WO2023273739A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2023273739A1
WO2023273739A1 PCT/CN2022/095660 CN2022095660W WO2023273739A1 WO 2023273739 A1 WO2023273739 A1 WO 2023273739A1 CN 2022095660 W CN2022095660 W CN 2022095660W WO 2023273739 A1 WO2023273739 A1 WO 2023273739A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
refrigerator
chamber
receiving tray
water receiving
Prior art date
Application number
PCT/CN2022/095660
Other languages
English (en)
French (fr)
Inventor
刘山山
陈建全
姬立胜
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023273739A1 publication Critical patent/WO2023273739A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention belongs to the technical field of refrigeration equipment, and specifically provides a refrigerator.
  • a water receiving tray (also called a water receiving tray) is usually provided in the compressor chamber of the refrigerator to hold the condensed water of the refrigerator through the water receiving tray.
  • the existing refrigerator usually also places the condenser in the compressor compartment in the water receiving tray, so as to heat the condensed water in the water receiving tray through the condenser, so that Condensed water evaporates into water vapour.
  • the condensed water in the water receiving tray is sometimes more and sometimes less.
  • the refrigerator produces condensed water at a high rate, it may even cause the condensed water to overflow the drain pan and flow to the ground, affecting user experience.
  • an object of the present invention is to control the rotational speed of the condensing fan by detecting the change degree of the cooling capacity of the refrigerator, so that when the rotational speed of the condensing fan is low, the condensing device can be connected to the condensation in the water tray.
  • the water is heated rapidly to increase the evaporation rate of the condensed water, thereby preventing excessive condensed water from overflowing the water receiving tray.
  • the present invention provides a refrigerator, which includes a compressor, a condensing device, a refrigerant pressure-reducing component and an evaporator that allow the refrigerant to circulate in sequence, and the refrigerator also includes a water receiving tray and a condensing fan.
  • a part of the device is located in the water receiving tray, so as to heat the liquid in the water receiving tray through the part; the condensing fan is used to drive airflow to cool the condensing device; wherein, the condensing fan is configured to, At the same time or after the refrigerator detects that the degree of change in its cooling capacity reaches the preset requirement for changing the cooling capacity, the rotating speed is reduced.
  • the condensing fan is configured to reduce the rotational speed when at least two of the following conditions are all met or after:
  • the accumulated door opening time of the refrigerator reaches a first time threshold
  • the difference between the current temperature of the storage compartment of the refrigerator and the preset temperature reaches a temperature threshold
  • the number of defrosting times of the evaporator reaches the number threshold.
  • the reducing the rotating speed includes: reducing the condensing fan to a preset rotating speed; or making the condensing fan alternately run between the rated rotating speed and the preset rotating speed; wherein the preset rotating speed is A value not less than 0.
  • the condensing device includes a condenser and a condensation pipe connected in series, the condenser is arranged on one side of the water receiving tray, and at least a part of the condensation pipe is arranged in the water receiving tray.
  • the compressor is arranged on the side of the condenser away from the water tray; the compressor compartment of the refrigerator is divided into a compressor chamber and an evaporation chamber bounded by the condenser;
  • the compressor is located in the compressor chamber, the water receiving tray is located in the evaporation chamber; the evaporation chamber is provided with an air inlet, and the compressor chamber is provided with an air outlet.
  • the air inlet is arranged on the bottom wall of the evaporation chamber, and the air inlet is located on one side of the water receiving tray in the horizontal direction; and/or, the refrigerator further includes an air guiding structure, The air guide structure is used to guide the air entering the evaporation chamber from the air inlet into the water receiving tray.
  • the air guide structure includes a side wall of the press chamber close to the air inlet; or, the air guide structure is an air guide plate arranged in the press chamber.
  • the side wall of the press chamber gradually inclines toward the water receiving tray from the bottom end to the top end.
  • the refrigerator further includes an air cylinder, an air cavity is formed in the air cylinder, and the outer peripheral wall of the air cylinder abuts against the peripheral wall of the press chamber, so that the air in the press chamber All the air flows through the air chamber; the condenser is arranged in the air chamber and fitted with the air cylinder to divide the compressor chamber into the compressor chamber and the evaporation chamber.
  • the condensing fan is arranged in the air cavity; and/or, the condensing fan is arranged on a side of the condenser away from the water receiving tray.
  • the present invention can promote the evaporation of condensed water when the rate of condensed water generated by the refrigerator is too fast or a large amount of condensed water has been generated, effectively avoiding the situation where condensed water overflows the water receiving tray, thereby avoiding the occurrence of condensed water flow
  • the situation on the ground around the refrigerator improves the user experience.
  • the compressor and the water receiving tray are arranged on both sides of the condenser respectively, and at least a part of the condensing pipe being arranged in the water receiving tray, the superposition of the condenser and the water receiving tray in the vertical direction is avoided, effectively The height of the top of the condenser from the ground is greatly reduced, thereby reducing the height of the compressor chamber, thereby increasing the usable volume of the storage room of the refrigerator.
  • the air entering the compressor cabin evaporates while flowing
  • the condensate flows to the water pan first before the water collector, which increases the evaporation rate of the condensed water in the water pan.
  • the air entering All the air in the compressor compartment can flow through the condenser (including making most of the air pass through the condenser, and a small part blows past the condenser), which improves the cooling efficiency of the air to the condenser.
  • Fig. 1 is a schematic diagram of the compartment composition of a refrigerator in some embodiments of the present invention.
  • Fig. 2 is a schematic diagram of the principle of the refrigeration system of the refrigerator shown in some embodiments of the present invention
  • Figure 3 is a first isometric view of the press chamber portion of the refrigerator shown in some embodiments of the present invention.
  • Figure 4 is a second isometric view (without the left side panel) of the portion of the press chamber shown in Figure 3;
  • Figure 5 is a third isometric view (without the rear side panel) of the portion of the press chamber shown in Figure 3;
  • Figure 6 is a fourth isometric view (without the rear side panel) of the portion of the press chamber shown in Figure 3;
  • Fig. 7 is a schematic diagram of the segmentation effect of the press chamber in Fig. 6;
  • Fig. 8 is a schematic diagram of the distribution of components in the press chamber shown in Fig. 3;
  • Fig. 9 is an exploded view of the structure of the condensing device, air cylinder and condensing fan shown in Fig. 8 .
