WO2021168670A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021168670A1
WO2021168670A1 PCT/CN2020/076680 CN2020076680W WO2021168670A1 WO 2021168670 A1 WO2021168670 A1 WO 2021168670A1 CN 2020076680 W CN2020076680 W CN 2020076680W WO 2021168670 A1 WO2021168670 A1 WO 2021168670A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
subcarrier
groups
subcarrier groups
frequency
Prior art date
Application number
PCT/CN2020/076680
Other languages
English (en)
French (fr)
Inventor
龚名新
曲秉玉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080097364.XA priority Critical patent/CN115176448A/zh
Priority to PCT/CN2020/076680 priority patent/WO2021168670A1/zh
Priority to EP20922193.6A priority patent/EP4099654A4/en
Publication of WO2021168670A1 publication Critical patent/WO2021168670A1/zh
Priority to US17/895,128 priority patent/US20220407662A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a communication method and device.
  • channel information can usually be obtained based on a reference signal.
  • sounding reference signals SRS
  • the base station can perform channel estimation according to the received SRS after receiving the SRS, and then obtain the uplink channel information between the terminal equipment and the base station.
  • TDD time division duplex
  • network equipment can use the reciprocity of uplink and downlink channel state information to obtain downlink channel state information through uplink channel state information, and downlink channel state information can be used for downlink Determination of precoding and modulation and coding methods during data transmission. Therefore, the accuracy of SRS channel estimation directly affects uplink or downlink throughput, especially in scenarios such as large-scale antennas, high mobility, and coordination.
  • This application provides a communication method and device to improve the accuracy of channel estimation.
  • the embodiments of the present application provide a communication method, which may be applied to a terminal device, or may also be applied to a chip inside the terminal device.
  • the terminal device since the terminal device transmits the first sequence on the M subcarrier groups, when the M symbols are combined for channel estimation, the interference between different terminal devices is small, which can effectively improve the accuracy of the channel estimation.
  • the M subcarrier groups are M different frequency subbands, where at least M-1 frequency subbands have the same bandwidth.
  • the interval between any two adjacent symbols in the M symbols corresponding to the M subcarrier groups is less than the first threshold; and/or, the first one of the M symbols corresponding to the M subcarrier groups The interval between the symbol and the last symbol is less than the second threshold.
  • the subcarriers included in any subcarrier group in the M subcarrier groups are continuous in the frequency domain, or are distributed at equal intervals in the frequency domain.
  • all the subcarriers included in the M subcarrier groups are continuous in the frequency domain, or are distributed at equal intervals in the frequency domain.
  • the number of subcarriers included in each subcarrier group in the M subcarrier groups is the same.
  • the position of the segment carried by each subcarrier group is determined by the frequency domain positions of the subcarriers included in each subcarrier group.
  • the subcarrier sequence is to sort the subcarriers included in the M subcarrier groups in the order from high frequency to low frequency or from low frequency to high frequency Obtained, k is an integer greater than zero.
  • the first sequence conforms to the following formula:
  • N ZC is the largest prime number less than or equal to W or the smallest prime number greater than W or the largest prime number less than or equal to 2W or the smallest prime number greater than 2W
  • q is an integer greater than 0 and less than N ZC
  • A is a complex constant
  • is a real constant
  • J is an imaginary unit.
  • the method before determining the first sequence, further includes: receiving indication information from a network device; wherein the indication information is used to indicate that the first sequence is sent on the time-frequency resource, or the indication information is used to Instruct to send M second sequences each having a length of K i on the time-frequency resource; the time-frequency resource includes M subcarrier groups.
  • the method before determining the first sequence, further includes: determining that the indication information indicates that the first sequence is sent on the time-frequency resource.
  • the method further includes: receiving configuration information from the network device, the configuration information is used to indicate time-frequency resources, and the configuration information includes indication information.
  • the first sequence is an SRS sequence.
  • the embodiments of the present application provide a communication method, which can be applied to a network device, or can also be applied to a chip inside the network device.
  • the first sequence of, the first signal is processed according to the first sequence; the sequence carried by each subcarrier group in the M subcarrier groups is a segment of the first sequence, and the segments carried by any two subcarrier groups are different.
  • the M subcarrier groups are M different frequency subbands, where at least M-1 frequency subbands have the same bandwidth.
  • processing the first signal according to the first sequence includes: performing channel estimation according to the first signal and the first sequence.
  • the interval between any two adjacent symbols in the M symbols corresponding to the M subcarrier groups is less than the first threshold; and/or, the first one of the M symbols corresponding to the M subcarrier groups The interval between the symbol and the last symbol is less than the second threshold.
  • the subcarriers included in any subcarrier group in the M subcarrier groups are continuous in the frequency domain, or are distributed at equal intervals in the frequency domain.
  • all the subcarriers included in the M subcarrier groups are continuous in the frequency domain, or are distributed at equal intervals in the frequency domain.
  • the number of subcarriers included in each subcarrier group in the M subcarrier groups is the same.
  • the position of the segment carried by each subcarrier group is determined by the frequency domain position of the subcarrier included in each subcarrier group.
  • the subcarrier sequence is to sort the subcarriers included in the M subcarrier groups in the order from high frequency to low frequency or from low frequency to high frequency Obtained, k is an integer greater than zero.
  • the first sequence conforms to the following formula:
  • N ZC is the largest prime number less than or equal to W or the smallest prime number greater than W or the largest prime number less than or equal to 2W or the smallest prime number greater than 2W
  • q is an integer greater than 0 and less than N ZC
  • A is a complex constant
  • is a real constant
  • J is an imaginary unit.
  • the method further includes: sending indication information to the terminal device; where the indication information is used to indicate that the first sequence is sent on the time-frequency resource, or the indication information is used to indicate that the time-frequency resource is Send M second sequences each having a length of K i ; the time-frequency resource includes M subcarrier groups.
  • the method further includes: sending configuration information to the terminal device, the configuration information is used to indicate the time-frequency resource, and the configuration information includes the indication information.
  • the first sequence is an SRS sequence.
  • the present application provides a communication device that has the function of implementing any possible design in the first aspect.
  • the device includes steps involved in executing any possible design in the first aspect.
  • the corresponding modules or units or means, functions or units or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the device and other devices.
  • the communication unit is used to send SRS to network equipment.
  • the processing unit can be used to perform some internal operations of the device. The functions performed by the processing unit and the communication unit may correspond to the steps involved in any possible design of the first aspect described above.
  • the device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation method in the first aspect.
  • the device may also include one or more memories or be coupled with one or more memories.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory may store necessary computer programs or instructions to realize the functions involved in the first aspect described above.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the device realizes the method in any possible design or implementation manner of the first aspect described above.
  • the device includes a processor, which is coupled with a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the first aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the device realizes the method in any possible design or implementation manner of the first aspect described above.
  • the memory can also be located in the device.
  • the device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute any possible design or implementation of the first aspect above.
  • the present application provides a communication device that has the function of implementing any possible design of the second aspect.
  • the device includes steps involved in executing any possible design of the second aspect.
  • the corresponding modules or units or means, functions or units or means can be realized by software, or by hardware, or by hardware executing corresponding software.
  • the device includes a processing unit and a communication unit.
  • the communication unit can be used to send and receive signals to achieve communication between the device and other devices.
  • the communication unit is used to receive information from a terminal device. SRS;
  • the processing unit can be used to perform some internal operations of the device.
  • the functions performed by the processing unit and the communication unit may correspond to the steps involved in any possible design of the above-mentioned second aspect.
  • the device includes a processor, and may also include a transceiver.
  • the transceiver is used to send and receive signals, and the processor executes program instructions to complete any possible design or implementation method in the second aspect.
  • the device may also include one or more memories or be coupled with one or more memories.
  • One or more memories may be integrated with the processor, or may be provided separately from the processor, which is not limited in this application.
  • the memory can store the necessary computer programs or instructions for realizing the functions involved in the second aspect described above.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the device realizes the method in any possible design or implementation manner of the second aspect described above.
  • the device includes a processor, and the processor is coupled with a memory, and the memory can store necessary computer programs or instructions for realizing the functions involved in the second aspect.
  • the processor can execute the computer program or instruction stored in the memory, and when the computer program or instruction is executed, the device realizes the method in any possible design or implementation manner of the second aspect described above.
  • the memory can also be located in the device.
  • the device includes at least one processor and an interface circuit, where at least one processor is used to communicate with other devices through the interface circuit and execute any of the possible designs or implementations of the second aspect described above. Methods.
  • an embodiment of the present application also provides a communication system, which includes a terminal device and a network device; wherein the terminal device can be used to execute the method described in any one of the possible designs of the first aspect.
  • the network device can be used to execute the method described in any one of the possible designs of the second aspect.
  • an embodiment of the present application also provides a computer storage medium, the storage medium stores a software program, and the software program can implement the first aspect and the second aspect when read and executed by one or more processors Any of the possible designs provided.
  • the embodiments of the present application also provide a computer program, which when the computer program runs on a computer, causes the computer to execute the method provided by any one of the above-mentioned first and second aspects. .
  • an embodiment of the present application also provides a chip, which is used to read a computer program stored in a memory and execute the method provided by any one of the possible designs of the first aspect and the second aspect described above.
  • an embodiment of the present application provides a chip system, which includes a processor, and is configured to support a communication device to implement the functions involved in the foregoing aspects.
  • the chip system further includes a memory, and the memory is used to store the necessary program instructions and data of the management device.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • FIG. 1 is a schematic diagram of a possible system architecture to which an embodiment of this application is applicable;
  • Fig. 2a is a schematic diagram of sending a full bandwidth SRS on one symbol according to an embodiment of the application
  • FIG. 2b is a schematic diagram of sending SRS on multiple symbols in a frequency hopping manner according to an embodiment of the application
  • FIG. 3 is a schematic flowchart corresponding to a communication method provided by an embodiment of this application.
  • FIG. 4a is an example diagram of M symbols provided by an embodiment of this application.
  • FIG. 4b is another example diagram of M symbols provided by an embodiment of this application.
  • FIG. 4c is another example diagram of M symbols provided by an embodiment of this application.
  • FIG. 5a is an exemplary diagram of subcarriers included in any subcarrier group provided by an embodiment of the application.
  • FIG. 5b is another example diagram of subcarriers included in any subcarrier group provided by an embodiment of the application.
  • FIG. 5c is another example diagram of subcarriers included in M subcarrier groups provided by an embodiment of the application.
  • FIG. 5e is a schematic diagram of a mapping method of Case 1 in an embodiment of this application.
  • FIG. 5f is a schematic diagram of a mapping manner in case 2 in an embodiment of this application.
  • FIG. 6 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Terminal device It can be a wireless terminal device that can receive network device scheduling and instruction information.
  • a wireless terminal device can be a device that provides voice and/or data connectivity to users, or a handheld device with wireless connection function, or Other processing equipment connected to the wireless modem.
  • a terminal device can communicate with one or more core networks or the Internet via a radio access network (e.g., radio access network, RAN).
  • the terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone, mobile phone). (mobile phone)), computers and data cards, for example, can be portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile devices, which exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be called system, subscriber unit, subscriber station, mobile station, mobile station (MS), remote station (remote station), access point ( access point (AP), remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), subscriber station (SS), user terminal equipment (customer premises equipment, CPE), terminal (terminal), user equipment (user equipment, UE), mobile terminal (mobile terminal, MT), etc.
  • the terminal device may also be a wearable device and a next-generation communication system, for example, a terminal device in a 5G communication system or a terminal device in a public land mobile network (PLMN) that will evolve in the future.
  • PLMN public land mobile network
  • Network equipment It can be a device in a wireless network.
  • a network device can be a radio access network (RAN) node (or device) that connects a terminal to the wireless network, and can also be called a base station.
  • RAN equipment are: base station (gNodeB, gNB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller) in the 5G communication system.
  • the network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • CU centralized unit
  • DU distributed unit
  • the network device may be another device that provides wireless communication functions for the terminal device.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • a device that provides a wireless communication function for a terminal device is referred to as a network device.
  • ordinal numbers such as "first" and “second” mentioned in the embodiments of this application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects. degree.
  • first sequence and the second sequence are only for distinguishing different sequences, but do not indicate the difference in priority or importance of the two sequences.
  • FIG. 1 is a schematic diagram of a possible system architecture to which an embodiment of this application is applicable.
  • the system architecture shown in Figure 1 includes network equipment and terminal equipment.
  • the embodiments of the present application do not limit the number of network devices and the number of terminal devices in the system architecture, and the system architecture to which the embodiments of the present application are applicable may include other devices in addition to network devices and terminal devices, such as Core network equipment, wireless relay equipment, and wireless backhaul equipment, etc., are not limited in this embodiment of the present application.
  • the network device in the embodiment of the present application may integrate all functions in one independent physical device, or may distribute the functions on multiple independent physical devices, which is not limited in the embodiment of the present application.
  • the terminal device in the embodiment of the present application may be connected to the network device in a wireless manner.
  • RAT radio access technology
  • LTE long term evolution
  • 5G 5th Generation
  • other possible communication systems RAT
  • the transmitter device can send a reference signal (RS) to the receiver device. Accordingly, after the receiver device receives the reference signal, it can perform channel estimation or channel sounding based on the reference signal.
  • the transmitting end device may be a terminal device, and the receiving end device may be a network device.
  • the reference signal may refer to an uplink reference signal; or, the transmitting end device may be a network device, and the receiving end device may be a terminal device.
  • the reference signal may refer to a downlink reference signal.
  • the reference signal may be a sounding reference signal (SRS), a demodulation reference signal (DMRS), or other possible reference signals, which are not specifically limited.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the network equipment can obtain the uplink channel information of the frequency band by measuring the SRS sent by the terminal equipment in a certain frequency band. Therefore, in order to obtain the channel information of the system bandwidth, in a possible implementation (referred to as implementation 1), the terminal device can send an SRS with a large enough bandwidth and covering most of the system bandwidth in one symbol, see Figure As shown in 2a, after receiving the SRS, the network device can obtain the channel information of the full bandwidth; however, since the transmission power of the terminal device is limited, when the system bandwidth is large, the terminal device transmits the full bandwidth within one symbol The SRS will cause the power on each sub-carrier to be small, and the channel estimation performance of the receiver will not meet the requirements of the system, which will cause the above method to have certain limitations.
  • the system bandwidth can also be called the carrier bandwidth or the transmission bandwidth of the carrier; one or more carriers can be configured on the network device, and accordingly, the transmission bandwidth corresponding to the one or more carriers configured by the network device can be understood as the system bandwidth .
  • the system bandwidth can be considered as 100MHz; for another example, if a network device is configured with 5 carriers, the transmission of each carrier If the bandwidth is 20MHz, the system bandwidth can also be considered as 100MHz.
  • the terminal device can transmit SRS on multiple symbols through frequency hopping, and the SRS on different symbols can occupy different frequency domain resources, and then multiple symbols
  • the above SRS can cover the system bandwidth.
  • Fig. 2b it is a schematic diagram of using frequency hopping to transmit the SRS on three consecutive symbols. Different symbols occupy different parts of the bandwidth.
  • a terminal device when a terminal device sends an SRS to a network device, it may first generate an SRS sequence, and then map the SRS sequence to multiple subcarriers of one symbol to generate a reference signal.
  • the length of the SRS sequence is the subcarrier occupied by the SRS on one symbol. The number of, and then sent to the network device.
  • the SRS sequence can be a low peak-to-average power ratio (PAPR) sequence based on the ZC sequence.
  • the length of the ZC sequence is the largest prime number less than or equal to the length of the SRS sequence.
  • the SRS sequence is defined by the ZC sequence. Obtained by loop expansion.
  • a terminal device When a terminal device transmits SRS on multiple symbols through frequency hopping, it will transmit a complete SRS sequence on each symbol to ensure that the PAPR of each symbol is relatively low; accordingly, the network device can separately transmit SRS on each symbol. Receive SRS on the symbol, and perform channel estimation based on the SRS received on each symbol.
  • the multiple symbols occupied by SRS are often consecutive multiple symbols or adjacent multiple symbols, although the channel of multiple symbols can be considered almost unchanged, the multiple SRS symbols of frequency hopping occupy different Frequency subband. The frequency separation between these different frequency subbands has exceeded the coherence bandwidth of the multipath channel. Therefore, it is generally believed that even if multiple symbols are combined for channel estimation, there will be no significant performance Gain.
  • an embodiment of the present application provides a communication method for improving the accuracy of channel estimation.
  • the communication method provided in the embodiments of the present application may involve interaction between two communication devices, such as a first communication device and a second communication device, where the first communication device may be a sending device (such as a sending device). Reference signal), the second communication device is a receiving end device (for example, receiving a reference signal); or, the second communication device may be a sending end device, and the first communication device is a receiving end device.
  • the first communication device may be a sending device and the second communication device as the receiving device as an example.
  • the first communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course, it may also be another communication device, such as a chip or a chip system.
  • the second communication device may be a network device or a communication device capable of supporting the network device to implement the functions required by the method, and of course, it may also be another communication device, such as a chip or a chip system.
  • the method is executed by a network device and a terminal device as an example, that is, an example is that the first communication device is a terminal device and the second communication device is a network device.
  • the network equipment and the terminal equipment can communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or at the same time through a licensed spectrum. There is no restriction on communication with unlicensed spectrum.
  • the network equipment and terminal equipment can communicate through the frequency spectrum less than 6 gigahertz (gigahertz, GHz), or communicate through the frequency spectrum greater than or equal to 6GHz, and can also use the frequency spectrum less than 6GHz and greater than or equal to 6GHz at the same time Of the spectrum for communication. That is, this application is applicable to both low-frequency scenes (for example, sub 6G) and high-frequency scenes (greater than or equal to 6G).
  • the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
  • the symbols in the embodiments of this application include, but are not limited to, orthogonal frequency division multiplexing (OFDM) symbols, single carrier frequency division multiple access (SC-FDMA) symbols, Sparse code multiple access (SCMA) symbols, filtered orthogonal frequency division multiplexing (F-OFDM) symbols, non-orthogonal multiple access,
  • OFDM orthogonal frequency division multiplexing
  • SC-FDMA single carrier frequency division multiple access
  • SCMA Sparse code multiple access
  • F-OFDM filtered orthogonal frequency division multiplexing
  • non-orthogonal multiple access non-orthogonal multiple access
  • FIG. 3 is a schematic diagram of a process corresponding to a communication method provided by an embodiment of the application. As shown in FIG. 3, the method includes:
  • Step 301 The network device sends configuration information to the terminal device, where the configuration information is used to indicate time-frequency resources.
  • the time-frequency resources may be used to carry the SRS
  • the time-frequency resource groups may comprise M subcarriers
  • the frequency domain positions of the subcarriers contained in any two subcarrier groups in the M subcarrier groups are different and belong to different symbols, that is, the M subcarrier groups occupy different frequency subcarriers belt.
  • the number of subcarriers included in each subcarrier group in the M subcarrier groups may be the same or different.
  • the M symbols and M subcarrier groups corresponding to the M subcarrier groups are respectively introduced in detail below.
  • the interval between any two adjacent symbols in the M symbols is less than the first threshold, as shown in 4a.
  • the first threshold may be predefined by the protocol, and the unit of the first threshold may be a symbol, for example, the first threshold is 1 symbol or 2 symbols.
  • the interval between the first symbol and the last symbol in the M symbols is smaller than the second threshold, as shown in 4b.
  • the first symbol refers to the highest symbol in the time domain, and the last symbol refers to the lowest symbol in the time domain.
  • the second threshold may be predefined by the protocol, the unit of the second threshold may be symbols, and the second threshold may be greater than the first threshold.
  • the interval between any two adjacent symbols in the M symbols is less than the first threshold, and the interval between the first symbol and the last symbol in the M symbols is less than the second threshold, see 4c Show.
  • the subcarriers included in any subcarrier group in the M subcarrier groups are continuous in the frequency domain.
  • any subcarrier group includes 4 subcarriers that are continuous in the frequency domain.
  • the sub-carriers included in any sub-carrier group in the M sub-carrier groups are equally spaced in the frequency domain.
  • any sub-carrier group includes the same space in the frequency domain (the interval is 1 sub-carrier). ) 2 sub-carriers distributed.
  • the specific value of the interval may be predefined by the protocol, for example, the interval may be 1 subcarrier or 3 subcarriers.
  • all the subcarriers included in the M subcarrier groups are continuous in the frequency domain, as shown in FIG. 5a.
  • all the subcarriers included in the M subcarrier groups may be distributed at equal intervals in the frequency domain, as shown in FIG. 5b.
  • the network device may further instruct the terminal device to send the first sequence on the above-mentioned time-frequency resource or send M second sequences each having a length of K i on the above-mentioned time-frequency resource.
  • the network device may send instruction information to the terminal device.
  • the instruction information is used to indicate that the first sequence is sent on the above-mentioned time-frequency resource or M second sequences are sent on the above-mentioned time-frequency resource.
  • the indication information may include one Bit, the value of this 1 bit is 1, which indicates that the first sequence is sent on the above-mentioned time-frequency resource, and the value of this 1 bit is 0, which indicates that the M second sequence is sent on the above-mentioned time-frequency resource.
  • the indication information may be carried in the configuration information.
  • the configuration information carries indication information, it indicates that the first sequence is sent on the above-mentioned time-frequency resource, and if the configuration information does not carry the indication information, it indicates that the M second sequence is sent on the above-mentioned time-frequency resource; or If the configuration information does not carry indication information, it is instructed to send the first sequence on the above-mentioned time-frequency resource, and if the configuration information carries the indication information, it is instructed to send M second sequences on the above-mentioned time-frequency resource.
  • the terminal device may determine the second sequence in multiple manners.
  • the terminal device may generate the second sequence according to the ZC sequence.
  • the second sequence of length K 0 (second sequences of other lengths can be processed by reference) as an example.
  • the second sequence of length K 0 can conform to the following formula:
  • N ZC is the largest prime number less than or equal to K 0 or the smallest prime number greater than K 0 or less than or equal to 2K 0
  • q is an integer greater than 0 and less than N ZC
  • A is a complex number independent of n
  • is a real number independent of n
  • j is an imaginary unit.
  • the terminal device receives the configuration information, and determines the above-mentioned time-frequency resource according to the configuration information.
  • the terminal device may perform step 303 and step 304. If the network device instructs the terminal device to send M second sequences of length K i on the above-mentioned time-frequency resource, the terminal device can determine the M second sequences of length K i and place them on the M subcarrier groups Send M second sequences respectively.
  • Step 303 The terminal device determines that the length is The first sequence, where the first sequence may be an SRS sequence.
  • the terminal device may determine the first sequence in multiple ways.
  • the terminal device may generate the first sequence according to the ZC sequence, such as generating the first sequence according to the cyclic extension of the ZC sequence, or according to the ZC sequence. The sequence is truncated to get the first sequence.
  • the terminal device may also generate the first sequence according to other possible sequences (such as a computer generated sequence (CGS)), such as the CGS sequence in the LTE or NR protocol, which is not specifically limited.
  • CGS computer generated sequence
  • description will be made by taking the terminal device cyclically expanding the first sequence according to the ZC sequence as an example for description.
  • the first sequence generated by the terminal device may conform to the following formula:
  • N ZC is the largest prime number less than or equal to W or the smallest prime number greater than W or the largest prime number less than or equal to 2W or the smallest prime number greater than 2W
  • q is an integer greater than 0 and less than N ZC
  • A is a complex number independent of n
  • is A real number that has nothing to do with n
  • j is the unit of imaginary number.
  • the manner in which the terminal device determines the first sequence may be the same as the manner in which the terminal device determines the second sequence.
  • Step 304 The terminal device sends the first sequence on the M subcarrier groups; wherein the sequence carried by each subcarrier group in the M subcarrier groups is a segment of the first sequence, and the segments carried by any two subcarrier groups are different.
  • the position of the segment carried by each subcarrier group is determined by the frequency domain positions of the subcarriers included in each subcarrier group. For example, taking the scenario shown in Figure 5a or Figure 5b as an example, if the subcarriers included in the i-th subcarrier group are located in the k-1th position to the k+K i -2th position in the subcarrier sequence, then the i-th subcarrier The segments carried on the group are located at the k-1th to the k+K i -2th bits in the first sequence.
  • the subcarrier sequence is the sequence of subcarriers included in the M subcarrier group from high frequency to low frequency or from high frequency to low frequency. Sorted from low frequency to high frequency, k is an integer greater than 0.
  • the 0th subcarrier group includes subcarrier 1 and subcarrier 2 on symbol 0
  • the first subcarrier group includes subcarrier 3 and subcarrier 4 on symbol 2
  • the second subcarrier group includes subcarrier 3 and subcarrier 4 on symbol 2.
  • a sub-carrier group includes sub-carrier 5 and sub-carrier 6 on symbol 4.
  • Scenario 1 The subcarriers included in the M subcarrier groups are arranged in order from high frequency to low frequency.
  • the sequence of subcarriers obtained can be subcarrier 0, subcarrier 1, subcarrier 2, subcarrier 3, subcarrier 4, and subcarrier 5. . Therefore, referring to FIG. 5e, the subcarriers included in the 0th subcarrier group are located at the 0th and 1st positions in the subcarrier sequence, and the segment carried on the 0th subcarrier group is located at the 0th position in the first sequence.
  • the first bit, that is, the fragments carried on the 0th subcarrier group are r(0) and r(1); among them, subcarrier 0 can carry r(0), and subcarrier 1 can carry r(1).
  • the subcarriers included in the first subcarrier group are located in the second and third positions in the subcarrier sequence, and the segments carried on the first subcarrier group are located in the second and third positions in the first sequence, that is, the first
  • the segments carried on each subcarrier group are r(2) and r(3); among them, subcarrier 2 can carry r(2), and subcarrier 3 can carry r(3).
  • the subcarriers included in the second subcarrier group are located in the 4th and 5th positions in the subcarrier sequence, and the segments carried on the second subcarrier group are located in the 4th and 5th positions in the first sequence, that is, the second
  • the segments carried on the subcarrier groups are r(4) and r(5); among them, subcarrier 4 can carry r(4), and subcarrier 5 can carry r(5).
  • Case 2 The subcarriers included in the M subcarrier groups are arranged in order from high frequency to low frequency.
  • the sequence of subcarriers obtained can be subcarrier 5, subcarrier 4, subcarrier 3, subcarrier 2, subcarrier 1, and subcarrier 0 . Therefore, referring to FIG. 5f, the subcarriers included in the second subcarrier group are located at the 0th and 1st positions in the subcarrier sequence, and the segment carried on the second subcarrier group is located at the 0th position in the first sequence.
  • the first bit, that is, the segments carried on the second subcarrier group are r(0) and r(1); among them, subcarrier 5 can carry r(0), and subcarrier 4 can carry r(1).
  • the subcarriers included in the first subcarrier group are located in the second and third positions in the subcarrier sequence, and the segments carried on the first subcarrier group are located in the second and third positions in the first sequence, that is, the first
  • the segments carried on each subcarrier group are r(2) and r(3); among them, subcarrier 3 can carry r(2), and subcarrier 2 can carry r(3).
  • the subcarriers included in the 0th subcarrier group are located at the 4th and 5th positions in the subcarrier sequence, and the segments carried on the 0th subcarrier group are located at the 4th and 5th positions in the first sequence, that is, the 0th subcarrier group.
  • the segments carried on the subcarrier groups are r(4) and r(5); among them, subcarrier 1 can carry r(4), and subcarrier 0 can carry r(5).
  • the above scenario 1 and scenario 2 are only two possible examples, and there may be other possible scenarios in specific implementation, which are not specifically limited.
  • the method in the above scenario 1 or the method in the above scenario 2 may be used.
  • the network device and the terminal device may pre-appoint to use scenario 1 or scenario 2.
  • the adoption scenario 1 or scenario 2 can also be pre-defined by the agreement.
  • Step 305 The network device receives the first signal carried on the M subcarrier groups.
  • the network device may receive the first signal on the time-frequency resource according to the time-frequency resource configured for the terminal device.
  • the first signal is generated by the terminal device respectively mapping different segments of the first sequence to M subcarrier groups. Therefore, the network device receives the first signal carried on the M subcarrier groups, which can also be understood as the network The device receives the segments carried on the M subcarrier groups.
  • Step 306 The network device determines that the length is The first sequence of processing the first signal according to the first sequence.
  • the network device may splice the segments carried on the M subcarrier groups into the first sequence.
  • the network device receives the subcarrier 0 of symbol 0 and the fragments r(0) and r(1) on the subcarrier 1, and receives the subcarrier 2 of the symbol 2 and the fragments r(2), r on the subcarrier 3. (3), and receive the subcarrier 4 of symbol 4 and the fragments r(4), r(5) on subcarrier 5, and then splicing the fragments on the 3 symbols to obtain r(0), r(1), r( 2), r(3), r(4), r(5).
  • the network device receives subcarrier 1 of symbol 0 and fragments r(4), r(5) on subcarrier 0, and receives subcarrier 3 of symbol 2 and fragments r(2), on subcarrier 2.
  • the network device processes the first signal according to the first sequence, which may mean that the network device performs channel estimation according to the first signal and the first sequence.
  • the network device performs channel estimation according to the first signal and the first sequence.
  • the specific channel estimation please refer to the existing solutions, which will not be repeated here.
  • the terminal equipment maps different segments of the first sequence to different subcarrier groups of M symbols, so that the different subcarrier groups of M symbols carry a complete sequence.
  • the interference between users is smaller, which can effectively improve the accuracy of channel estimation.
  • the description starts from 0 as an example.
  • the step numbers in FIG. 3 described in the embodiments of the present application are only an example of the execution process, and do not constitute a restriction on the order of execution of the steps. There is no timing dependency between the embodiments of the present application. There is no strict order of execution between the steps.
  • the above steps in Figure 3 are not necessary steps for the communication method provided by the embodiment of the application.
  • the above steps 301 and 302 can be selectively performed according to actual needs.
  • the frequency resource may be a resource predefined by the protocol.
  • the network device or the terminal device may include a hardware structure and/or software module corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of the present application may divide the terminal device and the network device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • FIG. 6 shows a possible exemplary block diagram of a device involved in an embodiment of the present application.
  • the apparatus 600 may include: a processing unit 602 and a communication unit 603.
  • the processing unit 602 is used to control and manage the actions of the device 600.
  • the communication unit 603 is used to support communication between the apparatus 600 and other devices.
  • the communication unit 603 is also called a transceiving unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 600 may further include a storage unit 601 for storing program codes and/or data of the device 600.
  • the apparatus 600 may be the terminal device in any of the foregoing embodiments, or may also be a chip provided in the terminal device.
  • the processing unit 602 can support the apparatus 600 to perform the actions of the terminal device in the above method examples; or, the processing unit 602 mainly executes the internal actions of the terminal device in the method examples, and the communication unit 603 can support the communication between the apparatus 600 and the network device.
  • the processing unit 602 is used to perform step 302 and step 303 in FIG. 3; the communication unit 603 may be used to perform step 304 in FIG. 3.
  • the communication unit 603 is further configured to: receive instruction information from the network device; where the instruction information is used to indicate that the first sequence is sent on the time-frequency resource, or the instruction information is used to indicate that the time Sending M second sequences each having a length of K i on the frequency resource; the time-frequency resource includes M subcarrier groups;
  • the processing unit 602 before determining the first sequence, is further configured to: determine that the indication information indicates that the first sequence is sent on the time-frequency resource.
  • the communication unit 603 is further configured to: receive configuration information from a network device, the configuration information is used to indicate the time-frequency resource, and the configuration information includes indication information.
  • the apparatus 600 may also be the network device in any of the foregoing embodiments, or may also be a chip set in the network device.
  • the processing unit 602 may support the apparatus 600 to execute the actions of the network device in the above method examples.
  • the processing unit 602 mainly executes the internal actions of the network device in the method example, and the communication unit 603 can support communication between the apparatus 600 and the terminal device.
  • the communication unit 603 may be used to perform step 301 and step 305 in FIG. 3; the processing unit 602 may be used to perform step 306 in FIG. 3.
  • the processing unit 602 is specifically configured to perform channel estimation according to the first signal and the first sequence.
  • the communication unit 603 is further configured to send indication information to the terminal device; where the indication information is used to indicate that the first sequence is sent on the time-frequency resource, or the indication information is used to indicate that the time-frequency resource M second sequences each having a length of K i are sent on the resource; the time-frequency resource includes M subcarrier groups.
  • the communication unit 603 is further configured to send configuration information to the terminal device, the configuration information is used to indicate the time-frequency resource, and the configuration information includes indication information.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device. Function.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASICs), or, one or Multiple microprocessors (digital singnal processors, DSPs), or, one or more field programmable gate arrays (Field Programmable Gate Arrays, FPGAs), or a combination of at least two of these integrated circuits.
  • ASICs application specific integrated circuits
  • DSPs digital singnal processors
  • FPGAs Field Programmable Gate Arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a processor, such as a general-purpose central processing unit (central processing unit, CPU), or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment of the application. It may be the terminal device in the above embodiment, and is used to implement the operation of the terminal device in the above embodiment.
  • the terminal device includes: an antenna 710, a radio frequency part 720, and a signal processing part 730.
  • the antenna 710 is connected to the radio frequency part 720.
  • the radio frequency part 720 receives the information sent by the network device through the antenna 710, and sends the information sent by the network device to the signal processing part 730 for processing.
  • the signal processing part 730 processes the information of the terminal device and sends it to the radio frequency part 720
  • the radio frequency part 720 processes the information of the terminal device and sends it to the network device via the antenna 710.
  • the signal processing part 730 may include a modem subsystem, which is used to process data at various communication protocol layers; it may also include a central processing subsystem, which is used to process terminal equipment operating systems and application layers; in addition, it may also Including other subsystems, such as multimedia subsystems, peripheral subsystems, etc., where the multimedia subsystem is used to control the terminal device camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the modem subsystem may include one or more processing elements 731, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 732 and an interface circuit 733.
  • the storage element 732 is used to store data and programs, but the program used to execute the method executed by the terminal device in the above method may not be stored in the storage element 732, but is stored in a memory outside the modem subsystem, When in use, the modem subsystem is loaded and used.
  • the interface circuit 733 is used to communicate with other subsystems.
  • the modem subsystem can be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute each step of any method executed by the above terminal device, and the interface circuit is used to communicate with other devices.
  • the unit for the terminal device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the terminal device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the terminal device in the above method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the terminal device in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal device in the above method embodiment.
  • the unit of the terminal device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the modem subsystem, where the processing elements may be integrated circuits, For example: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units of the terminal device that implement each step in the above method can be integrated together and implemented in the form of an SOC, and the SOC chip is used to implement the above method.
  • the chip can integrate at least one processing element and a storage element, and the processing element can call the stored program of the storage element to implement the method executed by the above terminal device; or, the chip can integrate at least one integrated circuit to implement the above terminal The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for terminal equipment may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any of the methods performed by the terminal equipment provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the terminal device are executed in a manner; of course, part or all of the steps executed by the terminal device can also be executed in combination with the first manner and the second manner.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 6.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 6.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 6.
  • the storage element can be a single memory or a collective term for multiple memories.
  • the terminal device shown in FIG. 7 can implement various processes related to the terminal device in the method embodiment shown in FIG. 3.
  • the operations and/or functions of the various modules in the terminal device shown in FIG. 7 are used to implement the corresponding processes in the foregoing method embodiments.
  • FIG. 8 is a schematic structural diagram of a network device provided by an embodiment of this application. It is used to implement the operation of the network device in the above embodiment.
  • the network equipment includes: an antenna 801, a radio frequency device 802, and a baseband device 803.
  • the antenna 801 is connected to the radio frequency device 802.
  • the radio frequency device 802 receives the information sent by the terminal device through the antenna 801, and sends the information sent by the terminal device to the baseband device 803 for processing.
  • the baseband device 803 processes the information of the terminal device and sends it to the radio frequency device 802, and the radio frequency device 802 processes the information of the terminal device and sends it to the terminal device via the antenna 801.
  • the baseband device 803 may include one or more processing elements 8031, for example, a main control CPU and other integrated circuits.
  • the baseband device 803 may also include a storage element 8032 and an interface 8033.
  • the storage element 8032 is used to store programs and data; the interface 8033 is used to exchange information with the radio frequency device 802.
  • the interface is, for example, a common public radio interface. , CPRI).
  • the above apparatus for network equipment may be located in the baseband apparatus 803.
  • the above apparatus for network equipment may be a chip on the baseband apparatus 803.
  • the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute the above network. For each step of any method executed by the device, the interface circuit is used to communicate with other devices.
  • the unit for the network device to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device for the network device includes a processing element and a storage element, and the processing element calls the program stored by the storage element to Perform the method performed by the network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit of the network device that implements each step in the above method may be configured as one or more processing elements, and these processing elements are arranged on the baseband device.
  • the processing elements here may be integrated circuits, such as one Or multiple ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above network device; or, at least one integrated circuit can be integrated in the chip to implement the above network The method executed by the device; or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for a network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method performed by the network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the network device in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps performed by the network device are executed in the method; of course, part or all of the steps executed by the network device above can also be executed in combination with the first method and the second method.
  • the processing element here is the same as that described above, and can be implemented by a processor, and the function of the processing element can be the same as the function of the processing unit described in FIG. 6.
  • the processing element may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more microprocessors DSP , Or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 6.
  • the storage element may be realized by a memory, and the function of the storage element may be the same as the function of the storage unit described in FIG. 6.
  • the storage element can be a single memory or a collective term for multiple memories.
  • the network device shown in FIG. 8 can implement various processes related to the network device in the method embodiment shown in FIG. 3.
  • the operations and/or functions of the various modules in the network device shown in FIG. 8 are used to implement the corresponding processes in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer software instructions required to execute the above-mentioned processor, which contains a program required to execute the above-mentioned processor.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory or storage unit in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; and it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the art.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及装置,其中方法包括:终端设备确定长度为aa的第一序列,并在M个子载波组上发送第一序列;其中,M个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号;M个子载波组中每个子载波组承载的序列为第一序列的一个片段,任意两个子载波组承载的片段不同。采用上述方法,由于终端设备在M个子载波组上发送第一序列,从而在联合M个符号进行信道估计时,不同终端设备之间的干扰较小,从而能够有效提高信道估计的准确性。

Description

一种通信方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种通信方法及装置。
背景技术
在无线通信系统中,通常可以根据参考信号获取信道信息。在第五代(5th-generation,5G)通信系统中,可以利用探测参考信号(sounding reference signal,SRS)来获取基站和终端设备之间的信道信息;比如,终端设备可以在特定时频资源上发送SRS,基站接收到SRS后,可以根据接收到的SRS进行信道估计,进而获取终端设备和基站之间的上行信道信息。
进一步地,在时分双工(time division duplex,TDD)系统中,网络设备可以利用上下行信道状态信息的互易性,通过上行信道状态信息获得下行信道状态信息,下行信道状态信息可以用于下行数据传输时的预编码、调制编码方式确定等。因此,SRS信道估计的准确性直接影响上行或下行的吞吐量,尤其在大规模天线、高移动性、协同等场景中。
然而,如何提高信道估计的准确性,目前仍需进一步的研究。
发明内容
本申请提供一种通信方法及装置,用以提高信道估计的准确性。
第一方面,本申请实施例提供一种通信方法,该方法可以应用于终端设备,或者也可以应用于终端设备内部的芯片。以该方法应用于终端设备为例,在该方法中,终端设备确定长度为
Figure PCTCN2020076680-appb-000001
的第一序列,并在M个子载波组上发送第一序列;其中,M个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号;M个子载波组中每个子载波组承载的序列为第一序列的一个片段,任意两个子载波组承载的片段不同。
采用上述方法,由于终端设备在M个子载波组上发送第一序列,从而在联合M个符号进行信道估计时,不同终端设备之间的干扰较小,从而能够有效提高信道估计的准确性。
在一种可能的设计中,M个子载波组为M个不同的频率子带,其中,至少M-1个频率子带的带宽相同。
在一种可能的设计中,M个子载波组对应的M个符号中任意相邻两个符号之间的间隔小于第一阈值;和/或,M个子载波组对应的M个符号中第一个符号和最后一个符号之间的间隔小于第二阈值。
采用上述方式,能够有效保证M个符号为较为邻近的符号,即M个符号的信道可以认为是几乎不变的,便于联合多个符号进行信道估计。
在一种可能的设计中,M个子载波组中任意一个子载波组包括的子载波在频域上连续,或者,在频域上等间隔分布。
在一种可能的设计中,M个子载波组包括的所有子载波在频域上连续,或者,在频域上等间隔分布。
在一种可能的设计中,M个子载波组中每个子载波组所包括的子载波的个数相同。
在一种可能的设计中,每个子载波组所承载的片段的位置由每个子载波组包括的子载波的频域位置决定。
在一种可能的设计中,若第i个子载波组包括的子载波位于子载波序列中的第k-1位至第k+K i-2位,则第i个子载波组上承载的片段位于第一序列中的第k-1位至第k+K i-2位,子载波序列是将M个子载波组包括的子载波按照从高频到低频的顺序或从低频到高频的顺序排序得到的,k为大于0的整数。
在一种可能的设计中,第一序列符合如下公式:
r(n)=Ae jαnx q(n mod N ZC),n=0,1,2……W-1
Figure PCTCN2020076680-appb-000002
其中,r(n),n=0,1,2,...,W-1为第一序列,
Figure PCTCN2020076680-appb-000003
N ZC为小于等于W的最大质数或大于W的最小质数或小于等于2W的最大质数或大于2W的最小质数,q为大于0小于N ZC的整数,A为一个复常数,α为一个实常数,j为虚数单位。
在一种可能的设计中,确定第一序列之前,该方法还包括:接收来自网络设备的指示信息;其中,指示信息用于指示在时频资源上发送第一序列,或者,指示信息用于指示在该时频资源上发送M个长度分别为K i的第二序列;该时频资源包括M个子载波组。
在一种可能的设计中,确定第一序列之前,该方法还包括:确定指示信息指示在该时频资源上发送第一序列。
在一种可能的设计中,该方法还包括:接收来自网络设备的配置信息,配置信息用于指示时频资源,配置信息中包括指示信息。
在一种可能的设计中,第一序列为SRS序列。
第二方面,本申请实施例提供一种通信方法,该方法可以应用于网络设备,或者也可以应用于网络设备内部的芯片。以该方法应用于网络设备为例,在该方法中,网络设备接收承载在M个子载波组上的第一信号;其中,M个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号;以及确定长度为
Figure PCTCN2020076680-appb-000004
的第一序列,根据第一序列处理第一信号;M个子载波组中每个子载波组承载的序列为第一序列的一个片段,任意两个子载波组承载的片段不同。
在一种可能的设计中,M个子载波组为M个不同的频率子带,其中,至少M-1个频率子带的带宽相同。
在一种可能的设计中,根据第一序列处理第一信号,包括:根据第一信号和第一序列进行信道估计。
在一种可能的设计中,M个子载波组对应的M个符号中任意相邻两个符号之间的间隔小于第一阈值;和/或,M个子载波组对应的M个符号中第一个符号和最后一个符号之间的间隔小于第二阈值。
在一种可能的设计中,M个子载波组中任意一个子载波组包括的子载波在频域上连续,或者,在频域上等间隔分布。
在一种可能的设计中,M个子载波组包括的所有子载波在频域上连续,或者,在频域上等间隔分布。
在一种可能的设计中,M个子载波组中每个子载波组所包括的子载波的个数相同。
在一种可能的设计中,每个子载波组所承载的片段的位置由每个子载波组包括的子载 波的频域位置决定。
在一种可能的设计中,若第i个子载波组包括的子载波位于子载波序列中的第k-1位至第k+K i-2位,则第i个子载波组上承载的片段位于第一序列中的第k-1位至第k+K i-2位,子载波序列是将M个子载波组包括的子载波按照从高频到低频的顺序或从低频到高频的顺序排序得到的,k为大于0的整数。
在一种可能的设计中,第一序列符合如下公式:
r(n)=Ae jαnx q(n mod N ZC),n=0,1,2……W-1
Figure PCTCN2020076680-appb-000005
其中,r(n),n=0,1,2,...,W-1为第一序列,
Figure PCTCN2020076680-appb-000006
N ZC为小于等于W的最大质数或大于W的最小质数或小于等于2W的最大质数或大于2W的最小质数,q为大于0小于N ZC的整数,A为一个复常数,α为一个实常数,j为虚数单位。
在一种可能的设计中,该方法还包括:向终端设备发送指示信息;其中,指示信息用于指示在时频资源上发送第一序列,或者,指示信息用于指示在该时频资源上发送M个长度分别为K i的第二序列;该时频资源包括M个子载波组。
在一种可能的设计中,该方法还包括:向终端设备发送配置信息,配置信息用于指示该时频资源,配置信息中包括指示信息。
在一种可能的设计中,第一序列为SRS序列。
需要说明的是,由于上述第二方面所描述的通信方法与第一方面所描述的通信方法相对应,因此第二方面所描述的通信方法的相关有益效果可以参见第一方面。
第三方面,本申请提供一种通信装置,该装置具备实现上述第一方面的任一种可能的设计的功能,比如,该装置包括执行上述第一方面的任一种可能的设计涉及的步骤所对应的模块或单元或手段(means),功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,该装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该装置和其它装置之间的通信,比如,通信单元用于向网络设备发送SRS;处理单元可以用于执行该装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第一方面的任一种可能的设计涉及的步骤相对应。
在一种可能的设计中,该装置包括处理器,还可以包括收发器,收发器用于收发信号,处理器执行程序指令,以完成上述第一方面中任意可能的设计或实现方式中的方法。其中,该装置还可以包括一个或多个存储器或者与一个或多个存储器耦合。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。处理器可执行存储器存储的计算机程序或指令,当计算机程序或指令被执行时,使得该装置实现上述第一方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,该装置包括处理器,处理器与存储器耦合,存储器可以保存实现上述第一方面涉及的功能的必要计算机程序或指令。处理器可执行所述存储器存储的计算机程序或指令,当计算机程序或指令被执行时,使得该装置实现上述第一方面任意可能的设计或实现方式中的方法。该存储器也可以位于该装置内。
在一种可能的设计中,该装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第一方面任意可能的设计或实现方 式中的方法。
第四方面,本申请提供一种通信装置,该装置具备实现上述第二方面的任一种可能的设计的功能,比如,该装置包括执行上述第二方面的任一种可能的设计涉及的步骤所对应的模块或单元或手段,功能或单元或手段可以通过软件实现,或者通过硬件实现,也可以通过硬件执行相应的软件实现。
在一种可能的设计中,该装置包括处理单元、通信单元,其中,通信单元可以用于收发信号,以实现该装置和其它装置之间的通信,比如,通信单元用于接收来自终端设备的SRS;处理单元可以用于执行该装置的一些内部操作。处理单元、通信单元执行的功能可以和上述第二方面的任一种可能的设计涉及的步骤相对应。
在一种可能的设计中,该装置包括处理器,还可以包括收发器,收发器用于收发信号,处理器执行程序指令,以完成上述第二方面中任意可能的设计或实现方式中的方法。其中,该装置还可以包括一个或多个存储器或者与一个或多个存储器耦合。一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。存储器可以保存实现上述第二方面涉及的功能的必要计算机程序或指令。处理器可执行存储器存储的计算机程序或指令,当计算机程序或指令被执行时,使得该装置实现上述第二方面任意可能的设计或实现方式中的方法。
在一种可能的设计中,该装置包括处理器,处理器与存储器耦合,存储器可以保存实现上述第二方面涉及的功能的必要计算机程序或指令。处理器可执行所述存储器存储的计算机程序或指令,当计算机程序或指令被执行时,使得该装置实现上述第二方面任意可能的设计或实现方式中的方法。该存储器也可以位于该装置内。
在一种可能的设计中,该装置包括至少一个处理器和接口电路,其中,至少一个处理器用于通过所述接口电路与其它装置通信,并执行上述第二方面任意可能的设计或实现方式中的方法。
第五方面,本申请实施例中还提供一种通信系统,该通信系统中包括终端设备和网络设备;其中,终端设备可以用于执行上述第一方面的任一种可能的设计所述的方法,网络设备可以用于执行上述第二方面的任一种可能的设计所述的方法。
第六方面,本申请实施例中还提供一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现第一方面和第二方面的任一种可能的设计提供的方法。
第七方面,本申请实施例还提供了一种计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面和第二方面的任一种可能的设计提供的方法。
第八方面,本申请实施例还提供了一种芯片,所述芯片用于读取存储器中存储的计算机程序,执行上述第一方面和第二方面的任一种可能的设计提供的方法。
第九方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于支持通信装置实现上述方面中所涉及的功能。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存所述管理设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为本申请实施例适用的一种可能的系统架构示意图;
图2a为本申请实施例提供的在一个符号上发送全带宽的SRS示意图;
图2b为本申请实施例提供的通过跳频方式在多个符号上发送SRS示意图;
图3为本申请实施例提供的一种通信方法所对应的流程示意图;
图4a为本申请实施例提供的M个符号的一种示例图;
图4b为本申请实施例提供的M个符号的又一种示例图;
图4c为本申请实施例提供的M个符号的又一种示例图;
图5a为本申请实施例提供的任意一个子载波组中包括的子载波的一种示例图;
图5b为本申请实施例提供的任意一个子载波组中包括的子载波的又一种示例图;
图5c为本申请实施例提供的M个子载波组包括的子载波的又一种示例图;
图5d为本申请实施例提供的M=3,W=6的一种示例图;
图5e为本申请实施例中情形1的映射方式示意图;
图5f为本申请实施例中情形2的映射方式示意图;
图6为本申请实施例中所涉及的装置的可能的示例性框图;
图7为本申请实施例提供的一种终端设备的结构示意图;
图8为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
首先,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:可以是能够接收网络设备调度和指示信息的无线终端设备,无线终端设备可以是指向用户提供语音和/或数据连通性的设备,或具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(如,radio access network,RAN)与一个或多个核心网或者互联网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话,手机(mobile phone))、计算机和数据卡,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、平板电脑(Pad)、带无线收发功能的电脑等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile station,MS)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户站(subscriber station,SS)、用户端设备(customer premises equipment,CPE)、终端(terminal)、用户设备(user equipment,UE)、移动终端(mobile terminal,MT)等。终端设备也可以是可穿戴设备以及下一代通信系统,例如,5G通信系统中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的终端设备等。
(2)网络设备:可以是无线网络中的设备,例如网络设备可以为将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站。目前, 一些RAN设备的举例为:5G通信系统中的基站(gNodeB,gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved Node B,或home Node B,HNB)、基带单元(base band unit,BBU)、无线保真(wireless fidelity,Wi-Fi)接入点(access point,AP)、路边单元(road side unit,RSU)、融合接入回传(integrated access and backhaul,IAB)系统中的接入点、TSN网络中的控制节点和终端节点等。另外,在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。此外,在其它可能的情况下,网络设备可以是其它为终端设备提供无线通信功能的装置。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。为方便描述,本申请实施例中,为终端设备提供无线通信功能的装置称为网络设备。
(3)本申请实施例中的术语“系统”和“网络”可被互换使用。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A、同时存在A和B、单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC或ABC。
以及,除非有特别说明,本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如,第一序列和第二序列,只是为了区分不同的序列,而并不是表示这两种序列的优先级或者重要程度等的不同。
图1为本申请实施例适用的一种可能的系统架构示意图。如图1所示的系统架构包括网络设备和终端设备。应理解,本申请实施例对系统架构中网络设备的数量、终端设备的数量不作限定,而且本申请实施例所适用的系统架构中除了包括网络设备和终端设备以外,还可以包括其它设备,如核心网设备、无线中继设备和无线回传设备等,对此本申请实施例也不作限定。以及,本申请实施例中的网络设备可以将所有的功能集成在一个独立的物理设备,也可以将功能分布在多个独立的物理设备上,对此本申请实施例也不作限定。此外,本申请实施例中的终端设备可以通过无线方式与网络设备连接。
上述所示意的系统架构可以适用于各种无线接入技术(radio access technology,RAT)的通信系统中,例如,长期演进(long term evolution,LTE)通信系统、5G通信系统以及其它可能的通信系统。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在图1所示意的网络架构中,发送端设备可以向接收端设备发送参考信号(reference  signal,RS),相应地,接收端设备接收到参考信号后,可以基于参考信号进行信道估计或信道探测。其中,发送端设备可以为终端设备,接收端设备可以为网络设备,此种情形下,参考信号可以是指上行的参考信号;或者,发送端设备可以为网络设备,接收端设备可以为终端设备,此种情形下,参考信号可以是指下行的参考信号。进一步地,参考信号可以为探测参考信号(sounding reference signal,SRS)、解调参考信号(demodulation reference signal,DMRS)或者其它可能的参考信号,具体不做限定。
以参考信号为上行的SRS为例,网络设备通过测量终端设备在某一频带上发送的SRS,可以获得该频带的上行信道信息。因此,为获得系统带宽的信道信息,在一种可能的实现方式(称为实现方式1)中,终端设备可以在一个符号内发送一个带宽足够大、能够覆盖大部分系统带宽的SRS,参见图2a所示,从而使得网络设备在接收到该SRS后,可以获得全带宽的信道信息;但由于终端设备的发射功率是有限的,当系统带宽较大时,终端设备在一个符号内发送全带宽的SRS,会导致每个子载波上的功率较小,导致接收方的信道估计性能达不到系统的要求,从而导致上述方式具有一定的局限性。其中,系统带宽也可以称为载波带宽或者载波的传输带宽;网络设备上可以配置一个或多个载波,相应地,网络设备所配置的一个或多个载波所对应的传输带宽可以理解为系统带宽。例如,如果一个网络设备配置了1个载波,该载波的传输带宽为100MHz(兆赫兹),则可以认为系统带宽为100MHz;又例如,如果一个网络设备配置了5个载波,每个载波的传输带宽均为20MHz,则也可以认为系统带宽为100MHz。
在又一种可能的实现方式(称为实现方式2)中,终端设备可以通过跳频的方式在多个符号上发送SRS,不同符号上的SRS可以占用不同的频域资源,进而多个符号上的SRS可以覆盖系统带宽,参见图2b所示,为在连续的3个符号上使用跳频的方式发送SRS示意图,不同的符号上占用不同的一部分带宽。
示例性地,终端设备向网络设备发送SRS时,可以先生成SRS序列,然后将SRS序列映射到一个符号的多个子载波上生成参考信号,SRS序列的长度为一个符号上的SRS占用的子载波的个数,进而发送给网络设备。比如在5G通信系统中,SRS序列可以为基于ZC序列的低峰均比(peak to average power ratio,PAPR)序列,ZC序列的长度为小于或等于SRS序列长度的最大素数,SRS序列由ZC序列循环扩充得到。当终端设备通过跳频的方式在多个符号上发送SRS时,会在每个符号上发送一个完整的SRS序列,以保证每个符号的PAPR比较低;相应地,网络设备可以分别在每个符号上接收SRS,并根据每个符号上接收到的SRS进行信道估计。
5G通信系统中,非正交的SRS信号之间的干扰问题越来越成为性能的瓶颈,例如当需要在同一个小区内引入多个非正交的SRS信号时,或者在多站点协同场景中当需要估计其他小区的终端设备与本小区的网络设备之间的信道信息时,SRS信号都可能遇到较强的其他的非正交的SRS信号的干扰。
进一步地,由于SRS所占用的多个符号往往是连续的多个符号或者邻近的多个符号,虽然多个符号的信道可以认为是几乎不变的,但是跳频的多个SRS符号占用不同的频率子带(Frequency subband),这些不同的频率子带之间的频率间隔已经超过了多径信道的相干带宽,因此,目前通常认为即使联合多个符号进行信道估计,也不会有明显的性能增益。
然而,经过发明人的研究,发现联合多个符号进行信道估计,在干扰比较严重的场景仍然有可能存在性能增益,从而提出联合多个符号进行信号估计的方案,以提高信道估计 的准确性。但当采用上述实现方式2中的SRS信号的生成和发送方式,在联合多个符号进行信道估计时,每个终端设备在多个符号上所发送的SRS信号都采用相同的SRS序列,不同终端设备之间的干扰较大,影响信道估计结果的准确性。
基于此,本申请实施例提供一种通信方法,用于提高信道估计的准确性。
本申请实施例提供的通信方法可以涉及两个通信装置之间的交互,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以为发送端设备(比如发送参考信号),第二通信装置为接收端设备(比如接收参考信号);或者,第二通信装置可以为发送端设备,第一通信装置为接收端设备。在下文中,以第一通信装置为发送端设备,第二通信装置为接收设备为例。
进一步地,第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其它通信装置,例如芯片或芯片系统。第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其它通信装置,例如芯片或芯片系统。为了便于介绍,在下文中,以该方法由网络设备和终端设备执行为例,也就是,以第一通信装置是终端设备、第二通信装置是网络设备为例。
示例性地,本申请实施例提供的通信方法中,终端设备可以确定长度为
Figure PCTCN2020076680-appb-000007
的第一序列,并在M个子载波组上发送第一序列;其中,M个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号;M个子载波组中每个子载波组承载的序列为第一序列的一个片段,任意两个子载波组承载的片段不同。采用上述方法,由于终端设备在M个子载波组上发送第一序列,从而在联合M个符号进行信道估计时,不同终端设备之间的干扰较小,从而能够有效提高信道估计的准确性。
需要说明的是,(1)本申请实施例中网络设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信,对此不做限定。网络设备和终端设备之间可以通过小于6千兆赫兹(gigahertz,GHz)的频谱进行通信,也可以通过大于或等于6GHz的频谱进行通信,还可以同时使用小于6GHz下的频谱和大于或等于6GHz的频谱进行通信。即本申请既适用于低频场景(例如sub 6G),也适用于高频场景(大于或等于6G)。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
(2)本申请实施例中的符号包含但不限于正交频分复用(orthogonal frequency division multiplexing,OFDM)符号、单载波频分多址(single carrier frequency division multiple access,SC-FDMA)符号、稀疏码分多址技术(sparse code multiplexing access,SCMA)符号、过滤正交频分复用(filtered orthogonal frequency division multiplexing,F-OFDM)符号、非正交多址接入(non-orthogonal multiple access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
图3为本申请实施例提供的一种通信方法所对应的流程示意图,如图3所示,该方法包括:
步骤301,网络设备向终端设备发送配置信息,配置信息用于指示时频资源。
示例性地,该时频资源可以用于承载SRS,该时频资源可以包括M个子载波组,M 个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号,也就是说,M个子载波组占用的是不同的频率子带。其中,M个子载波组中每个子载波组所包括的子载波的个数可以相同或者也可以不同,本申请实施例中,以M个子载波组中每个子载波组所包括的子载波的个数相同(即M个不同的频率子带的带宽相同)为例进行描述,即K 0=K 1=……=K M-1
下面分别对M个子载波组对应的M个符号和M个子载波组进行详细介绍。
(1)M个符号
在一个示例中,M个符号中任意相邻两个符号之间的间隔小于第一阈值,参见4a所示。其中,第一阈值可以为协议预先定义的,第一阈值的单位可以为符号,比如第一阈值为1个符号或2个符号。
在又一个示例中,M个符号中第一个符号和最后一个符号之间的间隔小于第二阈值,参见4b所示。第一个符号是指时域上最靠前的符号,最后一个符号是指时域上最靠后的符号。其中,第二阈值可以为协议预先定义的,第二阈值的单位可以为符号,第二阈值大于第一阈值。
在又一个示例中,M个符号中任意相邻两个符号之间的间隔小于第一阈值,且M个符号中第一个符号和最后一个符号之间的间隔小于第二阈值,参见4c所示。
(2)M个子载波组
在一个示例中,M个子载波组中任意一个子载波组包括的子载波在频域上连续,参见图5a所示,任意一个子载波组中包括在频域上连续的4个子载波。或者,M个子载波组中任意一个子载波组包括的子载波在频域上等间隔分布,参见图5b所示,任意一个子载波组中包括在频域上等间隔(该间隔为1个子载波)分布的2个子载波。其中,当任意一个子载波组包括的子载波在频域上等间隔分布时,该间隔的具体取值可以为协议预先定义的,比如该间隔可以为1个子载波或者3个子载波。
进一步地,当M个子载波组中任意一个子载波组包括的子载波在频域上连续时,M个子载波组包括的所有子载波在频域上连续,如图5a所示。当M个子载波组中任意一个子载波组包括的子载波在频域上等间隔分布时,M个子载波组包括的所有子载波可以在频域等间隔分布,如图5b所示。
需要说明的是,上述图5a和图5b仅是M个子载波组包括的子载波的一些可能的示例,在其它可能的实施例中,M个子载波组包括的子载波还可能存在其它可能的示例,比如,参见图5c所示,本申请实施例对此不做限定。
在一种可选的方案中,网络设备还可以指示终端设备在上述时频资源上发送第一序列或者在上述时频资源发送M个长度分别为K i的第二序列。在一个示例中,网络设备可以向终端设备发送指示信息,指示信息用于指示在上述时频资源上发送第一序列或者在上述时频资源发送M个第二序列,比如指示信息可以包括1个比特,该1个比特的取值为1,则指示在上述时频资源上发送第一序列,该1个比特的取值为0,则指示在上述时频资源上发送M个第二序列。示例性地,指示信息可以携带在配置信息中。在又一个示例中,若配置信息携带指示信息,则指示在上述时频资源上发送第一序列,若配置信息未携带指示信息,则指示在上述时频资源上发送M个第二序列;或者,若配置信息未携带指示信息,则指示在上述时频资源上发送第一序列,若配置信息携带指示信息,则指示在上述时频资源 上发送M个第二序列。
可以理解地,终端设备确定第二序列的方式可以有多种,在一种可能的方式中,终端设备可以根据ZC序列生成第二序列。以长度为K 0的第二序列(其它长度的第二序列可以参照处理)为例,比如,长度为K 0的第二序列可以符合如下公式:
r(n)=Ae jαnx q(n mod N ZC),n=0,1,2,……,K 0-1
Figure PCTCN2020076680-appb-000008
其中,r(n),n=0,1,2,...,K 0-1为第二序列,N ZC为小于等于K 0的最大质数或大于K 0的最小质数或小于等于2K 0的最大质数或大于2K 0的最小质数,q为大于0小于N ZC的整数,A为一个和n无关的复数,α为一个和n无关的实数,j为虚数单位。
相应地,在步骤302中,终端设备接收配置信息,并根据配置信息确定上述时频资源。
示例性地,若网络设备指示了终端设备在上述时频资源上发送第一序列,则终端设备可以执行步骤303和步骤304。若网络设备指示了终端设备在上述时频资源上发送M个长度分别为K i的第二序列,则终端设备可以确定M个长度分别为K i的第二序列,并在M个子载波组上分别发送M个第二序列。
步骤303,终端设备确定长度为
Figure PCTCN2020076680-appb-000009
的第一序列,其中,第一序列可以为SRS序列。
此处,终端设备确定第一序列的方式可以有多种,在一种可能的方式中,终端设备可以根据ZC序列生成第一序列,比如根据ZC序列循环扩充生成第一序列,或者,根据ZC序列截断得到第一序列。在其它可能的实施例中,终端设备也可以根据其它可能的序列(比如计算机生成序列(computer generated sequence,CGS))生成第一序列,例如LTE或者NR协议中的CGS序列,具体不做限定。本申请实施例中将以终端设备根据ZC序列循环扩充生成第一序列为例进行描述。
在一个示例中,终端设备生成的第一序列可以符合如下公式:
r(n)=Ae jαnx q(n mod N ZC),n=0,1,2,……,W-1
Figure PCTCN2020076680-appb-000010
其中,r(n),n=0,1,2,...,W-1为第一序列,
Figure PCTCN2020076680-appb-000011
N ZC为小于等于W的最大质数或大于W的最小质数或小于等于2W的最大质数或大于2W的最小质数,q为大于0小于N ZC的整数,A为一个和n无关的复数,α为一个和n无关的实数,j为虚数单位。
示例性地,终端设备确定第一序列的方式可以与终端设备确定第二序列的方式相同。
步骤304,终端设备在M个子载波组上发送第一序列;其中,M个子载波组中每个子载波组承载的序列为第一序列的一个片段,任意两个子载波组承载的片段不同。
示例性地,每个子载波组所承载的片段的位置由每个子载波组包括的子载波的频域位置决定。比如以图5a或图5b所示意的场景为例,若第i个子载波组包括的子载波位于子载波序列中的第k-1位至第k+K i-2位,则第i个子载波组上承载的片段位于第一序列中的第k-1位至第k+K i-2位,该子载波序列是将M个子载波组包括的子载波按照从高频到低频的顺序或从低频到高频的顺序排序得到的,k为大于0的整数。
举个例子,参见图5d所示,M=3,第0个子载波组包括符号0上的子载波1和子载波2,第1个子载波组包括符号2上的子载波3和子载波4,第2个子载波组包括符号4上的子载波5和子载波6,即可知第一序列为r(n),n=0,1,2,...,5。针对于该示例,下面结合情 形1和情形2描述两种可能的情形。
情形1:M个子载波组包括的子载波按照从高频到低频的顺序排列得到的子载波序列可以为子载波0、子载波1、子载波2、子载波3、子载波4、子载波5。因此,参见图5e所示,第0个子载波组包括的子载波位于子载波序列中的第0位和第1位,进而第0个子载波组上承载的片段位于第一序列中的第0位和第1位,即第0个子载波组上承载的片段为r(0)、r(1);其中,子载波0上可以承载r(0),子载波1上可以承载r(1)。第1个子载波组包括的子载波位于子载波序列中的第2位和第3位,进而第1个子载波组上承载的片段位于第一序列中的第2位和第3位,即第1个子载波组上承载的片段为r(2)、r(3);其中,子载波2上可以承载r(2),子载波3上可以承载r(3)。第2个子载波组包括的子载波位于子载波序列中的第4位和第5位,进而第2个子载波组上承载的片段位于第一序列中的第4位和第5位,即第2个子载波组上承载的片段为r(4)、r(5);其中,子载波4上可以承载r(4),子载波5上可以承载r(5)。
情形2:M个子载波组包括的子载波按照从高频到低频的顺序排列得到的子载波序列可以为子载波5、子载波4、子载波3、子载波2、子载波1、子载波0。因此,参见图5f所示,第2个子载波组包括的子载波位于子载波序列中的第0位和第1位,进而第2个子载波组上承载的片段位于第一序列中的第0位和第1位,即第2个子载波组上承载的片段为r(0)、r(1);其中,子载波5上可以承载r(0),子载波4上可以承载r(1)。第1个子载波组包括的子载波位于子载波序列中的第2位和第3位,进而第1个子载波组上承载的片段位于第一序列中的第2位和第3位,即第1个子载波组上承载的片段为r(2)、r(3);其中,子载波3上可以承载r(2),子载波2上可以承载r(3)。第0个子载波组包括的子载波位于子载波序列中的第4位和第5位,进而第0个子载波组上承载的片段位于第一序列中的第4位和第5位,即第0个子载波组上承载的片段为r(4)、r(5);其中,子载波1上可以承载r(4),子载波0上可以承载r(5)。
需要说明的是:(1)上述情形1和情形2仅为两种可能的示例,具体实施中还可以有其它可能的情形,具体不做限定。终端设备在M个子载波组上发送第一序列时,可以采用上述情形1中的方式或者也可以采用上述情形2中的方式,比如可以由网络设备和终端设备预先约定采用情形1或情形2,或者,也可以由协议预先定义采用情形1或情形2。
步骤305,网络设备接收承载在M个子载波组上的第一信号。
示例性地,网络设备可以根据为终端设备配置的时频资源,在该时频资源上接收第一信号。其中,第一信号是由终端设备将第一序列的不同片段分别映射到M个子载波组上生成的,因此,网络设备接收承载在M个子载波组上的第一信号,也可以理解为,网络设备接收承载在M个子载波组上的片段。
步骤306,网络设备确定长度为
Figure PCTCN2020076680-appb-000012
的第一序列,根据第一序列处理第一信号。
示例性地,网络设备可以将M个子载波组上承载的片段拼接为第一序列。比如上述图5e中,网络设备接收符号0的子载波0和子载波1上的片段r(0)、r(1),接收符号2的子载波2和子载波3上的片段r(2)、r(3),以及接收符号4的子载波4和子载波5上的片段r(4)、r(5),进而将3个符号上片段拼接得到的r(0)、r(1)、r(2)、r(3)、r(4)、r(5)。又比如上述图5f中,网络设备接收符号0的子载波1和子载波0上的片段r(4)、r(5),接收 符号2的子载波3和子载波2上的片段r(2)、r(3),符号4的子载波5和子载波4上的片段r(0)、r(1),进而将3个符号上片段拼接得到的r(0)、r(1)、r(2)、r(3)、r(4)、r(5)。
示例性地,网络设备根据第一序列处理第一信号,可以是指,网络设备根据第一信号和第一序列进行信道估计,具体信道估计的实现可以参见现有方案,此处不再赘述。
采用上述方法,由于终端设备是将第一序列的不同片段映射到M个符号的不同子载波组上,从而使得M个符号的不同子载波组上承载的为一个完整序列,当联合M个符号进行信道估计时,相比于每个符号上承载一个完整序列的方案来说,用户间的干扰较小,从而能够有效提高信道估计的准确性。
此外,相比于每个SRS符号采用一个完整的SRS序列的方法,本申请实施例的方案中每个SRS符号的PAPR可能会增加,但是本申请实施例的方案可以使得PAPR增加的比较有限(例如K=2的情况下,PAPR几乎不会增加,K=4的时候,PAPR增加的比较小),因此能够提高信道估计的准确性。
需要说明的是:(1)本申请实施例中在描述涉及顺序的序号或标号时是以从0开始为例进行描述的,比如第一序列为r(n),n=0,1,2,...,W-1,又比如i=0,1,…,M-1;在其它可能的实施例中,上述序号或标号也可以是从1开始,比如第一序列为r(n),n=1,2,...,W,又比如i=1,2,…,M,具体不做限定。
(2)本申请实施例中所描述的图3中的步骤编号仅为执行流程的一种示例,并不构成对步骤执行的先后顺序的限制,本申请实施例中相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。上述图3中的各个步骤并非本申请实施例提供的通信方法必须要执行的步骤,比如上述步骤301和步骤302可以根据实际需要选择性执行,当不执行上述步骤301和步骤302时,上述时频资源可以为协议预先定义的资源。
上述主要从网络设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
在采用集成的单元的情况下,图6示出了本申请实施例中所涉及的装置的可能的示例性框图。如图6所示,装置600可以包括:处理单元602和通信单元603。处理单元602用于对装置600的动作进行控制管理。通信单元603用于支持装置600与其他设备的通信。可选地,通信单元603也称为收发单元,可以包括接收单元和/或发送单元,分别用于执行接收和发送操作。装置600还可以包括存储单元601,用于存储装置600的程序代码和/或数据。
该装置600可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的 芯片。处理单元602可以支持装置600执行上文中各方法示例中终端设备的动作;或者,处理单元602主要执行方法示例中的终端设备的内部动作,通信单元603可以支持装置600与网络设备之间的通信。例如,处理单元602用于执行图3中的步骤302、步骤303;通信单元603可以用于执行图3的步骤304。
具体地,在一个实施例中,处理单元602用于确定长度为
Figure PCTCN2020076680-appb-000013
的第一序列,通信单元603用于在M个子载波组上发送第一序列;其中,M个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号;M个子载波组中每个子载波组承载的序列为第一序列的一个片段,任意两个子载波组承载的片段不同。
在一种可能的设计中,通信单元603还用于:接收来自网络设备的指示信息;其中,指示信息用于指示在时频资源上发送第一序列,或者,指示信息用于指示在该时频资源上发送M个长度分别为K i的第二序列;该时频资源包括M个子载波组;
在一种可能的设计中,处理单元602确定第一序列之前,还用于:确定指示信息指示在该时频资源上发送第一序列。
在一种可能的设计中,通信单元603还用于:接收来自网络设备的配置信息,配置信息用于指示该时频资源,配置信息中包括指示信息。
该装置600还可以为上述任一实施例中的网络设备、或者还可以为设置在网络设备中的芯片。处理单元602可以支持装置600执行上文中各方法示例中网络设备的动作。或者,处理单元602主要执行方法示例中的网络设备的内部动作,通信单元603可以支持装置600与终端设备之间的通信。例如,通信单元603可以用于执行图3的步骤301、步骤305;处理单元602用于执行图3中的步骤306。
具体地,在一个实施例中,通信单元603用于接收承载在M个子载波组上的第一信号;其中,M个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号;处理单元602用于确定长度为
Figure PCTCN2020076680-appb-000014
的第一序列,以及根据第一序列处理第一信号;M个子载波组中每个子载波组承载的序列为第一序列的一个片段,任意两个子载波组承载的片段不同。
在一种可能的设计中,处理单元602具体用于:根据第一信号和第一序列进行信道估计。
在一种可能的设计中,通信单元603还用于,向终端设备发送指示信息;其中,指示信息用于指示在时频资源上发送第一序列,或者,指示信息用于指示在该时频资源上发送M个长度分别为K i的第二序列;该时频资源包括M个子载波组。
在一种可能的设计中,通信单元603还用于,向终端设备发送配置信息,配置信息用于指示该时频资源,配置信息中包括指示信息。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集 成在一起,也可以独立实现。这里所述的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是处理器,比如通用中央处理器(central processing unit,CPU),或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
请参考图7,其为本申请实施例提供的一种终端设备的结构示意图。其可以为以上实施例中的终端设备,用于实现以上实施例中终端设备的操作。如图7所示,该终端设备包括:天线710、射频部分720、信号处理部分730。天线710与射频部分720连接。在下行方向上,射频部分720通过天线710接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分730进行处理。在上行方向上,信号处理部分730对终端设备的信息进行处理,并发送给射频部分720,射频部分720对终端设备的信息进行处理后经过天线710发送给网络设备。
信号处理部分730可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端设备操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端设备相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。
调制解调子系统可以包括一个或多个处理元件731,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件732和接口电路733。存储元件732用于存储数据和程序,但用于执行以上方法中终端设备所执行的方法的程序可能不存储于该存储元件732中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路733用于与其它子系统通信。
该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于终端设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端设备所执行的方法的程序可以在与处理元 件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端设备执行的方法。
在又一种实现中,终端设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端设备实现以上方法中各个步骤的单元可以集成在一起,以SOC的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于终端设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图6中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图6中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图6中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图7所示的终端设备能够实现图3所示意的方法实施例中涉及终端设备的各个过程。图7所示的终端设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
请参考图8,其为本申请实施例提供的一种网络设备的结构示意图。用于实现以上实施例中网络设备的操作。如图8所示,该网络设备包括:天线801、射频装置802、基带装置803。天线801与射频装置802连接。在上行方向上,射频装置802通过天线801接收终端设备发送的信息,将终端设备发送的信息发送给基带装置803进行处理。在下行方向上,基带装置803对终端设备的信息进行处理,并发送给射频装置802,射频装置802对终端设备的信息进行处理后经过天线801发送给终端设备。
基带装置803可以包括一个或多个处理元件8031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置803还可以包括存储元件8032和接口8033,存储元件8032用于存储程序和数据;接口8033用于与射频装置802交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。以上用于网络设备的装置可以位于基带装置803,例如,以上用于网络设备的装置可以为基带装置803上的芯片,该芯片包括至 少一个处理元件和接口电路,其中处理元件用于执行以上网络设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,网络设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如用于网络设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中网络设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,网络设备实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
网络设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上网络设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上网络设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上用于网络设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种网络设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行网络设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行网络设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上网络设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以通过处理器实现,处理元件的功能可以和图6中所描述的处理单元的功能相同。示例性地,处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。存储元件可以通过存储器实现,存储元件的功能可以和图6中所描述的存储单元的功能相同。存储元件可以通过存储器实现,存储元件的功能可以和图6中所描述的存储单元的功能相同。存储元件可以是一个存储器,也可以是多个存储器的统称。
图8所示的网络设备能够实现图3所示意的方法实施例中涉及网络设备的各个过程。图8所示的网络设备中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例还提供了一种计算机可读存储介质,用于存储为执行上述处理器所需执行的计算机软件指令,其包含用于执行上述处理器所需执行的程序。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬 件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。

Claims (27)

  1. 一种通信方法,其特征在于,所述方法包括:
    确定长度为
    Figure PCTCN2020076680-appb-100001
    的第一序列;
    在M个子载波组上发送所述第一序列;
    其中,所述M个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,所述M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号;
    所述M个子载波组中每个子载波组承载的序列为所述第一序列的一个片段,任意两个子载波组承载的片段不同。
  2. 根据权利要求1所述的方法,其特征在于:
    所述M个子载波组对应的M个符号中任意相邻两个符号之间的间隔小于第一阈值;和/或,
    所述M个子载波组对应的M个符号中第一个符号和最后一个符号之间的间隔小于第二阈值。
  3. 根据权利要求1或2所述的方法,其特征在于:
    所述M个子载波组中任意一个子载波组包括的子载波在频域上连续,或者,在频域上等间隔分布。
  4. 根据权利要求1至3所述的方法,其特征在于:
    所述M个子载波组包括的所有子载波在频域上连续,或者,在频域上等间隔分布。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于:
    所述M个子载波组中每个子载波组所包括的子载波的个数相同。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于:
    每个子载波组所承载的片段的位置由所述每个子载波组包括的子载波的频域位置决定。
  7. 根据权利要求6所述的方法,其特征在于:
    若第i个子载波组包括的子载波位于子载波序列中的第k-1位至第k+K i-2位,则所述第i个子载波组上承载的片段位于第一序列中的第k-1位至第k+K i-2位,所述子载波序列是将所述M个子载波组包括的子载波按照从高频到低频的顺序或从低频到高频的顺序排序得到的,k为大于0的整数。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一序列符合如下公式:
    r(n)=Ae jαnx q(n mod N ZC),n=0,1,2……W-1
    Figure PCTCN2020076680-appb-100002
    其中,r(n),n=0,1,2,...,W-1为所述第一序列,
    Figure PCTCN2020076680-appb-100003
    N ZC为小于等于W的最大质数或大于W的最小质数或小于等于2W的最大质数或大于2W的最小质数,q为大于0小于N ZC的整数,A为一个和n无关的复数,α为一个和n无关的实数,j为虚数单位。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,确定所述第一序列之前,所述方法还包括:接收来自网络设备的指示信息;其中,所述指示信息用于指示在时频资源上发送所述第一序列,或者,所述指示信息用于指示在所述时频资源上发送M个长度分 别为K i的第二序列;所述时频资源包括所述M个子载波组。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的配置信息,所述配置信息用于指示所述时频资源,所述配置信息中包括所述指示信息。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一序列为探测参考信号SRS序列。
  12. 一种通信方法,其特征在于,所述方法包括:
    接收承载在M个子载波组上的第一信号;其中,所述M个子载波组中的第i个子载波组包括同一个符号上的K i个子载波,i=0,1,…,M-1,所述M个子载波组中任意两个子载波组中包含的子载波的频域位置不同,且属于不同符号;
    确定长度为
    Figure PCTCN2020076680-appb-100004
    的第一序列,根据所述第一序列处理所述第一信号;所述M个子载波组中每个子载波组承载的序列为所述第一序列的一个片段,任意两个子载波组承载的片段不同。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述第一序列处理所述第一信号,包括:
    根据所述第一信号和所述第一序列进行信道估计。
  14. 根据权利要求12或13所述的方法,其特征在于:
    所述M个子载波组对应的M个符号中任意相邻两个符号之间的间隔小于第一阈值;和/或,
    所述M个子载波组对应的M个符号中第一个符号和最后一个符号之间的间隔小于第二阈值。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于:
    所述M个子载波组中任意一个子载波组包括的子载波在频域上连续,或者,在频域上等间隔分布。
  16. 根据权利要求12至15所述的方法,其特征在于:
    所述M个子载波组包括的所有子载波在频域上连续,或者,在频域上等间隔分布。
  17. 根据权利要求12至16中任一项所述的方法,其特征在于:
    所述M个子载波组中每个子载波组所包括的子载波的个数相同。
  18. 根据权利要求12至17中任一项所述的方法,其特征在于:
    每个子载波组所承载的片段的位置由所述每个子载波组包括的子载波的频域位置决定。
  19. 根据权利要求18所述的方法,其特征在于:
    若第i个子载波组包括的子载波位于子载波序列中的第k-1位至第k+K i-2位,则所述第i个子载波组上承载的片段位于第一序列中的第k-1位至第k+K i-2位,所述子载波序列是将所述M个子载波组包括的子载波按照从高频到低频的顺序或从低频到高频的顺序排序得到的,k为大于0的整数。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述第一序列符合如下公式:
    r(n)=Ae jαnx q(n mod N zc),n=0,1,2……W-1
    Figure PCTCN2020076680-appb-100005
    其中,r(n),n=0,1,2,...,W-1为所述第一序列,
    Figure PCTCN2020076680-appb-100006
    N ZC为小于等于W的最大质数或大于W的最小质数或小于等于2W的最大质数或大于2W的最小质数,q为大于0小于N ZC的整数,A为一个和n无关的复数,α为一个和n无关的实数,j为虚数单位。
  21. 根据权利要求12至20中任一项所述的方法,其特征在于,所述方法还包括:
    向终端设备发送指示信息;其中,所述指示信息用于指示在时频资源上发送所述第一序列,或者,所述指示信息用于指示在所述时频资源上发送M个长度分别为K i的第二序列;所述时频资源包括所述M个子载波组。
  22. 根据权利要求21所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送配置信息,所述配置信息用于指示所述时频资源,所述配置信息中包括所述指示信息。
  23. 根据权利要求12至22中任一项所述的方法,其特征在于,所述第一序列为SRS序列。
  24. 一种通信装置,其特征在于,包括用于执行如权利要求1至11中任一项所述的方法的各步骤的单元。
  25. 一种通信装置,其特征在于,包括用于执行如权利要求12至23中任一项所述的方法的各步骤的单元。
  26. 一种通信装置,其特征在于,包括:
    通信接口,用于与其它装置通信;
    处理器,用于读取并运行存储器中的计算机程序,通过所述通信接口执行如权利要求1-23任一项所述的方法。
  27. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储程序或指令,所述程序或所述指令在被一个或多个处理器读取并执行时可实现权利要求1至23任一项所述的方法。
PCT/CN2020/076680 2020-02-25 2020-02-25 一种通信方法及装置 WO2021168670A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080097364.XA CN115176448A (zh) 2020-02-25 2020-02-25 一种通信方法及装置
PCT/CN2020/076680 WO2021168670A1 (zh) 2020-02-25 2020-02-25 一种通信方法及装置
EP20922193.6A EP4099654A4 (en) 2020-02-25 2020-02-25 COMMUNICATION METHOD AND APPARATUS
US17/895,128 US20220407662A1 (en) 2020-02-25 2022-08-25 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076680 WO2021168670A1 (zh) 2020-02-25 2020-02-25 一种通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/895,128 Continuation US20220407662A1 (en) 2020-02-25 2022-08-25 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021168670A1 true WO2021168670A1 (zh) 2021-09-02

Family

ID=77489821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076680 WO2021168670A1 (zh) 2020-02-25 2020-02-25 一种通信方法及装置

Country Status (4)

Country Link
US (1) US20220407662A1 (zh)
EP (1) EP4099654A4 (zh)
CN (1) CN115176448A (zh)
WO (1) WO2021168670A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107370701A (zh) * 2016-05-11 2017-11-21 华为技术有限公司 传输信号的方法、发送端和接收端
CN107949991A (zh) * 2015-09-02 2018-04-20 华为技术有限公司 一种信号发送或接收方法和设备
US20190273587A1 (en) * 2016-10-28 2019-09-05 Ntt Docomo, Inc. User terminal and radio communication method
CN111464478A (zh) * 2019-01-21 2020-07-28 华为技术有限公司 一种信号发送、接收方法及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8964621B2 (en) * 2009-05-08 2015-02-24 Qualcomm Incorporated Transmission and reception of a reference signal supporting positioning in a wireless communication network
WO2016179834A1 (zh) * 2015-05-14 2016-11-17 华为技术有限公司 终端、基站,以及探测参考信号的配置和传输方法
CN108282439B (zh) * 2017-01-06 2020-08-14 华为技术有限公司 一种信号发送、接收方法及装置
WO2018128401A1 (ko) * 2017-01-06 2018-07-12 한국전자통신연구원 상향링크 제어정보 전송 방법 및 장치
CN115065450A (zh) * 2017-08-04 2022-09-16 瑞典爱立信有限公司 处理探测参考信令

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107949991A (zh) * 2015-09-02 2018-04-20 华为技术有限公司 一种信号发送或接收方法和设备
CN107370701A (zh) * 2016-05-11 2017-11-21 华为技术有限公司 传输信号的方法、发送端和接收端
US20190273587A1 (en) * 2016-10-28 2019-09-05 Ntt Docomo, Inc. User terminal and radio communication method
CN111464478A (zh) * 2019-01-21 2020-07-28 华为技术有限公司 一种信号发送、接收方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC. (RAPPORTEUR): "RAN WG’s progress on NR WI in the August and September meetings 2017", 3GPP DRAFT; R2-1710077, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Prague, Czech Republic; 20171013, 6 October 2017 (2017-10-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051355886 *

Also Published As

Publication number Publication date
EP4099654A4 (en) 2023-01-11
EP4099654A1 (en) 2022-12-07
US20220407662A1 (en) 2022-12-22
CN115176448A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US10645688B2 (en) Time-frequency resource allocation method and apparatus
CN114339987B (zh) 定位参考信号的传输方法及装置、存储介质、终端
WO2019096235A1 (zh) 接收参考信号的方法和发送参考信号的方法
WO2017045607A1 (zh) 一种物理下行控制信道的传输方法及装置
US20230189225A1 (en) Method for Enhancing Physical Downlink Control Channel, Communication Apparatus, and System
US11601958B2 (en) Data transmission method and apparatus
US11632207B2 (en) Method and apparatus for transmitting uplink signal
WO2020221321A1 (zh) 通信方法以及通信装置
WO2022027507A1 (zh) 一种参考信号序列生成方法及装置
WO2022151439A1 (zh) 一种通信方法及装置
WO2018127177A1 (zh) 一种通知通信设备的能力信息的方法及设备
WO2019047549A1 (zh) 一种信息传输方法及装置
US11108531B2 (en) Method and apparatus for setting symbol
WO2021109108A1 (zh) 通信方法和装置
CN110890946B (zh) 解调参考信号的传输方法、网络侧设备及用户设备
WO2022228117A1 (zh) 一种确定ptrs图案的方法和装置
WO2021168670A1 (zh) 一种通信方法及装置
WO2021087877A1 (zh) 一种通信方法及装置
JP2019530259A (ja) 信号伝送方法及び機器
WO2020043103A1 (zh) 一种信号发送、接收方法及装置
WO2022151500A1 (zh) 一种通信方法及装置
US20240195670A1 (en) Long training field sequence transmission method and communication apparatus
WO2023273872A1 (zh) 一种通信方法及装置
WO2022027683A1 (zh) 确定传输使用的天线面板的方法和终端设备
WO2017193373A1 (zh) 资源映射方法、装置以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922193

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020922193

Country of ref document: EP

Effective date: 20220829

NENP Non-entry into the national phase

Ref country code: DE