記憶部へのデータの書き込みの一例について説明するための概念図である。 第3の実施形態に係るフィルタ処理装置の記憶部に含まれる複数の部分記憶部へのデータの書き込みの別の一例について説明するための概念図である。 第3の実施形態に係るフィルタ処理装置の記憶部に含まれる複数の部分記憶部からのデータの読み出しの一例について説明するための概念図である。 第4の実施形態に係るフィルタ処理装置の構成の一例を示すブロック図である。 各実施形態に係るフィルタ処理装置の制御や処理を実現するハードウェア構成の一例を示すブロック図である。
 以下に、本発明を実施するための形態について図面を用いて説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。以下の実施形態の説明に用いる全図においては、特に理由がない限り、同様箇所には同一符号を付す。また、以下の実施形態において、同様の構成・動作に関しては繰り返しの説明を省略する場合がある。
 (第1の実施形態)
 まず、第1の実施形態に係る通信システムについて図面を参照しながら説明する。本実施形態の通信システムは、光通信に用いられる。本実施形態の通信システムは、高速フーリエ変換(FFT:Fast Fourier Transform)処理されたデジタルデータ(以下、データとも呼ぶ)に対して、オフセット補償処理とサブキャリア分離処理を行う。本実施形態においては、オフセット補償処理およびサブキャリア分離処理に着目し、通常行われるフィルタ処理については省略する。
 (構成)
 図1は、本実施形態の通信システム1の構成の一例を示すブロック図である。通信システム1は、フーリエ変換装置110、フィルタ処理装置10、および逆フーリエ変換装置120を備える。フィルタ処理装置10は、フーリエ変換装置110および逆フーリエ変換装置120に接続される。
 フーリエ変換装置110は、AD(Analog Digital)変換された時間領域の信号に対してFFT処理を行い、周波数領域のデータ(FFTデータとも呼ぶ)に変換する。フーリエ変換装置110は、フィルタ処理装置10にFFTデータを出力する。
 図2は、フィルタ処理装置10に入力されるFFTデータX(ω)について説明するための概念図である。図2の例では、FFTデータX(ω)は、16個の離散的なデータによって構成される。1サイクルには、4つのデータが含まれる。1サイクルごとのデータには、1~4のデータ番号が付される。図2の例では、並び替えられる前のFFTデータX(ω)に含まれる16個のデータに0~15の番号(サンプル番号とも呼ぶ)を記す。以下においては、並び替えられる前のFFTデータX(ω)におけるデータの配置を基準として、複数のデータの各々にサンプル番号を付す。サンプル番号は、データの周波数に応じて付される。例えば、サイクル2のデータ番号2のデータは、データ5と表記される。FFTデータX(ω)を構成するデータが並び替えられた後も、データに付されたサンプル番号はそのまま維持される。本実施形態においては、FFTデータX(ω)を構成するデータの数が16個の例をあげるが、FFTデータX(ω)を構成するデータの数には、特に限定を加えない。例えば、16サイクルで256個のデータを並列に処理する場合は、データの数は4096個である。
 フィルタ処理装置10は、アドレス制御部11および記憶部13を有する。フィルタ処理装置10には、FFTデータX(ω)を構成する16個のデータが、4サイクルで並列に入力される。図2の例では、1サイクル目に、データ0、データ4、データ8、データ12がフィルタ処理装置10に入力される。2サイクル目には、データ1、データ5、データ9、データ13がフィルタ処理装置10に入力される。3サイクル目には、データ2、データ6、データ10、データ14がフィルタ処理装置10に入力される。4サイクル目には、データ3、データ7、データ11、データ15がフィルタ処理装置10に入力される。フィルタ処理装置10に入力されたデータは、アドレス制御部11によるアドレスの指定を受けて、記憶部13に記憶される。フィルタ処理装置10に入力されたデータは、アドレス制御部11によって指定された書き込みアドレスに記憶される。記憶部13に記憶されたデータは、アドレス制御部11によって指定された読み出しアドレスから読み出される。
 アドレス制御部11には、フィルタ処理装置10を備える通信システム1のローカル光源の発信周波数(光源周波数とも呼ぶ)に基づくオフセット量が入力される。例えば、オフセット量は、入力装置(図示しない)を介して、アドレス制御部11に入力される。オフセット量は、アドレス制御部11に予め登録されてもよい。また、オフセット量は、オフセット推定回路(図示しない)によって推定されるように構成されてもよい。
 図3は、光源周波数のオフセット補償処理について説明するための概念図である。FFTデータX(ω)を構成する複数のデータは、強度が最も強いDC(Direct Current)成分のデータ0を中心として分布する。オフセット前(1)の補償処理の順番は、データ0、データ1、データ2、・・・、データ14、データ15の順番である。フィルタ処理装置10に入力された信号は、通信システム1の光源周波数に応じてオフセット量が補償される。図3の例では、オフセット量が+2である。オフセット後(2)の補償処理の順番は、データ14、データ15、データ0、・・・、データ12、データ13の順番である。図3の例では、強度が弱いデータ(データ7、データ8、データ9)の信号値を0に設定する。不要なデータの信号値を0に設定することを、0埋めとも呼ぶ。
 また、アドレス制御部11には、サブキャリアごとの中心点(サブキャリア中心点と呼ぶ)が入力される。例えば、サブキャリア中心点は、入力装置(図示しない)を介して入力される。サブキャリア中心点は、アドレス制御部11に予め登録されてもよい。本実施形態においては、二つのサブキャリアを含む例をあげるが、サブキャリアの数には特に限定を加えない。
 図3は、FFTデータX(ω)に含まれるサブキャリアについて説明するための概念図である。FFTデータX(ω)は、サブキャリアデータSC0とサブキャリアデータSC1を含む。サブキャリアデータSC0は、サブキャリアの中心点のデータ3(周波数ω0)の前後(-4、+3)の8個のデータ(15、0、1、2、3、4、5、6)を含む。サブキャリアデータSC1は、サブキャリアの中心点のデータ13(周波数ω1)の前後(-4、+3)の8個のデータ(9、10、11、12、13、14、15、0)を含む。なお、周波数オフセット補償されると、それぞれのサブキャリアデータに含まれるデータのサンプル番号は、+2シフトする。図3の例では、サブキャリアデータSC0とサブキャリアデータSC1は、一部分の信号が重複する。なお、本実施形態においては、サブキャリアごとのデータ数が予め設定されており、サブキャリアの中心点の周波数が特定されば、サブキャリアデータを特定できるものとする。
 アドレス制御部11は、光源周波数のオフセット量とサブキャリアごとの中心点に基づいて、データの書き込みアドレスおよび読み出しアドレスを生成する。アドレス制御部11は、生成された書き込みアドレスおよび読み出しアドレスを記憶部13に指定する。アドレス制御部11の指定に応じて記憶部13に書き込まれたデータは、オフセット補償処理とサブキャリア分離処理が一括で行われた配列で記憶部13から読み出される。
 記憶部13には、フーリエ変換装置110によってフーリエ変換されたFFTデータX(ω)を構成する複数のデータが入力される。例えば、記憶部13は、RAM(Random Access Memory)などのメモリやレジスタなどの記憶装置によって実現される。記憶部13は、入力されたFFTデータX(ω)を構成する複数のデータを、アドレス制御部11によって指定された書き込みアドレスに記憶する。記憶部13に記憶された複数のデータは、アドレス制御部11によって指定された読み出しアドレスに従って読み出される。記憶部13に記憶された複数のデータは、アドレス制御部11による指定に応じて、オフセット補償されるとともに、サブキャリアごとに分離されて出力される。本実施形態においては、サブキャリアデータSC0とサブキャリアデータSC1が記憶部13から出力される。例えば、サブキャリア分離の前処理として、シリアル-パラレル変換処理を行う構成が追加されてもよい。また、パラレル変換後のデータのスキューを補償する回路や処理が追加されてもよい。
 図5は、記憶部13に入力されたFFTデータX(ω)を構成するデータが、並び替え前(1)の配列から、並び替え後(2)の配列に並び替えられた状況を示す概念図である。並び替え前(1)の配列におけるデータの順番は、フーリエ変換装置110の出力の時間方向に連続である。並び替え後(2)の配列におけるデータの順番は、同じ時間の並列方向に連続である。本実施形態では、記憶部13へのデータの書き込みおよび読み出しの操作をアドレス制御により並列で実行することで、オフセット補償処理とサブキャリア分離処理がなされた配列にデータを並び替える。その結果、FFTデータX(ω)は、オフセット補償されるとともに、サブキャリアごとに分離される。図5の例では、サブキャリアデータSC0のデータがサイクル1-2に並び替えられ、サブキャリアデータSC1のデータがサイクル3-4に並び替えられる。サブキャリアデータを構成するデータの配列は、逆フーリエ変換装置120における処理がしやすい順番に並び替えられる。
 フィルタ処理装置10は、複数のサブキャリアごとに分離されたサブキャリアデータを出力する。サブキャリアデータを構成するデータの配列は、逆フーリエ変換装置120における処理がしやすい順番に並び替えられている。フィルタ処理装置10から出力された複数のサブキャリアデータは、逆フーリエ変換装置120に入力される。
 逆フーリエ変換装置120には、フィルタ処理装置10から出力された複数のサブキャリアデータが入力される。逆フーリエ変換装置120は、サブキャリアごとの変換回路を含む。逆フーリエ変換装置120は、複数のサブキャリアデータをサブキャリアごとに逆フーリエ変換し、時間領域の信号に変換する。逆フーリエ変換装置120は、時間領域の信号に変換されたサブキャリアデータを出力する。
 (動作)
 次に、通信システム1のフィルタ処理装置10の動作の一例について図面を参照しながら説明する。図6は、フィルタ処理装置10の動作について説明するためのフローチャートである。以下の図6のフローチャートに沿った処理においては、フィルタ処理装置10を動作主体として説明する。
 図6において、まず、フィルタ処理装置10は、フーリエ変換装置110から出力されたFFTデータを取得する(ステップS11)。
 次に、フィルタ処理装置10は、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点に基づいて、FFTデータの書き込みアドレスと読み出しアドレスを生成する(ステップS12)。
 次に、フィルタ処理装置10は、設定された書き込みアドレスに従って、FFTデータを構成するデータを記憶部13に記憶する(ステップS13)。
 次に、フィルタ処理装置10は、設定された読み出しアドレスに従って、記憶部13に記憶されたデータを出力する(ステップS14)。ステップS14で出力されるデータは、オフセット補償され、サブキャリアごとに分離されたサブキャリアデータである。フィルタ処理装置10から出力されたサブキャリアデータは、逆フーリエ変換装置120に入力される。逆フーリエ変換装置120に入力されたサブキャリアデータは、サブキャリアごとに逆フーリエ変換される。
 〔関連技術1〕
 ここで、第1の実施形態の関連技術1について図面を参照しながら説明する。本関連技術は、オフセット補償処理とサブキャリア分離処理が別々に行われる例である。
 図7は、本関連技術の通信システム100の構成の一例を示すブロック図である。通信システム100は、フーリエ変換装置115、フィルタ処理装置150、および逆フーリエ変換装置125を備える。フィルタ処理装置150は、第1記憶部151および第2記憶部152を備える。フィルタ処理装置150は、フーリエ変換装置115および逆フーリエ変換装置125に接続される。フーリエ変換装置115は、第1の実施形態のフーリエ変換装置110と同様の構成である。逆フーリエ変換装置125は、第1の実施形態の逆フーリエ変換装置120と同様の構成である。
 第1記憶部151には、FFTデータX(ω)を構成するデータが入力される。第1記憶部151は、オフセット補償処理用の記憶部である。第1記憶部151に入力されたデータは、設定されたオフセット量に応じて並び替えられて出力される。図7の例では、オフセット補償されたデータY(ω)が第1記憶部151から出力される。
 第2記憶部152には、オフセット補償されたデータY(ω)を構成するデータが入力される。第2記憶部152は、サブキャリア分離用の記憶部である。第2記憶部152に入力されたデータは、サブキャリアごとの中心点の周波数に応じて並び替えられて出力される。図7の例では、サブキャリア分離されたサブキャリアデータSC0’とサブキャリアデータSC1’が、第2記憶部152から逆フーリエ変換装置120に出力される。サブキャリアデータを構成するデータの配列は、逆フーリエ変換装置120における処理がしやすい順番に並び替えられる。第2記憶部152から出力されたサブキャリアデータSC0’とサブキャリアデータSC1’は、逆フーリエ変換装置120においてサブキャリアごとに逆フーリエ変換処理される。
 図8は、第1記憶部151に入力されたFFTデータX(ω)を構成するデータが、並び替え前(1)の配列から、並び替え途中(2)の配列に並び替えられた状態を示す概念図である。並び替え途中(2)のデータ配列は、オフセット補償されたデータY(ω)のデータ構成である。並び替え途中(2)のデータ配列は、並び替え前(1)のデータ配列が+2オフセット補償されたものである。
 図9は、第2記憶部152に入力されたデータY(ω)を構成するデータが、並び替え途中(2)の配列から、並び替え後(3)の配列に並び替えられた状態を示す概念図である。データY(ω)は、サブキャリアごとに分離される。図9の例では、サブキャリアデータSC0のデータがサイクル1-2に並び替えられ、サブキャリアデータSC1のデータがサイクル3-4に並び替えられる。サブキャリアデータSC0は、データ13、データ14、データ15、データ0、データ1、データ2、データ3、およびデータ4を含む。サブキャリアデータSC1は、データ7、データ8、データ9、データ10、データ11、データ12、データ13、およびデータ14を含む。
 関連技術1の手法では、オフセット補償処理の専用の第1記憶部151とサブキャリア分離処理の専用の第2記憶部152が設置される。また、関連技術1の手法では、オフセット補償処理とサブキャリア分離処理を二段階で行う。それに対し、第1の実施形態の手法によれば、アドレス制御部11の指定に応じて、FFTデータを構成するデータの記憶部13への書き込みアドレスおよび読み出しアドレスを制御する。そのため、第1の実施形態の手法によれば、処理ごとの専用の記憶部を追加せずに、オフセット補償処理とサブキャリア分離処理を一括して行うことができる。
 以上のように、本実施形態の通信システムは、フーリエ変換装置、フィルタ処理装置、および逆フーリエ変換装置を備える。フーリエ変換装置は、光信号に基づく信号をフーリエ変換する。フーリエ変換装置は、フーリエ変換後の複数のデータを含むフーリエ変換データをフィルタ処理装置に出力する。フィルタ処理装置は、アドレス制御部および記憶部を備える。アドレス制御部は、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点にと基づいて、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを指定する。アドレス制御部は、オフセット量の補償とサブキャリアの分離とが同一の記憶部で行われるように書き込みアドレスおよび読み出しアドレスを指定する。記憶部は、アドレス制御部によって指定された書き込みアドレスに複数のデータが書き込まれる。記憶部は、アドレス制御部によって指定された読み出しアドレスからデータが読み出される。逆フーリエ変換装置は、フィルタ処理装置によってオフセット補償処理およびサブキャリア分離処理を受けた複数のデータを取得する。逆フーリエ変換装置は、オフセット補償処理およびサブキャリア分離処理を受けた複数のデータを逆フーリエ変換する。
 本実施形態の手法によれば、オフセット補償処理とサブキャリア分離処理が行われるようにアドレス指定することによって、専用の記憶部を追加せずに、サブキャリア分離を行うことができる。すなわち、本実施形態によれば、サブキャリア分離処理のために記憶部の数を増やさないので、消費電力の増大を抑制しながら、サブキャリア分離処理を行うことができる。一般的な手法では、記憶部への書き込み/読み出しが2回ずつ行われる。本実施形態の手法では、同一の記憶部への書き込み/読み出しが1回ずつで済む。そのため、本実施形態の手法によれば、記憶部への書き込み/読み出しの回数が減少することによって、フィルタ処理における全体的な処理速度が向上する。
 本実施形態の一態様において、アドレス制御部は、オフセット量の補償とサブキャリアの分離とが一括して行われるように、書き込みアドレスおよび読み出しアドレスを指定する。本態様によれば、アドレス制御部によって指定されたアドレスにデータを書き込み/読み出しすることによって、オフセット補償処理とサブキャリア分離処理を一括して行うことができる。
 本実施形態の一態様において、アドレス制御部は、周波数オフセット補償処理によって不要となるデータの値を0にする。本態様によれば、複数のデータに含まれる不要なデータの値を削除できる。
 (第2の実施形態)
 次に、第2の実施形態に係る通信システムについて図面を参照しながら説明する。光通信に用いられる光信号は、AD(Analog Digital)変換された後にFFT(Fast Fourier Transform)変換される。FFT変換された信号に対しては、周波数領域で複数の処理が行われる。本実施形態の通信システムは、オフセット補償処理およびサブキャリア分離処理の後で、オフセット補償処理およびサブキャリア分離処理以外の処理を一括して行う点において、第1の実施形態とは異なる。
 (構成)
 図10は、本実施形態の通信システム2の構成の一例を示すブロック図である。通信システム2は、フーリエ変換装置210、フィルタ処理装置20、および逆フーリエ変換装置220を備える。フィルタ処理装置20は、フーリエ変換装置210および逆フーリエ変換装置220に接続される。
 フーリエ変換装置210は、第1の実施形態のフーリエ変換装置110と同様の構成である。フーリエ変換装置210は、AD変換された信号に対してFFT変換を行い、周波数領域のデータ(FFTデータとも呼ぶ)に変換する。フーリエ変換装置210は、フィルタ処理装置20にFFTデータを出力する。
 フィルタ処理装置20は、アドレス制御部21、記憶部23、係数演算処理部25、および演算部27を有する。フィルタ処理装置20には、フーリエ変換装置210の出力データ(FFTデータとも呼ぶ)が入力される。
 アドレス制御部21は、第1の実施形態のアドレス制御部11と同様の構成である。アドレス制御部21には、光源周波数のオフセット量とサブキャリアごとの中心点(サブキャリア中心点)が入力される。オフセット量およびサブキャリア中心点は、入力装置(図示しない)を介して入力されてもよいし、アドレス制御部21に予め設定されてもよい。アドレス制御部21は、光源周波数のオフセット量とサブキャリアごとの中心周波数に基づいて、データの書き込みアドレスおよび読み出しアドレスを生成する。アドレス制御部21は、生成された書き込みアドレスおよび読み出しアドレスを記憶部23に指定する。
 記憶部23は、第1の実施形態の記憶部13と同様の構成である。記憶部23には、フーリエ変換装置210によってフーリエ変換されたFFTデータX(ω)を構成する複数のデータが入力される。記憶部23は、入力されたFFTデータX(ω)を構成する複数のデータを、アドレス制御部21によって指定された書き込みアドレスに記憶する。記憶部23に記憶された複数のデータは、アドレス制御部21によって指定された読み出しアドレスに従って読み出される。記憶部23に記憶された複数のデータは、アドレス制御部21による指定に応じて、オフセット補償されるとともに、サブキャリアごとに分離されて出力される。
 係数演算処理部25は、オフセット補償処理およびサブキャリア分離処理とは異なる補償処理(その他の補償処理とも呼ぶ)の係数(補償係数とも呼ぶ)を計算する。係数演算処理部25は、オフセット量とサブキャリア中心点の周波数に基づいて、サブキャリアデータごとに補償係数を計算する。その他の補償処理については、オフセット量とサブキャリア中心点の周波数に依存しさえすれば、特に限定は加えない。例えば、その他の補償処理は、XY偏波や、位相直交するI/Q信号の到着時間のずれを補償するスキュー補償処理を含む。例えば、その他の補償処理は、I/Q信号の信号値(Xi、Xq、Yi、Yq)のそれぞれの劣化度によってばらつきを補正する正規化処理を含む。例えば、その他の補償処理は、受信アナログフロントエンドの製造ばらつきや、環境変動などに起因する周波数応答の劣化を補償する周波数応答調整処理を含む。例えば、その他の補償処理は、波長分散補償処理やスペクトル整形処理を含む。また、係数演算処理部25は、0埋め処理を行ってもよい。
 係数演算処理部25には、光源周波数のオフセット量とサブキャリア中心点が入力される。オフセット量およびサブキャリア中心点は、入力装置(図示しない)を介して入力されてもよいし、係数演算処理部25に予め登録されてもよい。係数演算処理部25は、光源周波数のオフセット量とサブキャリアごとの中心周波数に基づいて、オフセット補償処理およびサブキャリア分離処理以外のその他の処理に関する補償係数を計算する。例えば、係数演算処理部25は、サブキャリアごとに補償係数を計算する。
 ここで、サブキャリアがサブキャリア0とサブキャリア1の二つの場合に、補償係数を計算する例をあげる。光源補償のオフセット周波数をf、サブキャリア0のサブキャリア中心点の周波数ω0を、サブキャリア1のサブキャリア中心点の周波数ω1とする。また、FFTデータを構成する複数のデータの周波数をωとする。例えば、係数演算処理部25は、以下の式1および式2を用いて、サブキャリアデータSC0の補償係数C0とサブキャリアデータSC1の補償係数C1を計算する。