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, or it may be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, or it may be the internal communication of two components.
  • Fig. 1 is a schematic diagram of compartment distribution of a refrigerator in some embodiments of the present invention
  • Fig. 2 is a schematic diagram of connection of main components of a refrigeration system in some embodiments of the present invention. It should be noted that what is shown in FIG. 2 is only the main components of the refrigeration system. In fact, the refrigeration system of the refrigerator also includes other structures such as control valves and pipelines.
  • the refrigerator mainly includes a body 1, a compressor 2, a condensing assembly 3, a refrigerant pressure reducing component 4, an evaporator 5, a water tray 6 and a condensing fan7.
  • the compressor 2, the condensing device 3, the refrigerant pressure-reducing component 4 and the evaporator 5 are fluidly connected together, so that the refrigerant can circulate in sequence according to the order of the compressor 2, the condensing device 3, the refrigerant pressure-reducing component 4 and the evaporator 5 flow.
  • the water receiving tray 6 is used to receive the condensed water and/or defrosted water of the refrigerator, and the condensing fan 7 is used to air-cool the condensing device 3 .
  • the pressure reducing component 4 may be a capillary tube, or a component having a throttling function and/or a pressure reducing function.
  • a part of the condensing device 3 is located in the water receiving tray 6, so as to heat the condensed water and/or defrosting water in the water receiving tray 6 through this part.
  • the refrigerator also includes a drain pipe (not marked in the figure), one end of the drain pipe leads to the refrigerating chamber 12, and the other end of the drain pipe extends to the water receiving tray 6, so that the condensed water and/or The defrosting water flows into the water receiving tray 6 through the drain pipe.
  • the body 1 is provided with a compressor chamber 11 , a refrigeration chamber 12 and a storage chamber 13 .
  • the compressor compartment 11 is located at the bottom of the machine body 1 and is at least used for arranging the compressor 2 , the condensing device 3 and the water receiving tray 6 .
  • the refrigeration compartment 12 is at least used for arranging the evaporator 5 .
  • the storage chamber 13 is used to hold foodstuffs.
  • the present invention reduces the air-cooling efficiency of the condensing device 3 by reducing the speed of the condensation fan 7 at the same time or after the refrigerator detects that the degree of change in its cooling capacity has reached the preset requirement for a change in cooling capacity, and then through condensation The device 3 heats the condensed water and/or defrosting water in the water receiving tray 6 by a part located in the water receiving tray 6 to promote the evaporation of the liquid in the water receiving tray 6 .
  • the degree of change in cooling capacity represents the degree of change in thermal energy of the refrigerating chamber 12 and/or the storage chamber 13 of the refrigerator.
  • the preset cooling capacity change requirement means that the thermal energy change of the refrigerating room 12 and/or the storage room 13 makes the liquid in the water receiving tray 6 overflow the water receiving tray 6, and the specific data will vary with the specific parameters and performance of the refrigerator. Variety. Those skilled in the art can obtain the specific data through multiple tests for different models of refrigerators.
  • part of the hot air in the environment will flow into the storage room 13, and part of the cold air in the storage room 13 will also flow into the environment, thereby causing the heat energy in the refrigerator room 13 to increase, resulting in a temperature rise. .
  • the refrigerating system When the compressor 2 is working, the refrigerating system will refrigerate the evaporator 5 to cool the air in the refrigerating chamber 12 , and the cold air in the refrigerating chamber 12 flowing into the storage chamber 13 will lower the temperature of the storage chamber 13 . That is, the thermal energy in both the refrigeration compartment 12 and the storage compartment 13 is reduced.
  • the refrigeration system heats the evaporator 5 to heat the air in the refrigeration compartment 12 , and the cold air in the refrigeration compartment 12 flows into the storage compartment 13 to increase the temperature of the storage compartment 13 . That is, the thermal energy in both the refrigeration compartment 12 and the storage compartment 13 is increased.
  • the refrigeration system needs to cool the evaporator 5 .
  • the evaporator 5 will liquefy the water vapor in the air into condensed water, and the condensed water produced during this process and the defrosted water produced during the defrosting process of the evaporator 5 will eventually flow into the water receiving tray 6 , causing the liquid level in the water receiving tray 6 to rise.
  • At least two parameters include the cumulative door opening time of the refrigerator, the cumulative running time of the compressor 2, the weight of the ingredients put into the storage room 13, the temperature of the ingredients put into the storage room 13, and the temperature of the ingredients put into the storage room 13.
  • the type of food the difference between the current temperature of the storage compartment 13 and the preset temperature, the defrosting times of the evaporator 5, etc.
  • the first time threshold may be any feasible time, for example, 21.5 minutes, 30 minutes, 46.7 minutes, 51 minutes and so on.
  • the second time threshold may be any feasible time, for example, 1 hour, 3 hours, 4.6 hours, 5 hours, 12 hours and so on.
  • the temperature threshold may be any feasible value, for example, 3.6°C, 4°C, 5°C, 7.9°C, 12°C and so on.
  • the number of times threshold may be any feasible value, such as 2 times, 5 times, 9 times and so on.
  • the starting point of any one of the above four items is the moment when the condensing fan 7 reduces the speed and resumes the speed last time.
  • Control the condensing fan 7 to reduce to a preset speed, and run for a first preset time which can be any feasible time, such as 30 minutes, 45 minutes, 1 hour, 1.5 hours, etc.
  • the preset speed can be any value not less than 0, for example, the preset speed is 80%, 75%, 50%, 45%, 30% of the rated speed of the condensation fan 7, etc.;
  • the rated speed of 7 is slower than 100r/min, 150r/min, 280r/min, 300r/min, etc.; or, the preset speed is 0.
  • the ratio of the total time occupied by the rated speed to the preset speed can be any feasible value, such as 1:1, 1:3, 2:3, 5:4 and so on.
  • the press chamber 11 is also configured to dissipate heat through the bottom of the refrigerator. Details as follows:
  • 3 to 8 show the structure of the press chamber part.
  • the compressor 2 , the condensing device 3 and the water receiving tray 6 are sequentially arranged in the compressor compartment 11 from right to left.
  • the compressor chamber 11 is divided into a compressor chamber 111 and an evaporation chamber 112 , the compressor 2 is located in the compressor chamber 111 , and the water receiving tray 6 is located in the evaporation chamber 112 .
  • the bottom wall of the evaporation chamber 111 is provided with an air inlet 1111
  • the bottom wall of the compressor chamber 112 is provided with an air outlet 1121 .
  • the machine body 1 also includes a windshield member 14 arranged on the bottom side of the bottom wall of the press chamber 11, and the windshield member 14 divides the gap between the bottom wall of the press chamber 11 and the ground into air inlet passages. (not marked in the figure) and air outlet channel (not marked in the figure); so that the outside air enters the compressor compartment 11 from the air inlet channel and the air inlet 1111, and flows to the environment around the refrigerator from the air outlet 1121 and the air outlet channel middle. Prevent the hot air flowing out from the air outlet 1121 from entering the press chamber 11 from the air inlet 1111 , affecting the heat dissipation effect of the press chamber 11 .
  • the windshield member 14 is inclined toward the air outlet 1121 from the rear to the front, so as to reduce the wind resistance of the air inlet passage, so that the outside air can enter the press chamber 11 more easily, and the wind of the press chamber 11 is optimized. cold performance.
  • grilles are installed at the air inlet 1111 and the air outlet 1121 , and the grilles are used to prevent foreign matter (such as small animals such as hamsters, cats, and parrots) from entering the press chamber 11 .
  • the condensation device 3 includes a condenser 31 and a condensation pipe 32 .
  • One end of the condensing pipe 32 is connected to the outlet of the compressor 2 ; the other end of the condensing pipe 32 is connected to the inlet of the condenser 31 to fluidly connect the compressor 2 and the condenser 31 .
  • a part of the condensation pipe 32 is located in the water receiving tray 6 and is used for heating the condensed water and/or defrosting water in the water receiving tray 6 to promote the melting of frost and the evaporation of the condensed water. Further, this part of the condensing pipe 32 is fixed by buckles (not marked in the figure) fixed on the bottom wall and/or side wall of the water receiving tray 6 .
  • the high-temperature refrigerant flowing out from the compressor 2 flows through this part of the condensation pipe 32, it can transfer heat to the condensed water and/or defrosting water in the water receiving tray 6 through this part, thereby promoting the melting of frost. And to promote the evaporation of condensed water.
  • this part of the condensation pipe 32 is set as a micro-channel radiator connected in series between the compressor 2 and the condenser 31 or between the condenser 31 and the refrigerant decompression member 4 .
  • the refrigerator also includes an air duct 8, an air cavity 81 is formed in the air duct 8, and the outer peripheral wall of the air duct 8 abuts against the circumferential wall of the press chamber 11, so as to
  • the press chamber 11 is divided into a press chamber 111 and an evaporation chamber 112 , and all the air in the press chamber 11 flows through the air cavity 81 .
  • the abutment between the peripheral wall of the air cylinder 8 and the peripheral wall of the press chamber 11 may not be completely sealed, and a small gap is reserved, so that Most of the air in the press chamber 11 flows through the air cavity 81 .
  • the condenser 31 is arranged in the air chamber 81 and fitted with the air cylinder 8 , in other words, the outer peripheral wall of the condenser 31 abuts against the inner peripheral wall of the air cylinder 8 so that the air flowing through All the air in the chamber 81 can pass through the air passage holes on the condenser 31 , or make most of the air pass through the air passage holes on the condenser 31 so that a small part of the air is blown from the outside of the peripheral wall of the condenser 31 .
  • the fitting together of the condenser 31 and the blower 8 can improve the utilization rate of cooling of the condenser 31 by the air in the compressor compartment 11 .
  • the condensation fan 7 is also arranged in the air chamber 81 and fixed together with the air cylinder 8 and/or the condenser 31 .
  • the condensation fan 7 is located on the side of the condenser 31 close to the compressor 2 .
  • the condensing fan 7 rotates forward, it can drive the outside air to enter the compressor chamber 11 from the air inlet 1111 , and then flow out of the compressor chamber 11 through the air outlet 1121 after cooling the compressor 2 and the condenser 31 .
  • those skilled in the art can also arrange the condensing fan 7 on the side of the condenser 31 away from the compressor 2 as required.
  • the air cylinder 8, the condenser 31 and the condensing fan 7 fixed to each other can facilitate the operator to install the three into the press chamber 11 and remove the three from the press chamber. 11 to remove it.
  • the condenser 31 is a microchannel condenser.
  • those skilled in the art can also configure the condenser 31 as any other feasible condenser, such as a tube condenser, as required.
  • the condensation fan 7 is configured to be able to rotate in reverse.
  • the condensing blower 7 rotating in reverse makes air enter the compressor chamber 11 from the air outlet 1121 and flow out of the compressor chamber 11 through the air inlet 1111 .
  • the airflow reversely blows the condenser 31 , blowing off the dust on the surface of the condenser 31 away from the compressor 2 .
  • a part will fall into the water receiving tray 6 through the opening of the water receiving tray 6 and mix with the condensed water, so as to avoid blowing out of the compressor chamber 11 and pollute the surrounding environment of the refrigerator.
  • the air inlet 1111 is arranged on one side of the water receiving tray 6 , preferably directly in front of the water receiving tray 6 .
  • the refrigerator further includes an air guide structure 9 disposed in the compressor compartment 11, and the air guide structure 9 is configured to guide the air entering the press compartment 11 from the air inlet 1111 to the outlet.
  • the air guide structure 9 includes a side wall of the press chamber 11 close to the air inlet 1111, and the side wall cooperates with the side wall of the water receiving tray 6 near the air inlet 1111 to guide the air entering the press chamber 11 from the air inlet 1111. Blow to the drip tray 6.
  • the side wall of the press chamber 11 close to the air inlet 1111 has an inclined structure, specifically, the side wall gradually slopes backward from the bottom end to the top end.
  • the air guide structure 9 into any other feasible structure according to the needs, such as the air guide plate arranged in the compressor cabin 11, the air guide plate
  • the air guide plate The bottom end of the air deflector is arranged on the front side of the air inlet 1111 , and the top end of the air deflector extends to the top or inside of the water receiving tray 6 .
  • the wind deflector is a curved plate to reduce wind resistance.
  • the present invention arranges the compressor 2 and the water receiving tray 6 respectively on both sides of the condensing device 3, so that the three complement each other in the vertical direction, effectively The height of the press chamber 11 is greatly reduced, and the volume of the storage chamber 13 is effectively increased under the condition that the overall height of the refrigerator remains unchanged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

一种冰箱,包括使冷媒依次循环流经的压缩机、冷凝装置、冷媒降压构件和蒸发器,所述冰箱还包括接水盘和冷凝风机,所述冷凝装置的一部分位于所述接水盘内,以通过所述一部分加热所述接水盘内的液体;所述冷凝风机用于驱动气流冷却所述冷凝装置;其中,所述冷凝风机被配置成,在所述冰箱检测到其冷量变化程度达到了预设冷量变化要求的同时或之后,降低转速。本发明在冰箱产生冷凝水的速率过快或者已经产生了较多冷凝水时,能够促进冷凝水的蒸发,有效地避免了出现冷凝水溢出接水盘的情形,进而避免了出现冷凝水流到冰箱周围的地面上的情形,提升了用户的使用体验。

Description

冰箱 技术领域
本发明属于制冷设备技术领域,具体提供了一种冰箱。
背景技术
冰箱在使用的过程中,对空气进行制冷的蒸发器经常会将空气中的水蒸气液化成水,形成冷凝水。为此,冰箱的压机仓内通常还设置有接水盘(也叫接水盘),以通过该接水盘来盛接冰箱的冷凝水。为了避免用户反复倾倒接水盘内的冷凝水,现有的冰箱通常还将压机仓内的冷凝器置于接水盘内,以通过冷凝器来对接水盘内的冷凝水进行加热,使冷凝水汽化成水蒸气。
但是,由于冰箱在使用的过程中,产生冷凝水的速率是不相同的,导致接水盘内的冷凝水时多时少。在冰箱产生冷凝水的速率较大时,甚至会导致冷凝水漫出接水盘,流到地面上,影响用户的使用体验。
发明内容
为了解决现有技术中的上述问题,本发明的一个目的在于,通过检测冰箱的冷量变化程度来控制冷凝风机的转速,以在冷凝风机转速较低时,使冷凝装置对接水盘内的冷凝水进行快速加热,提升冷凝水的蒸发速率,从而防止接水盘内的冷凝水因过多而溢出接水盘。
为实现上述目的,本发明提供了一种冰箱,包括使冷媒依次循环流经的压缩机、冷凝装置、冷媒降压构件和蒸发器,所述冰箱还包括接水盘和冷凝风机,所述冷凝装置的一部分位于所述接水盘内,以通过所述一部分加热所述接水盘内的液体;所述冷凝风机用于驱动气流冷却所述冷凝装置;其中,所述冷凝风机被配置成,在所述冰箱检测到其冷量变化程度达到了预设冷量变化要求的同时或之后,降低转速。
可选地,所述冷凝风机被配置成,在以下多个条件中的至少两个条件全部成立的同时或之后,降低转速:
所述冰箱的累积开门时间达到了第一时间阈值;
所述压缩机的累积运行时间达到了第二时间阈值;
所述冰箱的储物室的当前温度与预设温度之间的差值达到了温度阈值;
所述蒸发器的化霜次数达到了次数阈值。
可选地,所述降低转速包括:使所述冷凝风机降低到预设转速;或者,使所述冷凝风机在额定转速与所述预设转速之间交替运行;其中,所述预设转速是不小于0的数值。
可选地,所述冷凝装置包括串联到一起的冷凝器和冷凝管,所述冷凝器设置在所述接水盘的一侧,所述冷凝管的至少一部分设置在所述接水盘内。
可选地,所述压缩机设置在所述冷凝器远离所述接水盘的一侧;所述冰箱的压机仓以所述冷凝器为界被分割为压机室和蒸发室;所述压缩机位于所述压机室内,所述接水盘位于所述蒸发室内;所述蒸发室设置有进风口,所述压机室设置有出风口。
可选地,所述进风口设置在所述蒸发室的底壁上,所述进风口在水平方向上位于所述接水盘的一侧;和/或,所述冰箱还包括导风结构,所述导风结构用于将从所述进风口进入所述蒸发室的空气引导至所述接水盘内。
可选地,所述导风结构包括所述压机仓靠近所述进风口的侧壁;或者,所述导风结构是设置在所述压机仓内的导风板。
可选地,所述压机仓的所述侧壁自底端至顶端逐渐朝着靠近所述接水盘的方向倾斜。
可选地,所述冰箱还包括风筒,所述风筒内形成有风腔,所述风筒的外周壁与所述压机仓的圆周壁抵接,以使所述压机仓内的空气全部流经所述风腔;所述冷凝器设置在所述风腔中并且与所述风筒嵌合,以将所述压机仓分割成所述压机室和所述蒸发室。
可选地,所述冷凝风机设置在所述风腔中;和/或,所述冷凝风机设置在所述冷凝器远离所述接水盘的一侧。
基于前文的描述,本领域技术人员能够理解的是,在本发明前述的技术方案中,在冰箱的冷量变化程度达到了预设冷量变化要求的同时或之后,通过使冷凝风机降低转速,使得冷凝装置的风冷效率降低,进而使得冷凝装置的温度升高,将更多的热量传递给接水盘内的冷凝水,对冷凝水进行加热,促进冷凝水的蒸发。因此,本发明在冰箱产生冷凝水的速率过快或者已经产生了较多冷凝水时,能够促进冷凝水的蒸发,有效地避免了出现冷凝水溢出接水盘的情形,进而避免了出现冷凝水流到冰箱周围的地面上的情形,提升了用户的使用体验。
进一步,通过将压缩机和接水盘分别设置在冷凝器的两侧,以及将冷凝 管的至少一部分设置在接水盘内,避免了冷凝器与接水盘在竖直方向上的叠加,有效地降低了冷凝器最顶端距离地面的高度,从而降低了压机仓的高度,进而增加了冰箱的储藏室的可用容积。
进一步,通过在压机仓内设置导风结构,并将导风结构配置成,将从进风口进入散热风道内的空气引导至接水盘内,使得进入压机仓内的空气在流经蒸发器之前先流向接水盘,提升了接水盘内冷凝水的蒸发速率。
再进一步,通过在冷凝器与压机仓的散热风道之间设置风筒,并使风筒的外周壁与压机仓的圆周壁抵接,以及使冷凝器嵌合到风筒中,使得进入压机仓的空气都能够流经冷凝器(包括,使空气中的大部分贯穿冷凝器,一小部分从冷凝器的周围吹拂而过),提升了空气对冷凝器的冷却效率。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
为了更清楚地说明本发明的技术方案,后文将参照附图来描述本发明的部分实施例。本领域技术人员应当理解的是,同一附图标记在不同附图中所标示的部件或部分相同或类似;本发明的附图彼此之间并非一定是按比例绘制的。附图中:
图1是本发明一些实施例中冰箱的间室构成示意图;
图2是本发明一些实施例中所示冰箱的制冷系统原理示意图;
图3是本发明一些实施例中所示冰箱的压机仓部分的第一轴测视图;
图4是图3中所示压机仓部分的第二轴测视图(无左侧板);
图5是图3中所示压机仓部分的第三轴测视图(无后侧板);
图6是图3中所示压机仓部分的第四轴测视图(无后侧板);
图7是图6中压机仓的分割效果示意图;
图8是图3中所示压机仓内各构件的分布情况示意图;
图9是图8中所示冷凝装置、风筒和冷凝风机的结构分解图。
附图标记说明:
1、机体;11、压机仓;111、蒸发室;1111、进风口;112、压机室;1121、出风口;12、制冷室;13、储物室;14、挡风构件;
2、压缩机;
3、冷凝装置;31、冷凝器;32、冷凝管;
4、冷媒降压构件;
5、蒸发器;
6、接水盘;
7、冷凝风机;
8、风筒;81、风腔;
9、导风结构。
具体实施方式
本领域技术人员应当理解的是,下文所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,该一部分实施例旨在用于解释本发明的技术原理,并非用于限制本发明的保护范围。基于本发明提供的实施例,本领域普通技术人员在没有付出创造性劳动的情况下所获得的其它所有实施例,仍应落入到本发明的保护范围之内。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“顶部”“底部”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
图1是本发明一些实施例中冰箱的间室分布情况示意图,图2是本发明一些实施例中制冷系统的主要构件的连接情况示意图。需要说明的是,图2中示出的仅仅是制冷系统的主要构件,实际上,冰箱的制冷系统还包括控制阀、管路等其他结构。
如图1和图2所示所示,在本发明的一些实施例中,冰箱主要包括机体 1、压缩机2、冷凝组件3、冷媒降压构件4、蒸发器5、接水盘6和冷凝风机7。其中,压缩机2、冷凝装置3、冷媒降压构件4和蒸发器5流体连接到一起,以使冷媒能够按照压缩机2、冷凝装置3、冷媒降压构件4和蒸发器5的顺序依次循环流动。其中,接水盘6用于盛接冰箱的冷凝水和/或化霜水,冷凝风机7用于对冷凝装置3进行风冷。
需要说明的是,降压构件4可以是毛细管,也可以是具有节流功能和/或降压功能的构件。
进一步,冷凝装置3的一部分位于接水盘6内,以通过该一部分加热接水盘6内的冷凝水和/或化霜水。
进一步,冰箱还包括排水管(图中未标记),排水管的一端通向制冷室12,排水管的另一端延伸至接水盘6,以便使制冷室12内的冷凝水和/和/或化霜水通过排水管流动到接水盘6内。
如图1所示,机体1上设置有压机仓11、制冷室12和储物室13。其中,压机仓11位于机体1的底部,至少用于布置压缩机2、冷凝装置3和接水盘6。制冷室12至少用于布置蒸发器5。储物室13用于盛放食材。
本领域技术人员能够理解的是,冰箱在工作的过程中所产生并流动到接水盘6内的冷凝水与接水盘6内蒸发掉的冷凝水会达到一个动态平衡的关系。在该动态平衡中,接水盘6内的冷凝水不会因过多而溢流出接水盘6。但是,当冰箱在较大的制冷功率下持续运行时,或者对蒸发器5进行了除霜之后,接水盘6内的冷凝水和/或化霜水会瞬间增多,容易溢流出接水盘6。可见,接水盘6内的冷凝水和/或化霜水会瞬间增多时,都会使冰箱的冷量变化程度较大。
进一步,为了避免接水盘6内的冷凝水和/或化霜水瞬间增多时溢出接水盘6,需要加快接水盘6内液体的蒸发。为了实现该目的,本发明在冰箱检测到其冷量变化程度达到了预设冷量变化要求的同时或之后,通过降低冷凝风机7的转速,来降低冷凝装置3的风冷效率,进而通过冷凝装置3通过位于接水盘6内的一部分加热接水盘6内的冷凝水和/或化霜水,促进接水盘6内液体的蒸发。
其中,冷量变化程度表示冰箱的制冷室12和/或储藏室13热能的变化程度。预设冷量变化要求表示制冷室12和/或储藏室13的热能变化使接水盘6内液体达到了溢出接水盘6的程度,其具体数据会随着冰箱的具体参数和性 能而发生变化。本领域技术人员可以针对不同型号的冰箱通过多次试验获得该具体数据。
本领域技术人员还能够理解的是,在冰箱开门时,在压缩机2工作时,在蒸发器5化霜时,在冷藏室13内增加或减少食材时,都会导致制冷室12和/或储藏室13的热能发生变化。
具体地,在冰箱开门时,环境中的部分热空气会流动到储藏室13内,储藏室13内的部分冷空气也会流动到环境中,从而导致冷藏室13内的热能增加,出现温升。
在压缩机2工作时,制冷系统会对蒸发器5进行制冷,从而冷却制冷室12内的空气,制冷室12内的冷空气流动到储藏室13内会降低储藏室13的温度。即,制冷室12和储藏室13内的热能都减少。
在蒸发器5化霜时,制冷系统会对蒸发器5进行加热,从而加热制冷室12内的空气,制冷室12内的冷空气流动到储藏室13内会增加储藏室13的温度。即,使得制冷室12和储藏室13内的热能都增加。
在冷藏室13内增加会减少食材时,尤其是冷藏室13内增加了食材时,由于食材的温度通常会高于冷藏室13的温度,从而导致食材向冷藏室13释放热量,使冷藏室13的温度升高。
本领域技术人员还能够理解的是,在制冷室12和/或储藏室13的热能发生了变化以后,为了使储藏室13维持正常的工作状态,制冷系统都需要对蒸发器5进行制冷。在此过程中,蒸发器5会使空气中的水蒸气液化成冷凝水,在此过程中产生的冷凝水以及蒸发器5化霜过程中产生的化霜水最终会流动到接水盘6内,导致接水盘6内的液面上升。
进一步,为了保证冷量变化程度的检测精度,在本发明的一些实施例中,通过判断预设的至少两种参数是否都达到了各自对应的参数阈值,来判断冰箱的冷量变化程度是否达到了预设冷量变化要求。
其中,至少两种参数包括冰箱的累积开门时间、压缩机2的累积运行时间、放入至储藏室13内食材的重量、放入至储藏室13内食材的温度、放入至储藏室13内食材的种类、储物室13的当前温度与预设温度之间的差值、蒸发器5的化霜次数等。
可选地,通过检测以下多项中的至少两项是否同时成立,来判断预设的至少两种参数是否都达到了各自对应的参数阈值:
(1)判断冰箱的累积开门时间是否达到了第一时间阈值;
其中,第一时间阈值可以是任意可行的时间,例如,21.5分钟、30分钟、46.7分钟、51分钟等。
(2)判断压缩机2的累积运行时间是否达到了第二时间阈值;
其中,第二时间阈值可以是任意可行的时间,例如,1小时、3小时、4.6小时、5小时、12小时等。
(3)判断冰箱的储物室13的当前温度与预设温度之间的差值是否达到了温度阈值;
其中,温度阈值可以是任意可行的数值,例如,3.6℃、4℃、5℃、7.9℃、12℃等。
(4)判断蒸发器5的化霜次数是否达到了次数阈值。
其中,该次数阈值可以是任意可行的数值,例如2次、5次、9次等。
需要说明的是,上述的四项中任一项的起算节点都是上一次冷凝风机7降低转速并恢复转速时的时刻。
作为降低冷凝风机7转速的可选方式之一:
控制冷凝风机7降低到预设转速,并运行第一预设时间,该第一设定时间可以是任意可行的时间,例如30min、45min、1小时、1.5小时等。
该预设转速可以是不小于0的任意数值,例如,预设转速是冷凝风机7的额定转速的80%、75%、50%、45%、30%等;或者,预设转速比冷凝风机7的额定转速慢100r/min、150r/min、280r/min、300r/min等;或者,预设转速为0。
作为降低冷凝风机7转速的可选方式之:
控制所冷凝风机7在额定转速与预设转速之间交替运行,并运行第二预设时间,该第二设定时间可以是任意可行的时间,例如45min、56min、1小时、1.5小时等。
需要说明的是,在此过程中,额定转速与预设转速占用总时间的比例可以是任意可行的数值,例如1:1、1:3、2:3、5:4等。
本领域技术人员能够理解的是,当冷凝风机7的转速降低时,冷凝装置3的风冷效果将会变差,导致冷凝装置3具有较大的温升。由于冷凝装置3的一部分位于接水盘6内,使得高温的冷凝装置3能够通过该一部分加热接水盘6内的液体,促进液体的蒸发,防止了接水盘6内的液体过多,溢流到 冰箱周围的地面上的情形,提升了用户的使用体验。
进一步,为了满足用户对冰箱进行嵌装的需求,在本发明的一些实施例中,压机仓11还被设置为能够通过冰箱的底部进行散热。具体如下:
图3至图8是示出的是压机仓部分的结构。
如图3至图8所示,压缩机2、冷凝装置3和接水盘6从右至左依次布置在压机仓11内。并且压机仓11被分割为压机室111和蒸发室112,压缩机2位于压机室111内,接水盘6位于蒸发室112内。进一步,蒸发室111的底壁上设置有进风口1111,压机室112的底壁上设置有出风口1121。在冰箱正常使用的状态下,压机仓11的底壁与地面之间具有间隙(图中未标记),以便使外界的空气从进风口1111进入压机仓11,对压缩机2和冷凝装置3冷却后再从出风口1121流出压机仓11。
如图5所示,机体1还包括设置在压机仓11底壁的底侧的挡风构件14,挡风构件14将压机仓11的底壁与地面之间的间隙分割成进风通道(图中未标记)和出风通道(图中未标记);以使外界的空气从进风通道和进风口1111进入压机仓11,从出风口1121和出风通道流到冰箱周围的环境中。防止从出风口1121流出的热风再从进风口1111进入压机仓11,影响压机仓11的散热效果。
优选地,挡风构件14从后向前朝着靠近出风口1121的方向倾斜,以降低进风通道的风阻,从而使外界的空气更容易进入压机仓11,优化了压机仓11的风冷性能。
如图4至图8所示,进风口1111和出风口1121处安装有格栅,该格栅用于防止异物(例如,仓鼠、猫、鹦鹉等小动物)进入压机仓11。
如图7和图8所示,冷凝装置3包括冷凝器31和冷凝管32。冷凝管32的一端与压缩机2的出口连接;冷凝管32的另一端与冷凝器31的进口连接,以将压缩机2与冷凝器31流体连接到一起。冷凝管32的一部分位于接水盘6内,用于加热接水盘6内的冷凝水和/或化霜水,促进霜的融化,促进冷凝水的蒸发。进一步,冷凝管32的该一部分通过固定到接水盘6底壁和/或侧壁上的卡扣(图中未标记)固定。从压缩机2内流出的高温冷媒在流经冷凝管32的该一部分时,能够对通过该一部分将热量传递至接水盘6内的冷凝水和/或化霜水,从而促进霜的融化,以及促进冷凝水的蒸发。
此外,在本发明的其他实施例中,本领域技术人员也可以根据需要,将 冷凝管32的该一部分替换成其他高度较小的结构或构件。例如将冷凝管32的该一部分设置为串联在压缩机2与冷凝器31之间或者串联在冷凝器31与冷媒降压构件4之间的微通道散热器。
如图5、图7、图8和图9所示,冰箱还包括风筒8,风筒8内形成有风腔81,风筒8的外周壁与压机仓11的圆周壁抵接,以将压机仓11分割成压机室111和蒸发室112,以及使压机仓11内的空气全部流经风腔81。本领域技术人员能够理解的是,考虑到加工成本和/或装配成本,风筒8的外周壁与压机仓11的圆周壁之间可以不是完全密封地抵接,保留微小的间隙,以使压机仓11内的大部分空气全部流经风腔81。
如图6和图7所示,冷凝器31设置在风腔81中并且与风筒8嵌合,换句话说,冷凝器31的外周壁与风筒8内周壁抵接,以使流经风腔81内的空气都能够贯穿冷凝器31上的风道孔,或者使大部分的空气贯穿冷凝器31上的风道孔使少部分的空气从冷凝器31的圆周壁的外侧吹拂而过。本领域技术人员能够理解的是,嵌合到一起的冷凝器31和风筒8,能够提升压机仓11内的空气对冷凝器31制冷的利用率。
进一步,冷凝风机7也设置在风腔81中,并且与风筒8和/或冷凝器31固定到一起。优选地,冷凝风机7位于冷凝器31靠近压缩机2的一侧。冷凝风机7正转时能够驱动外界的空气从进风口1111进入压机仓11,对压缩机2和冷凝器31冷却后再从出风口1121流出压机仓11。或者,本领域技术人员也可以根据需要,将冷凝风机7设置在冷凝器31远离压缩机2的一侧。
本领域技术人员能够理解的是,彼此固定到一起的风筒8、冷凝器31和冷凝风机7,能够方便操作人员将该三者安装到压机仓11内以及将该三者从压机仓11内拆卸下来。
在本发明的该一些实施例中,冷凝器31是微通道冷凝器。此外,本领域技术人员也可以根据需要,将冷凝器31设置成其他任意可行的冷凝器,例如管式冷凝器。
进一步,在能够保证压机仓11内的空气全部或者大部分流经/吹拂冷凝器31的前提下,在本发明的其他实施例中,本领域技术人员也可以根据需要,省去风筒8的设置,并使冷凝器31的圆周与压机仓11的内周壁相匹配,以使冷凝器31的圆周壁与压机仓11的内周壁抵接,并因此将压机仓11分割成压机室111和蒸发室112。
可选地,冷凝风机7被配置为能够反向转动。反向转动的冷凝风机7使空气从出风口1121进入压机仓11,并从进风口1111流出压机仓11。在此过程中,气流反向吹拂冷凝器31,将冷凝器31表面上的灰尘朝着远离压缩机2的方向吹落。从冷凝器31上吹落的灰尘中,一部分会通过接水盘6的敞口落入接水盘6中并与冷凝水混合,避免了吹出压机仓11,污染冰箱周围的环境。
如图4和图8所示,进风口1111设置在接水盘6的一侧,优选地设置在接水盘6的正前方。
如图4所示,冰箱还包括设置在压机仓11内的导风结构9,该导风结构9配置成,将从进风口1111进入所述压机仓11内的空气引导至所述接水盘6内。具体地,该导风结构9包括压机仓11靠近进风口1111的侧壁,该侧壁与接水盘6靠近进风口1111的侧壁相配合引导从进风口1111进入压机仓11的空气吹向接水盘6。其中,压机仓11靠近进风口1111的侧壁为倾斜结构,具体地,该侧壁自底端至顶端,逐渐向后倾斜。
此外,在本发明的其他实施例中,本领域技术人员也可以根据需要,将导风结构9设置成其他任意可行的结构,例如设置在压机仓11内的导风板,该导风板的底端设置在进风口1111的前侧,该导风板的顶端延伸至接水盘6的正上方或内部。优选地,该导风板为弧形板,以减小风阻。
基于前文的描述,本领域技术人员能够理解的是,本发明通过将压缩机2和接水盘6分别设置在冷凝装置3的两侧,使得该三者在竖直方向上互补交叠,有效地降低了压机仓11的高度,进而在冰箱整机高度不变的情况下,使得储物室13的容积得到了有效地增加。
进一步,通过使进入压机仓11内的空气全部流经冷凝器31并吹拂冷凝器31,使得进入压机仓11内的空气得到了充分地利用,提升了冷凝器31的散热效果。
至此,已经结合前文的多个实施例描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围并不仅限于这些具体实施例。在不偏离本发明技术原理的前提下,本领域技术人员可以对上述各个实施例中的技术方案进行拆分和组合,也可以对相关技术特征作出等同的更改或替换,凡在本发明的技术构思和/或技术原理之内所做的任何更改、等同替换、改进等都将落入本发明的保护范围之内。

Claims (10)

  1. 一种冰箱,包括使冷媒依次循环流经的压缩机、冷凝装置、冷媒降压构件和蒸发器,
    所述冰箱还包括接水盘和冷凝风机,所述冷凝装置的一部分位于所述接水盘内,以通过所述一部分加热所述接水盘内的液体;所述冷凝风机用于驱动气流冷却所述冷凝装置;
    其中,所述冷凝风机被配置成,在所述冰箱检测到其冷量变化程度达到了预设冷量变化要求的同时或之后,降低转速。
  2. 根据权利要求1所述的冰箱,其中,
    所述冷凝风机被配置成,在以下多个条件中的至少两个条件全部成立的同时或之后,降低转速:
    所述冰箱的累积开门时间达到了第一时间阈值;
    所述压缩机的累积运行时间达到了第二时间阈值;
    所述冰箱的储物室的当前温度与预设温度之间的差值达到了温度阈值;
    所述蒸发器的化霜次数达到了次数阈值。
  3. 根据权利要求2所述的冰箱,其中,
    所述降低转速包括:使所述冷凝风机降低到预设转速;或者,使所述冷凝风机在额定转速与所述预设转速之间交替运行;
    其中,所述预设转速是不小于0的数值。
  4. 根据权利要求1-3中任一项所述的冰箱,其中,
    所述冷凝装置包括串联到一起的冷凝器和冷凝管,所述冷凝器设置在所述接水盘的一侧,所述冷凝管的至少一部分设置在所述接水盘内。
  5. 根据权利要求4所述的冰箱,其中,
    所述压缩机设置在所述冷凝器远离所述接水盘的一侧;
    所述冰箱的压机仓以所述冷凝器为界被分割为压机室和蒸发室;所述压缩机位于所述压机室内,所述接水盘位于所述蒸发室内;
    所述蒸发室设置有进风口,所述压机室设置有出风口。
  6. 根据权利要求5所述的冰箱,其中,
    所述进风口设置在所述蒸发室的底壁上,所述进风口在水平方向上位于所述接水盘的一侧;和/或,
    所述冰箱还包括导风结构,所述导风结构用于将从所述进风口进入所述蒸发室的空气引导至所述接水盘内。
  7. 根据权利要求6所述的冰箱,其中,
    所述导风结构包括所述压机仓靠近所述进风口的侧壁;或者,
    所述导风结构是设置在所述压机仓内的导风板。
  8. 根据权利要求7所述的冰箱,其中,
    所述压机仓的所述侧壁自底端至顶端逐渐朝着靠近所述接水盘的方向倾斜。
  9. 根据权利要求5-8中任一项所述的冰箱,其中,
    所述冰箱还包括风筒,所述风筒内形成有风腔,所述风筒的外周壁与所述压机仓的圆周壁抵接,以使所述压机仓内的空气全部流经所述风腔;
    所述冷凝器设置在所述风腔中并且与所述风筒嵌合,以将所述压机仓分割成所述压机室和所述蒸发室。
  10. 根据权利要求9所述的冰箱,其中,
    所述冷凝风机设置在所述风腔中;和/或,
    所述冷凝风机设置在所述冷凝器远离所述接水盘的一侧。
PCT/CN2022/095660 2021-06-30 2022-05-27 冰箱 WO2023273739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110736579.8 2021-06-30
CN202110736579.8A CN115540435A (zh) 2021-06-30 2021-06-30 冰箱

Publications (1)

Publication Number Publication Date
WO2023273739A1 true WO2023273739A1 (zh) 2023-01-05

Family

ID=84692479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095660 WO2023273739A1 (zh) 2021-06-30 2022-05-27 冰箱

Country Status (2)

Country Link
CN (1) CN115540435A (zh)
WO (1) WO2023273739A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332253A (ja) * 1997-06-02 1998-12-15 Toshiba Corp 冷蔵庫
CN108019998A (zh) * 2017-12-11 2018-05-11 合肥华凌股份有限公司 改善接水盘化霜水蒸发能力的控制方法、控制器及冰箱
CN108885050A (zh) * 2016-03-01 2018-11-23 三菱电机株式会社 冰箱
CN109282561A (zh) * 2018-09-21 2019-01-29 Tcl家用电器(合肥)有限公司 冰箱、冰箱控制方法及计算机可读存储介质
CN208901720U (zh) * 2018-09-19 2019-05-24 海信容声(广东)冷柜有限公司 一种制冷机组及制冷设备
CN110375475A (zh) * 2018-04-13 2019-10-25 青岛海尔股份有限公司 优化蒸发器安装结构的冰箱
CN111442589A (zh) * 2020-03-13 2020-07-24 青岛海尔电冰箱有限公司 制冷装置
CN112268393A (zh) * 2020-10-23 2021-01-26 青岛海信商用冷链股份有限公司 一种制冷设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10332253A (ja) * 1997-06-02 1998-12-15 Toshiba Corp 冷蔵庫
CN108885050A (zh) * 2016-03-01 2018-11-23 三菱电机株式会社 冰箱
CN108019998A (zh) * 2017-12-11 2018-05-11 合肥华凌股份有限公司 改善接水盘化霜水蒸发能力的控制方法、控制器及冰箱
CN110375475A (zh) * 2018-04-13 2019-10-25 青岛海尔股份有限公司 优化蒸发器安装结构的冰箱
CN208901720U (zh) * 2018-09-19 2019-05-24 海信容声(广东)冷柜有限公司 一种制冷机组及制冷设备
CN109282561A (zh) * 2018-09-21 2019-01-29 Tcl家用电器(合肥)有限公司 冰箱、冰箱控制方法及计算机可读存储介质
CN111442589A (zh) * 2020-03-13 2020-07-24 青岛海尔电冰箱有限公司 制冷装置
CN112268393A (zh) * 2020-10-23 2021-01-26 青岛海信商用冷链股份有限公司 一种制冷设备

Also Published As

Publication number Publication date
CN115540435A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
KR100597145B1 (ko) 공기 조화 장치
WO2018006572A1 (zh) 风冷冰箱及其除湿方法
WO2018121593A1 (zh) 冰箱节能制冷系统及具有该系统的冰箱运行方法
CN104776629B (zh) 蒸发式冷凝器空调系统及其工作方法
JP6793760B2 (ja) 放熱アセンブリ及び冷却装置
CN111140976A (zh) 新风空调系统及其控制方法
CN105276896B (zh) 风冷冰箱及风冷冰箱制冷控制方法
CN105115217A (zh) 风冷冰箱
CN109378550B (zh) 汽车空调器和新能源汽车
CN114151871A (zh) 一种空调系统及其变频模块的冷却控制装置和方法
JP5369157B2 (ja) 冷凍冷蔵庫
CN113669986A (zh) 降低风冷冰箱化霜速率的方法
WO2023273739A1 (zh) 冰箱
CN108344230A (zh) 防凝露冰箱及其运行方法
KR20120072774A (ko) 고효율 제상구조를 가지는 냉장고
JP5031045B2 (ja) 冷凍冷蔵庫
WO2023061212A1 (zh) 风冷式冰箱及其除霜控制方法
JP2014112008A (ja) 冷蔵庫
JP3716897B2 (ja) 冷蔵庫
JP2013160462A (ja) 冷蔵庫
CN208886977U (zh) 一种空调扇制冷系统及空调扇
WO2023273738A1 (zh) 制冷设备
JP2012251682A (ja) 冷蔵庫
CN105953308A (zh) 空调系统及空调系统的控制方法
JP3716896B2 (ja) 冷蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE