WO2023273872A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023273872A1
WO2023273872A1 PCT/CN2022/098742 CN2022098742W WO2023273872A1 WO 2023273872 A1 WO2023273872 A1 WO 2023273872A1 CN 2022098742 W CN2022098742 W CN 2022098742W WO 2023273872 A1 WO2023273872 A1 WO 2023273872A1
Authority
WO
WIPO (PCT)
Prior art keywords
ptrs
index set
terminal device
pattern
index
Prior art date
Application number
PCT/CN2022/098742
Other languages
English (en)
French (fr)
Inventor
徐明慧
赵延青
刘凤威
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023273872A1 publication Critical patent/WO2023273872A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device.
  • phase noise as an example, as the frequency band increases, the higher the power spectral density of phase noise, the greater the impact on the received signal.
  • CP-OFDM cyclic prefix-orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform extended orthogonal frequency division multiplexing waveform
  • the transmitting end needs to send a reference signal known to the receiving end, that is, PTRS, and the receiving end can estimate the phase noise based on it and then perform corresponding phase compensation.
  • a phase noise estimation algorithm is in the receiving end Before estimating and compensating the phase noise at the receiving end, the receiving end performs channel equalization on the received signal on the PTRS.
  • the receiving end since the receiving end has multiple phase noises from different sources, which cannot be ignored, the Interference is introduced between them, resulting in the degradation of demodulation performance.
  • the embodiment of the present application discloses a communication method and device, which can eliminate interference introduced between sending ends due to phase noise from different sources, and improve data demodulation performance.
  • the first aspect of the embodiment of the present application discloses a communication method, including:
  • the terminal device receives configuration information of the phase tracking reference signal PTRS from the network device, where the configuration information includes the PTRS port number and/or the number of PTRS ports;
  • the terminal device determines a PTRS orthogonal code sequence according to the configuration information
  • the terminal device generates a PTRS sequence according to the PTRS orthogonal code sequence
  • the terminal device maps the PTRS sequence to time-frequency resources
  • the terminal device sends the PTRS to the network device.
  • the terminal device when the network device has multiple physical receiving channels, that is to say, the network device has multiple channels with different sources of phase noise, the terminal device receives the PTRS configuration information of the network device and determines the PTRS orthogonality according to the configuration information. code sequence to generate a PTRS sequence, and map the PTRS sequence to time-frequency resources, and then send the PTRS to the network device, which can realize the multiplexing of PTRS ports between terminal devices, and can eliminate the inter-terminal noise introduced by different sources of network devices. Interference and/or inter-stream interference in the terminal improves the demodulation performance of data, and through the PTRS port code division multiplexing, it ensures that the PTRS overhead of the terminal device is lower and the spectral efficiency is improved.
  • the multiplexing mode of the PTRS port is frequency domain code division multiplexing.
  • the overhead can be reduced by occupying the same frequency domain resources by the PTRS ports.
  • the terminal device mapping the PTRS sequence to the time-frequency resource includes: the terminal device mapping the PTRS sequence to the time-frequency resource according to a PTRS pattern;
  • the PTRS pattern includes a location for mapping the PTRS sequence.
  • the method further includes: the terminal device determining the PTRS pattern according to the PTRS port number and/or the quantity of the PTRS ports.
  • the terminal device determining the PTRS pattern according to the PTRS port number and/or the number of the PTRS ports includes: the terminal device determining the first index according to K and system bandwidth set, the first index set includes a set of indexes of resource block RBs used to map the PTRS sequence within the system bandwidth; the K represents the density of the PTRS pattern in the frequency domain, and there are in every K RBs A PTRS is mapped on one RB; the terminal device receives a first message from the network device, the first message is used to indicate a second index set, and the second index set includes the A set of RB indexes of the physical uplink shared channel or the physical downlink shared channel of the terminal device within the system bandwidth; the terminal device determines a third index set by intersecting the first index set and the second index set , the pattern formed by the positions of the PTRS mapped on the RB corresponding to the index in the third index set is the PTRS pattern, wherein the PTRS pattern includes one or
  • the method further includes: the terminal device receiving first indication information from the network device, where the first indication information is used to indicate the frequency domain corresponding to the PTRS pattern The index of the RB of the first PTRS block; the terminal device determines the first index set according to K and the system bandwidth, including: the terminal device determines the index set according to the RB index of the first PTRS block, K and the system bandwidth The first set of indexes.
  • the method further includes: the terminal device receiving second indication information from the network device, where the second indication information is used to indicate the value of K.
  • the K is specified by a protocol.
  • the terminal device determines the PTRS pattern according to the PTRS port number and/or the number of the PTRS ports, including: the terminal device determines a fourth index set according to K;
  • the fourth index set includes a set of indexes of resource block RBs used to map the PTRS sequence in a part of the bandwidth;
  • the K represents the density of the PTRS pattern in the frequency domain, and one RB in every K RBs is mapped with PTRS;
  • the terminal device receives a second message from the network device, the second message is used to indicate a fifth index set, and the fifth index set includes the network device assigned to the terminal device in the A set of RB indexes of the physical uplink shared channel or the physical downlink shared channel within a part of the bandwidth;
  • the terminal device determines a sixth index set by intersecting the fourth index set and the fifth index set, and the sixth
  • the pattern formed by the positions of the PTRS mapped on the RB corresponding to the index in the index set is the PTRS
  • the K is determined by the partial bandwidth and a first association relationship, where the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth It includes shared bandwidth among multiple terminal devices.
  • each RB corresponding to the index in the third index set or the index in the sixth index set has N ptrs consecutive subcarriers for mapping the PTRS sequence;
  • the PTRS is mapped to each RB; wherein, N ptrs represents the number of PTRS ports.
  • the method further includes: the terminal device receiving third indication information from the network device, the third indication information being used to indicate the PTRS orthogonal code sequence or the A collection of intersecting code sequences.
  • the method further includes: the terminal device determining the number of PTRS ports according to the third indication information.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of the continuous subcarriers is less than the number of the PTRS ports. quantity.
  • the number of PTRS ports is greater than 1.
  • the second aspect of the embodiment of the present application discloses a communication method, including: a network device determines the configuration information of the phase tracking reference signal PTRS; the network device sends the configuration information of the PTRS to the terminal device, and the configuration information includes the PTRS port number and/or the number of PTRS ports; the network device determines the PTRS orthogonal code sequence used by the terminal device to generate the PTRS sequence according to the PTRS port number and/or the number of PTRS ports; the network device determines the PTRS orthogonal code sequence according to the PTRS Orthogonal code sequences and PTRS patterns receive PTRS from the terminal device.
  • the network device when the network device has multiple physical receiving channels, that is to say, the network device has multiple channels with different sources of phase noise, the network device sends PTRS configuration information to the terminal device, and the network device determines the terminal device to generate
  • the PTRS orthogonal code sequence used by PTRS the network device receives PTRS according to the PTRS orthogonal code and PTRS pattern, can realize the multiplexing of PTRS ports between terminal devices, and can eliminate the inter-terminal interference and/or
  • the inter-stream interference in the terminal improves the demodulation performance of data, and through the PTRS port code division multiplexing, it ensures that the PTRS overhead of the terminal device is lower and the spectral efficiency is improved.
  • the multiplexing mode of the PTRS port is frequency domain code division multiplexing.
  • the overhead can be reduced by occupying the same frequency domain resources by the PTRS ports.
  • the method further includes: the network device determining the PTRS pattern according to the PTRS port number and/or the quantity of the PTRS ports.
  • the network device determining the PTRS pattern according to the PTRS port number and/or the number of the PTRS ports includes: the network device determining the first index according to K and system bandwidth set, the first index set includes a set of indexes of resource block RBs used to map the PTRS sequence within the system bandwidth; the K represents the density of the PTRS pattern in the frequency domain; every K RBs have PTRS is mapped on one RB; the network device sends a first message to the terminal device, the first message is used to indicate a second index set, and the second index set includes the network device assigned to the terminal A set of RB indexes of the physical uplink shared channel or the physical downlink shared channel of the device within the system bandwidth; the network device intersects the first index set and the second index set to determine a third index set,
  • the pattern formed by the positions of the PTRS mapped on the RB corresponding to the index in the third index set is the PTRS pattern, wherein the PTRS pattern includes one or more
  • the method further includes: the network device sending first indication information to the terminal device, where the first indication information is used to indicate that the PTRS pattern corresponds to the first PTRS pattern in the frequency domain.
  • An RB index of a PTRS block the network device determines the first index set according to K and system bandwidth, including: the network device determines the RB index, K and system bandwidth according to the first PTRS block The first index collection.
  • the method further includes: the network device sending second indication information to the terminal device, where the second indication information is used to indicate the value of K.
  • the K is specified by a protocol.
  • the network device determining the PTRS pattern according to the PTRS port number and/or the number of the PTRS ports includes: the network device determining a fourth index set according to K;
  • the fourth index set includes a set of indexes of resource block RBs used to map the PTRS sequence in a part of the bandwidth;
  • the K represents the density of the PTRS pattern in the frequency domain, and one RB in every K RBs is mapped with PTRS:
  • the network device sends a second message to the terminal device, the second message is used to indicate a fifth index set, and the fifth index set includes the network device assigned to the terminal device in the part A set of RB indexes of the physical uplink shared channel or the physical downlink shared channel within the bandwidth;
  • the network device intersects the fourth index set and the fifth index set to determine a sixth index set, and the sixth index
  • the pattern formed by the position of the PTRS mapped on the RB corresponding to the index in the set is the PTRS pattern, wherein the
  • the K is determined by the partial bandwidth and a first association relationship, where the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth It includes shared bandwidth among multiple terminal devices.
  • each RB corresponding to the index in the third index set or the index in the sixth index set has N ptrs consecutive subcarriers for mapping PTRS; All RBs are mapped with the PTRS; wherein, N ptrs represents the number of the PTRS ports.
  • the method further includes: the network device sends third indication information to the terminal device, the third indication information is used to indicate the PTRS orthogonal code sequence or the orthogonal collection of code sequences.
  • the method further includes: the network device determining the number of PTRS ports according to the third indication information.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of the continuous subcarriers is less than the number of the PTRS ports. quantity.
  • the number of PTRS ports is greater than 1.
  • the method further includes: the network device determining the phase noise common phase error CPE on the data symbols of the physically shared uplink channel received by each physical receiving channel and the physical shared uplink channel The phase difference of the demodulation reference signal DMRS symbol of the uplink channel; the network device compensates the data signal according to the difference between the phase differences corresponding to different physical receiving channels.
  • the third aspect of the embodiment of the present application discloses a communication device, including: a communication unit and a processing unit, the communication unit is used to receive the configuration information of the phase tracking reference signal PTRS from the network equipment, the configuration information includes the PTRS port number and/or the number of PTRS ports; the processing unit is configured to determine a PTRS orthogonal code sequence according to the configuration information; the processing unit is also configured to generate a PTRS sequence according to the PTRS orthogonal code sequence; the The processing unit is further configured to map the PTRS sequence to time-frequency resources; the communication unit is further configured to send the PTRS to the network device.
  • the multiplexing mode of the PTRS port is frequency domain code division multiplexing.
  • the processing unit is configured to map the PTRS sequence to the time-frequency resource according to a PTRS pattern; the PTRS pattern includes a position for mapping the PTRS sequence.
  • the processing unit is further configured to determine the PTRS pattern according to the PTRS port number and/or the quantity of the PTRS ports.
  • the processing unit is configured to determine a first index set according to K and a system bandwidth, where the first index set includes resource blocks within the system bandwidth for mapping the PTRS sequence A collection of RB indexes;
  • the K represents the density of the PTRS pattern in the frequency domain, and PTRS is mapped to one RB in every K RBs;
  • the communication unit is configured to receive the first message from the network device , the first message is used to indicate a second index set, and the second index set includes the index of the RB allocated by the network device to the physical uplink shared channel or the physical downlink shared channel of the device within the system bandwidth a set;
  • the processing unit is configured to take the intersection of the first index set and the second index set to determine a third index set, where the index in the third index set corresponds to the position of the PTRS mapped on the RB
  • the composed pattern is the PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of
  • the communication unit is further configured to receive first indication information from the network device, where the first indication information is used to indicate the first frequency corresponding to the PTRS pattern in the frequency domain.
  • the index of the RB of the first PTRS block; the processing unit is configured to determine the first index set according to the index of the RB of the first PTRS block, K and the system bandwidth.
  • the communication unit is further configured to receive second indication information from the network device, where the second indication information is used to indicate the value of K.
  • the K is specified by a protocol.
  • the processing unit is configured to determine a fourth index set according to K; the fourth index set includes a set of indexes of resource block RBs used to map the PTRS sequence in a part of the bandwidth ;
  • the K represents the density of the PTRS pattern in the frequency domain, and one RB in every K RBs is mapped with a PTRS;
  • the communication unit is configured to receive a second message from the network device, and the second The message is used to indicate a fifth index set, where the fifth index set includes a set of indexes of RBs allocated by the network device to the device in the physical uplink shared channel or physical downlink shared channel within the part of the bandwidth;
  • the A processing unit configured to intersect the fourth index set with the fifth index set to determine a sixth index set, where the index in the sixth index set corresponds to a pattern formed by the positions of the PTRS mapped on the RB.
  • the PTRS pattern wherein, the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of consecutive subcarriers included in the one PTRS block is the same as that of the PTRS The number of ports is the same.
  • the K is determined by the partial bandwidth and a first association relationship, where the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth It includes shared bandwidth among multiple terminal devices.
  • each RB corresponding to the index in the third index set or the index in the sixth index set has N ptrs consecutive subcarriers for mapping the PTRS sequence;
  • the PTRS is mapped to each RB; wherein, N ptrs represents the number of PTRS ports.
  • the communication unit is configured to receive third indication information from the network device, where the third indication information is used to indicate the PTRS orthogonal code sequence or the orthogonal code sequence gather.
  • the processing unit is further configured to determine the number of PTRS ports according to the third indication information.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of the continuous subcarriers is less than the number of the PTRS ports. quantity.
  • the number of PTRS ports is greater than 1.
  • the fourth aspect of the embodiment of the present application discloses a communication device, including: a communication unit and a processing unit, the processing unit is used to determine the configuration information of the phase tracking reference signal PTRS; the communication unit is used to send to the terminal equipment
  • the configuration information of the PTRS includes the PTRS port number and/or the number of PTRS ports; the processing unit is configured to determine that the terminal device generates a PTRS according to the PTRS port number and/or the number of PTRS ports
  • the PTRS orthogonal code sequence used; the communication unit is configured to receive the PTRS from the terminal device according to the PTRS orthogonal code sequence and the PTRS pattern.
  • the multiplexing mode of the PTRS port is frequency domain code division multiplexing.
  • the processing unit is further configured to determine the PTRS pattern according to the PTRS port number and/or the quantity of the PTRS ports.
  • the processing unit is configured to determine a first index set according to K and a system bandwidth, where the first index set includes resource blocks within the system bandwidth for mapping the PTRS sequence A set of RB indexes; the K represents the density of the PTRS pattern in the frequency domain; every K RBs have a PTRS mapped on one RB; the communication unit is configured to send a first message to the terminal device, The first message is used to indicate a second index set, and the second index set includes indexes of RBs allocated by the network device to the terminal device in the physical uplink shared channel or physical downlink shared channel within the system bandwidth a set; the processing unit is configured to take the intersection of the first index set and the second index set to determine a third index set, where the index in the third index set corresponds to the position of the PTRS mapped on the RB
  • the composed pattern is the PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of consecutive
  • the communication unit is further configured to send first indication information to the terminal device, where the first indication information is used to indicate the first one corresponding to the PTRS pattern in the frequency domain.
  • the index of the RB of the PTRS block; the processing unit is configured to determine the first index set according to the index of the RB of the first PTRS block, K and system bandwidth.
  • the communication unit is further configured to send second indication information to the terminal device, where the second indication information is used to indicate the value of K.
  • the K is specified by a protocol.
  • the processing unit is configured to determine a fourth index set according to K; the fourth index set includes a set of indexes of resource block RBs used to map the PTRS sequence in a part of the bandwidth ;
  • the K represents the density of the PTRS pattern in the frequency domain, and PTRS is mapped on one RB in every K RBs;
  • the communication unit is configured to send a second message to the terminal device, and the second message It is used to indicate a fifth index set, where the fifth index set includes a set of RB indexes allocated by the network device to the terminal device in the physical uplink shared channel or physical downlink shared channel within the part of the bandwidth; the A processing unit, configured to intersect the fourth index set with the fifth index set to determine a sixth index set, where the index in the sixth index set corresponds to a pattern formed by the positions of the PTRS mapped on the RB.
  • the PTRS pattern wherein, the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of consecutive subcarriers included in the one PTRS block is the same as that of the PTRS The number of ports is the same.
  • the K is determined by the partial bandwidth and a first association relationship, where the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth It includes shared bandwidth among multiple terminal devices.
  • each RB corresponding to the index in the third index set or the index in the sixth index set has N ptrs consecutive subcarriers for mapping PTRS; All RBs are mapped with the PTRS; wherein, N ptrs represents the number of the PTRS ports.
  • the communication unit is further configured to provide third indication information to the terminal device, where the third indication information is used to indicate the PTRS orthogonal code sequence or the orthogonal code sequence gather.
  • the processing unit is further configured to determine the number of PTRS ports according to the third indication information.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of the continuous subcarriers is less than the number of the PTRS ports. quantity.
  • the number of PTRS ports is greater than 1.
  • the processing unit is further configured to determine the phase noise common phase error CPE on the data symbols of the physical shared uplink channel received by each physical receiving channel and the physical shared uplink channel The phase difference of the demodulation reference signal DMRS symbol; the processing unit is further configured to compensate the data signal according to the difference between the phase differences corresponding to different physical receiving channels.
  • the fifth aspect of the embodiment of the present application discloses a communication device.
  • the device may be a terminal device or a chip in a terminal device.
  • the device includes at least one processor.
  • the device further includes a memory.
  • the processing The device is used to invoke the computer programs or instructions in the memory, so as to implement the method described in the above first aspect or possible implementation manners of the first aspect.
  • the sixth aspect of the embodiment of the present application discloses a communication device.
  • the device may be a network device or a chip in a network device.
  • the device includes at least one processor.
  • the device further includes a memory.
  • the processing The device is used to invoke the computer program or instruction in the memory, so as to implement the method described in the above second aspect or a possible implementation manner of the second aspect.
  • the seventh aspect of the embodiment of the present application discloses a computer program.
  • the computer program is executed by a communication device, the above-mentioned first aspect, the possible implementation of the first aspect, the second aspect or the possible implementation of the second aspect can be realized.
  • the eighth aspect of the embodiment of the present application discloses a computer-readable storage medium, the computer-readable storage medium stores computer programs or instructions, and when the computer programs or instructions are executed by a communication device, the above-mentioned first aspect is realized , a possible implementation of the first aspect, the second aspect, or a method described in a possible implementation of the second aspect.
  • the ninth aspect of the embodiment of the present application discloses a chip system, the chip system includes at least one processor, a memory and an interface circuit, the memory, the interface circuit and the at least one processor are interconnected through a line, the Computer programs or instructions are stored in the memory; when the computer programs or instructions are executed by the processor, the first aspect, the possible implementation of the first aspect, the second aspect or the possible implementation of the second aspect are realized method described in .
  • Fig. 1 is a schematic diagram of the power spectral density of phase noise at different frequency points provided by the embodiment of the present application;
  • FIG. 2 shows the influence of different phase noises on received signals in the frequency domain provided by the embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of functional modules of a communication system provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a PTRS pattern of a CP-OFDM provided in an embodiment of the present application
  • FIG. 6 is a schematic diagram of a scenario provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a PTRS pattern provided by an embodiment of the present application.
  • Fig. 9 is a schematic diagram of another PTRS pattern provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a communication system 300 provided by an embodiment of the present application.
  • the communication system 300 includes a network device 301 and a terminal device 302 .
  • the network device 301 sends (phase tracking reference signal, PTRS) configuration information to the terminal device 302.
  • the terminal device 302 receives the PTRS configuration information from the network device 301, and determines the PTRS orthogonal code sequence according to the PTRS configuration information, and then according to The PTRS orthogonal code sequence generates a PTRS sequence; and the PTRS sequence is mapped to time-frequency resources according to the PTRS pattern, and the PTRS is sent to the network device 301.
  • PTRS phase tracking reference signal
  • the network device 301 receives the PTRS from the terminal device 302 and performs phase noise estimate and the corresponding phase compensation.
  • this embodiment of the present application is for illustration purposes, where the number of network devices 301 and terminal devices 302 may be more or less.
  • This embodiment of the present application is applicable to the following scenarios: including but not limited to multi-site transmission, that is, the same user equipment (UE) transmits signals with multiple transmission points at the same time, backhaul, wireless broadband to the home (wireless to the x, WTTx), enhanced mobile broadband (eMBB), device to device (device to device, D2D) and other scenarios that require high timing or high transmission rate.
  • UE user equipment
  • eMBB enhanced mobile broadband
  • D2D device to device
  • the waveform is not limited, and can be applied to cyclic prefix-orthogonal frequency division multiplexing (CP-OFDM) or discrete Fourier transform-based orthogonal frequency division multiplexing (discrete fourier transformation-spread- OFDM, DFT-s-OFDM) system.
  • CP-OFDM cyclic prefix-orthogonal frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform-based orthogonal frequency division multiplexing
  • Terminal equipment also known as UE, mobile station (mobile station, MS), mobile terminal (mobile terminal, MT), etc., including equipment that provides voice and/or data connectivity to users, specifically, may include A device that provides voice to a user, or includes a device that provides data connectivity to a user, or includes a device that provides both voice and data connectivity to a user. Examples may include a handheld device with wireless communication capabilities, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (radio access network, RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • radio access network radio access network
  • the terminal equipment may include user equipment (user equipment, UE), wireless terminal equipment, mobile terminal equipment, device-to-device communication (device-to-device, D2D) terminal equipment, vehicle to everything (vehicle to everything, V2X) terminal equipment , machine-to-machine/machine-type communications (machine-to-machine/machine-type communications, M2M/MTC) terminal equipment, Internet of things (Internet of things, IoT) terminal equipment, light terminal equipment (light UE), and those with reduced capabilities User equipment (reduced capability UE, REDCAP UE), subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), remote station (remote station), access point (access point, AP), remote Terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device), etc.
  • user equipment user equipment
  • UE wireless terminal equipment
  • mobile terminal equipment device-to-device communication
  • vehicle to everything vehicle to everything
  • it may include mobile phones (or “cellular” phones), computers with mobile terminal equipment, portable, pocket, hand-held, computer built-in mobile devices, etc.
  • PCS personal communication service
  • cordless telephone cordless telephone
  • session initiation protocol session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • constrained devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities, etc.
  • it includes barcodes, radio frequency identification (radio frequency identification, RFID), sensors, global positioning system (global positioning system, GPS), laser scanners and other information sensing devices.
  • the terminal device may also be a wearable device.
  • Wearable devices may also be referred to as wearable smart devices or smart wearable devices.
  • the terminal device may further include a relay (relay).
  • a relay relay
  • all devices capable of performing data communication with the base station can be regarded as terminal devices.
  • the various terminal devices described above are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), they can be considered as vehicle-mounted terminal devices, and the vehicle-mounted terminal devices can be implemented as on-board units (OBU) or A communication device for OBU; or, if the various terminal devices described above are located on the roadside, for example, installed in roadside infrastructure, they can be implemented as road-side units (road-side unit, RSU) or used for RSU communication device.
  • OBU on-board units
  • RSU road-side unit
  • the device for realizing the function of the terminal device may be the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal device.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • Network equipment which may refer to access network (access network, AN) equipment, refers to a radio access network (radio access network, RAN) node (or equipment) that connects a terminal to a wireless network, and may also be called base station.
  • RAN nodes are: evolving Node B (gNB), transmission reception point (transmission reception point, TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB) , base band unit (base band unit, BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), etc.
  • gNB Node B
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node
  • the access network device may include a centralized unit (centralized unit, CU) node, or a distributed unit (distributed unit, DU) node, or a RAN device including a CU node and a DU node.
  • the RAN equipment including the CU node and the DU node separates the protocol layer of gnb in the NR system, and the functions of some protocol layers are placed in the CU for centralized control, and some or all of the functions of the protocol layer are distributed in the DU.
  • the functions of the CU can be further divided, for example, the control plane (CP) and the user plane (UP) are separated, that is, the control plane (CU-CP) of the CU and the user plane (CU-UP) of the CU.
  • CP control plane
  • UP user plane
  • the network device may also refer to a core network (core network, CN) device, and the core network device includes, for example, an access and mobility management function (access and mobility management function, AMF) entity, a session management function (session management function, SMF) entity , user plane function (user plane function, UPF) entity, etc., which are not listed here.
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the AMF entity may be responsible for terminal access management and mobility management
  • the SMF entity may be responsible for session management, such as user session establishment
  • the UPF entity may be a functional entity of the user plane, mainly responsible for connecting external network.
  • AMF entities may also be referred to as AMF network elements or AMF functional entities
  • SMF entities may also be referred to as SMF network elements or SMF functions entity etc.
  • the device for realizing the function of the network device may be a network device, or a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application the technical solution provided by the embodiment of the present application is described by taking the network device as an example for realizing the function of the network device.
  • the functional modules of the communication system used in this application can be shown in Figure 4, including: source bit generation, encoding, quadrature amplitude modulation (quadrature amplitude modulation, QAM), PTRS generation, resource element (resource element, RE) mapping , Inverse fast fourier transform (IFFT) plus cyclic prefix (CP), channel equalization (including channel estimation), RE demapping, PTRS acquisition, phase noise estimation/compensation, QAM demodulation,
  • the modules related to the embodiment of the present application are PTRS generation, RE mapping, PTRS acquisition, and phase noise estimation/compensation.
  • Non-homologous phase noise When the signal is modulated from the baseband to the mid-RF frequency band, a carrier signal with a stable frequency is required to carry the baseband signal.
  • the frequency point of the carrier signal is the conventional carrier frequency.
  • the phase noise in the embodiment of the present application refers to the phase fluctuation on the carrier signal introduced by the thermal noise of the device generating the carrier signal and the like.
  • the carrier signal is generally formed by the local oscillator source and/or reference signal. If the carrier signals on different channels or different panels at the receiving end or the transmitting end come from the same local oscillator and/or the same reference signal, it is called the same source. Phase noise; otherwise it is called non-homogeneous phase noise, that is, it includes two scenarios of different local oscillators or the same local oscillator but different reference signals.
  • the PTRS pattern for CP-OFDM includes two parameters, the time domain density L and the frequency domain density K int , where the time domain
  • the domain density L means that every L orthogonal frequency division multiplexing (orthogonal frequency division multiplexing, OFDM) symbols have one OFDM symbol and PTRS symbols
  • the frequency domain density K int means that there is one RE for every K int *N sc/RB REs PTRS, N sc/RB is the number of subcarriers contained in a resource block (resource block, RB) in the frequency domain, generally 12, as shown in Figure 5,
  • the time domain density L is related to the modulation and coding scheme (MCS) of the data quadrature amplitude modulation (QAM) modulation symbol
  • MCS modulation and coding scheme
  • QAM data quadrature amplitude modulation
  • Scheduled MCS Time domain density L I MCS ⁇ ptrs_MCS 1 PTRS does not exist ptrs_MCS 1 ⁇ I MCS ⁇ ptrs_MCS 2 4 ptrs_MCS 2 ⁇ I MCS ⁇ ptrs_MCS 3 2 ptrs_MCS 3 ⁇ I MCS ⁇ ptrs_MCS 4 1
  • the above PTRS design mainly considers the common phase error (common phase error, CPE) introduced by the phase noise, so the pilot frequency is evenly distributed in the scheduling bandwidth.
  • CPE common phase error
  • PTRS demodulation reference signal
  • the single-UE multi-PTRS port for uplink transmission is mainly aimed at the hardware configuration of the UE with non-homologous phase noise.
  • the signal model of different source time can be shown in the following formula, specifically as follows:
  • si is the signal transmitted by the terminal equipment
  • the CPE introduced by the phase noise of the first channel of the terminal equipment is the CPE introduced by the phase noise of the second channel of the terminal equipment
  • H is the channel between the terminal equipment and the receiving end
  • w is the noise received by the receiving end
  • e j ⁇ is the phase noise CPE of the receiving end
  • y is the signal received by the receiving end .
  • the receiving end can estimate the channel based on DMRS, and after equalization, the influence of the phase noise CPE at the receiving end, that is, e j ⁇ and channel H, can be eliminated to obtain two independent signals containing different phase noise CPE signals, and for the two independent
  • the phase noise estimation and compensation of the signals of are based on PTRS to recover the original signal s i .
  • the scene shown in Figure 6 below is an example, where the wavy line represents the local oscillator source, and the pico remote radio unit (pRRU) can be understood as a radio frequency receiving channel.
  • pRRU pico remote radio unit
  • Different pRRUs have different local oscillator sources.
  • Different phase noises are caused by local oscillators, that is, there are N channels with different sources at the receiving end, and any terminal of multiple terminals has the same source of phase noise, or the terminal has only one phase noise source.
  • the signal model received by the receiving end can be shown in the following formula, specifically as follows:
  • the receiving end can respectively estimate the equivalent channel on the OFDM symbol (hereinafter referred to as the DMRS symbol) where the DMRS is located according to the DMRS, that is, Assuming that the channel h ij changes slowly with time, if the channel h ij on different OFDM symbols is the same, the received signal on the OFDM symbol (hereinafter referred to as OFDM symbol) d where the data is located can be expressed as:
  • phase noise ⁇ i on can be estimated by the receiving end based on the PTRS sending and receiving signals on the respective transport layers, and eliminate the influence of phase noise; It can be understood as the interference introduced between the signals of the terminal due to the phase noise of multiple different sources at the receiving end.
  • Figure 7 is a communication method provided by the embodiment of this application, the method includes but is not limited to the following steps:
  • Step S701 the network device determines configuration information of the PTRS.
  • Step S702 the network device sends PTRS configuration information to the terminal device.
  • the PTRS configuration information includes the PTRS port number and/or the number of PTRS ports.
  • the multiplexing mode of the PTRS ports is code division in the frequency domain
  • the number of PTRS ports refers to the number of ports with code division in the frequency domain, or the number of PTRS ports with code division in the frequency domain.
  • the number of PTRS ports is greater than or equal to one.
  • the number of the PTRS ports is less than a predefined threshold, and the predefined threshold can be dynamically configured, such as indicating the maximum number of PTRS ports that can be code-divided in the frequency domain through radio resource control (radio resource control, RRC) signaling.
  • radio resource control radio resource control
  • the predefined threshold may be the number of subcarriers corresponding to the channel coherence bandwidth, and the channel coherence bandwidth is the minimum channel coherence bandwidth among the scheduled multiple terminal devices. If frequency-domain code division is only applied between terminals, such as frequency division of multiple PTRS ports in a terminal, the channel coherent bandwidth and subcarrier spacing determine the maximum number of users that can be scheduled together (meaning that the time-frequency-space resources are the same for scheduling); if Frequency domain code division is applied between terminals and within terminals at the same time, then the channel coherent bandwidth and subcarrier spacing determine the maximum number of PTRS ports that can be combined with frequency domain code division.
  • the channel coherence bandwidth refers to a specific frequency range, and the channels of any two frequency components in the frequency range have a strong correlation, or the channel correlation of any two frequency domain components is greater than a specified or specified threshold, which can be It is understood as a frequency range where the channel correlation meets certain conditions.
  • terminal device 1 has two PTRS ports, and the port numbers are port 1 and port 2.
  • Terminal device 2 has 1 PTRS port, port number is port 3; terminal device 3 has 2 PTRS ports, port numbers are port 4 and port 5 respectively; terminal device 4 has 1 PTRS port, port number is port 6 , then 6 PTRS ports frequency-domain code division time
  • the PTRS configuration information configured to the first terminal equipment may include or indicate: (a) two PTRS port numbers, (b) the number of PTRS ports is 6;
  • the PTRS configuration information of a terminal device may include or indicate (a) a PTRS port number, (b) the number of PTRS ports is 6; the PTRS configuration information of other terminal devices can be deduced by analogy.
  • the physical receiving channels may be pRRUs, and PTRS ports between terminal devices may be distinguished by PTRS port numbers.
  • Step S703 the terminal device receives configuration information of the PTRS from the network device.
  • the terminal device After the terminal device receives the configuration information of the PTRS from the network device, it will judge whether frequency domain code division is required according to the configuration information. In one example, the terminal device receives the configuration information of the PTRS from the network device, wherein the frequency domain code division If the number of PTRS ports is greater than 1, the terminal device determines that frequency domain code division is needed, and performs the operations of step S704-step S708.
  • the terminal device receives the configuration information of the PTRS from the network device, wherein the number of ports of the PTRS in the frequency domain code division is equal to 1, then the terminal device determines that the frequency domain code division is not needed, according to the time domain density L and the PTRS pattern determined by the frequency-domain density K int maps the PTRS sequence.
  • Step S704 the terminal device determines the PTRS orthogonal code sequence according to the PTRS configuration information.
  • the terminal device may determine the index of the PTRS orthogonal code sequence according to the PTRS port number and the number of PTRS ports divided into frequency domain codes, and then determine the PTRS orthogonal code sequence according to the index.
  • the terminal device may also receive third indication information from the network device, where the third indication information is used to indicate a PTRS orthogonal code sequence or a set of orthogonal code sequences. That is to say, there may be multiple sets of orthogonal code sequences stipulated in the protocol, and the terminal device may determine which set of orthogonal code sequences to use by receiving the third indication information.
  • the terminal device may also determine the number of PTRS ports according to the third indication information. In an example, assuming that the PTRS orthogonal code sequence indicated by the third indication information is 4*4, then the number of PTRS ports is 4.
  • the index C idx of the PTRS orthogonal code sequence can be determined by the following formula:
  • C idx represents the index of the orthogonal code sequence
  • P i represents the PTRS port number
  • N ptrs represents the number of PTRS ports.
  • the PTRS orthogonal code sequence can be shown in the following table 3:
  • Step S705 the terminal device generates a PTRS sequence according to the PTRS orthogonal code sequence.
  • the terminal device can generate a pseudo-random sequence according to a predefined rule, and then generate a PTRS sequence according to the PTRS orthogonal code sequence and the pseudo-random sequence.
  • the pseudo-random sequences on the same subcarrier of different PTRS ports may be the same or different.
  • the pseudo-random sequences carried by the 8 PTRS ports on consecutive 8 subcarriers may be the same or different, and the terminal device
  • the pseudo-random sequence generated according to the predefined rules is shown in Table 4:
  • the pseudo-random sequence is divided into multiple segments according to the length of the orthogonal code, the length of each segment is the length of the orthogonal code, and each segment is multiplied with the orthogonal code sequence in turn
  • the PTRS orthogonal code sequence is as shown in Table 3
  • the pseudo-random sequence is as shown in Table 4
  • the PTRS orthogonal code sequence and the pseudo-random sequence are multiplied to generate a PTRS sequence, and the PTRS sequence is as shown in Table 5:
  • Step S706 the terminal device maps the PTRS sequence to the time-frequency resource according to the PTRS pattern.
  • the terminal device maps the PTRS sequence to the time-frequency resource according to the PTRS pattern, and the PTRS pattern includes a position for mapping the PTRS sequence.
  • the PTRS pattern includes a position for mapping the PTRS sequence.
  • N ptrs consecutive subcarriers on each RB within the system bandwidth or part of the bandwidth for mapping PTRS sequences, where each RB includes 12 subcarriers, and N ptrs represents the number of PTRS ports.
  • the terminal device determines the PTRS pattern according to the PTRS port number and/or the number of PTRS ports, as follows:
  • the terminal device determines the first index set according to K and the system bandwidth, and the first index set includes the index of the resource block RB used to map the PTRS sequence in the system bandwidth; K represents the index of the PTRS pattern in the frequency domain Density, PTRS is mapped to one RB in every K RBs.
  • the terminal device receives the first message from the network device, where the first message is used to indicate a second index set, and the second index set includes the RBs of the physical uplink shared channel or the physical downlink shared channel allocated to the terminal device within the system bandwidth by the network device index.
  • the terminal device takes the intersection of the first index set and the second index set to determine the third index set.
  • the RB corresponding to the index in the third index set is the RB used by the terminal device for mapping PTRS.
  • the index in the third index set corresponds to In the RB of , the PTRS is mapped on multiple consecutive subcarriers. Therefore, the pattern composed of the PTRS positions (subcarriers or REs) mapped on the RBs corresponding to all indexes in the third index set is called a PTRS pattern, that is,
  • the PTRS pattern includes one or more PTRS blocks (ie, one or more RBs) in the frequency domain, and one PTRS block includes multiple consecutive subcarriers, and the number of consecutive subcarriers included in one PTRS block is the same as the number of PTRS ports .
  • This pattern can also be called a partially concentrated PTRS pattern.
  • K can be determined in the following two ways: in the first way, the terminal device receives the second indication information from the network device, and the second indication information is used to indicate the value of K; in the second way, K is determined by the protocol Specified.
  • the terminal device receives first indication information from the network device, where the first indication information is used to indicate the RB index of the first PTRS block corresponding to the PTRS pattern in the frequency domain.
  • the terminal device determines the first index set according to the RB index, K, and system bandwidth of the first PTRS block.
  • the index of the RB of the first PTRS block may be determined according to the cell identifier and the part bandwidth identifier (band width part-id, BWP-Id) in addition to being determined by the manner indicated by the first indication information.
  • the index of the RB may be a virtual resource block (virtual resource block, VRB) or a physical resource block (physical resource block, PRB).
  • the terminal device receives first indication information from the network device
  • the RB corresponding to the index in the third index set is the RB used by the terminal device to map the PTRS, and the terminal device maps the PTRS to multiple consecutive subcarriers in the RB corresponding to the index in the third index set
  • the PTRS pattern includes 3 PTRS blocks in the frequency domain, and the 3 PTRS blocks are respectively in the RB with the sequence number 1, the RB with the sequence number 13, and the RB with the sequence number On 25 RBs, the PTRS blocks are discontinuous.
  • One PTRS block includes 4 consecutive subcarriers.
  • the PTRS pattern shown in has a density of 1 in the time domain.
  • the terminal device determines a fourth index set according to K; the fourth index set includes a set of indexes of resource block RBs used to map PTRS sequences in a part of the bandwidth; K represents the PTRS pattern in the frequency domain Density, one RB in every K RBs is mapped with PTRS; the terminal device receives the second message from the network device, the second message is used to indicate the fifth index set, and the fifth index set includes the part allocated by the network device to the terminal device The index of the RB of the physical uplink shared channel or the physical downlink shared channel within the bandwidth; the terminal device takes the intersection of the fourth index set and the fifth index set to determine the sixth index set, and the corresponding index in the sixth index set is mapped on the RB
  • the pattern composed of the position of the PTRS is a PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of consecutive subcarriers, and the number of consecutive subcar
  • this part of the bandwidth is a part of the system bandwidth.
  • K is determined by the partial bandwidth and the first association relationship, wherein the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, as shown in Table 6 shown.
  • the density of the PTRS pattern in the time domain is similar to the method for determining K, and will not be repeated here. For specific examples, reference may be made to the foregoing description, and details are not repeated here.
  • the first association relationships of the plurality of terminal devices are the same, and may be the first association relationship corresponding to the terminal device with the worst phase noise.
  • the terminal device determines a fourth index set according to K; the fourth index set includes a set of indexes of resource block RBs used to map PTRS sequences in a part of the bandwidth; K represents the PTRS pattern in the frequency domain Density, PTRS is mapped on one RB in every K RBs; the terminal device determines the PTRS pattern according to the fourth index set, where the PTRS pattern includes one or more PTRS blocks in the frequency domain, and one PTRS block includes multiple consecutive sub- Carriers, the number of consecutive subcarriers included in one PTRS block is the same as the number of PTRS ports.
  • K is determined by a partial bandwidth and a first association relationship, where the first association relationship is an association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth includes shared bandwidth among multiple terminal devices.
  • the shared bandwidth refers to the overlapping bandwidth of scheduled multiple terminal devices transmitting a physical uplink shared channel (physical uplink shared channel, PUSCH).
  • the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, as shown in Table 2.
  • the density of the PTRS pattern in the time domain is similar to the method for determining K, and will not be repeated here.
  • the first association relationships of the plurality of terminal devices are the same, and may be the first association relationship corresponding to the terminal device with the worst phase noise.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, and one PTRS block includes multiple consecutive subcarriers, and the number of the multiple consecutive subcarriers is smaller than the number of PTRS ports.
  • the PTRS port is multiplexed on the same time-frequency resource through time-frequency domain code division multiplexing. That is to say, the same time-frequency resources are occupied, as shown in Fig. 9, Fig. 9 shows a PTRS pattern, wherein, the PTRS ports of time-frequency domain code division are respectively port 1, port 2, port 3 and port 4, that is to say PTRS The number of ports is 4.
  • the PTRS orthogonal code sequence can be as shown in Table 7, wherein ports 1 to 4 occupy the same time-frequency resources, and the PTRS pattern includes multiple PTRS blocks in the frequency domain, and one PTRS block includes 2 consecutive subcarriers.
  • the terminal device can generate a pseudo-random sequence according to a predefined rule, and then generate a PTRS sequence according to the PTRS orthogonal code sequence and the pseudo-random sequence.
  • the pseudo-random sequences of different PTRS ports (different port numbers) at the same time on the same subcarrier may be the same or different.
  • the pseudo-random sequences carried by the 4 PTRS ports on two consecutive subcarriers may be the same or different, and the terminal device
  • the pseudo-random sequence generated according to the predefined rules is shown in Table 8:
  • the terminal device multiplies the orthogonal code sequence and the pseudo-random sequence (the pseudo-random sequence is divided into multiple segments according to the length of the orthogonal code, and the length of each segment is the length of the orthogonal code, and each segment is multiplied with the orthogonal code sequence in turn) to generate PTRS sequence.
  • the PTRS orthogonal code sequence is shown in Table 7
  • the pseudo-random sequence is shown in Table 8
  • the PTRS orthogonal code sequence and the pseudo-random sequence are conjugated and multiplied to generate a PTRS sequence
  • the PTRS sequence is shown in Table 9.
  • the terminal device maps the PTRS sequence to the time-frequency resource according to the PTRS pattern, and the PTRS pattern is shown in FIG. 9 .
  • Step S707 the terminal device sends the PTRS to the network device.
  • Step S708 The network device receives the PTRS from the terminal device on the time-frequency resource according to the PTRS orthogonal code sequence and the PTRS pattern.
  • the determination of the PTRS orthogonal code sequence and the PTRS pattern by the network device may refer to the determination of the PTRS orthogonal code sequence and the PTRS pattern by the terminal device, which will not be repeated here.
  • the network device determines the physical share received by each physical receiving channel The phase noise common phase error CPE on the data symbols of the uplink channel and the phase difference between the DMRS symbols of the physically shared uplink channel; the network equipment compensates the data signal according to the difference between the phase differences corresponding to different physical receiving channels.
  • the physical receiving channel may be pRRU.
  • the network device has two channels of non-homologous phase noise, that is to say, the network device has two physical receiving channels.
  • the random sequences are the same, then the PTRS sequences sent on port 1 and port 2 on two consecutive subcarriers can be shown in Table 10,
  • the received signals on the two REs of the first pRRU are:
  • REi represents the noise received by the first pRRU on subcarrier i,
  • s j, REi represents the signal sent by port j on subcarrier i, CPE introduced for phase noise on the first pRRU, Indicates the CPE difference introduced by the phase noise of the network equipment at port j.
  • the received signals on the two REs of the second pRRU are:
  • phase factor is compensated for the received signal of the i-th pRRU, that is, the difference between the phase differences, namely:
  • CPE introduced for network equipment phase noise on DMRS symbols CPE introduced for network equipment phase noise on data symbols, Indicates the phase difference between the CPE on the data symbol and the CPE on the DMRS symbol caused by the two-way phase noise of the network equipment
  • CPE introduced for terminal equipment phase noise on DMRS symbols CPE introduced for terminal equipment phase noise on data symbols, Indicates the phase difference between the CPE on the data symbol and the CPE on the DMRS symbol caused by the phase noise of the terminal equipment
  • the terminal device receives the PTRS configuration information of the network device, and according to the configuration information Determine the PTRS orthogonal code sequence to generate the PTRS sequence, map the PTRS sequence to the time-frequency resource according to the PTRS pattern, and send the PTRS to the network device, which can realize the multiplexing of the PTRS port between the terminal devices and eliminate the different sources of the network device Inter-terminal interference and/or intra-terminal inter-stream interference introduced by phase noise improves data demodulation performance, and the PTRS port uses code division multiplexing to ensure lower PTRS overhead for terminal devices and improve spectral efficiency.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a terminal device or a chip in a terminal device.
  • the communication device 1000 may include a communication unit 1001 and a processing unit 1002. Wherein, the detailed description of each unit is as follows.
  • the communication unit 1001 is configured to receive configuration information of a phase tracking reference signal PTRS from a network device, the configuration information includes a PTRS port number and/or the number of PTRS ports; the processing unit 1002 is configured to The information determines the PTRS orthogonal code sequence; the processing unit 1002 is further configured to generate a PTRS sequence according to the PTRS orthogonal code sequence; the processing unit 1002 is further configured to map the PTRS sequence to a time-frequency resource; The communication unit 1001 is further configured to send the PTRS to the network device.
  • the multiplexing mode of the PTRS port is frequency domain code division multiplexing.
  • the processing unit 1002 is configured to map the PTRS sequence to the time-frequency resource according to the PTRS pattern; the PTRS pattern includes Location.
  • the processing unit 1002 is further configured to determine the PTRS pattern according to the PTRS port number and/or the quantity of the PTRS ports.
  • the processing unit 1002 is configured to determine a first index set according to K and system bandwidth, where the first index set includes resources for mapping the PTRS sequence within the system bandwidth A set of indexes of block RBs; the K represents the density of the PTRS pattern in the frequency domain, and PTRS is mapped to one RB in every K RBs; the communication unit 1001 is configured to receive the first PTRS pattern from the network device A message, the first message is used to indicate a second index set, and the second index set includes RBs allocated by the network equipment to the physical uplink shared channel or physical downlink shared channel of the device within the system bandwidth A set of indexes; the processing unit 1002 is configured to take the intersection of the first index set and the second index set to determine a third index set, and the index in the third index set corresponds to the RB mapped on
  • the pattern formed by the position of the PTRS is the PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PT
  • the communication unit 1001 is further configured to receive first indication information from the network device, where the first indication information is used to indicate the first indication information corresponding to the PTRS pattern in the frequency domain.
  • An RB index of a PTRS block; the processing unit 1002 is configured to determine the first index set according to the RB index, K, and system bandwidth of the first PTRS block.
  • the communication unit 1001 is further configured to receive second indication information from the network device, where the second indication information is used to indicate the value of K.
  • the K is specified by a protocol.
  • the processing unit 1002 is configured to determine a fourth index set according to K; the fourth index set includes an index of a resource block RB used to map the PTRS sequence in a part of the bandwidth set; the K represents the density of the PTRS pattern in the frequency domain, and one RB in every K RBs is mapped with a PTRS; the communication unit 1001 is configured to receive a second message from the network device, the The second message is used to indicate a fifth index set, where the fifth index set includes a set of indexes of RBs allocated by the network device to the device in the physical uplink shared channel or physical downlink shared channel within the part of the bandwidth; The processing unit 1002 is configured to take the intersection of the fourth index set and the fifth index set to determine a sixth index set, where the index in the sixth index set is composed of the positions of the PTRS mapped on the RB
  • the pattern is the PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS
  • the K is determined by the partial bandwidth and a first association relationship, where the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth It includes shared bandwidth among multiple terminal devices.
  • each RB corresponding to the index in the third index set or the index in the sixth index set has N ptrs consecutive subcarriers for mapping the PTRS sequence;
  • the PTRS is mapped to each RB; wherein, N ptrs represents the number of PTRS ports.
  • the communication unit 1001 is configured to receive third indication information from the network device, where the third indication information is used to indicate the PTRS orthogonal code sequence or orthogonal code collection of sequences.
  • the processing unit 1002 is further configured to determine the number of PTRS ports according to the third indication information.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of the continuous subcarriers is less than the number of the PTRS ports. quantity.
  • the number of PTRS ports is greater than 1.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device may be a network device or a chip in a network device.
  • the communication device 1000 may include a communication unit 1001 and a processing unit 1002. Wherein, the detailed description of each unit is as follows.
  • the processing unit 1002 is configured to determine the configuration information of the phase tracking reference signal PTRS; the communication unit 1001 is configured to send the configuration information of the PTRS to the terminal device, the configuration information includes the PTRS port number and/or the PTRS port the number of PTRS; the processing unit 1002 is configured to determine the PTRS orthogonal code sequence used by the terminal device to generate PTRS according to the PTRS port number and/or the number of PTRS ports; the communication unit 1001 is configured to The PTRS orthogonal code sequence and PTRS pattern receive the PTRS from the terminal device.
  • the multiplexing mode of the PTRS port is frequency domain code division multiplexing.
  • the processing unit 1002 is further configured to determine the PTRS pattern according to the PTRS port number and/or the quantity of the PTRS ports.
  • the processing unit 1002 is configured to determine a first index set according to K and system bandwidth, where the first index set includes resources for mapping the PTRS sequence within the system bandwidth A set of indexes of block RBs; the K represents the density of the PTRS pattern in the frequency domain; every K RBs have a PTRS mapped on one RB; the communication unit 1001 is configured to send the first message, the first message is used to indicate a second index set, and the second index set includes RBs allocated by the network device to the physical uplink shared channel or the physical downlink shared channel within the system bandwidth of the terminal device A set of indexes; the processing unit 1002 is configured to take the intersection of the first index set and the second index set to determine a third index set, and the index in the third index set corresponds to the RB mapped on
  • the pattern formed by the position of the PTRS is the PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality
  • the communication unit 1001 is further configured to send first indication information to the terminal device, where the first indication information is used to indicate the first frequency corresponding to the PTRS pattern in the frequency domain.
  • the index of the RB of the first PTRS block; the processing unit 1002 is configured to determine the first index set according to the index of the RB of the first PTRS block, K and the system bandwidth.
  • the communication unit 1001 is further configured to send second indication information to the terminal device, where the second indication information is used to indicate the value of K.
  • the K is specified by a protocol.
  • the processing unit 1002 is configured to determine a fourth index set according to K; the fourth index set includes an index of a resource block RB used to map the PTRS sequence in a part of the bandwidth set; the K represents the density of the PTRS pattern in the frequency domain, and one RB in every K RBs is mapped with a PTRS; the communication unit 1001 is configured to send a second message to the terminal device, and the first The second message is used to indicate a fifth index set, where the fifth index set includes a set of RB indexes allocated by the network device to the terminal device in the physical uplink shared channel or physical downlink shared channel within the partial bandwidth; The processing unit 1002 is configured to take the intersection of the fourth index set and the fifth index set to determine a sixth index set, where the index in the sixth index set is composed of the positions of the PTRS mapped on the RB
  • the pattern is the PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block
  • the K is determined by the partial bandwidth and a first association relationship, where the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth It includes shared bandwidth among multiple terminal devices.
  • each RB corresponding to the index in the third index set or the index in the sixth index set has N ptrs consecutive subcarriers for mapping PTRS; All RBs are mapped with the PTRS; wherein, N ptrs represents the number of the PTRS ports.
  • the communication unit 1001 is further configured to provide third indication information to the terminal device, where the third indication information is used to indicate the PTRS orthogonal code sequence or orthogonal code sequence collection of sequences.
  • the processing unit 1002 is further configured to determine the number of PTRS ports according to the third indication information.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of the continuous subcarriers is less than the number of the PTRS ports. quantity.
  • the number of PTRS ports is greater than 1.
  • the processing unit 1002 is further configured to determine the phase noise common phase error CPE on the data symbols of the physical shared uplink channel received by each physical receiving channel and the physical shared uplink The phase difference of the demodulation reference signal DMRS symbol of the channel; the processing unit 1002 is further configured to compensate the data signal according to the difference between the phase differences corresponding to different physical receiving channels.
  • FIG. 11 is a communication device 1100 provided by an embodiment of the present application.
  • the device 1100 includes at least one processor 1101 and a communication interface 1103.
  • it also includes a memory 1102.
  • the processor 1101, memory 1102 and communication interface 1103 are connected to each other through bus 1104 .
  • Memory 1102 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1102 is used for related computer programs and data.
  • the communication interface 1103 is used to receive and send data.
  • the processor 1101 may be one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1101 in the device 1100 is used to read the computer program code stored in the memory 1102, and perform the following operations:
  • the multiplexing manner of the PTRS ports is for frequency domain code division multiplexing.
  • the processor 1101 is configured to map the PTRS sequence to the time-frequency resource according to the PTRS pattern; the PTRS pattern includes Location.
  • the processor 1101 is further configured to determine the PTRS pattern according to the PTRS port number and/or the quantity of the PTRS ports.
  • the processor 1101 is configured to determine a first index set according to K and system bandwidth, where the first index set includes resources for mapping the PTRS sequence within the system bandwidth A collection of indexes of block RBs; the K represents the density of the PTRS pattern in the frequency domain, and PTRS is mapped to one RB in every K RBs; the first message from the network device is received through the communication interface 1103 , the first message is used to indicate a second index set, and the second index set includes the index of the RB allocated by the network device to the physical uplink shared channel or the physical downlink shared channel of the device within the system bandwidth A set; take the intersection of the first index set and the second index set to determine a third index set, and the pattern formed by the position of the PTRS mapped on the RB corresponding to the index in the third index set is the PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of consecutive subcarriers,
  • the processor 1101 is further configured to receive first indication information from the network device through the communication interface 1103, where the first indication information is used to indicate that the PTRS pattern is The index of the RB of the first PTRS block corresponding to the field; the processor 1101 is configured to determine the first index set according to the index of the RB of the first PTRS block, K and system bandwidth.
  • the processor 1101 is further configured to receive second indication information from the network device through the communication interface 1103, where the second indication information is used to indicate the value of K .
  • the K is specified by a protocol.
  • the processor 1101 is configured to determine a fourth index set according to K; the fourth index set includes an index of a resource block RB used to map the PTRS sequence in a part of the bandwidth set; the K represents the density of the PTRS pattern in the frequency domain, and one RB in every K RBs is mapped with a PTRS; the second message from the network device is received through the communication interface 1103, and the second The message is used to indicate a fifth index set, where the fifth index set includes a set of indexes of RBs allocated by the network device to the device in the physical uplink shared channel or physical downlink shared channel within the part of the bandwidth; Taking the intersection of the fourth index set and the fifth index set to determine a sixth index set, the pattern formed by the positions of the PTRS mapped on the RB corresponding to the index in the sixth index set is the PTRS pattern, wherein the The PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes multiple consecutive subcarriers
  • the K is determined by the partial bandwidth and a first association relationship, where the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth It includes shared bandwidth among multiple terminal devices.
  • each RB corresponding to the index in the third index set or the index in the sixth index set has N ptrs consecutive subcarriers for mapping the PTRS sequence;
  • the PTRS is mapped to each RB; wherein, N ptrs represents the number of PTRS ports.
  • the processor 1101 is configured to receive third indication information from the network device through the communication interface 1103, where the third indication information is used to indicate the PTRS orthogonal code sequence Or a set of orthogonal code sequences.
  • the processor 1101 is further configured to determine the number of PTRS ports according to the third indication information.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of the continuous subcarriers is less than the number of the PTRS ports. quantity.
  • the number of PTRS ports is greater than 1.
  • FIG. 11 is a communication device 1100 provided by an embodiment of the present application.
  • the device 1100 includes at least one processor 1101 and a communication interface 1103.
  • it also includes a memory 1102.
  • the processor 1101, memory 1102 and communication interface 1103 are connected to each other through bus 1104 .
  • Memory 1102 includes, but is not limited to, random access memory (random access memory, RAM), read-only memory (read-only memory, ROM), erasable programmable read-only memory (erasable programmable read only memory, EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1102 is used for related computer programs and data.
  • the communication interface 1103 is used to receive and send data.
  • the processor 1101 may be one or more central processing units (central processing unit, CPU).
  • CPU central processing unit
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 1101 in the device 1100 is used to read the computer program code stored in the memory 1102, and perform the following operations:
  • configuration information of the PTRS to the terminal device through the communication interface 1103, where the configuration information includes a PTRS port number and/or the number of PTRS ports;
  • the multiplexing mode of the PTRS port is frequency domain code division multiplexing.
  • the processor 1101 is further configured to determine the PTRS pattern according to the PTRS port number and/or the quantity of the PTRS ports.
  • the processor 1101 is configured to determine a first index set according to K and system bandwidth, where the first index set includes resources for mapping the PTRS sequence within the system bandwidth A set of indexes of block RBs; the K represents the density of the PTRS pattern in the frequency domain; every K RBs have a PTRS mapped on one RB; the first message is sent to the terminal device through the communication interface 1103, The first message is used to indicate a second index set, and the second index set includes indexes of RBs allocated by the network device to the terminal device in the physical uplink shared channel or physical downlink shared channel within the system bandwidth A set; take the intersection of the first index set and the second index set to determine a third index set, and the pattern formed by the position of the PTRS mapped on the RB corresponding to the index in the third index set is the PTRS pattern, wherein the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of consecutive subcarriers, and
  • the processor 1101 is further configured to send first indication information to the terminal device through the communication interface 1103, where the first indication information is used to indicate that the PTRS pattern is The RB index of the first PTRS block corresponding to the frequency domain; the processor 1101 is configured to determine the first index set according to the RB index, K, and system bandwidth of the first PTRS block.
  • the processor 1101 is further configured to send second indication information to the terminal device through the communication interface 1103, where the second indication information is used to indicate that the K value.
  • the K is specified by a protocol.
  • the processor 1101 is configured to determine a fourth index set according to K; the fourth index set includes an index of a resource block RB used to map the PTRS sequence in a part of the bandwidth set; the K represents the density of the PTRS pattern in the frequency domain, and one RB in every K RBs is mapped with a PTRS; a second message is sent to the terminal device through the communication interface 1103, and the second message Used to indicate a fifth index set, where the fifth index set includes a set of RB indexes allocated by the network device to the terminal device in the physical uplink shared channel or physical downlink shared channel within the part of the bandwidth; Taking the intersection of the fourth index set and the fifth index set to determine a sixth index set, the pattern formed by the positions of the PTRS mapped on the RB corresponding to the index in the sixth index set is the PTRS pattern, wherein the The PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes multiple consecutive subcarriers, and
  • the K is determined by the partial bandwidth and a first association relationship, where the first association relationship is the association relationship between the number of RBs included in the partial bandwidth and K, and the partial bandwidth It includes shared bandwidth among multiple terminal devices.
  • each RB corresponding to the index in the third index set or the index in the sixth index set has N ptrs consecutive subcarriers for mapping PTRS; All RBs are mapped with the PTRS; wherein, N ptrs represents the number of the PTRS ports.
  • the processor 1101 is further configured to send third indication information to the terminal device through the communication interface 1103, where the third indication information is used to indicate that the PTRS is orthogonal code sequence or set of orthogonal code sequences.
  • the processor 1101 is further configured to determine the number of PTRS ports according to the third indication information.
  • the PTRS pattern includes one or more PTRS blocks in the frequency domain, one PTRS block includes a plurality of continuous subcarriers, and the number of the continuous subcarriers is less than the number of the PTRS ports. quantity.
  • the number of PTRS ports is greater than 1.
  • the processor 1101 is further configured to determine the phase noise common phase error CPE on the data symbols of the physical shared uplink channel received by each physical receiving channel and the physical shared uplink The phase difference of the demodulation reference signal DMRS symbol of the channel; the data signal is compensated according to the difference between the phase differences corresponding to different physical receiving channels.
  • the processes can be completed by computer programs or hardware related to the computer programs.
  • the computer programs can be stored in computer-readable storage media.
  • the computer programs During execution, it may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store computer program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种通信方法及装置,该方法包括:终端设备接收来自网络设备的相位跟踪参考信号PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;所述终端设备根据所述配置信息确定PTRS正交码序列;所述终端设备根据所述PTRS正交码序列生成PTRS序列;所述终端设备将所述PTRS序列映射到时频资源上;所述终端设备向所述网络设备发送PTRS,采用本申请实施例,能够消除因不同源相噪在发送端之间引入干扰,提高数据解调性能。

Description

一种通信方法及装置
本申请要求于2021年06月30日提交中国专利局、申请号为202110747402.8、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,高频,例如,6吉赫兹(GHz)以上频段,主要包括28GHz、39GHz、60GHz、73GHz等,因为其丰富的频段资源,而被用于解决日益增长的通信需求。它的显著的特点是包括大带宽,高集成天线阵列,以实现高吞吐量,但是也会存在严重的中射频失真问题,如相位噪声(phase noise,PHN)和中心频率偏移(carrier frequency offset,CFO),另外,高频的多普勒频移也更大,三者均会引入相位误差,导致高频通信系统的性能下降甚至无法工作。
以相位噪声为例,随着频段的增加,相位噪声功率谱密度越高,对接收信号影响越大,分别如图1、图2所示,当频段较高时,相噪的恶化将导致解调性能变差,因此现有新空口(new radio,NR)协议中,在上行传输中,针对两种波形,循环前缀正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)和离散傅里叶变换扩展的正交频分复用波形(discrete fourier transformation-spread-OFDM,DFT-s-OFDM))均引入了相位跟踪参考信号(phase tracking reference signal,PTRS),用于补偿相噪的影响,改善相噪条件下的解调性能。也就是说,为了除去相位噪声,发送端需要发送接收端已知的参考信号,即PTRS,接收端可以根据其对相位噪声进行估计然后进行相应的相位补偿,一种相噪估计算法是在接收端对相位噪声进行估计以及相位补偿之前,接收端对PTRS上的接收信号进行信道均衡,然而由于接收端有多个不同源的相噪,且不能忽略,会导致在信道均衡的过程中在信号之间引入干扰,从而导致解调性能下降。
发明内容
本申请实施例公开了一种通信方法及装置,能够消除因不同源相噪在发送端之间引入干扰,提高数据解调性能。
本申请实施例第一方面公开了一种通信方法,包括:
终端设备接收来自网络设备的相位跟踪参考信号PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;
所述终端设备根据所述配置信息确定PTRS正交码序列;
所述终端设备根据所述PTRS正交码序列生成PTRS序列;
所述终端设备将所述PTRS序列映射到时频资源上;
所述终端设备向所述网络设备发送PTRS。
在上述方法中,当网络设备有多个物理接收通道,也就是说网络设备有多路不同源相噪的情况下,终端设备通过接收网络设备的PTRS配置信息,并根据配置信息确定PTRS正交码序列,从而生成PTRS序列,并将PTRS序列映射到时频资源上,然后向网络设备发送PTRS, 能够实现终端设备间的PTRS端口的复用,能够消除网络设备不同源相噪引入的终端间干扰和/或终端内流间干扰,提高数据的解调性能,而且通过PTRS端口码分复用的方式,保证了终端设备的PTRS开销更低,提高谱效。
在一种可能的实现方式中,所述PTRS端口的复用方式是频域码分复用的。
在上述方法中,通过PTRS端口占用相同的频域资源,能够减小开销。
在又一种可能的实现方式中,所述终端设备将所述PTRS序列映射到时频资源上,包括:所述终端设备将所述PTRS序列根据PTRS图案映射到所述时频资源上;所述PTRS图案包括用于映射所述PTRS序列的位置。
在又一种可能的实现方式中,所述方法还包括:所述终端设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
在又一种可能的实现方式中,所述终端设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案,包括:所述终端设备根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述终端设备接收来自所述网络设备的第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述终端设备在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述终端设备将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述方法还包括:所述终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;所述终端设备根据K以及系统带宽确定第一索引集合,包括:所述终端设备根据所述第一个PTRS块的RB的索引、K以及系统带宽确定所述第一索引集合。
在又一种可能的实现方式中,所述方法还包括:所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述K的取值。
在又一种可能的实现方式中,所述K是由协议规定。
在又一种可能的实现方式中,所述终端设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案,包括:所述终端设备根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述终端设备接收来自所述网络设备的第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述终端设备在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述终端设备将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设 备之间的共享带宽。
在又一种可能的实现方式中,所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射所述PTRS序列;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
在又一种可能的实现方式中,所述方法还包括:所述终端设备接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
在又一种可能的实现方式中,所述方法还包括:所述终端设备根据所述第三指示信息确定所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS端口的数量大于1。
本申请实施例第二方面公开了一种通信方法,包括:网络设备确定相位跟踪参考信号PTRS的配置信息;所述网络设备向终端设备发送所述PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;所述网络设备根据所述PTRS端口号和/或PTRS端口的数量确定所述终端设备生成PTRS序列所用的PTRS正交码序列;所述网络设备根据所述PTRS正交码序列和PTRS图案接收来自所述终端设备的PTRS。
在上述方法中,当网络设备有多个物理接收通道,也就是说网络设备有多路不同源相噪的情况下,网络设备向终端设备发送PTRS配置信息,网络设备根据配置信息确定终端设备生成PTRS所用的PTRS正交码序列,网络设备根据PTRS正交码和PTRS图案接收PTRS,能够实现终端设备间的PTRS端口的复用,能够消除网络设备不同源相噪引入的终端间干扰和/或终端内流间干扰,提高数据的解调性能,而且通过PTRS端口码分复用的方式,保证了终端设备的PTRS开销更低,提高谱效。
在一种可能的实现方式中,所述PTRS端口的复用方式是频域码分复用的。在上述方法中,通过PTRS端口占用相同的频域资源,能够减小开销。
在又一种可能的实现方式中,所述方法还包括:所述网络设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
在又一种可能的实现方式中,所述网络设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案,包括:所述网络设备根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度;每K个RB中有一个RB上映射有PTRS;所述网络设备向所述终端设备发送第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述终端设备在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述网络设备将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;所述网络设备根据K以及系统带宽确定第一索引集合,包括:所述网络设备根据所述 第一个PTRS块的RB的索引、K以及系统带宽确定所述第一索引集合。
在又一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述K的取值。
在又一种可能的实现方式中,所述K是由协议规定。
在又一种可能的实现方式中,所述网络设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案,包括:所述网络设备根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述网络设备向所述终端设备发送第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述终端设备在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述网络设备将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
在又一种可能的实现方式中,所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射PTRS;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
在又一种可能的实现方式中,所述方法还包括:所述网络设备向所述终端设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
在又一种可能的实现方式中,所述方法还包括:所述网络设备根据所述第三指示信息确定所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS端口的数量大于1。
在又一种可能的实现方式中,所述方法还包括:所述网络设备确定每个物理接收通道所接收到的物理共享上行信道的数据符号上的相噪公共相位误差CPE与所述物理共享上行信道的解调参考信号DMRS符号的相位差;所述网络设备根据不同物理接收通道所对应所述相位差之间的差值对数据信号进行补偿。
本申请实施例第三方面公开了一种通信装置,包括:通信单元和处理单元,所述通信单元,用于接收来自网络设备的相位跟踪参考信号PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;所述处理单元,用于根据所述配置信息确定PTRS正交码序列;所述处理单元,还用于根据所述PTRS正交码序列生成PTRS序列;所述处理单元,还用于将所述PTRS序列映射到时频资源上;所述通信单元,还用于向所述网络设备发送PTRS。
在一种可能的实现方式中,所述PTRS端口的复用方式是频域码分复用的。
在又一种可能的实现方式中,所述处理单元,用于将所述PTRS序列根据PTRS图案映射到所述时频资源上;所述PTRS图案包括用于映射所述PTRS序列的位置。
在又一种可能的实现方式中,所述处理单元,还用于根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
在又一种可能的实现方式中,所述处理单元,用于根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述通信单元,用于接收来自所述网络设备的第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述装置在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述处理单元,用于将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述通信单元,还用于接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;所述处理单元,用于根据所述第一个PTRS块的RB的索引、K以及系统带宽确定所述第一索引集合。
在又一种可能的实现方式中,所述通信单元,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述K的取值。
在又一种可能的实现方式中,所述K是由协议规定。
在又一种可能的实现方式中,所述处理单元,用于根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述通信单元,用于接收来自所述网络设备的第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述装置在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述处理单元,用于将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
在又一种可能的实现方式中,所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射所述PTRS序列;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
在又一种可能的实现方式中,所述通信单元,用于接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
在又一种可能的实现方式中,所述处理单元,还用于根据所述第三指示信息确定所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS端口的数量大于1。
关于第三方面或可能的实现方式所带来的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
本申请实施例第四方面公开了一种通信装置,包括:通信单元和处理单元,所述处理单元,用于确定相位跟踪参考信号PTRS的配置信息;所述通信单元,用于向终端设备发送所述PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;所述处理单元,用于根据所述PTRS端口号和/或PTRS端口的数量确定所述终端设备生成PTRS所用的PTRS正交码序列;所述通信单元,用于根据所述PTRS正交码序列和PTRS图案接收来自所述终端设备的PTRS。
在一种可能的实现方式中,所述PTRS端口的复用方式是频域码分复用的。
在又一种可能的实现方式中,所述处理单元,还用于根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
在又一种可能的实现方式中,所述处理单元,用于根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度;每K个RB中有一个RB上映射有PTRS;所述通信单元,用于向所述终端设备发送第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述终端设备在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述处理单元,用于将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述通信单元,还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;所述处理单元,用于根据所述第一个PTRS块的RB的索引、K以及系统带宽确定所述第一索引集合。
在又一种可能的实现方式中,所述通信单元,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述K的取值。
在又一种可能的实现方式中,所述K是由协议规定。
在又一种可能的实现方式中,所述处理单元,用于根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述通信单元,用于向所述终端设备发送第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述终端设备在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述处理单元,用于将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述K由所述部分带宽和第一关联关系确定,其中第一关 联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
在又一种可能的实现方式中,所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射PTRS;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
在又一种可能的实现方式中,所述通信单元,还用于向所述终端设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
在又一种可能的实现方式中,所述处理单元,还用于根据所述第三指示信息确定所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS端口的数量大于1。
在又一种可能的实现方式中,所述处理单元,还用于确定每个物理接收通道所接收到的物理共享上行信道的数据符号上的相噪公共相位误差CPE与所述物理共享上行信道的解调参考信号DMRS符号的相位差;所述处理单元,还用于根据不同物理接收通道所对应所述相位差之间的差值对数据信号进行补偿。
关于第四方面或可能的实现方式所带来的技术效果,可参考对于第二方面或相应的实施方式的技术效果的介绍。
本申请实施例第五方面公开了一种通信装置,该装置可以为终端设备或终端设备中的芯片,所述装置包括至少一个处理器,可选的,所述装置还包括存储器,所述处理器用于调用所述存储器中的计算机程序或指令,以实现上述第一方面或第一方面的可能的实现方式中所描述的方法。
本申请实施例第六方面公开了一种通信装置,该装置可以为网络设备或网络设备中的芯片,所述装置包括至少一个处理器,可选的,所述装置还包括存储器,所述处理器用于调用所述存储器中的计算机程序或指令,以实现上述第二方面或第二方面的可能的实现方式中所描述的方法。
本申请实施例第七方面公开了一种计算机程序,当所述计算机程序被通信装置执行时,实现上述第一方面、第一方面的可能的实现方式、第二方面或第二方面的可能的实现方式中所描述的方法。
本申请实施例第八方面公开了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现上述第一方面、第一方面的可能的实现方式、第二方面或第二方面的可能的实现方式中所描述的方法。
本申请实施例第九方面公开了一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所述存储器、所述接口电路和所述至少一个处理器通过线路互联,所述存储器中存储有计算机程序或指令;所述计算机程序或指令被所述处理器执行时,实现上述第一方面、第一方面的可能的实现方式、第二方面或第二方面的可能的实现方式中所描述的方法。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种不同频点相位噪声功率频谱密度示意图;
图2是本申请实施例提供的一种不同相位噪声对频域接收信号的影响;
图3是本申请实施例提供的一种通信系统的结构示意图;
图4是本申请实施例提供的一种通信系统的功能模块示意图;
图5是本申请实施例提供的一种CP-OFDM的PTRS图案的示意图;
图6是本申请实施例提供的一种场景示意图;
图7是本申请实施例提供的一种通信方法的流程示意图;
图8是本申请实施例提供的一种PTRS图案的示意图;
图9是本申请实施例提供的又一种PTRS图案的示意图;
图10是本申请实施例提供的一种通信装置的结构示意图;
图11是本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图3,图3是本申请实施例提供的一种通信系统300的结构示意图,该通信系统300包括网络设备301和终端设备302。网络设备301向终端设备302发送(phase tracking reference signal,PTRS)配置信息,相应的,终端设备302接收来自网络设备301的PTRS配置信息,并根据该PTRS配置信息确定PTRS正交码序列,然后根据该PTRS正交码序列生成PTRS序列;并将该PTRS序列根据PTRS图案映射到时频资源上,向网络设备301发送PTRS,相应的,网络设备301接收来自终端设备302的PTRS,并进行相噪估计以及相应的相位补偿。当然,本申请实施例为了示例说明,其中,网络设备301和终端设备302的个数可以更多或更少。本申请实施例可适用于以下场景:包括但不限于多站点传输,即同一个用户设备(user equipment,UE)同时与多个传输点间传输信号、回传、无线宽带到户(wireless to the x,WTTx)、增强移动宽带(enhanced mobile broadband,eMBB)、设备到设备(device to device,D2D)等对定时要求较高或传输速率要求较高的场景。也不限制波形,可应用于基于循环前缀正交频分复用(cyclic prefix-orthogonal frequency division multiplexing,CP-OFDM)或离散傅里叶变换扩展正交频分复用(discrete fourier transformation-spread-OFDM,DFT-s-OFDM)的系统。
(1)终端设备,又称之为UE、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,包括向用户提供语音和/或数据连通性的设备,具体的,可以包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线通信功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、设备到设备通信(device-to-device,D2D)终端设备、车到一切(vehicle to everything,V2X)终端设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端设备、物联网(internet of things,IoT)终端设备、轻型终端设备(light UE)、能力降低的用户设备(reduced capability UE,REDCAP UE)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可 以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等。
本申请实施例中,终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),可以认为是车载终端设备,车载终端设备可以实现为车载单元(on-board unit,OBU)或用于OBU的通信装置;或者,如上介绍的各种终端设备,如果位于路侧,例如设置在路边基础设施,可以实现为路侧单元(road-side unit,RSU)或用于RSU的通信装置。
本申请实施例中,用于实现终端设备的功能的装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
2)网络设备,可以是指接入网(access network,AN)设备,是指将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,接入网设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将NR系统中gnb的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中。可以通过对CU的功能进行进一步切分,例如,将控制面(CP)和用户面(UP)分离,即CU的控制面(CU-CP)和CU用户面(CU-UP)。
网络设备还可以是指核心网(core network,CN)设备,核心网设备例如包括接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体、用户面功能(user plane function,UPF)实体等等,此处不一一列举。其中,所述AMF实体可以负责终端的接入管理和移动性管理;所述SMF实体可以负责会话管理,如用户的会话建立等;所述UPF实体可以是用户面的功能实体,主要负责连接外部网络。需要说明的是,本申请中实体也可以称为网元或功能实体,例如,AMF实体也可以称为AMF网元或AMF功能实体,又例如,SMF实体也可以称为SMF网元或SMF功能实体等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
本申请所使用的通信系统的功能模块可以如图4所示,包括:信源比特生成、编码、正交幅度调制(quadrature amplitude modulation,QAM)、PTRS生成、资源单元(resource element,RE)映射、快速傅里叶逆变换(inverse fast fourier transform,IFFT)加循环前缀(cyclic prefix,CP)、信道均衡(包含信道估计)、RE解映射、PTRS获取、相噪估计/补偿、QAM解调、译码,其中,与本申请实施例相关的模块为PTRS生成、RE映射、PTRS获取、相噪估计/补偿。
非同源相噪:在信号从基带调制至中射频频段时,需要一个具有稳定频率的载波信号承载基带信号,该载波信号的频点即常规说的载波频率。本申请实施例中相噪是指因产生载波信号的器件的热噪声等引入的载波信号上的相位波动。而载波信号一般由本振源和/或参考信号形成,若接收端或发射端不同通道或不同面板上的载波信号均来自于同一个本振和/或同一个参考信号,则称之为同源相噪;否则称之为非同源相噪,即其包括本振不同或本振相同但参考信号不同两种场景。
在上行传输中,NR系统采用CP-OFDM和DFT-s-OFDM两种波形的一种,针对于CP-OFDM的PTRS图案包括两个参数,时域密度L和频域密度K int,其中时域密度L表示每L个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号有一个OFDM符号有PTRS符号,频域密度K int表示每K int*N sc/RB个RE有一个RE有PTRS,N sc/RB为一个资源块(resource block,RB)在频域包含的子载波数,一般为12,如图5所示,图5中的(a)表示K int=2,L=1时的PTRS图案的示意图;图5中的(b)表示K int=4,L=2时的PTRS图案的示意图;图5中的(c)表示K int=2,L=4时的PTRS图案的示意图。
其中,时域密度L与数据正交振幅调制(quadrature amplitude modulation,QAM)调制符号的调制编码方案(modulation and coding scheme,MCS)相关,频域密度与调度带宽相关,如表格1和表格2所示,其中ptrs_MCS i(i=1,2,3)和N RBi(i=0,1)均由网络设备通过无线资源控制(Radio Resource Control,RRC)信令配置给终端设备,ptrs-MCS 4为默认值,与MCS表格有关,因此PTRS图案由MCS以及调度带宽确定。
表格1
调度的MCS 时域密度L
I MCS<ptrs_MCS 1 PTRS不存在
ptrs_MCS 1≤I MCS<ptrs_MCS 2 4
ptrs_MCS 2≤I MCS<ptrs_MCS 3 2
ptrs_MCS 3≤I MCS<ptrs_MCS 4 1
表格2
调度带宽 频域密度K int
N RB<N RB0 PTRS不存在
N RB0≤N RB<N RB1 2
N RB1≤N RB 4
上述PTRS在设计时主要考虑相噪引入的公共相位误差(common phase error,CPE),因此该导频在调度带宽上均匀分布。
在现有的协议中,下行传输时对于指定UE仅支持单端口的PTRS,多UE的PTRS端口可以与不同的解调参考信号(demodulation reference signal,DMRS)端口关联,但多UE之间不知道除自身以外的其他UE的PTRS配置。上行传输时,如果波形是CP-OFDM,单UE最多可以支持双端口,与下行相同,多UE之间对于除自身以外的其他UE的PTRS配置情况是未知的。即对于上下行传输,均可以理解为多UE之间的PTRS是非正交复用的,如UE1映射PTRS的位置,UE2可以映射数据或PTRS;UE2映射PTRS的位置,UE1也可以映射数据或PTRS。
目前,对于上行传输的单UE多PTRS端口主要针对UE有非同源相噪的硬件配置而言,不同源时信号模型可以如以下公式所示,具体如下:
Figure PCTCN2022098742-appb-000001
其中,s i为终端设备发射的信号,
Figure PCTCN2022098742-appb-000002
为终端设备第一路的相噪引入的CPE,
Figure PCTCN2022098742-appb-000003
为终端设备第二路的相噪引入的CPE,H为终端设备与接收端间的信道,w为接收端接收到的噪声,e 为接收端的相噪CPE,y为接收端接收到的信号。
根据上述公式可知,接收端可以基于DMRS估计出信道,均衡之后可以消除接收端相噪CPE即e 和信道H的影响得到两路信号独立的包含不同相噪CPE的信号,并针对两路独立的信号分别基于PTRS进行相噪估计与补偿,恢复出原始信号s i
但是,在上行传输过程中,当接收端也有多个不同源的相噪,且不能忽略时,传统的终端内频分的两个PTRS端口,终端间非正交的PTRS端口,会导致均衡过程在终端间引入干扰,导致解调性能下降。
以下图6所示场景为例,其中波浪线的表示本振源,微型射频拉远模块(pico remote radio unit,pRRU)可以理解为一个射频接收通道,不同的pRRU有不同的本振源,不同的本振导致不同的相噪,也就是说,接收端有N个不同源的通道,而多个终端的任意一个终端相噪同源,或终端仅有一个相噪源。此时,接收端接收到的信号模型可以如以下公式所示,具体如下:
Figure PCTCN2022098742-appb-000004
其中, i为第i个pRRU的接收信号,i=1,…,N,N为pRRU数量;s j为第j个UE发送的信号,j=1,…,M,M为UE的数量;
Figure PCTCN2022098742-appb-000005
为第i个pRRU上的相噪引入的CPE,
Figure PCTCN2022098742-appb-000006
为第j个UE上的相噪引入的CPE,h ij为第j个UE到第i个pRRU上的信道,w i为第i个pRRU接收信号上的噪声信号。
为了简化分析,以M=N=2为例进行描述,上述公式具体如下:
Figure PCTCN2022098742-appb-000007
接收端可以根据DMRS分别估计出DMRS所在OFDM符号(后文简称DMRS符号)上的等效信道,即
Figure PCTCN2022098742-appb-000008
假设信道h ij随时间变换缓慢,如不同OFDM符号上的信道h ij相同,则数据所在OFDM符号(后文简称OFDM符号)d 上的接收信号可以表示为:
Figure PCTCN2022098742-appb-000009
其中,
Figure PCTCN2022098742-appb-000010
为DMRS符号上的接收端相噪引入的CPE,
Figure PCTCN2022098742-appb-000011
为数据符号上的接收端相噪引入的CPE,Δα i=α i,di,表示因接收端相噪导致数据符号上的CPE与DMRS符号上CPE的相位差;
Figure PCTCN2022098742-appb-000012
为DMRS符号上的发射端相噪引入的CPE,
Figure PCTCN2022098742-appb-000013
为数据符号上的发射端相噪引入的CPE,Δθ j=θ j,dj,表示因发射端相噪导致的数据符号上的CPE与DMRS符号上CPE的相位差值;
Figure PCTCN2022098742-appb-000014
为DMRS估计的包含相噪的等效信道。
假设均衡矩阵为
Figure PCTCN2022098742-appb-000015
则对上述数据符号d上的接收信号进行均衡,确定均衡后的信号,如下所示:
Figure PCTCN2022098742-appb-000016
其中,
Figure PCTCN2022098742-appb-000017
上的相噪Δθ i可以是接收端基于各自传输层上的PTRS收发信号估计得到,并消除相噪的影响;
Figure PCTCN2022098742-appb-000018
则可以理解为由于接收端有多个不同源的相噪,从而在终端的信号间引入的干扰。
因此,当接收端有多个不同源的相噪且不能忽略时,会导致均衡过程在终端间引入干扰,或终端内的流间引入干扰,从而导致解调性能下降,为了解决上述问题,本申请实施例提出以下解决方案。
请参见图7,图7是本申请实施例提供的一种通信方法,该方法包括但不限于如下步骤:
步骤S701:网络设备确定PTRS的配置信息。
步骤S702:网络设备向终端设备发送PTRS的配置信息。
具体地,该PTRS的配置信息包括PTRS端口号和/或PTRS端口的数量。其中,该PTRS端口的复用方式是频域码分的,PTRS端口的数量指频域码分的端口数、或频域码分的PTRS端口数。该PTRS端口的数量大于或等于1。其中,该PTRS端口的数量小于预定义阈值,该 预定义阈值可以动态配置,如通过无线资源控制(radio resource control,RRC)信令指示最大可频域码分的PTRS端口数。该预定义阈值可以为信道相干带宽所对应的子载波数,且该信道相干带宽为调度的多个终端设备中的最小信道相干带宽。若频域码分仅应用在终端间,如终端内的多个PTRS端口频分,则信道相干带宽和子载波间隔决定了最大能一起调度(指调度的时频空资源相同)的用户数;若频域码分同时应用在终端间和终端内,则信道相干带宽和子载波间隔决定最大能一起频域码分的PTRS端口的数量。此时,若最大允许的PTRS端口的数量或用户数小于待同时同频调度的用户数,则还可以通过空分的方式实现部分用户的同时同频调度,即通过不同的波束在相同时频资源上服务多个用户。其中,信道相干带宽是指特定频率范围,在该频率范围内的任意两个频率分量的信道都具有很强的相关性,或任意两个频域分量的信道相关性大于规定或指定阈值,可以理解为在信道相关性满足特定条件的一段频率范围。
在一种示例中,假设有4个终端设备,分别为终端设备1、终端设备2、终端设备3和终端设备4,其中,终端设备1有2个PTRS端口,端口号分别为端口1和端口2;终端设备2有1个PTRS端口,端口号为端口3;终端设备3有2个PTRS端口,端口号分别为端口4和端口5;终端设备4有1个PTRS端口,端口号为端口6,则6个PTRS端口频域码分时,配置给第一个终端设备的PTRS配置信息可包括或指示:(a)两个PTRS端口号,(b)PTRS端口数为6;配置给第二个终端设备的PTRS配置信息可以包括或指示(a)一个PTRS端口号,(b)PTRS端口数为6;其他终端设备的PTRS配置信息依此类推。
具体地,当网络设备有至少两个物理接收通道,该物理接收通道可以为pRRU,终端设备之间的PTRS端口可以通过PTRS端口号进行区分。
单个终端设备的PTRS端口的数量与该终端设备是否上报PTRS端口的能力信息相关,该PTRS端口的能力信息用于表示该终端设备支持M个上行PTRS端口,其中,M为正整数。在一种示例中,M=2;在又一种示例中,M=4。
步骤S703:终端设备接收来自网络设备的PTRS的配置信息。
当终端设备接收来自网络设备的PTRS的配置信息之后,会根据配置信息判断是否需要频域码分,在一种示例中,终端设备接收来自网络设备的PTRS的配置信息,其中,频域码分的PTRS的端口的数量大于1,则终端设备确定需要频域码分,执行步骤S704-步骤S708的操作。在一种示例中,终端设备接收来自网络设备的PTRS的配置信息,其中,频域码分的PTRS的端口的数量等于1,则终端设备确定不需要频域码分,根据由时域密度L和频域密度K int确定的PTRS图案映射PTRS序列。
步骤S704:终端设备根据PTRS的配置信息确定PTRS正交码序列。
终端设备可以根据PTRS端口号和频域码分的PTRS端口的数量确定PTRS正交码序列的索引,然后根据该索引确定PTRS正交码序列。
具体地,终端设备还可以接收来自网络设备的第三指示信息,该第三指示信息用于指示PTRS正交码序列或正交码序列集合。也就是说协议上可能规定有多个正交码序列集合,终端设备可以通过接收第三指示信息的方式确定采用哪一种正交码序列集合。终端设备还可以根据第三指示信息确定PTRS端口的数量。在一种示例中,假设第三指示信息指示的PTRS正交码序列为4*4,那么PTRS端口的数量为4。
在一种示例中,假设各终端设备PTRS端口号为P i,PTRS端口的数量为N ptrs,则PTRS正交码序列的索引C idx可以由如下公式确定:
C idx=mod(P i,N ptrs)或C idx=mod(P i-1,N ptrs)+1;
其中,C idx表示正交码序列的索引,P i表示PTRS端口号,N ptrs表示PTRS端口的数量。
例如,假设PTRS端口号为P 1至P 8,PTRS端口的数量为8时,PTRS正交码序列可以下列表格3所示:
表格3
P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8
1 1 1 1 -1 -1 -1 -1
1 1 -1 -1 1 1 -1 -1
1 1 -1 -1 -1 -1 1 1
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 -1 1 1 -1
1 -1 1 -1 -1 1 -1 1
步骤S705:终端设备根据PTRS正交码序列生成PTRS序列。
具体地,终端设备可以根据预定义规则生成伪随机序列,然后根据PTRS正交码序列和伪随机序列生成PTRS序列。其中,不同PTRS端口(端口号不同)的在同一子载波上伪随机序列可以相同也可以不同。
在一种示例中,假设PTRS端口号为P 1至P 8,PTRS端口的数量为8,该8个PTRS端口在连续的8个子载波上承载的伪随机序列可以相同,也可以不同,终端设备根据预定义规则生成的伪随机序列如表格4所示:
表格4
  P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8
子载波1 a1 a2 a3 a4 a5 a6 a7 a8
子载波2 b1 b2 b3 b4 b5 b6 b7 b8
子载波3 c1 c2 c3 c4 c5 c6 c7 c8
子载波4 d1 d2 d3 d4 d5 d6 d7 d8
子载波5 e1 e2 e3 e4 e5 e6 e7 e8
子载波6 f1 f2 f3 f4 f5 f6 f7 f8
子载波7 g1 g2 g3 g4 g5 g6 g7 g8
子载波8 h1 h2 h3 h4 h5 h6 h7 h8
然后根据PTRS正交码序列和伪随机序列相乘(将伪随机序列按正交码长度分成多段,每段长度为正交码的长度,每段均和正交码序列依次点乘)生成PTRS序列,假设PTRS正交码序列如表格3所示,伪随机序列如表格4所示,则将PTRS正交码序列和伪随机序列相乘生成PTRS序列,该PTRS序列如表格5所示:
表格5
  P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8
子载波1 a1 a2 a3 a4 -a5 -a6 -a7 -a8
子载波2 b1 b2 -b3 -b4 b5 b6 -b7 -b8
子载波3 c1 c2 -c3 -c4 -c5 -c6 c7 c8
子载波4 d1 d2 d3 d4 d5 d6 d7 d8
子载波5 e1 -e2 e3 -e4 e5 -e6 e7 -e8
子载波6 f1 -f2 -f3 f4 f5 -f6 -f7 f8
子载波7 g1 -g2 -g3 g4 -g5 g6 g7 -g8
子载波8 h1 -h2 h3 -h4 -h5 h6 -h7 h8
步骤S706:终端设备将PTRS序列根据PTRS图案映射到时频资源上。
具体地,终端设备将PTRS序列根据PTRS图案映射到时频资源上,该PTRS图案包括用于映射PTRS序列的位置。系统带宽或部分带宽内的每个RB上有连续的N ptrs个子载波用于映射PTRS序列,其中每个RB包括12个子载波,N ptrs表示PTRS端口的数量。
具体地,终端设备根据PTRS端口号和/或PTRS端口的数量确定该PTRS图案,如下:
在一种可能的实现方式中,终端设备根据K以及系统带宽确定第一索引集合,第一索引集合包括系统带宽内用于映射PTRS序列的资源块RB的索引;K表示PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS。终端设备接收来自网络设备的第一消息,第一消息用于指示第二索引集合,第二索引集合包括网络设备分配给终端设备在系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引。终端设备将第一索引集合与第二索引集合取交集确定第三索引集合,第三索引集合中的索引对应的RB即该终端设备用于映射PTRS的RB,在第三索引集合中的索引对应的RB内,PTRS映射在多个连续的子载波上,因此,第三索引集合中所有索引对应的RB上映射的PTRS的位置(子载波或者RE)组成的图案即称之为PTRS图案,即PTRS图案在频域包括一个或多个PTRS块(即一个或多个RB),一个PTRS块包括多个连续的子载波,一个PTRS块中包括的连续的子载波的数量与PTRS端口的数量相同。此图案也可称之为部分集中式的PTRS图案。
其中,K可以通过以下两种方式确定:第一种方式,终端设备接收来自网络设备的第二指示信息,该第二指示信息用于指示K的取值;第二种方式,K是由协议规定的。
其中,终端设备接收来自网络设备的第一指示信息,该第一指示信息用于指示该PTRS图案在频域对应的第一个PTRS块的RB的索引。相应的,终端设备根据第一个PTRS块的RB的索引、K以及系统带宽确定第一索引集合。该第一个PTRS块的RB的索引除了第一指示信息指示的方式确定外,还可以根据小区标识以及部分带宽标识(band width part-id,BWP-Id)确定。其中,RB的索引可以为虚拟资源块(virtual resource block,VRB)或者物理资源块(physical resource block,PRB)。
在一种示例中,假设终端设备接收来自网络设备的第一指示信息,该第一指示信息用于指示PTRS图案在频域对应的第一个PTRS块的RB的索引为1,协议规定K=12,系统带宽为136个RB;那么终端设备根据该第一个PTRS块的RB的索引、K以及系统带宽确定第一索引集合S ptrs,其中,S ptrs={RB index0,RB index0+K,RB index0+2*K,……},将RB index0表 示PTRS图案在频域对应的第一个PTRS块的RB的索引,为1;那么第一索引集合S ptrs={1,13,25,……,133};假设终端设备接收来自网络设备的第一消息,第一消息用于指示第二索引集合,第二索引集合S prbi包括网络设备分配给终端设备在系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引,其中,S prbi={1,2,3,4,……,30};终端设备将第一索引集合与第二索引集合取交集确定第三索引集合S ptrsi={1,13,25},根据第三索引集合确定PTRS图案,即第三索引集合中所有索引对应的RB上映射的PTRS的位置组成的图案即为PTRS图案。其中,第三索引集合中的索引对应的RB即该终端设备用于映射PTRS的RB,终端设备在第三索引集合中的索引对应的RB内,将PTRS映射在多个连续的子载波上,如图8所示,以PTRS端口的数量为4为例,PTRS图案在频域包括3个PTRS块,且该3个PTRS块分别在序号为1的RB、序号为13的RB、以及序号为25的RB上,PTRS块之间不连续,一个PTRS块包括4个连续的子载波,其中,PTRS块可以均匀的分布在RB上,如每K=12个RB上映射一个PTRS块,图8中所示的PTRS图案在时域的密度为1。
在又一种可能的实现方式中,终端设备根据K确定第四索引集合;第四索引集合包括部分带宽内用于映射PTRS序列的资源块RB的索引的集合;K表示PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;终端设备接收来自网络设备的第二消息,第二消息用于指示第五索引集合,第五索引集合包括网络设备分配给终端设备在部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引;终端设备将第四索引集合与第五索引集合取交集确定第六索引集合,第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为PTRS图案,其中,PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,一个PTRS块中包括的连续的子载波的数量与PTRS端口的数量相同。其中,该部分带宽为系统带宽的一部分。K由部分带宽和第一关联关系确定,其中第一关联关系为部分带宽包含的RB个数与K的关联关系,第一关联关系为部分带宽包含的RB个数与K的关联关系如表格6所示。其中,该PTRS图案在时域的密度与K确定方法类似,此处不再赘述。具体示例可以参考上述描述,此处不再赘述。此时,多个终端设备的第一关联关系相同,可以是相噪最恶劣的终端设备对应的第一关联关系。
表格6
部分带宽 频域密度K
N RB<N RB0 PTRS不存在
N RB0≤N RB<N RR1 2
N RB1≤N RB 4
在又一种可能的实现方式中,终端设备根据K确定第四索引集合;第四索引集合包括部分带宽内用于映射PTRS序列的资源块RB的索引的集合;K表示PTRS图案在频域的密度, 每K个RB中有一个RB上映射有PTRS;终端设备根据第四索引集合确定PTRS图案,其中,PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,一个PTRS块中包括的连续的子载波的数量与PTRS端口的数量相同。K由部分带宽和第一关联关系确定,其中第一关联关系为部分带宽包含的RB数与K的关联关系,该部分带宽包括多个终端设备之间的共享带宽。该共享带宽是指调度的多个终端设备传输物理上行共享信道(physical uplink shared channel,PUSCH)的重叠的带宽。第一关联关系为部分带宽包含的RB数与K的关联关系如表格2所示。在一种示例中,终端设备根据部分带宽和第一关联关系确定频域密度K int=2,K=K int*N ptrs,N ptrs表示PTRS端口的数量。其中,该PTRS图案在时域的密度与K确定方法类似,此处不再赘述。具体示例可以参考上述描述,此处不再赘述。此时,多个终端设备的第一关联关系相同,可以是相噪最恶劣的终端设备对应的第一关联关系。
在一种可能的实现方式中,PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,该多个连续的子载波的数量小于PTRS端口的数量。相应的,在该情况下,该PTRS端口是通过时频域码分复用在相同的时频资源上。也就是说占用相同的时频资源,如图9所示,图9表示PTRS图案,其中,时频域码分的PTRS端口分别为端口1、端口2、端口3和端口4,也就是说PTRS端口的数量为4,此时PTRS正交码序列可以如表格7所示,其中端口1至端口4占用相同的时频资源,该PTRS图案在频域包括多个PTRS块,一个PTRS块包括2个连续的子载波。
表格7
Figure PCTCN2022098742-appb-000019
终端设备可以根据预定义规则生成伪随机序列,然后根据PTRS正交码序列和伪随机序列生成PTRS序列。其中,不同PTRS端口(端口号不同)的在同一子载波上的同一时刻伪随机序列可以相同也可以不同。
在一种示例中,假设PTRS端口号为P 1至P 4,PTRS端口的数量为4,该4个PTRS端口在连续的2个子载波上承载的伪随机序列可以相同,也可以不同,终端设备根据预定义规则生成的伪随机序列如表格8所示:
表格8
Figure PCTCN2022098742-appb-000020
然后终端设备根据正交码序列和伪随机序列相乘(将伪随机序列按正交码长度分成多段,每段长度为正交码的长度,每段均和正交码序列依次点乘)生成PTRS序列。假设PTRS正交码序列如表格7所示,伪随机序列如表格8所示,则将PTRS正交码序列和伪随机序列共轭相乘生成PTRS序列,该PTRS序列如表格9所示。
表格9
Figure PCTCN2022098742-appb-000021
然后终端设备将PTRS序列根据PTRS图案映射到时频资源上,该PTRS图案如图9所示。
步骤S707:终端设备向所述网络设备发送PTRS。
步骤S708:网络设备根据所述PTRS正交码序列和PTRS图案在该时频资源上接收来自终端设备的PTRS。
具体地,网络设备确定PTRS正交码序列以及PTRS图案可以参考终端设备确定PTRS正交码序列和PTRS图案,此处不再赘述。
在一种可能的实现方式中,网络设备根据所述PTRS正交码序列和PTRS图案在该时频资源上接收来自终端设备的PTRS之后,网络设备确定每个物理接收通道所接收到的物理共享上行信道的数据符号上的相噪公共相位误差CPE与物理共享上行信道的DMRS符号的相位差;网络设备根据不同物理接收通道所对应相位差之间的差值对数据信号进行补偿。其中,物理接收通道可以为pRRU。
在一种示例中,假设以PTRS端口的数量为2,网络设备有两路非同源相噪,也就是说网络设备有2个物理接收通道举例进行描述,假设端口1和端口2承载的伪随机序列相同,则在两个连续的子载波上端口1和端口2上的发送的PTRS序列可以如表格10所示,
表格10
  端口1 端口2
子载波1(RE1) a a
子载波1(RE2) b -b
以其中一个符号t 1上的接收信号为例,有:
第一个pRRU两个RE上的接收到的信号分别为:
Figure PCTCN2022098742-appb-000022
Figure PCTCN2022098742-appb-000023
其中,y 1,REi表示第一个pRRU在子载波i上接收到的信号,i=1,2;w 1,REi表示第一个pRRU在子载波i上接收到的噪声,h 1j表示第一个pRRU与端口j之间的信道;j=1,2;s j,REi表示端口j在子载波i上发送的信号,
Figure PCTCN2022098742-appb-000024
为第一个pRRU上的相噪引入的CPE,
Figure PCTCN2022098742-appb-000025
为表示网络设备的相位噪声在端口j引入的CPE差。
第二个pRRU两个RE上的接收到的信号分别为:
Figure PCTCN2022098742-appb-000026
Figure PCTCN2022098742-appb-000027
其中,y 2,REi表示第二个pRRU在子载波i上接收到的信号,i=1,2;w 2,REi表示第二个pRRU在子载波i上接收到的噪声,h 2j表示第二个pRRU与端口j之间的信道;j=1,2;s j,REi表示端口j在子载波i上发送的信号,
Figure PCTCN2022098742-appb-000028
为第二个pRRU上的相噪引入的CPE,
Figure PCTCN2022098742-appb-000029
为表示网络设备的相位噪声在端口j引入的CPE差。
由于端口1和端口2承载的伪随机序列相同,PTRS正交码不同,因此有s 2,RE1=s 1,RE1,s 2,RE2=-s 1,RE2,结合上述方程即可获取
Figure PCTCN2022098742-appb-000030
Figure PCTCN2022098742-appb-000031
的估计值。
其他时刻可以此类推。若DMRS所在符号的等效信道表示为:
Figure PCTCN2022098742-appb-000032
Figure PCTCN2022098742-appb-000033
则依次与上述方程中获取的
Figure PCTCN2022098742-appb-000034
Figure PCTCN2022098742-appb-000035
的估计值共轭相乘即可得数据符号或PTRS符号与DMRS符号上的相位差,也就是PTRS符号等效信道与DMRS符号等效信道的相位差,如表格11所示:
表格11
Figure PCTCN2022098742-appb-000036
通过表格8中的相位差确定不同物理接收通道所对应相位差之间的差值,如下公式所示:
Figure PCTCN2022098742-appb-000037
在接收信号均衡之前对第i个pRRU的接收信号补偿上述相位因子,即相位差之间的差值,即:
Figure PCTCN2022098742-appb-000038
Figure PCTCN2022098742-appb-000039
其中,
Figure PCTCN2022098742-appb-000040
为DMRS符号上的网络设备相噪引入的CPE,
Figure PCTCN2022098742-appb-000041
为数据符号上的网络设备相噪引入的CPE,
Figure PCTCN2022098742-appb-000042
表示因网络设备两路相噪导致数据符号上的CPE与DMRS符号上CPE的相位差;
Figure PCTCN2022098742-appb-000043
为DMRS符号上的终端设备相噪引入的CPE,
Figure PCTCN2022098742-appb-000044
为数据符号上的终端设备相噪引入的CPE,
Figure PCTCN2022098742-appb-000045
表示因终端设备相噪导致的数据符号上的CPE与DMRS符号上CPE的相位差;
Figure PCTCN2022098742-appb-000046
为DMRS估计的包含相噪的等效信道。
在图7所描述的方法中,当网络设备有多个物理接收通道,也就是说网络设备有多路不同源相噪的情况下,终端设备通过接收网络设备的PTRS配置信息,并根据配置信息确定PTRS正交码序列,从而生成PTRS序列,并将PTRS序列根据PTRS图案映射到时频资源上,向网络设备发送PTRS,能够实现终端设备间的PTRS端口的复用,能够消除网络设备不同源相噪引入的终端间干扰和/或终端内流间干扰,提高数据的解调性能,而且通过PTRS端口是码分复用的方式,保证了终端设备的PTRS开销更低,提高谱效。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图10,图10是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为终端设备或终端设备中的芯片,该通信装置1000可以包括通信单元1001和处理单元1002,其中,各个单元的详细描述如下。
所述通信单元1001,用于接收来自网络设备的相位跟踪参考信号PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;所述处理单元1002,用于根据所述配置信息确定PTRS正交码序列;所述处理单元1002,还用于根据所述PTRS正交码序列生成PTRS序列;所述处理单元1002,还用于将所述PTRS序列映射到时频资源上;所述通信单元1001,还用于向所述网络设备发送PTRS。
在一种可能的实现方式中,所述PTRS端口的复用方式是频域码分复用的。
在又一种可能的实现方式中,所述处理单元1002,用于将所述PTRS序列根据所述PTRS图案映射到所述时频资源上;所述PTRS图案包括用于映射所述PTRS序列的位置。
在又一种可能的实现方式中,所述处理单元1002,还用于根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
在又一种可能的实现方式中,所述处理单元1002,用于根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述通信单元1001,用于接收来自所述网络设备的第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述装置在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述处理单元1002,用于将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述通信单元1001,还用于接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;所述处理单元1002,用于根据所述第一个PTRS块的RB的索引、K以及系统带宽确 定所述第一索引集合。
在又一种可能的实现方式中,所述通信单元1001,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述K的取值。
在又一种可能的实现方式中,所述K是由协议规定。
在又一种可能的实现方式中,所述处理单元1002,用于根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述通信单元1001,用于接收来自所述网络设备的第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述装置在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述处理单元1002,用于将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
在又一种可能的实现方式中,所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射所述PTRS序列;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
在又一种可能的实现方式中,所述通信单元1001,用于接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
在又一种可能的实现方式中,所述处理单元1002,还用于根据所述第三指示信息确定所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS端口的数量大于1。
需要说明的是,各个单元的实现及有益效果还可以对应参照图7所示的方法实施例的相应描述。
请参见图10,图10是本申请实施例提供的一种通信装置的结构示意图,该通信装置可以为网络设备或网络设备中的芯片,该通信装置1000可以包括通信单元1001和处理单元1002,其中,各个单元的详细描述如下。
所述处理单元1002,用于确定相位跟踪参考信号PTRS的配置信息;所述通信单元1001,用于向终端设备发送所述PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;所述处理单元1002,用于根据所述PTRS端口号和/或PTRS端口的数量确定所述终端设备生成PTRS所用的PTRS正交码序列;所述通信单元1001,用于根据所述PTRS正交码序列和PTRS图案接收来自所述终端设备的PTRS。
在一种可能的实现方式中,所述PTRS端口的复用方式是频域码分复用的。
在又一种可能的实现方式中,所述处理单元1002,还用于根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
在又一种可能的实现方式中,所述处理单元1002,用于根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度;每K个RB中有一个RB上映射有PTRS;所述通信单元1001,用于向所述终端设备发送第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述终端设备在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述处理单元1002,用于将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述通信单元1001,还用于向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;所述处理单元1002,用于根据所述第一个PTRS块的RB的索引、K以及系统带宽确定所述第一索引集合。
在又一种可能的实现方式中,所述通信单元1001,还用于向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述K的取值。
在又一种可能的实现方式中,所述K是由协议规定。
在又一种可能的实现方式中,所述处理单元1002,用于根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;所述通信单元1001,用于向所述终端设备发送第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述终端设备在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;所述处理单元1002,用于将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
在又一种可能的实现方式中,所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射PTRS;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
在又一种可能的实现方式中,所述通信单元1001,还用于向所述终端设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
在又一种可能的实现方式中,所述处理单元1002,还用于根据所述第三指示信息确定所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS端口的数量大于1。
在又一种可能的实现方式中,所述处理单元1002,还用于确定每个物理接收通道所接收 到的物理共享上行信道的数据符号上的相噪公共相位误差CPE与所述物理共享上行信道的解调参考信号DMRS符号的相位差;所述处理单元1002,还用于根据不同物理接收通道所对应所述相位差之间的差值对数据信号进行补偿。
需要说明的是,各个单元的实现及有益效果还可以对应参照图7所示的方法实施例的相应描述。
请参见图11,图11是本申请实施例提供的一种通信装置1100,该装置1100包括至少一个处理器1101和通信接口1103,可选的,还包括存储器1102,所述处理器1101、存储器1102和通信接口1103通过总线1104相互连接。
存储器1102包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1102用于相关计算机程序及数据。通信接口1103用于接收和发送数据。
处理器1101可以是一个或多个中央处理器(central processing unit,CPU),在处理器1101是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该装置1100中的处理器1101用于读取所述存储器1102中存储的计算机程序代码,执行以下操作:
通过所述通信接口1103接收来自网络设备的相位跟踪参考信号PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;
根据所述配置信息确定PTRS正交码序列;
根据所述PTRS正交码序列生成PTRS序列;
将所述PTRS序列映射到时频资源上;
通过所述通信接口1103向所述网络设备发送PTRS。
在一种可能的实现方式中,所述PTRS端口的复用方式是用于频域码分复用的。
在又一种可能的实现方式中,所述处理器1101,用于将所述PTRS序列根据所述PTRS图案映射到所述时频资源上;所述PTRS图案包括用于映射所述PTRS序列的位置。
在又一种可能的实现方式中,所述处理器1101,还用于根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
在又一种可能的实现方式中,所述处理器1101,用于根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;通过所述通信接口1103接收来自所述网络设备的第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述装置在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述处理器1101,还用于通过通信接口1103接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;所述处理器1101,用于根据所述第一个PTRS块的RB的索引、K 以及系统带宽确定所述第一索引集合。
在又一种可能的实现方式中,所述处理器1101,还用于通过通信接口1103接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述K的取值。
在又一种可能的实现方式中,所述K是由协议规定。
在又一种可能的实现方式中,所述处理器1101,用于根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;通过所述通信接口1103接收来自所述网络设备的第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述装置在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
在又一种可能的实现方式中,所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射所述PTRS序列;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
在又一种可能的实现方式中,所述处理器1101,用于通过通信接口1103接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
在又一种可能的实现方式中,所述处理器1101,还用于根据所述第三指示信息确定所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS端口的数量大于1。
需要说明的是,各个操作的实现及有益效果还可以对应参照图7所示的方法实施例的相应描述。
请参见图11,图11是本申请实施例提供的一种通信装置1100,该装置1100包括至少一个处理器1101和通信接口1103,可选的,还包括存储器1102,所述处理器1101、存储器1102和通信接口1103通过总线1104相互连接。
存储器1102包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1102用于相关计算机程序及数据。通信接口1103用于接收和发送数据。
处理器1101可以是一个或多个中央处理器(central processing unit,CPU),在处理器1101是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该装置1100中的处理器1101用于读取所述存储器1102中存储的计算机程序代码,执行 以下操作:
确定相位跟踪参考信号PTRS的配置信息;
通过所述通信接口1103向终端设备发送所述PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;
根据所述PTRS端口号和/或PTRS端口的数量确定所述终端设备生成PTRS所用的PTRS正交码序列;通过所述通信接口1103根据所述PTRS正交码序列和PTRS图案接收来自所述终端设备的PTRS。
在一种可能的实现方式中,所述PTRS端口的复用方式是频域码分复用的。
在又一种可能的实现方式中,所述处理器1101,还用于根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
在又一种可能的实现方式中,所述处理器1101,用于根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度;每K个RB中有一个RB上映射有PTRS;通过所述通信接口1103向所述终端设备发送第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述终端设备在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述处理器1101,还用于通过所述通信接口1103向所述终端设备发送第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;所述处理器1101,用于根据所述第一个PTRS块的RB的索引、K以及系统带宽确定所述第一索引集合。
在又一种可能的实现方式中,所述处理器1101,还用于通过所述通信接口1103向所述终端设备发送第二指示信息,所述第二指示信息用于指示所述K的取值。
在又一种可能的实现方式中,所述K是由协议规定。
在又一种可能的实现方式中,所述处理器1101,用于根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;通过所述通信接口1103向所述终端设备发送第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述终端设备在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
在又一种可能的实现方式中,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
在又一种可能的实现方式中,所述第三索引集合中的索引或所述第六索引集合中的索引 对应的每个RB上有连续的N ptrs个子载波用于映射PTRS;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
在又一种可能的实现方式中,所述处理器1101,还用于通过所述通信接口1103向所述终端设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
在又一种可能的实现方式中,所述处理器1101,还用于根据所述第三指示信息确定所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
在又一种可能的实现方式中,所述PTRS端口的数量大于1。
在又一种可能的实现方式中,所述处理器1101,还用于确定每个物理接收通道所接收到的物理共享上行信道的数据符号上的相噪公共相位误差CPE与所述物理共享上行信道的解调参考信号DMRS符号的相位差;根据不同物理接收通道所对应所述相位差之间的差值对数据信号进行补偿。
需要说明的是,各个操作的实现及有益效果还可以对应参照图7所示的方法实施例的相应描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来计算机程序相关的硬件完成,该计算机程序可存储于计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储计算机程序代码的介质。

Claims (33)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收来自网络设备的相位跟踪参考信号PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;
    所述终端设备根据所述配置信息确定PTRS正交码序列;
    所述终端设备根据所述PTRS正交码序列生成PTRS序列;
    所述终端设备将所述PTRS序列映射到时频资源上;
    所述终端设备向所述网络设备发送PTRS。
  2. 根据权利要求1所述的方法,其特征在于,所述PTRS端口的复用方式是频域码分复用的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备将所述PTRS序列映射到时频资源上,包括:
    所述终端设备将所述PTRS序列根据PTRS图案映射到所述时频资源上;所述PTRS图案包括用于映射所述PTRS序列的位置。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
  5. 根据权利要求4所述的方法,其特征在于,所述终端设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案,包括:
    所述终端设备根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;
    所述终端设备接收来自所述网络设备的第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述终端设备在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;
    所述终端设备将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;
    所述终端设备根据K以及系统带宽确定第一索引集合,包括:
    所述终端设备根据所述第一个PTRS块的RB的索引、K以及系统带宽确定所述第一索引集合。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述K的取值。
  8. 根据权利要求1-4任一项所述的方法,其特征在于,所述终端设备根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案,包括:
    所述终端设备根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;
    所述终端设备接收来自所述网络设备的第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述终端设备在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;
    所述终端设备将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
  9. 根据权利要求8所述的方法,其特征在于,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
  10. 根据权利要求5-9任一项所述的方法,其特征在于,包括:
    所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射所述PTRS序列;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第三指示信息确定所述PTRS端口的数量。
  13. 根据权利要求1-4任一项所述的方法,其特征在于,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,所述PTRS端口的数量大于1。
  15. 一种通信方法,其特征在于,包括:
    网络设备确定相位跟踪参考信号PTRS的配置信息;
    所述网络设备向终端设备发送所述PTRS的配置信息,所述配置信息包括PTRS端口号 和/或PTRS端口的数量;
    所述网络设备根据所述PTRS端口号和/或PTRS端口的数量确定所述终端设备生成PTRS所用的PTRS正交码序列;
    所述网络设备根据所述PTRS正交码序列和PTRS图案接收来自所述终端设备的PTRS。
  16. 一种通信装置,其特征在于,包括通信单元和处理单元,
    所述通信单元,用于接收来自网络设备的相位跟踪参考信号PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;
    所述处理单元,用于根据所述配置信息确定PTRS正交码序列;
    所述处理单元,还用于根据所述PTRS正交码序列生成PTRS序列;
    所述处理单元,还用于将所述PTRS序列映射到时频资源上;
    所述通信单元,还用于向所述网络设备发送PTRS。
  17. 根据权利要求16所述的装置,其特征在于,所述PTRS端口的复用方式是频域码分复用的。
  18. 根据权利要求16或17所述的装置,其特征在于,
    所述处理单元,用于将所述PTRS序列根据PTRS图案映射到所述时频资源上;所述PTRS图案包括用于映射所述PTRS序列的位置。
  19. 根据权利要求18所述的装置,其特征在于,
    所述处理单元,还用于根据所述PTRS端口号和/或所述PTRS端口的数量确定所述PTRS图案。
  20. 根据权利要求19所述的装置,其特征在于,
    所述处理单元,用于根据K以及系统带宽确定第一索引集合,所述第一索引集合包括所述系统带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;
    所述通信单元,用于接收来自所述网络设备的第一消息,所述第一消息用于指示第二索引集合,所述第二索引集合包括所述网络设备分配给所述装置在所述系统带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;
    所述处理单元,用于将所述第一索引集合与所述第二索引集合取交集确定第三索引集合,所述第三索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
  21. 根据权利要求20所述的装置,其特征在于,
    所述通信单元,还用于接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述PTRS图案在频域对应的第一个PTRS块的RB的索引;
    所述处理单元,用于根据所述第一个PTRS块的RB的索引、K以及系统带宽确定所述第一索引集合。
  22. 根据权利要求20或21所述的装置,其特征在于,
    所述通信单元,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述K的取值。
  23. 根据权利要求16-19任一项所述的装置,其特征在于,
    所述处理单元,用于根据K确定第四索引集合;所述第四索引集合包括部分带宽内用于映射所述PTRS序列的资源块RB的索引的集合;所述K表示所述PTRS图案在频域的密度,每K个RB中有一个RB上映射有PTRS;
    所述通信单元,用于接收来自所述网络设备的第二消息,所述第二消息用于指示第五索引集合,所述第五索引集合包括所述网络设备分配给所述装置在所述部分带宽内的物理上行共享信道或物理下行共享信道的RB的索引的集合;
    所述处理单元,用于将所述第四索引集合与所述第五索引集合取交集确定第六索引集合,所述第六索引集合中的索引对应的RB上映射的PTRS的位置组成的图案为所述PTRS图案,其中,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述一个PTRS块中包括的连续的子载波的数量与所述PTRS端口的数量相同。
  24. 根据权利要求23所述的装置,其特征在于,所述K由所述部分带宽和第一关联关系确定,其中第一关联关系为所述部分带宽包含的RB个数与K的关联关系,所述部分带宽包括多个所述终端设备之间的共享带宽。
  25. 根据权利要求20-24任一项所述的装置,其特征在于,
    所述第三索引集合中的索引或所述第六索引集合中的索引对应的每个RB上有连续的N ptrs个子载波用于映射所述PTRS序列;所述每个RB中都映射有所述PTRS;其中,N ptrs表示所述PTRS端口的数量。
  26. 根据权利要求16-25任一项所述的装置,其特征在于,
    所述通信单元,用于接收来自所述网络设备的第三指示信息,所述第三指示信息用于指示所述PTRS正交码序列或正交码序列集合。
  27. 根据权利要求26所述的装置,其特征在于,
    所述处理单元,还用于根据所述第三指示信息确定所述PTRS端口的数量。
  28. 根据权利要求16-19任一项所述的装置,其特征在于,所述PTRS图案在频域包括一个或多个PTRS块,一个PTRS块包括多个连续的子载波,所述连续的子载波的数量小于所述PTRS端口的数量。
  29. 根据权利要求16-28任一项所述的装置,其特征在于,所述PTRS端口的数量大于1。
  30. 一种通信装置,其特征在于,包括通信单元和处理单元,
    所述处理单元,用于确定相位跟踪参考信号PTRS的配置信息;
    所述通信单元,用于向终端设备发送所述PTRS的配置信息,所述配置信息包括PTRS端口号和/或PTRS端口的数量;
    所述处理单元,用于根据所述PTRS端口号和/或PTRS端口的数量确定所述终端设备生成PTRS所用的PTRS正交码序列;
    所述通信单元,用于根据所述PTRS正交码序列和PTRS图案接收来自所述终端设备的PTRS。
  31. 一种通信装置,其特征在于,包括至少一个处理器,所述处理器用于调用存储器中存储的计算机程序或指令,以使得实现如权利要求1至14中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括至少一个处理器,所述处理器用于调用存储器中存储的计算机程序或指令,以使得实现如权利要求15所述的方法。
  33. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序或指令,所述计算机程序或指令使得计算机执行如权利要求1至15任一项所述的方法。
PCT/CN2022/098742 2021-06-30 2022-06-14 一种通信方法及装置 WO2023273872A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110747402.8A CN115550120A (zh) 2021-06-30 2021-06-30 一种通信方法及装置
CN202110747402.8 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273872A1 true WO2023273872A1 (zh) 2023-01-05

Family

ID=84690027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098742 WO2023273872A1 (zh) 2021-06-30 2022-06-14 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115550120A (zh)
WO (1) WO2023273872A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150480A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 相位跟踪参考信号处理方法与装置
CN109150777A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 参考信号的传输方法和传输装置
CN111937331A (zh) * 2018-04-05 2020-11-13 三星电子株式会社 用于在无线通信系统中解码数据的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150480A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 相位跟踪参考信号处理方法与装置
CN109150777A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 参考信号的传输方法和传输装置
CN111937331A (zh) * 2018-04-05 2020-11-13 三星电子株式会社 用于在无线通信系统中解码数据的方法和设备

Also Published As

Publication number Publication date
CN115550120A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US9948370B2 (en) Method and apparatus for multiple frame transmission for supporting MU-MIMO
US9974098B2 (en) Method and apparatus for space division multiple access for wireless local area network system
US9554404B2 (en) Method and apparatus for transmitting frame in wireless local area network (WLAN) system
WO2018082669A1 (zh) 一种信息传输方法、装置和系统
CN114071429A (zh) 一种物理下行控制信道增强方法、通信装置及系统
US11431434B2 (en) Method and apparatus for secure communication in wireless communication system
WO2021098355A1 (zh) Csi测量方法及装置
US20230088374A1 (en) Buffer determining method and apparatus
EP4187830A1 (en) Methods for sending and receiving phase tracking reference signal, and communication device
CN112235087B (zh) 一种解调参考信号配置方法、终端及网络侧设备
US11677522B2 (en) Method and device for removing phase noise in wireless communication system
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
WO2023273872A1 (zh) 一种通信方法及装置
CN108809583B (zh) 传输信号的方法和装置
WO2020216068A1 (zh) 发送参考信号的方法和装置
US11382077B2 (en) PUCCH transmission method, terminal and network-side device
WO2021087877A1 (zh) 一种通信方法及装置
WO2022151500A1 (zh) 一种通信方法及装置
WO2024109457A1 (zh) 一种通信方法及装置
WO2022262532A1 (zh) 符号传输的方法和通信装置
WO2021168670A1 (zh) 一种通信方法及装置
WO2023273857A1 (zh) 信号传输的方法和通信装置
KR20210058663A (ko) Tdd 방식 기반의 ofdm 시스템에서 채널 추정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22831691

Country of ref document: EP

Kind code of ref document: A1