C0=H1(ω-f-ω0)×H2(ω-ω0)・・・(1)
C1=H1(ω-f-ω1)×H2(ω-ω1)・・・(2)
なお、上記の式1および式2は、係数演算処理部25が計算する補償係数の一例であって、係数演算処理部25による補償係数の計算式を限定するものではない。補償係数は、光源補償のオフセット周波数fや、サブキャリア中心点の周波数ω0やω1に依存すればよい。
 演算部27は、係数演算処理部25によって算出されたサブキャリアごとの補償係数を用いて、サブキャリアデータに補償処理を行う。例えば、係数演算処理部25は、サブキャリアごとの補償係数をサブキャリアデータに乗算することによって補償処理を行う。
 図11は、サブキャリアごとに算出された補償係数を、サブキャリアごとに別々に乗算することについて説明するための概念図である。演算部27は、乗算器270-0と乗算器270-1を含む。乗算器270-0には、サブキャリア0の補償係数C0が設定される。乗算器270-0は、サブキャリアデータSC0の入力に応じて、入力されたサブキャリアデータSC0に補償係数C0を乗算する。乗算器270-0は、サブキャリアデータSC0に補償係数C0が乗算されたサブキャリアデータSC0’を出力する。一方、乗算器270-1には、サブキャリア0の補償係数C1が設定される。乗算器270-1は、サブキャリアデータSC1の入力に応じて、入力されたサブキャリアデータSC1に補償係数C1を乗算する。乗算器270-1は、サブキャリアデータSC1に補償係数C1が乗算されたサブキャリアデータSC1’を出力する。
 フィルタ処理装置20は、複数のサブキャリアごとに分離され、その他の補償処理が行われたサブキャリアデータを出力する。サブキャリアデータを構成するデータの配列は、逆フーリエ変換装置220における処理がしやすい順番に並び替えられている。フィルタ処理装置20から出力された複数のサブキャリアデータは、逆フーリエ変換装置220に入力される。
 逆フーリエ変換装置220は、第1の実施形態の逆フーリエ変換装置120と同様の構成である。逆フーリエ変換装置220は、複数のサブキャリアデータをサブキャリアごとに逆フーリエ変換し、時間領域の信号に変換する。逆フーリエ変換装置220は、時間領域の信号に変換されたサブキャリアデータを出力する。
 (動作)
 次に、通信システム2のフィルタ処理装置20の動作の一例について図面を参照しながら説明する。図12は、フィルタ処理装置20の動作について説明するためのフローチャートである。以下の図12のフローチャートに沿った説明においては、フィルタ処理装置20を動作主体として説明する。
 図11において、まず、フィルタ処理装置20は、フーリエ変換装置210から出力されたFFTデータを取得する(ステップS21)。
 次に、フィルタ処理装置20は、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点に基づいて、FFTデータの書き込みアドレスと読み出しアドレスを生成する(ステップS22)。
 次に、フィルタ処理装置20は、設定された書き込みアドレスに従って、FFTデータを構成するデータを記憶部23に記憶する(ステップS23)。
 次に、フィルタ処理装置20は、サブキャリアごとの補償係数を計算する(ステップS24)。ステップS24の処理は、ステップS25の後に行われてもよいし、事前に行われていてもよい。
 次に、フィルタ処理装置20は、設定された読み出しアドレスに従って、記憶部23に記憶されたデータを出力する(ステップS25)。ステップS25で出力されるデータは、オフセット補償され、サブキャリアごとに分離されたサブキャリアデータである。
 次に、フィルタ処理装置20は、算出されたサブキャリアごとの補償係数をサブキャリアデータに乗算する(ステップS26)。
 次に、フィルタ処理装置20は、補償処理が行われたサブキャリアデータを出力する(ステップS27)。フィルタ処理装置10から出力されたサブキャリアデータは、逆フーリエ変換装置220に入力される。逆フーリエ変換装置220に入力されたサブキャリアデータは、サブキャリアごとに逆フーリエ変換される。
 〔関連技術2〕
 ここで、第2の実施形態の関連技術2について図面を参照しながら説明する。本関連技術は、オフセット補償処理およびサブキャリア分離処理の各々の処理の前段階で、別々に補償処理が行われる例である。
 図13は、関連技術の通信システム200の構成の一例を示すブロック図である。通信システム200は、フーリエ変換装置215、フィルタ処理装置250、および逆フーリエ変換装置225を備える。フィルタ処理装置250は、第1乗算器251、第1記憶部252、第2乗算器253、および第2記憶部254を備える。フィルタ処理装置250は、フーリエ変換装置215および逆フーリエ変換装置225に接続される。フーリエ変換装置215は、第2の実施形態のフーリエ変換装置210と同様の構成である。逆フーリエ変換装置225は、第2の実施形態の逆フーリエ変換装置220と同様の構成である。
 第1乗算器251には、FFTデータX(ω)を構成するデータが入力される。第1乗算器251は、FFTデータX(ω)を構成するデータに補償係数H1を乗算する。第1乗算器251は、補償係数H1が乗算されたデータを第1記憶部252に出力する。
 第1記憶部252には、補償係数H1が乗算されたデータが入力される。第1記憶部252は、オフセット補償処理用の記憶部である。第1記憶部252に入力されたデータは、設定されたオフセット量に応じて並び替えられて出力される。図13の例では、オフセット補償されたデータY’(ω)が第1記憶部252から出力される。
 第2乗算器253には、オフセット補償されたデータY’(ω)が入力される。第2乗算器253は、FFTデータX(ω)を構成するデータに補償係数H2を乗算する。第2乗算器253は、補償係数H2が乗算されたデータを第2記憶部254に出力する。
 第2記憶部254には、補償係数H2が乗算されたデータが入力される。第2記憶部254は、サブキャリア分離用の記憶部である。第2記憶部254に入力されたデータは、サブキャリアごとの中心点の周波数に応じて並び替えられて出力される。図13の例では、サブキャリア分離されたサブキャリアデータSC0’とサブキャリアデータSC1’が第2記憶部254から逆フーリエ変換装置220に出力される。サブキャリアデータを構成するデータの配列は、逆フーリエ変換装置220における処理がしやすい順番に並び替えられる。第2記憶部254から出力されたサブキャリアデータSC0’とサブキャリアデータSC1’は、逆フーリエ変換装置220において個別に逆フーリエ変換処理される。
 図14は、第2の実施形態の手法で用いられる補償係数について説明するためのテーブルである。図11の例では、第1の実施形態と同様のFFTデータを構成する16個のデータの各々に用いられる補償係数がまとめられる。図14のテーブルは、関連技術2における補償処理を一括して行うことを可能とするための補償係数を示す。H1(ω)やH2(ω)は、関連技術2の手法を用いる場合に、データωに対して用いられる補償係数である。C(ω)は、第2の実施形態の手法を用いる場合に、関連技術2と同様の補償を行う際に用いられる補償係数である。補償係数C(13)は、データ13の補償係数である。例えば、補償係数C(13)は、補償係数H1(12)と補償係数H2(13)を乗算することで得られる。例えば、補償係数C(14)は、補償係数H1(13)と補償係数H2(14)を乗算することで得られる。図14の補償係数C(ω)を用いれば、関連技術2と同様の補償処理を一括して実行できる。
 関連技術2の手法では、周波数オフセットおよびサブキャリア分離の各々の直前において、必要な補償処理が行われる。そのため、関連技術2の手法では、周波数オフセットおよびサブキャリア分離の各々の直前で補償処理が行われる。それに対し、第2の実施形態の手法では、係数演算処理部25によって算出された補償係数を、サブキャリア分離後のサブキャリアデータに対して乗算することで、補償処理を一括して行うことができる。
 以上のように、本実施形態の通信システムは、フーリエ変換装置、フィルタ処理装置、および逆フーリエ変換装置を備える。フーリエ変換装置は、光信号に基づく信号をフーリエ変換する。フーリエ変換装置は、フーリエ変換後の複数のデータを含むフーリエ変換データをフィルタ処理装置に出力する。フィルタ処理装置は、アドレス制御部、記憶部、係数演算処理部、および演算部を備える。アドレス制御部は、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを指定する。アドレス制御部は、オフセット量の補償とサブキャリアの分離とが同一の記憶部で行われるように書き込みアドレスおよび読み出しアドレスを指定する。記憶部は、アドレス制御部によって指定された書き込みアドレスに複数のデータが書き込まれる。記憶部は、アドレス制御部によって指定された読み出しアドレスからデータが読み出される。係数演算処理部は、オフセット量およびサブキャリア中心点に基づいて、その他の補償処理に用いられる補償係数をサブキャリアごとに演算する。演算部は、サブキャリアごとに分離された複数のサブキャリアデータの各々に対して、オフセット補償処理およびサブキャリア分離処理以外のその他の補償処理を一括して実行する。例えば、演算部は、係数演算処理部によってサブキャリアごとに演算された補償係数を、サブキャリアごとに分離された複数のサブキャリアデータの各々に対して乗算する。逆フーリエ変換装置は、フィルタ処理装置によってオフセット補償処理およびサブキャリア分離処理を受けた複数のデータを取得する。逆フーリエ変換装置は、オフセット補償処理およびサブキャリア分離処理を受けた複数のデータを逆フーリエ変換する。
 本実施形態の手法においては、オフセット補償処理およびサブキャリア分離処理の後に、オフセット補償処理およびサブキャリア分離処理以外のその他の補償処理を一括して実行する。そのため、本実施形態の手法によれば、その他の処理に関して、回路規模や演算手順を簡略化し、消費電力を低減できる。
 本実施形態の一態様において、係数演算処理部は、第1補償係数と第2補償係数を用いて、サブキャリアごとに補償係数を演算する。第1補償係数は、オフセット補償処理の前段階に行われる第1補償処理に用いられる係数である。第2補償係数は、サブキャリア分離処理の前段階に行われる第2補償処理に用いられる係数である。例えば、係数演算処理部は、オフセット量およびサブキャリア中心点に依存する第1補償係数と、サブキャリア中心点に依存する第2補償係数とを用いて、補償係数を演算する。本態様によれば、オフセット補償処理の前段階と後段階で行われる補償処理を一括して行うことができるため、回路規模や演算処理を簡略化できる。
 本実施形態の一態様において、係数演算処理部は、周波数オフセット補償処理によって不要となるデータの値を0にする。本態様によれば、複数のデータに含まれる不要なデータの値を削除できる。
 (第3の実施形態)
 次に、第3の実施形態に係る通信システムについて図面を参照しながら説明する。本実施形態の通信システムのフィルタ処理装置は、複数の部分記憶部を含む記憶部を有する。以下においては、第1の実施形態の通信システムに、本実施形態のフィルタ処理装置が組み込まれる例について説明する。本実施形態のフィルタ処理装置は、第2の実施形態の通信システムに組み込まれてもよい。
 (構成)
 図15は、本実施形態の通信システム3の構成の一例を示すブロック図である。通信システム3は、フーリエ変換装置310、フィルタ処理装置30、および逆フーリエ変換装置320を備える。フィルタ処理装置30は、フーリエ変換装置310および逆フーリエ変換装置320に接続される。
 フーリエ変換装置310は、第1の実施形態のフーリエ変換装置110と同様の構成である。フーリエ変換装置310は、AD変換された信号に対してFFT変換を行い、周波数領域のデータ(FFTデータとも呼ぶ)に変換する。フーリエ変換装置310は、フィルタ処理装置30にFFTデータを出力する。
 フィルタ処理装置30は、アドレス制御部31および記憶部33を有する。フィルタ処理装置30には、フーリエ変換装置310の出力データ(FFTデータとも呼ぶ)が入力される。
 アドレス制御部31には、光源周波数のオフセット量とサブキャリアごとの中心点(サブキャリア中心点)が入力される。オフセット量およびサブキャリア中心点は、入力装置(図示しない)を介して入力されてもよいし、アドレス制御部31に予め設定されてもよい。アドレス制御部31は、オフセット量およびサブキャリア中心点を記憶部33に出力する。アドレス制御部31は、光源周波数のオフセット量とサブキャリアごとの中心周波数に基づいて、記憶部33へのデータの書き込みアドレスおよび読み出しアドレスを生成してもよい。その場合、アドレス制御部31は、生成された書き込みアドレスおよび読み出しアドレスを記憶部33に指定する。
 記憶部33には、フーリエ変換装置310によってフーリエ変換されたFFTデータX(ω)を構成する複数のデータが入力される。FFTデータX(ω)は、複数のサブキャリアデータを含む。FFTデータX(ω)を構成する複数のデータは、サイクルごとに入力される。記憶部33は、複数の部分記憶部(後述する)を含む。複数の部分記憶部は、サイクルに対応付けて構成される。記憶部33は、入力されたFFTデータX(ω)を構成する複数のデータを、サイクルごとの部分記憶部に記憶する。サブキャリアデータを構成する複数のデータは、サンプル番号が連続しているため、異なるサイクルで記憶部33に入力される。そのため、サブキャリアデータを構成するデータは、異なる部分記憶部に分散して記憶される。アドレス制御部31によって書き込みアドレスが指定されている場合、記憶部33は、指定された書き込みアドレスにデータを記憶する。
 記憶部33に記憶された複数のデータは、オフセット量とサブキャリア中心点に基づいて、オフセット補償とサブキャリア分離がなされた順番で、複数の部分記憶部の各々から読み出される。サブキャリアデータを構成するデータは、異なる部分記憶部に記憶される。そのため、サブキャリアデータを構成する複数のデータを複数の部分記憶部の各々から読み出すことで、オフセット量が補償されたサブキャリアデータを分離することができる。アドレス制御部31によって読み出しアドレスが指定されている場合、記憶部33に記憶された複数のデータは、アドレス制御部31によって指定された読み出しアドレスに従って読み出される。その結果、記憶部33に記憶された複数のデータは、オフセット補償されるとともに、サブキャリアごとに分離されて出力される。
 フィルタ処理装置30は、複数のサブキャリアごとに分離されたサブキャリアデータを出力する。第2の実施形態の通信システム2にフィルタ処理装置30が組み込まれている場合、フィルタ処理装置30は、オフセット補償およびサブキャリア分離以外の補償処理(その他の補償処理ともよぶ)が行われたサブキャリアデータを出力する。サブキャリアデータを構成するデータの配列は、逆フーリエ変換装置320における処理がしやすい順番に並び替えられている。フィルタ処理装置30から出力された複数のサブキャリアデータは、逆フーリエ変換装置320に入力される。図15の例では、記憶部33から複数のサブキャリアデータ(SC0、SC1、・・・、SCn)が出力される様子を概念的に図示している(nは自然数)。複数のサブキャリアデータは、サブキャリアごとにシリアルに出力されてもよいし、パラレルで出力されてもよい。
 逆フーリエ変換装置320は、第1の実施形態の逆フーリエ変換装置120と同様の構成である。逆フーリエ変換装置320は、複数のサブキャリアデータをサブキャリアごとに逆フーリエ変換し、時間領域の信号に変換する。逆フーリエ変換装置320は、時間領域の信号に変換されたサブキャリアデータを出力する。
 〔記憶部〕
 次に、記憶部33の詳細構成について図面を参照しながら説明する。図16は、記憶部33の詳細構成の一例を示すブロック図である。記憶部33は、書き込み先選択部331、第1選択部332、複数の部分記憶部335-1~m、出力データ選択部336、および並び替え部337を有する(mは、2以上の自然数)。複数の部分記憶部335-1~mは、部分記憶装置群350を構成する。以下において、複数の部分記憶部335-1~mの共通点について説明する際には、複数の部分記憶部335-1~mの各々を区別せずに、部分記憶部335と記載する場合がある。
 書き込み先選択部331は、FFTデータX(ω)を構成する複数のデータの書き込み先の部分記憶部335を指定する選択制御信号(入力制御信号とも呼ぶ)を、第1選択部332に出力する。FFTデータX(ω)を構成する複数のデータの書き込み先の部分記憶部335は、サイクルごとに設定される。例えば、書き込み先選択部331を省略し、アドレス制御部31から選択制御信号を出力するように構成されてもよい。
 第1選択部332には、FFTデータX(ω)を構成する複数のデータが、サイクルごとに入力される。第1選択部332は、書き込み先選択部331からの選択制御信号に応じて、複数のデータをサイクルごとの部分記憶部335に分配する。第1選択部332は、分配器として機能する。例えば、第1選択部332は、デマルチプレクサ(セレクタ)によって実現される。
 複数の部分記憶部335-1~mの各々は、FFTデータX(ω)を構成する複数のデータの入力のサイクルに対応付けて構成される。FFTデータX(ω)を構成する複数のデータは、サイクルごとの部分記憶部335に順番に入力される。複数の部分記憶部335-1~mの各々には、個々の部分記憶部335-1~mに対応付けられたサイクルのデータが記憶される。例えば、FFTデータX(ω)を構成する複数のデータの入力のサイクルを、0~m-1とする(mは、2以上の自然数)。この場合、サイクル0のデータが部分記憶部335-1に記憶される。また、サイクルm-1のデータが部分記憶部335-mに記憶される。
 サブキャリアデータを構成する複数のデータは、サンプル番号が連続している。そのため、サブキャリアデータを構成する複数のデータは、異なるサイクルで別々の記憶部33に入力される。そのため、サブキャリアデータを構成するデータは、異なる部分記憶部335に分散して記憶される。なお、サブキャリアデータを構成するデータの数が1サイクル分のデータ数を超える場合、同じサブキャリアデータを構成する複数のデータが同じ部分記憶部335に記憶されることもある。アドレス制御部31によって書き込みアドレスが指定されている場合、指定された部分記憶部335の書き込みアドレスに、データが記憶される。
 出力データ選択部336は、複数の部分記憶部335-1~mの各々に接続される。図16には、部分記憶装置群350に接続されるように図示されているが、出力データ選択部336は、複数の部分記憶部335-1~mの各々に接続される。出力データ選択部336は、オフセット量およびサブキャリア中心点に基づいて、複数の部分記憶部335-1~mの各々に、読み出されるデータを指定する選択制御信号(出力制御信号とも呼ぶ)を出力する。例えば、出力データ選択部336を省略し、アドレス制御部31から選択制御信号を出力するように構成されてもよい。
 図17は、部分記憶部335の内部構成の一例について説明するための概念図である。図17には、部分記憶部335-1の内部構成のみを図示し、その他の部分記憶部335-2~mの内部構成については省略する。部分記憶部335は、記憶素子アレイ351と第2選択部353を有する。
 記憶素子アレイ351は、複数の記憶素子がアレイ状に配列された記憶構造である。FFTデータX(ω)を構成する複数のデータは、記憶素子アレイ351に記憶される。例えば、部分記憶部335は、メモリやレジスタなどの記憶装置によって実現される。本実施形態においては、部分記憶部335としてメモリを想定するが、メモリ以外の記憶装置で部分記憶部335が実現されてもよい。例えば、部分記憶部335は、ハードディスクドライブや、ソリッドステートドライブ、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどを含む補助記憶装置によって実現されてもよい。
 第2選択部353は、出力データ選択部336からの選択制御信号に応じて、サブキャリアデータを構成する複数のデータを、複数の部分記憶部335-1~mの各々から読み出す。出力データ選択部336からの選択制御信号に応じて、複数の部分記憶部335-1~mの各々から読み出される複数のデータは、オフセット量が補償されたサブキャリアデータを構成するデータである。第2選択部353は、合波器として機能する。例えば、第2選択部353は、マルチプレクサ(セレクタ)によって実現される。第2選択部353は、複数の部分記憶部335-1~mと並び替え部337の間に配置されてもよい。その場合、複数の部分記憶部335-1~mに分散して記憶された複数のデータが、単一の第2選択部353を介して読み出される。
 第2選択部353に入力された選択制御信号に応じて、複数の部分記憶部335-1~mの各々から、サブキャリアごとのデータが同じタイミングで読み出される。その結果、複数の部分記憶部335-1~mの各々から、同じサブキャリアデータを構成する複数のデータが、同じタイミングで出力される。例えば、サブキャリアデータを構成する複数のデータが1サイクル分のデータ量である場合、それらのデータは、異なる部分記憶部335-1~mから同じタイミングで出力される。例えば、サブキャリアデータを構成する複数のデータが複数のサイクル分のデータ量である場合、それらのデータは、異なる部分記憶部335-1~mから、連続した複数のタイミングで出力される。選択制御信号に応じて、複数の部分記憶部335-1~mの各々から出力されたデータは、並び替え部337に向けて出力される。
 並び替え部337には、複数の部分記憶部335-1~mの各々から出力されたデータが入力される。並び替え部337に入力された複数のデータは、サブキャリアデータの並び順に並んでいない。並び替え部337は、入力された複数のデータを、サブキャリアデータの並び順に並び替えて出力する。並び替え部337から出力された複数のデータは、オフセット量が補償されたサブキャリアデータを構成する。並び替え部337から出力されたサブキャリアデータ(SC0、SC1、・・・、SCn)は、サブキャリアごとにまとめられて、逆フーリエ変換装置320に向けて出力される。図16の例では、並び替え部337から複数のサブキャリアデータ(SC0、SC1、・・・、SCn)が出力される様子を概念的に図示している(nは自然数)。複数のサブキャリアデータは、サブキャリアごとにシリアルに出力されてもよいし、パラレルで出力されてもよい。フィルタ処理装置30と逆フーリエ変換装置320の間にデータを並び替える構成を設ける場合、並び替え部337が省略されてもよい。
 次に、本実施形態のフィルタ処理装置30による処理について、図面を参照しながら説明する。図18は、オフセット補償処理について説明するための概念図である。図18の例では、64個の離散的なデータ(データ0~63)によって、FFTデータX(ω)が構成される。以下の説明においては、記憶部33の内部構成を図示する際に、一部の構成を省略する場合がある。
 図18の例では、並び替えられる前のFFTデータX(ω)に含まれる64個のデータに0~63の番号(サンプル番号とも呼ぶ)を記す。以下においては、並び替えられる前のFFTデータX(ω)におけるデータの配置を基準として、複数のデータの各々にサンプル番号を付す。サンプル番号は、データの周波数に応じて付される。FFTデータX(ω)を構成するデータが並び替えられた後も、データに付されたサンプル番号はそのまま維持される。図18の例では、光源周波数に基づくオフセット量が+4である。図18においては、大部分のデータのサンプル番号を省略し、一部のデータのサンプル番号のみを図示する。図18においては、サブキャリアデータを示す矢印は、概念的なものであり、それらの矢印の端部は正確なサンプル番号とは一致しない。
 オフセット補償前(上段)において、FFTデータX(ω)を構成する複数のデータは、DC(Direct Current)成分のデータ0を中心として分布する。FFTデータX(ω)には、4つのサブキャリアデータ(SC0、SC1、SC2、SC3)が含まれる。4つのサブキャリアデータ(SC0、SC1、SC2、SC3)の各々は、16個のデータを含む。4つのサブキャリアデータ(SC0、SC1、SC2、SC3)には、互いに重複するデータが含まれる。オフセット補償前のサブキャリアデータSC0は、データ6をサブキャリア中心点とし、16個のデータ(データ62~13)を含む。オフセット補償前のサブキャリアデータSC1は、データ16をサブキャリア中心点とし、16個のデータ(データ8~23)を含む。オフセット補償前のサブキャリアデータSC2は、データ48をサブキャリア中心点とし、16個のデータ(データ40~55)を含む。オフセット補償前のサブキャリアデータSC3は、データ58をサブキャリア中心点とし、16個のデータ(データ50~1)を含む。
 オフセット補償後(下段)の複数のデータは、光源周波数に基づくオフセット補償処理(+4)でオフセット補償された後のデータである。オフセット補償後(下段)の複数のデータは、光源周波数に基づくオフセット補償処理(+4)によって、データ4を中心として分布する。複数のデータの端部(データ32~35、28~31)は、0埋めされる。
 オフセット補償後のサブキャリアデータSC0は、データ10をサブキャリア中心点とし、16個のデータ(データ2~17)を含む。オフセット補償後のサブキャリアデータSC1は、データ20をサブキャリア中心点とし、16個のデータ(データ12~27)を含む。オフセット補償後のサブキャリアデータSC2は、データ52をサブキャリア中心点とし、16個のデータ(データ44~59)を含む。オフセット補償後のサブキャリアデータSC3は、データ62をサブキャリア中心点とし、16個のデータ(データ54~5)を含む。
 図19は、フィルタ処理装置30によるオフセット補償処理およびサブキャリア分離処理の前後における、FFTデータX(ω)を構成する複数のデータ(データ0~63)の配列について説明するための概念図である。図19には、(1)並び替え前と(2)並び替え後のデータの配列を示す。記憶部33には、0~7のサイクルで、1サイクル当たり8個のデータが順番に入力される。図19の例では、1サイクル当たり、8つのデータが含まれる。(2)並び替え後のデータの配列は、サブキャリアデータがサイクルごとに統合された状態を示す。サイクル0~1には、サブキャリアデータSC0が統合される。サイクル2~3には、サブキャリアデータSC1が統合される。サイクル4~5には、サブキャリアデータSC2が統合される。サイクル6~7には、サブキャリアデータSC3が統合される。
 図20は、記憶部33に含まれる複数の部分記憶部335-1~8へのデータの書き込みの一例について説明するための概念図である。第1選択部332には、サイクルごとの複数のデータが入力される。第1選択部332に入力された複数のデータは、書き込み先選択部331からの選択制御信号に応じて、サイクルごとの部分記憶部335に分配される。0サイクル目で入力されるデータ0、データ8、データ16、データ24、データ32、データ40、データ48、およびデータ56は、部分記憶部335-1に記憶される。1サイクル目で入力されるデータ1、データ9、データ17、データ25、データ33、データ41、データ49、およびデータ57は、部分記憶部335-2に記憶される(2~6サイクル目のデータ入力については、省略)。7サイクル目で入力されるデータ7、データ15、データ23、データ31、データ39、データ47、データ55、およびデータ63は、部分記憶部335-8に記憶される。
 図21は、記憶部33に含まれる複数の部分記憶部335-1~mへのデータの書き込みの別の一例について説明するための概念図である。図21の例では、8×8の行列で示す複数のデータを、上段と下段の2回に分けて、サイクルごとに部分記憶部335-1~mに入力させる。上段のデータ群は、そのまま第1選択部332に入力される。下段のデータ群の入力側には、レジスタ370が配置される。レジスタ370は、1サイクル分の遅延を発生させるバッファとして機能する。下段のデータ群は、レジスタ370によって入力のタイミングが1サイクル分遅れて、第1選択部332に入力される。レジスタ370は、フィルタ処理装置30に含めてもよいし、フィルタ処理装置30の外部に配置してもよい。例えば、レジスタ370は、記憶部33に含まれてもよい。図21には、複数のデータを2回に分けてサイクルごとに記憶部33に入力させる例を示すが、複数のデータの分割数は3回以上であってもよい。図21のようにレジスタ370を挿入すると、1サイクルで書き込みするデータ量を低減できるため、記憶部33や部分記憶部335の書き込み部分や読み出し部分のビット幅を縮小できる。そのため、記憶部33や部分記憶部335の面積を減少できる。書き込み部分や読み出し部分には、増幅器(図示しない)などが配置される。書き込み部分や読み出し部分のビット幅を縮小できれば、増幅器などの数を減らすことができる。
 図22は、記憶部33に含まれる複数の部分記憶部335-1~mからのデータの読み出しの一例について説明するための概念図である。複数の部分記憶部335-1~mからは、出力データ選択部336からの選択制御信号に応じて、データが読み出される。図22には、部分記憶部335-1の内部構成のみを図示し、その他の部分記憶部335-2~mの内部構成については省略する。出力データ選択部336は、サブキャリアデータSC0、サブキャリアデータSC1、サブキャリアデータSC2、サブキャリアデータSC3の順番でデータを読み出す選択制御信号を、複数の部分記憶部335-1~mの各々に出力する。
 オフセット補償後のサブキャリアデータSC0は、サブキャリア中心点10を中心とする16個のデータ(データ2~17)によって構成される。部分記憶部335-1には、データ8とデータ16が記憶される。部分記憶部335-2には、データ9とデータ17が記憶される。部分記憶部335-3には、データ2とデータ10が記憶される。部分記憶部335-4には、データ3とデータ11が記憶される。部分記憶部335-5には、データ4とデータ12が記憶される。部分記憶部335-6には、データ5とデータ13が記憶される。部分記憶部335-7には、データ6とデータ14が記憶される。部分記憶部335-8には、データ7とデータ15が記憶される。
 図22の例の場合、まず、オフセット補償後のサブキャリアデータSC0に含まれるデータ2~9が、部分記憶部335-1~8から読み出される。部分記憶部335-1~8から読み出されたデータ2~9は、並び替え部337によって昇順に並び替えられて出力される。次に、オフセット補償後のサブキャリアデータSC0に含まれるデータ10~17が、部分記憶部335-1~8から読み出される。部分記憶部335-1~8から読み出されたデータ10~17は、並び替え部337によって昇順に並び替えられて出力される。その結果、オフセット補償後のサブキャリアデータSC0が、サブキャリア分離されて出力される。サブキャリアデータSC1、サブキャリアデータSC2、およびサブキャリアデータSC3についても、サブキャリアデータSC0と同様に、オフセット補償されるとともにサブキャリア分離されて出力される。
 以上のように、本実施形態の通信システムは、フーリエ変換装置、フィルタ処理装置、および逆フーリエ変換装置を備える。フーリエ変換装置は、光信号に基づく信号をフーリエ変換する。フーリエ変換装置は、フーリエ変換後の複数のデータを含むフーリエ変換データをフィルタ処理装置に出力する。フィルタ処理装置は、アドレス制御部および記憶部を備える。アドレス制御部は、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを指定する。アドレス制御部は、オフセット量の補償とサブキャリアの分離とが同一の記憶部で行われるように書き込みアドレスおよび読み出しアドレスを指定する。記憶部は、フーリエ変換データを構成する複数のデータが記憶される複数の部分記憶部を有する。複数の部分記憶部の各々には、複数のデータをサイクルごとに振り分ける入力制御信号に応じて、いずれかのサイクルのデータによって構成されるデータ群が書き込まれる。複数の部分記憶部の各々からは、オフセット量およびサブキャリア中心点に基づく出力制御信号に応じて、サブキャリアごとのデータが順次読み出される。逆フーリエ変換装置は、フィルタ処理装置によってオフセット補償処理およびサブキャリア分離処理を受けた複数のデータを取得する。逆フーリエ変換装置は、オフセット補償処理およびサブキャリア分離処理を受けた複数のデータを逆フーリエ変換する。
 本実施形態の手法では、フーリエ変換データに含まれる複数のデータを、サイクルごとに異なる部分記憶部に記憶させる。サブキャリアデータを構成する複数のデータは、サンプル番号が連続するため、異なるサイクルに対応付けられた異なる部分記憶部に分配される。そのため、本実施形態の手法によれば、オフセット補償処理が施されたサブキャリアデータを構成する複数のデータを、複数の部分記憶部の各々から順次読み出すことで、オフセット補償処理およびサブキャリア分離処理を同時に実行できる。そのため、本実施形態の手法によれば、サブキャリア分離を行うための専用の記憶部を追加せずに、サブキャリア分離を行うことができる

 本実施形態の一態様において、記憶部は、書き込み先選択部、第1選択部、出力データ選択部、および並び替え部を有する。書き込み先選択部は、入力制御信号を出力する。第1選択部には、複数のデータが入力される。第1選択部は、入力制御信号に応じて、入力されたデータを複数の部分記憶部に分配する。出力データ選択部は、オフセット量およびサブキャリア中心点に基づいて、出力制御信号を出力する。並び替え部は、オフセット量およびサブキャリア中心点に基づいて、サブキャリアごとに分離されたサブキャリアデータのデータ構成に応じて、複数の部分記憶部から出力されるデータを並び替えて出力する。部分記憶部は、記憶素子アレイおよび第2選択部を含む。記憶素子アレイは、複数の記憶素子がアレイ状に配列された構造を有し、データが記憶される。第2選択部は、出力制御信号に応じて、記憶素子アレイに記憶されたデータを選択して出力する。本態様では、フーリエ変換データに含まれる複数のデータを、サイクルごとに異なる部分記憶部に記憶させる。本態様では、オフセット補償処理が施されたサブキャリアデータを構成する複数のデータを、複数の部分記憶部の各々から順次読み出し、読み出された複数のデータをサブキャリアデータのデータ構成に応じて並び替えて出力する。本態様によれば、複数の部分記憶部の各々から読み出される複数のデータを、サブキャリアデータのデータ構成に応じて並び替えることで、サブキャリアデータを復元できる。
 本実施形態の一態様の通信システムは、フーリエ変換データに含まれる複数のデータのうち、少なくともいずれかのデータがフィルタ処理装置に入力するタイミングを少なくとも1サイクル遅延させるバッファを備える。本態様によれば、記憶部や部分記憶部の書き込み部分や読み出し部分のビット幅を縮小できるため、記憶部や部分記憶部の面積を減少できる。また、書き込み部分や読み出し部分のビット幅を縮小できれば、書き込み部分や読み出し部分に配置される増幅器などの数を減らすことができる。
 (第4の実施形態)
 次に、第4の実施形態に係るフィルタ処理装置について図面を参照しながら説明する。本実施形態のフィルタ処理装置は、各実施形態のフィルタ処理装置を簡略化した構成である。図15は、本実施形態のフィルタ処理装置40の構成の一例を示すブロック図である。フィルタ処理装置40は、アドレス制御部41および記憶部43を備える。
 アドレス制御部41は、光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを指定する。アドレス制御部41は、オフセット量の補償とサブキャリアの分離とが同一の記憶部43で行われるように書き込みアドレスおよび読み出しアドレスを指定する。記憶部43は、アドレス制御部41によって指定された書き込みアドレスに複数のデータが書き込まれる。記憶部43はアドレス制御部41によって指定された読み出しアドレスからデータが読み出される。
 本実施形態のフィルタ処理装置によれば、オフセット補償処理およびサブキャリア分離処理が行われるようにアドレス指定することによって、専用の記憶部を追加せずに、サブキャリア分離を行うことができる。
 (ハードウェア)
 ここで、本開示の各実施形態に係る制御や処理を実行するハードウェア構成について、図16の情報処理装置90を一例として挙げて説明する。なお、図16の情報処理装置90は、各実施形態の制御や処理を実行するための構成例であって、本開示の範囲を限定するものではない。例えば、本開示の各実施形態に係る制御や処理は、マイクロコンピュータやマイクロコントローラなどによって実行されてもよい。
 図16のように、情報処理装置90は、プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96を備える。図16においては、インターフェースをI/F(Interface)と略記する。プロセッサ91、主記憶装置92、補助記憶装置93、入出力インターフェース95、および通信インターフェース96は、バス98を介して、互いにデータ通信可能に接続される。また、プロセッサ91、主記憶装置92、補助記憶装置93、および入出力インターフェース95は、通信インターフェース96を介して、インターネットやイントラネットなどのネットワークに接続される。
 プロセッサ91は、補助記憶装置93等に格納されたプログラムを、主記憶装置92に展開する。プロセッサ91は、主記憶装置92に展開されたプログラムを実行する。本実施形態においては、情報処理装置90にインストールされたソフトウェアプログラムを用いる構成とすればよい。プロセッサ91は、本実施形態に係る制御や処理を実行する。
 主記憶装置92は、プログラムが展開される領域を有する。主記憶装置92には、プロセッサ91によって、補助記憶装置93等に格納されたプログラムが展開される。主記憶装置92は、例えばDRAM(Dynamic Random Access Memory)などの揮発性メモリによって実現される。また、主記憶装置92として、MRAM(Magnetoresistive Random Access Memory)などの不揮発性メモリが構成/追加されてもよい。
 補助記憶装置93は、プログラムなどの種々のデータを記憶する。補助記憶装置93は、ハードディスクやフラッシュメモリなどのローカルディスクによって実現される。なお、種々のデータを主記憶装置92に記憶させる構成とし、補助記憶装置93を省略することも可能である。
 入出力インターフェース95は、規格や仕様に基づいて、情報処理装置90と周辺機器とを接続するためのインターフェースである。通信インターフェース96は、規格や仕様に基づいて、インターネットやイントラネットなどのネットワークを通じて、外部のシステムや装置に接続するためのインターフェースである。入出力インターフェース95および通信インターフェース96は、外部機器と接続するインターフェースとして共通化してもよい。
 情報処理装置90には、必要に応じて、キーボードやマウス、タッチパネルなどの入力機器が接続されてもよい。それらの入力機器は、情報や設定の入力に使用される。なお、タッチパネルを入力機器として用いる場合は、表示機器の表示画面が入力機器のインターフェースを兼ねる構成としてもよい。プロセッサ91と入力機器との間のデータ通信は、入出力インターフェース95に仲介させればよい。
 また、情報処理装置90には、情報を表示するための表示機器を備え付けてもよい。表示機器を備え付ける場合、情報処理装置90には、表示機器の表示を制御するための表示制御装置(図示しない)が備えられていることが好ましい。表示機器は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
 また、情報処理装置90には、ドライブ装置が備え付けられてもよい。ドライブ装置は、プロセッサ91と記録媒体(プログラム記録媒体)との間で、記録媒体からのデータやプログラムの読み込み、情報処理装置90の処理結果の記録媒体への書き込みなどを仲介する。ドライブ装置は、入出力インターフェース95を介して情報処理装置90に接続すればよい。
 以上が、本発明の各実施形態に係る制御や処理を可能とするためのハードウェア構成の一例である。なお、図16のハードウェア構成は、各実施形態に係る制御や処理を実行するためのハードウェア構成の一例であって、本発明の範囲を限定するものではない。また、各実施形態に係る制御や処理をコンピュータに実行させるプログラムも本発明の範囲に含まれる。さらに、各実施形態に係るプログラムを記録したプログラム記録媒体も本発明の範囲に含まれる。記録媒体は、例えば、CD(Compact Disc)やDVD(Digital Versatile Disc)などの光学記録媒体で実現できる。記録媒体は、USB(Universal Serial Bus)メモリやSD(Secure Digital)カードなどの半導体記録媒体によって実現されてもよい。また、記録媒体は、フレキシブルディスクなどの磁気記録媒体、その他の記録媒体によって実現されてもよい。プロセッサが実行するプログラムが記録媒体に記録されている場合、その記録媒体はプログラム記録媒体に相当する。
 各実施形態の構成要素は、任意に組み合わせてもよい。また、各実施形態の構成要素は、ソフトウェアによって実現されてもよいし、回路によって実現されてもよい。
 以上、実施形態を参照して本発明を説明してきたが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
 光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを指定するアドレス制御部と、
 前記アドレス制御部によって指定された前記書き込みアドレスに複数の前記データが書き込まれ、前記アドレス制御部によって指定された前記読み出しアドレスから前記データが読み出される記憶部と、を備え、
 前記アドレス制御部は、
 前記オフセット量の補償と前記サブキャリアの分離とが同一の記憶部で行われるように前記書き込みアドレスおよび前記読み出しアドレスを指定する
 ことを特徴とするフィルタ処理装置。
(付記2)
 前記アドレス制御部は、
 前記オフセット量の補償と前記サブキャリアの分離とが一括して行われるように、前記書き込みアドレスおよび前記読み出しアドレスを指定する付記1に記載のフィルタ処理装置。
(付記3)
 前記サブキャリアごとに分離された複数のサブキャリアデータの各々に対して、オフセット補償処理およびサブキャリア分離処理とは異なるその他の補償処理を一括して実行する演算部を備える付記1または2に記載のフィルタ処理装置。
(付記4)
 前記オフセット量および前記サブキャリア中心点に基づいて、前記その他の補償処理に用いられる補償係数を前記サブキャリアごとに演算する係数演算処理部を備え、
 前記演算部は、
 前記係数演算処理部によって前記サブキャリアごとに演算された前記補償係数を、前記サブキャリアごとに分離された複数の前記サブキャリアデータの各々に対して乗算する付記3に記載のフィルタ処理装置。
(付記5)
 前記係数演算処理部は、
 前記オフセット補償処理の前段階に行われる第1補償処理に用いられる第1補償係数と、前記サブキャリア分離処理の前段階に行われる第2補償処理に用いられる第2補償係数とを用いて、前記サブキャリアごとに前記補償係数を演算する付記4に記載のフィルタ処理装置。
(付記6)
 前記係数演算処理部は、
 前記オフセット量および前記サブキャリア中心点に依存する前記第1補償係数と、前記サブキャリア中心点に依存する前記第2補償係数とを用いて、前記補償係数を演算する付記5に記載のフィルタ処理装置。
(付記7)
 前記アドレス制御部および前記係数演算処理部のいずれかが、
 前記オフセット補償処理によって不要となる前記データの値を0にする付記4乃至6のいずれか一項に記載のフィルタ処理装置。
(付記8)
 前記記憶部は、
 前記フーリエ変換データを構成する複数の前記データが記憶される複数の部分記憶部を有し、
 複数の前記部分記憶部の各々には、
 複数の前記データをサイクルごとに振り分ける入力制御信号に応じて、いずれかの前記サイクルの前記データによって構成されるデータ群が書き込まれ、
 複数の前記部分記憶部の各々からは、
 前記オフセット量および前記サブキャリア中心点に基づく出力制御信号に応じて、前記サブキャリアごとの前記データが順次読み出される付記1乃至7のいずれか一項に記載のフィルタ処理装置。
(付記9)
 前記記憶部は、
 前記入力制御信号を出力する書き込み先選択部と、
 複数の前記データが入力され、前記入力制御信号に応じて、入力された前記データを複数の前記部分記憶部に分配する第1選択部と、
 前記オフセット量および前記サブキャリア中心点に基づいて、前記出力制御信号を出力する出力データ選択部と、
 前記オフセット量および前記サブキャリア中心点に基づいて、前記サブキャリアごとに分離されたサブキャリアデータのデータ構成に応じて、複数の前記部分記憶部から出力される前記データを並び替えて出力する並び替え部と、を有し、
 前記部分記憶部は、
 複数の記憶素子がアレイ状に配列された構造を有し、前記データが記憶される記憶素子アレイと、
 前記出力制御信号に応じて、前記記憶素子アレイに記憶された前記データを選択して出力する第2選択部と、を含む付記8に記載のフィルタ処理装置。
(付記10)
 付記1乃至9のいずれか一項に記載のフィルタ処理装置と、
 光信号に基づく信号をフーリエ変換し、フーリエ変換後の複数のデータを含むフーリエ変換データを前記フィルタ処理装置に出力するフーリエ変換装置と、
 前記フィルタ処理装置によってオフセット補償処理およびサブキャリア分離処理を受けた複数の前記データを取得し、前記オフセット補償処理および前記サブキャリア分離処理を受けた複数の前記データを逆フーリエ変換する逆フーリエ変換装置と、を備える通信システム。
(付記11)
 前記フーリエ変換データに含まれる複数の前記データのうち、少なくともいずれかの前記データが前記フィルタ処理装置に入力するタイミングを少なくとも1サイクル遅延させるバッファを備える付記10に記載の通信システム。
(付記12)
 コンピュータが、
 光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、前記オフセット量の補償と前記サブキャリアの分離とが同一の記憶部で行われるように、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを前記記憶部に指定し、
 指定された前記記憶部の前記書き込みアドレスに複数の前記データを書き込み、
 指定された前記記憶部の前記読み出しアドレスから前記データを読み出すフィルタ処理方法。
(付記13)
 光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、前記オフセット量の補償と前記サブキャリアの分離とが同一の記憶部で行われるように、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを前記記憶部に指定する処理と、
 指定された前記記憶部の前記書き込みアドレスに複数の前記データを書き込む処理と、
 指定された前記記憶部の前記読み出しアドレスから前記データを読み出す処理と、をコンピュータに実行させるプログラム。
 10、20、30、40  フィルタ処理装置
 11、21、31、41  アドレス制御部
 13、23、33、43  記憶部
 25  係数演算処理部
 27  演算部
 110、210、310  フーリエ変換装置
 120、220、320  逆フーリエ変換装置
 270  乗算器
 331  書き込み先選択部
 332  第1選択部
 335  部分記憶部
 336  出力データ選択部
 337  並び替え部
 350  部分記憶装置群
 351  記憶素子アレイ
 352  第2選択部

Claims (13)

  1.  光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを指定するアドレス制御手段と、
     前記アドレス制御手段によって指定された前記書き込みアドレスに複数の前記データが書き込まれ、前記アドレス制御手段によって指定された前記読み出しアドレスから前記データが読み出される記憶手段と、を備え、
     前記アドレス制御手段は、
     前記オフセット量の補償と前記サブキャリアの分離とが同一の記憶手段で行われるように前記書き込みアドレスおよび前記読み出しアドレスを指定する
     ことを特徴とするフィルタ処理装置。
  2.  前記アドレス制御手段は、
     前記オフセット量の補償と前記サブキャリアの分離とが一括して行われるように、前記書き込みアドレスおよび前記読み出しアドレスを指定する請求項1に記載のフィルタ処理装置。
  3.  前記サブキャリアごとに分離された複数のサブキャリアデータの各々に対して、オフセット補償処理およびサブキャリア分離処理とは異なるその他の補償処理を一括して実行する演算手段を備える請求項1または2に記載のフィルタ処理装置。
  4.  前記オフセット量および前記サブキャリア中心点に基づいて、前記その他の補償処理に用いられる補償係数を前記サブキャリアごとに演算する係数演算処理手段を備え、
     前記演算手段は、
     前記係数演算処理手段によって前記サブキャリアごとに演算された前記補償係数を、前記サブキャリアごとに分離された複数の前記サブキャリアデータの各々に対して乗算する請求項3に記載のフィルタ処理装置。
  5.  前記係数演算処理手段は、
     前記オフセット補償処理の前段階に行われる第1補償処理に用いられる第1補償係数と、前記サブキャリア分離処理の前段階に行われる第2補償処理に用いられる第2補償係数とを用いて、前記サブキャリアごとに前記補償係数を演算する請求項4に記載のフィルタ処理装置。
  6.  前記係数演算処理手段は、
     前記オフセット量および前記サブキャリア中心点に依存する前記第1補償係数と、前記サブキャリア中心点に依存する前記第2補償係数とを用いて、前記補償係数を演算する請求項5に記載のフィルタ処理装置。
  7.  前記アドレス制御手段および前記係数演算処理手段のいずれかが、
     前記オフセット補償処理によって不要となる前記データの値を0にする請求項4乃至6のいずれか一項に記載のフィルタ処理装置。
  8.  前記記憶手段は、
     前記フーリエ変換データを構成する複数の前記データが記憶される複数の部分記憶手段を有し、
     複数の前記部分記憶手段の各々には、
     複数の前記データをサイクルごとに振り分ける入力制御信号に応じて、いずれかの前記サイクルの前記データによって構成されるデータ群が書き込まれ、
     複数の前記部分記憶手段の各々からは、
     前記オフセット量および前記サブキャリア中心点に基づく出力制御信号に応じて、前記サブキャリアごとの前記データが順次読み出される請求項1乃至7のいずれか一項に記載のフィルタ処理装置。
  9.  前記記憶手段は、
     前記入力制御信号を出力する書き込み先選択手段と、
     複数の前記データが入力され、前記入力制御信号に応じて、入力された前記データを複数の前記部分記憶手段に分配する第1選択手段と、
     前記オフセット量および前記サブキャリア中心点に基づいて、前記出力制御信号を出力する出力データ選択手段と、
     前記オフセット量および前記サブキャリア中心点に基づいて、前記サブキャリアごとに分離されたサブキャリアデータのデータ構成に応じて、複数の前記部分記憶手段から出力される前記データを並び替えて出力する並び替え手段と、を有し、
     前記部分記憶手段は、
     複数の記憶素子がアレイ状に配列された構造を有し、前記データが記憶される記憶素子アレイと、
     前記出力制御信号に応じて、前記記憶素子アレイに記憶された前記データを選択して出力する第2選択手段と、を含む請求項8に記載のフィルタ処理装置。
  10.  請求項1乃至9のいずれか一項に記載のフィルタ処理装置と、
     光信号に基づく信号をフーリエ変換し、フーリエ変換後の複数のデータを含むフーリエ変換データを前記フィルタ処理装置に出力するフーリエ変換装置と、
     前記フィルタ処理装置によってオフセット補償処理およびサブキャリア分離処理を受けた複数の前記データを取得し、前記オフセット補償処理および前記サブキャリア分離処理を受けた複数の前記データを逆フーリエ変換する逆フーリエ変換装置と、を備える通信システム。
  11.  前記フーリエ変換データに含まれる複数の前記データのうち、少なくともいずれかの前記データが前記フィルタ処理装置に入力するタイミングを少なくとも1サイクル遅延させるバッファを備える請求項10に記載の通信システム。
  12.  コンピュータが、
     光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、前記オフセット量の補償と前記サブキャリアの分離とが同一の記憶手段で行われるように、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを前記記憶手段に指定し、
     指定された前記記憶手段の前記書き込みアドレスに複数の前記データを書き込み、
     指定された前記記憶手段の前記読み出しアドレスから前記データを読み出すフィルタ処理方法。
  13.  光源周波数のオフセット量と、サブキャリアごとのサブキャリア中心点とに基づいて、前記オフセット量の補償と前記サブキャリアの分離とが同一の記憶手段で行われるように、光信号に基づくフーリエ変換データに含まれる複数のデータの書き込みアドレスおよび読み出しアドレスを前記記憶手段に指定する処理と、
     指定された前記記憶手段の前記書き込みアドレスに複数の前記データを書き込む処理と、
     指定された前記記憶手段の前記読み出しアドレスから前記データを読み出す処理と、をコンピュータに実行させるプログラムが記録された非一過性の記録媒体。
PCT/JP2021/025091 2021-07-02 2021-07-02 フィルタ処理装置、フィルタ処理方法、通信システム、および記録媒体 WO2023276136A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/025091 WO2023276136A1 (ja) 2021-07-02 2021-07-02 フィルタ処理装置、フィルタ処理方法、通信システム、および記録媒体
JP2023531315A JPWO2023276136A5 (ja) 2021-07-02 フィルタ処理装置、フィルタ処理方法、通信システム、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/025091 WO2023276136A1 (ja) 2021-07-02 2021-07-02 フィルタ処理装置、フィルタ処理方法、通信システム、および記録媒体

Publications (1)

Publication Number Publication Date
WO2023276136A1 true WO2023276136A1 (ja) 2023-01-05

Family

ID=84692600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025091 WO2023276136A1 (ja) 2021-07-02 2021-07-02 フィルタ処理装置、フィルタ処理方法、通信システム、および記録媒体

Country Status (1)

Country Link
WO (1) WO2023276136A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025337A (ja) * 2004-07-09 2006-01-26 Toshiba Corp 通信装置、送信方法及び受信方法
JP2012244358A (ja) * 2011-05-18 2012-12-10 Mitsubishi Electric Corp 復調装置および通信装置
JP2015106829A (ja) * 2013-11-29 2015-06-08 富士通株式会社 光信号品質モニタ装置、光伝送装置、及び、光信号品質モニタ方法
WO2016084893A1 (ja) * 2014-11-28 2016-06-02 日本電信電話株式会社 光伝送システム及びリソース最適化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025337A (ja) * 2004-07-09 2006-01-26 Toshiba Corp 通信装置、送信方法及び受信方法
JP2012244358A (ja) * 2011-05-18 2012-12-10 Mitsubishi Electric Corp 復調装置および通信装置
JP2015106829A (ja) * 2013-11-29 2015-06-08 富士通株式会社 光信号品質モニタ装置、光伝送装置、及び、光信号品質モニタ方法
WO2016084893A1 (ja) * 2014-11-28 2016-06-02 日本電信電話株式会社 光伝送システム及びリソース最適化方法

Also Published As

Publication number Publication date
JPWO2023276136A1 (ja) 2023-01-05

Similar Documents

Publication Publication Date Title
JP2007503039A (ja) 並列処理アレイ
CN108073549B (zh) 卷积运算装置及方法
US9785614B2 (en) Fast Fourier transform device, fast Fourier transform method, and recording medium storing fast Fourier transform program
US7792892B2 (en) Memory control method for storing operational result data with the data order changed for further operation
JP6256348B2 (ja) 高速フーリエ変換回路、高速フーリエ変換処理方法及び高速フーリエ変換処理プログラム
KR20220149992A (ko) 시스톨릭 어레이, 및 이를 포함하는 가속기
WO2023276136A1 (ja) フィルタ処理装置、フィルタ処理方法、通信システム、および記録媒体
JP7038608B2 (ja) 半導体装置
US20200372095A1 (en) Fast fourier transform device, data sorting processing device, fast fourier transform processing method, and program recording medium
JP6451647B2 (ja) 高速フーリエ変換装置、高速フーリエ変換方法、及び高速フーリエ変換プログラム
JP6992745B2 (ja) デジタルフィルタ装置、デジタルフィルタ処理方法およびデジタルフィルタ処理プログラム
JP2013239120A (ja) 画像処理装置
JP2001101897A (ja) フェイルメモリ回路及びそのインタリーブコピー方法
US5732160A (en) Digital image contour compensation device
WO2021193947A1 (ja) デジタルフィルタ装置
US7646320B1 (en) Circuit with selectable data paths
US20220377271A1 (en) Image processing device, image processing method, and program
US9083316B1 (en) Method and system of filtering polyphased data
KR100209878B1 (ko) 디지탈영상신호처리시스템의 스위칭노이즈제거장치
JP2024027962A (ja) インタリーブ回路および通信装置
JP2023528933A (ja) 情報処理装置、画像処理ユニット、方法及びプログラム
JP3034998B2 (ja) トランスバーサルフィルタシステム
JP2719327B2 (ja) 画像処理装置用バッファリング装置
JPS6362012B2 (ja)
US20120147690A1 (en) Memory accessing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21948440

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023531315

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE