WO2023061212A1 - 风冷式冰箱及其除霜控制方法 - Google Patents

风冷式冰箱及其除霜控制方法 Download PDF

Info

Publication number
WO2023061212A1
WO2023061212A1 PCT/CN2022/121711 CN2022121711W WO2023061212A1 WO 2023061212 A1 WO2023061212 A1 WO 2023061212A1 CN 2022121711 W CN2022121711 W CN 2022121711W WO 2023061212 A1 WO2023061212 A1 WO 2023061212A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
defrosting
axial flow
flow fan
temperature
Prior art date
Application number
PCT/CN2022/121711
Other languages
English (en)
French (fr)
Inventor
王少一
崔展鹏
陈建全
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023061212A1 publication Critical patent/WO2023061212A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/12Removing frost by hot-fluid circulating system separate from the refrigerant system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices

Definitions

  • the invention belongs to the technical field of refrigeration equipment, and specifically provides an air-cooled refrigerator and a defrosting control method thereof.
  • Existing air-cooled refrigerators generally have a refrigerating chamber, a refrigerating air channel, a storage room, and a return air channel connected in sequence.
  • the existing air-cooled refrigerator also has an evaporator and a fan, and the evaporator is arranged in the refrigeration chamber to cool the air in the refrigeration chamber.
  • the fan is used to drive the air to circulate along the path of the refrigerating room, the refrigerating air channel, the storage room and the return air channel, so as to transport the gas cooled by the evaporator in the refrigerating room to the storage room, and cool the stored objects (including food materials) in the storage room. , drugs, wine, biological reagents, colonies, chemical reagents, etc.).
  • frost on When there is a lot of frost on the evaporator, it will affect the cooling effect of the evaporator on the surrounding air, so it is necessary to defrost the evaporator regularly.
  • the fan is usually stopped first, and then the evaporator is heated by an electric heating device.
  • the heat is gradually transferred from point to surface to the entire evaporator, and then melts the frost on the evaporator. Since it takes a certain amount of time for the heat to transfer to the entire evaporator, the defrosting time of the evaporator is longer and the defrosting efficiency is lower.
  • An object of the present invention is to solve the problem of low defrosting efficiency when defrosting the evaporator of the existing air-cooled refrigerator.
  • a further object of the present invention is to prevent high-temperature gas in the refrigeration chamber from entering the storage chamber during the defrosting process of the evaporator of the air-cooled refrigerator.
  • the present invention provides a defrosting control method for an air-cooled refrigerator, which includes a refrigerator body, an evaporator, an axial flow fan, a heating device located above the evaporator, and a the valve assembly on the refrigerator body, the refrigerator body defines a refrigeration chamber, a storage chamber, a refrigeration air passage, a return air passage and a defrosting air passage,
  • the refrigerating chamber, the axial flow fan, the refrigerating air passage, the storage chamber and the return air passage are sequentially connected end to end to form a refrigerating circulation air passage;
  • the refrigerating chamber, the defrosting air passage and the The axial flow fans are connected end to end in order to form a defrosting circulation air path;
  • the valve assembly is used to block one of the refrigeration circulation air path and the defrosting circulation air path, and open the other;
  • the defrosting control method includes:
  • the axial flow fan is rotated forward, and the heating device is started to heat;
  • the axial fan is reversed.
  • the defrosting control method further includes: in response to the temperature of the refrigerating chamber rising to a third preset temperature, stopping the rotation of the axial flow fan; wherein, the third preset temperature is greater than the The second preset temperature is greater than the first preset temperature.
  • the reverse rotation of the axial flow fan includes: increasing the rotational speed of the axial flow fan as the temperature of the refrigerating chamber increases.
  • the defrosting control method further includes: obtaining the air pressure in the cooling air duct;
  • the reverse rotation of the axial flow fan includes: increasing the rotational speed of the axial flow fan as the air pressure in the cooling air channel increases.
  • the defrosting control method further includes: obtaining a pressure difference between the cooling air channel and the storage room;
  • the reverse rotation of the axial flow fan includes: increasing the rotation speed of the axial flow fan with the increase of the pressure difference.
  • the defrosting control method further includes:
  • the fourth preset temperature is not greater than the first preset temperature.
  • the first preset temperature is not greater than 0°C
  • the third preset temperature is not less than 5°C.
  • the valve assembly includes:
  • a first one-way valve which only allows the forward-rotating axial flow fan to drive the gas to flow through the cooling air passage, but does not allow the reverse rotation of the axial flow fan to drive the gas to flow through the cooling air passage;
  • a second one-way valve which only allows the forward-rotating axial flow fan to drive the gas to flow through the return air passage, but does not allow the reverse rotation of the axial flow fan to drive the gas to flow through the return air passage;
  • the third one-way valve only allows the air driven by the axial flow fan in reverse to flow through the defrosting air passage, but does not allow the air driven by the axial flow fan in forward rotation to flow through the defrosting air passage.
  • the first one-way valve, the second one-way valve and the third one-way valve are thin slices that are pivotally connected to the refrigerator body, and the pivot axis of each thin slice is located at Corresponding to the top of the sheet, so that the first one-way valve, the second one-way valve and the third one-way valve can be closed under the action of their own gravity.
  • the present invention also provides an air-cooled refrigerator, including a processor, a memory, and execution instructions stored in the memory, and the execution instructions are configured to enable the air-cooled refrigerator to A type refrigerator implements the defrosting control method described in any one of the preceding technical solutions.
  • the air-cooled refrigerator by making the air-cooled refrigerator to form The connected refrigeration circulation air path, and the defrosting circulation air path formed by the refrigeration chamber, the defrosting air passage and the axial flow fan in turn connected end to end, and the valve assembly controls one of the refrigeration circulation air path and the defrosting circulation air path to be controlled. While blocking, control the other to be opened. Therefore, when the air-cooled refrigerator defrosts the evaporator, the gas can be circulated in the defrosting circulation air path.
  • the axial flow fan By arranging the heating device above the evaporator, and when the temperature of the refrigeration chamber rises to the second preset temperature, the axial flow fan is reversed, so that the axial flow fan can drive the gas heated by the heating device to flow from top to bottom
  • the evaporator is blown, so that the evaporator is evenly heated by the hot air flowing through its surface.
  • the evaporator can be heated evenly and quickly, and the evaporation can be quickly removed. frost condensation on the evaporator, thereby improving the defrosting effect of the evaporator.
  • the gas flowing from top to bottom can also promote the condensation and the frost-water mixture to leave the evaporator, further improving the defrosting effect of the evaporator.
  • the axial flow fan is turned forward during the heating process of the heating device, so that the cooling capacity in the refrigeration chamber can be fully utilized. Refrigerate the storage room. When the temperature of the refrigerating chamber is between the first preset temperature and the second preset temperature, the axial flow fan is stopped so that the heating device has enough time for preheating.
  • the rotational speed of the axial flow fan with the increase of the temperature of the refrigerating chamber, or increasing the rotational speed of the axial flow fan with the increase of the air pressure in the cooling air passage, or increasing the rotational speed of the axial flow fan with the increase of the pressure
  • the difference increases, so that the gas flow rate in the defrosting circulating air duct increases with the increase of the rotational speed of the axial flow fan. Since the air pressure of the gas decreases with the increase of the flow velocity, the air pressure in the defrosting circulation air path can be reduced by increasing the speed of the axial flow fan, so that the air pressure in the defrosting circulation air path is slightly lower than the air pressure in the storage room. It prevents the high-temperature gas in the defrosting circulation air path from entering the storage room.
  • Fig. 1 is a schematic diagram of the principle of an air-cooled refrigerator (cooling mode) in some embodiments of the present invention
  • Fig. 2 is a schematic diagram of the principle of an air-cooled refrigerator (defrosting mode) in some embodiments of the present invention
  • Fig. 3 is a schematic diagram of the first axonometric effect of the air duct cover plate part in some embodiments of the present invention
  • Fig. 4 is a schematic diagram of the second axonometric effect of the air duct cover plate part in some embodiments of the present invention.
  • Fig. 5 is a cross-sectional view of the air duct cover plate part along the A-A direction in Fig. 4;
  • Fig. 6 is a cross-sectional view of the air duct cover plate part along the B-B direction in Fig. 4;
  • Fig. 7 is a flow chart of the main steps of the defrosting control method in some embodiments of the present invention.
  • Fig. 8 is a partial flow chart of the defrosting control method in some other embodiments of the present invention.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, or it may be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a It is a detachable connection or an integral connection; it may be a mechanical connection or an electrical connection; it may be a direct connection or an indirect connection through an intermediary, or it may be the internal communication of two components.
  • FIG. 1 is a schematic diagram of the principle of an air-cooled refrigerator (cooling mode) in some embodiments of the present invention
  • Fig. 2 is a schematic diagram of the principle of an air-cooled refrigerator in some embodiments of the present invention (defrosting mode)
  • Fig. 3 is a schematic diagram of the principle of the air-cooled refrigerator in some embodiments of the present invention (defrosting mode)
  • Fig. Schematic diagram of the first axonometric effect of the air duct cover part in some embodiments
  • Fig. 1 is a schematic diagram of the principle of an air-cooled refrigerator (cooling mode) in some embodiments of the present invention
  • Fig. 2 is a schematic diagram of the principle of an air-cooled refrigerator in some embodiments of the present invention (defrosting mode)
  • Fig. 3 is a schematic diagram of the principle of the air-cooled refrigerator in some embodiments of the present invention (defrosting mode)
  • Fig. Schematic diagram of the first axonometric effect of the air duct cover part in
  • FIG. 4 is a schematic diagram of the second axonometric effect of the air duct cover part in some embodiments of the present invention
  • Fig. 5 is a schematic diagram of the air duct cover part in Fig.
  • Figure 6 is a cross-sectional view of the air duct cover part along the B-B direction in Figure 4 .
  • an air-cooled refrigerator includes a refrigerator body 1 , an evaporator 2 , an axial fan 3 , a heating device 4 and a valve assembly 5 .
  • the refrigerator body 1 defines a refrigeration chamber 101 , a storage chamber 102 , a refrigeration air passage 103 , a return air passage 104 and a defrosting air passage 105 .
  • the refrigeration chamber 101 , the axial flow fan 3 , the refrigeration air passage 103 , the storage chamber 102 and the return air passage 104 are sequentially connected end to end, and thus form a refrigeration circulation air passage.
  • the refrigerating chamber 101, the defrosting air channel 105 and the axial flow fan 3 are connected end to end in sequence, and thus form a defrosting circulation air path.
  • the gas circulates in the refrigeration circulation air passage, and the gas flow path is: refrigeration chamber 101 ⁇ axial flow fan 3 ⁇ refrigeration air duct 103 ⁇ storage room 102 ⁇ return air channel 104 ⁇ refrigeration chamber 101 .
  • the gas circulates in the defrosting circulation air path, and the path of the gas flow is: refrigerating chamber 101 ⁇ defrosting air duct 105 ⁇ axial flow fan 3 ⁇ Refrigeration chamber 101.
  • the refrigerator body 1 includes an air duct cover plate 110 , and both the cooling air duct 103 and the defrosting air duct 105 are formed on the air duct cover plate 110 .
  • the air outlet 1031 of the cooling air channel 103 is disposed on the front side of the air channel cover 110 , so that the cooling air channel 103 blows cold air into the storage compartment 102 through the air outlet 1031 .
  • the air inlet 1051 of the defrosting air duct 105 is disposed on the rear side of the air duct cover 110 , so that the defrosting air duct 105 receives the air in the refrigeration chamber 101 through the air inlet 1051 .
  • cooling air ducts 103 and one defrosting air duct 105 there are two cooling air ducts 103 and one defrosting air duct 105 , and the defrosting air duct 105 is located between the two cooling air ducts 103 ,
  • the flow cross-sectional area of the cooling air channel 103 is made as large as possible, so as to reduce the resistance of the cooling air channel 103 to the gas.
  • the evaporator 2 is disposed in the refrigeration chamber 101 , and the evaporator 2 is located between two ends of the defrosting air duct 105 .
  • the axial flow fan 3 is arranged above the evaporator 2 and is used to drive the gas flow so that the gas flows in the refrigeration circulation air path or the defrosting circulation air path.
  • the axial flow fan 3 is arranged obliquely above the evaporator 2 and close to the evaporator 2 .
  • the included angle between the axial flow fan 3 (specifically, the rotation axis of the impeller of the axial flow fan 3 ) and the horizontal plane is 0°-45°, such as 5°, 15°, 30°, 45° and so on.
  • the top surface of the evaporator 2 is inclined, so that the gas blown from the reversed axial flow fan 3 is blown vertically to the top surface of the evaporator 2 , so that the gas evenly passes through the gaps on the evaporator 2 .
  • the uneven distribution of air flow passing through the evaporator 2 is avoided, that is, the situation that a part of the air in the evaporator 2 has a faster flow rate and another part of the air has a slower flow rate.
  • the heating device 4 is arranged above the evaporator 2 and between the evaporator 2 and the axial flow fan 3, so that the reversed axial flow fan 3 will be heated by the heating device 4
  • the evaporator 2 is blown from top to bottom, so that the evaporator 2 is evenly heated by the hot gas flowing through its surface.
  • valve assembly 5 is installed on the air duct cover plate 110 , and is used to control one of the refrigeration circulation air passage and the defrosting circulation air passage to be blocked while the other is opened.
  • the valve assembly 5 includes a first one-way valve 51 , a second one-way valve 52 and a third one-way valve 53 .
  • the first one-way valve 51 is used to one-way block the cooling air passage 103. Specifically, the first one-way valve 51 only allows the forward-rotating axial flow fan 3 to drive the gas to flow through the cooling air passage 103, and does not allow the reverse rotation.
  • the axial flow fan 3 drives gas to flow through the cooling air duct 103 .
  • the second one-way valve 52 is used to one-way block the return air passage 104, specifically, the second one-way valve 52 only allows the positively rotating axial fan 3 to drive the gas to flow through the return air passage 104, and does not allow the reverse The axial flow fan 3 drives air to flow through the return air channel 104 .
  • the third one-way valve 53 is used to one-way block the defrosting air passage 105, specifically, the third one-way valve 53 only allows the reversed axial flow fan 3 to drive the gas to flow through the defrosting air passage 105, and does not allow positive The rotating axial flow fan 3 drives the gas to flow through the defrosting air duct 105.
  • each air outlet 1031 of the cooling air passage 103 is respectively provided with a first one-way valve 51 .
  • those skilled in the art may only set a first one-way valve 51 inside or at the inlet end of the cooling air duct 103 as required.
  • the second one-way valve 52 can be arranged at any position of the return air passage 104 , for example, at the inlet, outlet or inside of the return air passage 104 .
  • the third one-way valve 53 is disposed at the air inlet 1051 of the defrosting air duct 105 .
  • those skilled in the art may also arrange the third one-way valve 53 at the air outlet of the defrosting air duct 105 or inside the defrosting air duct 105 as required.
  • first one-way valve 51, the second one-way valve 52 and the third one-way valve 53 are thin slices that are pivotally connected with the air duct cover plate 110, and the pivot axis of each thin slice is located on the corresponding thin slice. top, so that the first one-way valve 51, the second one-way valve 52 and the third one-way valve 53 can be closed under the action of their own gravity.
  • the sheet is preferably made of light material, so that the first one-way valve 51 and the second one-way valve 52 can be opened by the gas driven by the forward-rotating axial flow fan 3, so that the third one-way valve can be opened.
  • the valve 53 can be opened by the air driven by the reversing axial fan 3 .
  • This material can be any feasible material such as plastics, silica gel.
  • the axial flow fan 3 rotates forward and drives the gas to flow in the direction indicated by the arrow in FIG. 1 .
  • the first one-way valve 51 and the second one-way valve 52 are opened under the action of air flow.
  • the third one-way valve 53 is closed under the action of its own gravity, and the third one-way valve 53 is tightly closed under the action of air pressure.
  • the circulation path of the air flow is: refrigerating chamber 101 ⁇ axial flow fan 3 ⁇ refrigerating air duct 103 ⁇ storage chamber 102 ⁇ return air passage 104 ⁇ refrigerating chamber 101.
  • the axial flow fan 3 reverses and drives the gas to flow in the direction indicated by the arrow in FIG. 2 .
  • the first one-way valve 51 and the second one-way valve 52 are closed under the action of their own gravity, and are tightly closed under the action of air pressure.
  • the third one-way valve 53 is opened under the action of air flow.
  • the circulation path of the air flow is: refrigerating chamber 101 ⁇ defrosting air duct 105 ⁇ axial fan 3 ⁇ refrigerating chamber 101.
  • the defrosting control method of the air-cooled refrigerator includes:
  • Step S110 in response to the defrosting instruction received by the air-cooled refrigerator, the axial flow fan 3 is turned forward, and the heating device 4 is started to heat.
  • the air-cooled refrigerator since the air-cooled refrigerator has just received the defrosting instruction, the temperature of the gas in the evaporator 2 and the refrigeration chamber 101 is still low, and the storage chamber 102 can still be refrigerated, and the heating device 4 It also takes a certain amount of time to be heated. Therefore, when the air-cooled refrigerator receives the defrosting command, the axial flow fan 3 is turned forward during the heating process of the heating device 4 , so that the storage room 102 can be refrigerated by making full use of the cooling capacity in the refrigerating room 101 .
  • Step S120 in response to the temperature of the refrigeration chamber 101 rising to a first preset temperature, the axial flow fan 3 is stopped.
  • the first preset temperature is lower than the normal temperature of the storage room 102, and optionally, the first preset temperature is not greater than 0°C.
  • the first preset temperature may be any feasible temperature such as 0°C, -1°C, -5°C, -10°C.
  • a first temperature sensor is provided on the top of the refrigeration chamber 101 , specifically between the axial flow fan 3 and the heating device 4 .
  • the first temperature sensor is used to detect the temperature of the air passing through the heating device 4 .
  • the temperature detected by the first temperature sensor is used as the temperature of the refrigeration chamber 101 in step S120 and step S130.
  • step S130 in response to the temperature of the refrigeration chamber 101 rising to a second preset temperature, the axial flow fan 3 is reversed.
  • the second preset temperature is greater than the first preset temperature, and the second preset temperature is lower than or equal to the normal temperature of the storage room 102 .
  • the second preset temperature is not less than 0°C and not greater than 5°C.
  • the second preset temperature may be any feasible temperature such as 1°C, 2°C, 3°C, 5°C.
  • the gas heated by the heating device 4 can be blown into the evaporator 2 from top to bottom, so that the hot gas flowing through the surface of the evaporator 2 can be uniform. Heat to melt the condensation on the evaporator 2. At the same time, the gas flowing from top to bottom can also promote the condensation and the frost-water mixture to leave the evaporator 2, thereby improving the defrosting effect of the evaporator 2.
  • the rotational speed of the axial flow fan 3 is increased as the temperature of the air in the refrigerating chamber 101 rises.
  • the temperature of the air in the refrigerating chamber 101 can be detected by other temperature sensors besides the first temperature sensor, for example, the temperature of the air in the refrigerating chamber 101 can be detected by the second temperature sensor arranged under the evaporator 2 .
  • a first air pressure sensor is disposed in the cooling air duct 103, and the defrosting control method further includes acquiring the air pressure in the cooling air duct 103 through the first air pressure sensor. Further, the rotational speed of the axial flow fan 3 is increased as the air pressure in the cooling air channel 103 rises.
  • a first air pressure sensor is disposed in the cooling air duct 103
  • a second air pressure sensor is disposed in the storage chamber 102 .
  • the defrosting control method further includes acquiring the pressure difference between the cooling air duct 103 and the storage room 102 through the first air pressure sensor and the second air pressure sensor. Specifically, the air pressure in the cooling air duct 103 is acquired by the first air pressure sensor, the air pressure in the storage room 102 is acquired by the second air pressure sensor, and the difference between the air pressure in the cooling air duct 103 and the air pressure in the storage room 102 is calculated. Further, the rotational speed of the axial flow fan 3 is increased as the pressure difference increases.
  • the cooling air duct 103 communicates with the air inlet when the axial flow fan 3 rotates in reverse, that is, the cooling air duct 103 communicates with the defrosting circulation air duct.
  • the return air channel 104 is also in communication with the defrosting circulation air path.
  • the present invention can reduce the air pressure in the defrosting circulation air path, the cooling air path 103 and the return air path 104 to a level slightly lower than the air pressure in the storage room 102 by increasing the rotational speed of the axial flow fan 3 when it reverses. Furthermore, the high temperature gas in the defrosting circulation air path, the cooling air path 103 and the return air path 104 is prevented from entering into the storage chamber 102 .
  • the defrosting control method further includes:
  • Step S210 in response to the temperature of the refrigerating chamber 101 rising to a third preset temperature, the axial flow fan 3 is stopped.
  • the third preset temperature may be the temperature of the gas in the refrigeration chamber 101 or the surface temperature of the evaporator 2 .
  • the temperature of the gas in the refrigerating chamber 101 is detected by the temperature sensor disposed below the evaporator 2 .
  • the temperature sensor fixed on the evaporator 2 detects the surface temperature of the evaporator 2 .
  • the third preset temperature is greater than the second preset temperature.
  • the third preset temperature is not less than 5°C.
  • the third preset temperature is any feasible temperature such as 5°C, 6°C, 8°C, and 12°C.
  • step S210 when the temperature of the refrigerating chamber 101 rises to the third preset temperature, it can be determined that the evaporator 2 has obtained enough heat, the temperature is high enough, and all the frost on its surface has been melted. That is, when the temperature of the refrigerating chamber 101 rises to the third preset temperature, it is determined that the defrosting is completed.
  • step S220 the heating device 4 is stopped from heating, and the evaporator 2 is refrigerated.
  • the heating device 4 is stopped from heating, and the evaporator 2 is refrigerated, so as to precondition the evaporator 2 and the refrigerating chamber 101. Refrigeration.
  • step S230 in response to the preset cooling time of the evaporator 2, the axial flow fan 3 is reversed again.
  • the evaporator 2 in the process of stopping the axial flow fan 3, can be pre-cooled by making the evaporator 2 refrigerate for a preset period of time, so that when the axial flow fan 3 reverses, it can The low temperature evaporator 2 cools the gas flowing through it. When the evaporator 2 cannot cool the gas, the axial flow fan 3 is reversed and the waste of electric energy is avoided.
  • the preset duration may be any feasible duration, such as 1 min, 5 min, 15 min, 20 min and so on.
  • Step S240 in response to the temperature of the refrigerating chamber 101 falling to the fourth preset temperature, the axial flow fan 3 is rotated forward.
  • the fourth preset temperature is greater than the first preset temperature, further, the fourth preset temperature is not higher than the temperature of the refrigeration chamber 101 in the cooling mode of the air-cooled refrigerator, on this basis, the fourth preset temperature can be is any feasible temperature, eg, -5°C, -8°C, -16°C, etc.
  • the air in the entire defrosting circulation air path drops to a certain temperature, and after entering the storage chamber 102, it will not affect the storage room.
  • the chamber 102 causes a temperature rise, the pre-cooling of the refrigeration chamber 101 ends, and the axial flow fan 3 starts to rotate forward. That is, when the temperature of the refrigerating chamber 101 drops to the fourth preset temperature, the air-cooled refrigerator enters the refrigerating mode.
  • the present invention reverses the axial flow fan 3 so that the axial flow fan 3 can drive the air heated by the heating device 4.
  • the gas is blown into the evaporator 2 from top to bottom, so that the evaporator 2 is evenly heated by the hot gas flowing through its surface. It can be heated evenly and quickly, and the frost on the evaporator 2 can be quickly removed, thereby improving the defrosting effect of the evaporator 2 .
  • the rotational speed of the axial flow fan 3 increases with the rise of the temperature of the refrigerating chamber 101, or make the rotational speed of the axial flow fan 3 increase with the rise of the air pressure in the cooling air channel 103, or make the axial flow fan 3
  • the rotation speed of the defrost fan 3 increases with the increase of the pressure difference (the pressure difference between the cooling air passage 103 and the storage room 102), so that the gas flow rate in the defrosting circulation air passage increases with the increase of the rotation speed of the axial flow fan 3 .
  • the air pressure in the defrosting circulation air path can be reduced by increasing the rotating speed of the axial flow fan 3, so that the air pressure in the defrosting circulation air path is slightly lower than that in the storage room 102.
  • the air pressure is low, which prevents the high-temperature gas in the defrosting circulation air path from entering the storage room 102.
  • step S210 can also replace step S210 as required, and after the axial flow fan 3 is reversed for a set period of time (such as 20min, 30min, 35min, etc.), it can be determined that the evaporator 2 has completed defrosting , so that the axial flow fan 3 stops rotating.
  • a set period of time such as 20min, 30min, 35min, etc.
  • step S230 can also replace step S230 as required, when the temperature in the refrigeration chamber 101 drops to the fifth preset temperature, the axial flow fan 3 is reversed.
  • the fifth preset temperature is greater than the fourth preset temperature and lower than the third preset temperature, which can be any feasible temperature, such as 0°C, -1°C, -2°C, and so on.
  • the air-cooled refrigerator of the present invention also includes a processor, a memory, and execution instructions stored in the memory.
  • the execution instructions are configured to enable the air-cooled refrigerator to execute the above-described method of defrosting control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Defrosting Systems (AREA)

Abstract

一种风冷式冰箱及其除霜控制方法,风冷式冰箱包括冰箱本体、蒸发器、轴流风机、阀门组件和位于蒸发器上方的加热装置。冰箱本体限定有制冷室、储藏室、制冷风道、回风通道和除霜风道,制冷室、轴流风机、制冷风道、储藏室和回风通道依次首尾连通,以形成制冷循环风路;制冷室、除霜风道和轴流风机依次首尾连通,以形成除霜循环风路。阀门组件用于使制冷循环风路和除霜循环风路中的一个被阻断,另一个被打开。除霜控制方法包括:响应于风冷式冰箱接收到了化霜指令,使轴流风机正转,并使加热装置开始加热;响应于制冷室的温度上升到了第一预设温度,使轴流风机停止转动;响应于制冷室的温度上升到了第二预设温度,使轴流风机反转。

Description

风冷式冰箱及其除霜控制方法 技术领域
本发明属于制冷设备技术领域,具体提供了一种风冷式冰箱及其除霜控制方法。
背景技术
现有的风冷式冰箱一般具有依次连通的制冷室、制冷风道、储藏室和回风通道。现有的风冷式冰箱还具有蒸发器和风机,该蒸发器布置在制冷室内,以冷却制冷室内的空气。风机用于驱动空气沿着制冷室、制冷风道、储藏室和回风通道的路径循环流动,以将制冷室内被蒸发器冷却的气体输送至储藏室内,冷却储藏室内的被储藏物(包括食材、药品、酒水、生物试剂、菌落、化学试剂等)。
由于储藏室内的被储藏物经常包括水分含量较高的食材,以及外界中的水汽会进入到储藏室内,导致储藏室内的湿度较高,而水汽在蒸发器处遇冷会形成贴附在蒸发器上的霜。当蒸发器上的凝霜较多时,会影响蒸发器对其周围空气的制冷效果,因此需要定期对蒸发器进行除霜。
在现有技术中,通常是先使风机停转,然后再通过电加热装置对蒸发器进行加热。在电加热装置对蒸发器加热的过程中,热量由点逐面逐渐地传递至整个蒸发器,进而融化掉蒸发器上的凝霜。由于热量传递至整个蒸发器需要一定的时间,致使蒸发器的化霜时间较长,除霜效率较低。
发明内容
本发明的一个目的在于,解决现有风冷式冰箱在对蒸发器进行除霜时除霜效率较低的问题。
本发明进一步地一个目的在于,在风冷式冰箱对蒸发器除霜的过程中,防止制冷室内高温的气体进入储藏室内。
为实现上述目的,本发明提供了一种风冷式冰箱的除霜控制方法,所述风冷式冰箱包括冰箱本体、蒸发器、轴流风机、位于所述蒸发器上方的加热装置和安装到所述冰箱本体上的阀门组件,所述冰箱本体限定有制冷室、储藏室、制冷风道、回风通道和除霜风道,
所述制冷室、所述轴流风机、所述制冷风道、所述储藏室和所述回风通 道依次首尾连通,以形成制冷循环风路;所述制冷室、所述除霜风道和所述轴流风机依次首尾连通,以形成除霜循环风路;所述阀门组件用于使所述制冷循环风路和所述除霜循环风路中的一个被阻断,另一个被打开;
所述除霜控制方法包括:
响应于所述风冷式冰箱接收到了化霜指令,使所述轴流风机正转,并使所述加热装置开始加热;
响应于所述制冷室的温度上升到了第一预设温度,使所述轴流风机停止转动;
响应于所述制冷室的温度上升到了第二预设温度,使所述轴流风机反转。
可选地,所述除霜控制方法还包括:响应于所述制冷室的温度上升到了第三预设温度,使所述轴流风机停止转动;其中,所述第三预设温度大于所述第二预设温度大于所述第一预设温度。
可选地,所述使所述轴流风机反转,包括:使所述轴流风机的转速随着所述制冷室温度的上升而增大。
可选地,所述除霜控制方法还包括:获取所述制冷风道内的气压;
所述使所述轴流风机反转,包括:使所述轴流风机的转速随着所述制冷风道内气压的上升而增大。
可选地,所述除霜控制方法还包括:获取所述制冷风道与所述储藏室的压差;
所述使所述轴流风机反转,包括:使所述轴流风机的转速随着所述压差的增大而增大。
可选地,在响应于所述制冷室的温度上升到了第三预设温度,使所述轴流风机停止转动之后,所述除霜控制方法还包括:
使所述加热装置停止加热,并使所述蒸发器进行制冷;
响应于所述蒸发器制冷预设时长,使所述轴流风机再次反转;
响应于所述制冷室的温度下降到了第四预设温度,使所述轴流风机正转;
其中,所述第四预设温度不大于所述第一预设温度。
可选地,所述第一预设温度不大于0℃,所述第三预设温度不小于5℃。
可选地,所述阀门组件包括:
第一单向阀,其仅允许正转的所述轴流风机驱动气体流经所述制冷风道,而不允许反转的所述轴流风机驱动气体流经所述制冷风道;
第二单向阀,其仅允许正转的所述轴流风机驱动气体流经所述回风通道,而不允许反转的所述轴流风机驱动气体流经所述回风通道;
第三单向阀,其仅允许反转的所述轴流风机驱动气体流经所述除霜风道,而不允许正转的所述轴流风机驱动气体流经所述除霜风道。
可选地,所述第一单向阀、所述第二单向阀和所述第三单向阀均是与所述冰箱本体枢转连接的薄片,每一个所述薄片的枢转轴均位于相应所述薄片的顶部,以使所述第一单向阀、所述第二单向阀和所述第三单向阀能够在自身重力的作用下关闭。
此外,本发明还提供了一种风冷式冰箱,包括处理器、存储器和存储在所述存储器上的执行指令,所述执行指令设置成在被所述处理器执行时能够使所述风冷式冰箱执行前述技术方案中任一项所述的除霜控制方法。
基于前文的描述,本领域技术人员能够理解的是,在本发明前述的技术方案中,通过使风冷式冰箱形成由制冷室、轴流风机、制冷风道、储藏室和回风通道依次首尾连通的制冷循环风路,以及形成由制冷室、除霜风道和轴流风机依次首尾连通的除霜循环风路,并使阀门组件控制制冷循环风路和除霜循环风路中的一个被阻断的同时,控制另一个被打开。使得风冷式冰箱在对蒸发器除霜时,能够使气体在除霜循环风路内循环。通过将加热装置设置在蒸发器的上方,并在制冷室的温度上升到了第二预设温度时,使轴流风机反转,使得轴流风机能够驱动被加热装置加热的气体自上至下的吹射蒸发器,进而使蒸发器被流经其表面的热气均匀加热,相对于使蒸发器通过自身热传递的方式将热量传递至全身而言,蒸发器能够均匀地快速受热,快速地除去蒸发器上的凝霜,进而提升了蒸发器的除霜效果。并且,自上而下流动的气体也能够促进凝霜和霜水混合物脱离蒸发器,进一步提升了蒸发器的除霜效果。
进一步,在风冷式冰箱接收到了化霜指令以后,并且在制冷室的温度上升到了第一预设温度之前,使轴流风机在加热装置加热的过程中正转,能够充分利用制冷室内的冷量对储藏室进行制冷。在制冷室的温度处于了第一预设温度与第二预设温度之间时,使轴流风机停止转动,使得加热装置具有足够的时间进行预热。
再进一步,通过使轴流风机的转速随着制冷室温度的上升而增大,或者使轴流风机的转速随着制冷风道内气压的上升而增大,或者使轴流风机的转速随着压差(制冷风道与储藏室的压差)的增大而增大,使得除霜循环风路内的气体流速随着轴流风机转速的增大而增大。由于气体的气压随着流速的增大而减小,因此通过提升轴流风机的转速能够降低除霜循环风路内的气压,使除霜循环风路内的气压略低于储藏室内的气压,避免了除霜循环风路内的高温气体进入到储藏室内。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
为了更清楚地说明本发明的技术方案,后文将参照附图来描述本发明的部分实施例。本领域技术人员应当理解的是,同一附图标记在不同附图中所标示的部件或部分相同或类似;本发明的附图彼此之间并非一定是按比例绘制的。附图中:
图1是本发明一些实施例中风冷式冰箱的原理示意图(制冷模式);
图2是本发明一些实施例中风冷式冰箱的原理示意图(除霜模式);
图3是本发明一些实施例中风道盖板部分的第一轴测效果示意图;
图4是本发明一些实施例中风道盖板部分的第二轴测效果示意图;
图5是图4中风道盖板部分沿A-A方向的剖视图;
图6是图4中风道盖板部分沿B-B方向的剖视图;
图7是本发明一些实施例中除霜控制方法的主要步骤流程图;
图8是本发明另一些实施例中除霜控制方法的局部步骤流程图。
具体实施方式
本领域技术人员应当理解的是,下文所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,该一部分实施例旨在用于解释本发明的技术原理,并非用于限制本发明的保护范围。基于本发明提供的实施例,本领域普通技术人员在没有付出创造性劳动的情况下所获得的其它所有实施例,仍应落入到本发明的保护范围之内。
需要说明的是,在本发明的描述中,术语“中心”、“上”、“下”、“顶部”“底部”、“左”、“右”、“竖直”、“水平”、“内”、“外” 等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
下面参照图1至图6来对风冷式冰箱与本发明相关的主要结构进行详细说明。其中,图1是本发明一些实施例中风冷式冰箱的原理示意图(制冷模式),图2是本发明一些实施例中风冷式冰箱的原理示意图(除霜模式),图3是本发明一些实施例中风道盖板部分的第一轴测效果示意图,图4是本发明一些实施例中风道盖板部分的第二轴测效果示意图,图5是图4中风道盖板部分沿A-A方向的剖视图,图6是图4中风道盖板部分沿B-B方向的剖视图。
在此之前需要说明的是,为了方便描述,以及为了使本领域技术人员能够快速地理解本发明的技术方案,后文仅对与本发明所要解决的技术问题和/或技术构思关联程度较强(直接相关或间接相关)的技术特征进行描述,对于与发明所要解决的技术问题和/或技术构思关联程度较弱的技术特征不再进行赘述。由于该关联程度较弱的技术特征属于本领域的公知常识,因此本发明即便是不描述该关联程度较弱的特征,也不会导致本发明的公开不充分。
如图1和图2所示,在本发明的一些实施例中,风冷式冰箱包括冰箱本体1、蒸发器2、轴流风机3、加热装置4和阀门组件5。
继续参阅图1和图2,冰箱本体1限定有制冷室101、储藏室102、制冷风道103、回风通道104和除霜风道105。其中,制冷室101、轴流风机3、制冷风道103、储藏室102和回风通道104依次首尾连通,并因此形成制冷循环风路。制冷室101、除霜风道105和轴流风机3依次首尾连通,并因此 形成除霜循环风路。
如图1所示,风冷式冰箱在制冷模式下运行时,气体在制冷循环风路内循环流动,气体流动的路径为:制冷室101→轴流风机3→制冷风道103→储藏室102→回风通道104→制冷室101。
如图2所示,风冷式冰箱在除霜模式下运行时,气体在除霜循环风路内循环流动,气体流动的路径为:制冷室101→除霜风道105→轴流风机3→制冷室101。
继续参阅图1和图2,冰箱本体1包括风道盖板110,制冷风道103和除霜风道105均形成在风道盖板110上。
如图1至图6所示,制冷风道103的出风口1031设置在风道盖板110的前侧,以便使制冷风道103通过该出风口1031将冷风吹向储藏室102内。除霜风道105的进风口1051设置在风道盖板110的后侧,以便使除霜风道105通过进风口1051接收制冷室101内的气体。
如图5和图6所示,在本发明的一些实施例中,制冷风道103为两个,除霜风道105为一个,并且除霜风道105位于两个制冷风道103之间,以使制冷风道103的流通截面积尽可能得大,以便降低制冷风道103对气体的阻力。
如图1和图2所示,蒸发器2设置在制冷室101内,并且蒸发器2位于除霜风道105的两端之间。
如图1、图2和图4所示,轴流风机3设置在蒸发器2的上方,用于驱动气体流动,以使气体在制冷循环风路或除霜循环风路内流动。具体地,轴流风机3倾斜地设置在蒸发器2的上方,并且靠近蒸发器2。轴流风机3(具体是轴流风机3的叶轮的旋转轴线)与水平面之间的夹角为0°-45°,例如5°、15°、30°、45°等。进一步,蒸发器2的顶面倾斜设置,以使从反转的轴流风机3吹出的气体垂直地吹向蒸发器2的顶面,进而使气体均匀地穿过蒸发器2上的空隙。避免了流经蒸发器2气流分布不均的情形,即,避免了蒸发器2内一部分空隙气体流速较快,另一部分空气气体流速较慢的情形。
如图1所示,风冷式冰箱在制冷模式下运行时,轴流风机3正转,驱动气体沿着图1中箭头所示的方向流动。
如图2所示,风冷式冰箱在除霜模式下运行时,轴流风机3反转,驱动 气体沿着图2中箭头所示的方向流动。
如图1和图2所示,加热装置4设置在蒸发器2的上方,并且位于蒸发器2与轴流风机3之间,以便使反转的轴流风机3将被加热装置4加热的气体自上至下的吹射蒸发器2,进而使蒸发器2被流经其表面的热气均匀加热。优选地,加热装置4与蒸发器2之间具有间隙,以使加热装置4充分地加热流经其的气体。
如图1和图2所示,阀门组件5安装在风道盖板110上,用于控制制冷循环风路和除霜循环风路中的一个被阻断的同时,控制另一个被打开。
如图1-图4和图6所示,阀门组件5包括第一单向阀51、第二单向阀52和第三单向阀53。第一单向阀51用于单向阻断制冷风道103,具体地,第一单向阀51仅允许正转的轴流风机3驱动气体流经制冷风道103,而不允许反转的轴流风机3驱动气体流经制冷风道103。第二单向阀52用于单向阻断回风通道104,具体地,第二单向阀52仅允许正转的轴流风机3驱动气体流经回风通道104,而不允许反转的轴流风机3驱动气体流经回风通道104。第三单向阀53用于单向阻断除霜风道105,具体地,第三单向阀53仅允许反转的轴流风机3驱动气体流经除霜风道105,而不允许正转的轴流风机3驱动气体流经除霜风道105。
优选地,制冷风道103的每一个出风口1031分别设置有一个第一单向阀51。或者,在本发明的其他实施例中,本领域技术人员也可以根据需要,仅在制冷风道103的内部或进口端设置一个第一单向阀51。
进一步,第二单向阀52可以设置在回风通道104的任意位置,例如回风通道104的进口处、出口处或内部。
再进一步,第三单向阀53设置在除霜风道105的进风口1051处。或者,在本发明的其他实施例中,本领域技术人员也可以根据需要,将第三单向阀53设置在除霜风道105的出风口处或除霜风道105的内部。
进一步优选地,第一单向阀51、第二单向阀52和第三单向阀53均是与风道盖板110枢转连接的薄片,并且每一个薄片的枢转轴均位于相应薄片的顶部,以使第一单向阀51、第二单向阀52和第三单向阀53能够在自身重力的作用下关闭。该薄片优选地是采用质量较轻的材料制成的薄片,以便使第一单向阀51和第二单向阀52能够被正转的轴流风机3驱动的气体打开,使第三单向阀53能够被反转的轴流风机3驱动的气体打开。该材料可以是塑 料、硅胶等任意可行的材料。
下面参照图1和图2来对本发明风冷式冰箱的工作原理进行简单说明。
如图1所示,风冷式冰箱在制冷模式下运行时,轴流风机3正转,并驱动气体沿图1中箭头所示的方向流动。第一单向阀51和第二单向阀52在气流的作用下被打开。第三单向阀53在自身重力的作用下关闭,并且第三单向阀53在气压的作用下紧闭。此时,气流的循环路径为:制冷室101→轴流风机3→制冷风道103→储藏室102→回风通道104→制冷室101。
如图2所示,风冷式冰箱在除霜模式下运行时,轴流风机3反转,并驱动气体沿图2中箭头所示的方向流动。第一单向阀51和第二单向阀52在自身重力的作用下关闭,并在气压的作用下紧闭。第三单向阀53在气流的作用下被打开。此时,气流的循环路径为:制冷室101→除霜风道105→轴流风机3→制冷室101。
下面参照图7来对本发明一些实施例中风冷式冰箱的除霜控制方法进行详细说明。
如图7所示,在本发明的一些实施例中,风冷式冰箱的除霜控制方法包括:
步骤S110,响应于风冷式冰箱接收到了化霜指令,使轴流风机3正转,并使加热装置4开始加热。
本领域技术人员能够理解的是,由于风冷式冰箱刚接收到化霜指令时,蒸发器2和制冷室101内气体的温度尚且较低,仍能够对储藏室102进行制冷,而且加热装置4被加热也需要一定的时间。所以,在风冷式冰箱接收到了化霜指令时,使轴流风机3在加热装置4加热的过程中正转,能够充分利用制冷室101内的冷量对储藏室102进行制冷。
步骤S120,响应于制冷室101的温度上升到了第一预设温度,使轴流风机3停止转动。
其中,该第一预设温度低于储藏室102的正常温度,可选地,第一预设温度不大于0℃。例如,第一预设温度可以是0℃、-1℃、-5℃、-10℃等任意可行的温度。
在本发明的一些实施例中,制冷室101的顶部,具体是在轴流风机3与加热装置4之间设置有第一温度传感器。在轴流风机3正转的过程中,该第一温度传感器用于检测流经加热装置4之后的空气的温度。以将第一温度传 感器检测到的温度,作为步骤S120和步骤S130中制冷室101的温度。
步骤S130,响应于制冷室101的温度上升到了第二预设温度,使轴流风机3反转。
其中,第二预设温度大于第一预设温度,并且第二预设温度低于或等于储藏室102的正常温度。可选地,第二预设温度不小于0℃并且不大于5℃。例如,第二预设温度可以是1℃、2℃、3℃、5℃等任意可行的温度。
本领域技术人员能够理解的是,通过使轴流风机3反转能够将被加热装置4加热的气体自上至下的吹射蒸发器2,进而使蒸发器2被流经其表面的热气均匀加热,以融化掉蒸发器2上的凝霜。同时,自上而下流动的气体也能够促进凝霜和霜水混合物脱离蒸发器2,提升了蒸发器2的除霜效果。
作为示例一,使轴流风机3的转速随着制冷室101内空气的温度的上升而增大。其中,制冷室101内空气的温度除了通过第一温度传感器检测获得以外,还可以通过其他温度传感器检测获得,例如通过设置在蒸发器2下方的第二温度传感器来检测制冷室101内空气的温度。
作为示例二,制冷风道103内设置有第一气压传感器,除霜控制方法还包括,通过该第一气压传感器获取制冷风道103内的气压。进一步,使轴流风机3的转速随着制冷风道103内气压的上升而增大。
作为示例三,在本发明的再一些实施例中,制冷风道103内设置有第一气压传感器,储藏室102内设置有第二气压传感器。除霜控制方法还包括,通过该第一气压传感器和第二气压传感器获取制冷风道103与储藏室102的压差。具体地,通过第一气压传感器获取制冷风道103内的气压,通过第二气压传感器获取储藏室102内的气压,计算制冷风道103内的气压与储藏室102内的气压的差值。进一步,使轴流风机3的转速随着该压差的增大而增大。
如图1和图2所示,制冷风道103与轴流风机3反向转动时的进风口连通,即制冷风道103与除霜循环风路连通。回风通道104也与除霜循环风路连通。基于此,本领域技术人员能够理解的是,由于气体的气压随着流速的增大而减小,因此通过提升轴流风机3反转时的转速能够降低除霜循环风路内的气压,使得制冷风道103和回风通道104内的气压也随着轴流风机3转速的提升而降低。所以,本发明通过提升轴流风机3反转时的转速,能够将除霜循环风路、制冷风道103和回风通道104内的气压降低到略低于储藏室 102内的气压的水平,进而避免了除霜循环风路、制冷风道103和回风通道104内的高温气体进入到储藏室102内。
下面参照图8来对本发明另一些实施例中风冷式冰箱的除霜控制方法进行详细说明。
如图8所示,与前述实施例不同的是,在本发明另一些实施例中,在步骤S130之后,除霜控制方法还包括:
步骤S210,响应于制冷室101的温度上升到了第三预设温度,使轴流风机3停止转动。
其中,第三预设温度,可以是制冷室101内气体的温度,也可以是蒸发器2的表面温度。当第三预设温度是制冷室101内气体的温度时,通过设置在蒸发器2下方的温度传感器检测制冷室101内的气体温度。当第三预设温度是蒸发器2的表面温度时,通过固定在蒸发器2上的温度传感器检测蒸发器2的表面温度。
进一步,第三预设温度大于第二预设温度。可选地,第三预设温度不小于5℃。例如,第三预设温度是5℃、6℃、8℃、12℃等任意可行的温度。
在步骤S210中,当制冷室101的温度上升到了第三预设温度时,即可判定蒸发器2获得了足够的热量,温度足够高,并且已经将其表面上的凝霜全部融化完成。即,当制冷室101的温度上升到了第三预设温度时,判定化霜完成。
步骤S220,使加热装置4停止加热,并使蒸发器2进行制冷。
具体地,当制冷室101的温度或蒸发器2的温度上升到了第三预设温度时,使加热装置4停止加热,并使蒸发器2进行制冷,以对蒸发器2和制冷室101进行预制冷。
步骤S230,响应于蒸发器2制冷预设时长,使轴流风机3再次反转。
本领域技术人员能够理解的是,在轴流风机3停转的过程中,通过使蒸发器2制冷预设时长,能够使蒸发器2进行预冷,以便在轴流风机3反转时,能够使低温的蒸发器2冷却流经其的气体。避免了蒸发器2不能冷却气体时,使轴流风机3反转而浪费电能。
基于此,预设时长可以是任意可行的时长,例如1min、5min、15min、20min等。
步骤S240,响应于制冷室101的温度下降到了第四预设温度,使轴流 风机3正转。
其中,第四预设温度大于第一预设温度,进一步,第四预设温度不高于制冷室101在风冷式冰箱处于制冷模式下的温度,在此基础上,第四预设温度可以是任意可行的温度,例如,-5℃、-8℃、-16℃等。
本领域技术人员能够理解的是,当制冷室101的温度下降到了第四预设温度时,整个除霜循环风路内的气体都降低到了一定的温度,进入储藏室102后,不会对储藏室102造成温升,结束对制冷室101的预制冷,使轴流风机3开始正转。即,当制冷室101的温度下降到了第四预设温度时,使风冷式冰箱进入制冷模式。
基于前文的描述,本领域技术人员能够理解的是,本发明在风冷式冰箱接收到了化霜指令以后,通过使轴流风机3反转,使得轴流风机3能够驱动被加热装置4加热的气体自上至下的吹射蒸发器2,进而使蒸发器2被流经其表面的热气均匀加热,相对于使蒸发器2通过自身热传递的方式将热量传递至全身而言,蒸发器2能够均匀地快速受热,快速地除去蒸发器2上的凝霜,进而提升了蒸发器2的除霜效果。
进一步,通过使轴流风机3的转速随着制冷室101温度的上升而增大,或者使轴流风机3的转速随着制冷风道103内气压的上升而增大,或者使轴流风机3的转速随着压差(制冷风道103与储藏室102的压差)的增大而增大,使得除霜循环风路内的气体流速随着轴流风机3转速的增大而增大。由于气体的气压随着流速的增大而减小,因此通过提升轴流风机3的转速能够降低除霜循环风路内的气压,使除霜循环风路内的气压略低于储藏室102内的气压,避免了除霜循环风路内的高温气体进入到储藏室102内。
此外,本领域技术人员也可以根据需要,将步骤S210可以被替换成,使轴流风机3反转设定时长(例如20min、30min、35min等)之后,即可判定蒸发器2完成了化霜,使轴流风机3停止转动。
进一步,本领域技术人员还可以根据需要,将步骤S230可以被替换成,在制冷室101内的温度降低到了第五预设温度时,使轴流风机3反转。该第五预设温度大于第四预设温度并且小于第三预设温度,其可以是任意可行的温度,例如0℃、-1℃、-2℃等。
最后,还需要说明的是,本发明的风冷式冰箱还包括处理器、存储器和存储在存储器上的执行指令,执行指令设置成在被处理器执行时能够使风冷 式冰箱执行前文所描述的除霜控制方法。
至此,已经结合前文的多个实施例描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围并不仅限于这些具体实施例。在不偏离本发明技术原理的前提下,本领域技术人员可以对上述各个实施例中的技术方案进行拆分和组合,也可以对相关技术特征作出等同的更改或替换,凡在本发明的技术构思和/或技术原理之内所做的任何更改、等同替换、改进等都将落入本发明的保护范围之内。

Claims (10)

  1. 一种风冷式冰箱的除霜控制方法,所述风冷式冰箱包括冰箱本体、蒸发器、轴流风机、位于所述蒸发器上方的加热装置和安装到所述冰箱本体上的阀门组件,
    所述冰箱本体限定有制冷室、储藏室、制冷风道、回风通道和除霜风道,
    所述制冷室、所述轴流风机、所述制冷风道、所述储藏室和所述回风通道依次首尾连通,以形成制冷循环风路;
    所述制冷室、所述除霜风道和所述轴流风机依次首尾连通,以形成除霜循环风路;
    所述阀门组件用于使所述制冷循环风路和所述除霜循环风路中的一个被阻断,另一个被打开;
    所述除霜控制方法包括:
    响应于所述风冷式冰箱接收到了化霜指令,使所述轴流风机正转,并使所述加热装置开始加热;
    响应于所述制冷室的温度上升到了第一预设温度,使所述轴流风机停止转动;
    响应于所述制冷室的温度上升到了第二预设温度,使所述轴流风机反转。
  2. 根据权利要求1所述的风冷式冰箱的除霜控制方法,其中,
    所述除霜控制方法还包括:
    响应于所述制冷室的温度上升到了第三预设温度,使所述轴流风机停止转动;
    其中,所述第三预设温度大于所述第二预设温度,所述第二预设温度大于所述第一预设温度。
  3. 根据权利要求2所述的风冷式冰箱的除霜控制方法,其中,
    所述使所述轴流风机反转,包括:
    使所述轴流风机的转速随着所述制冷室温度的上升而增大。
  4. 根据权利要求2所述的风冷式冰箱的除霜控制方法,其中,
    所述除霜控制方法还包括:获取所述制冷风道内的气压;
    所述使所述轴流风机反转,包括:
    使所述轴流风机的转速随着所述制冷风道内气压的上升而增大。
  5. 根据权利要求2所述的风冷式冰箱的除霜控制方法,其中,
    所述除霜控制方法还包括:获取所述制冷风道与所述储藏室的压差;
    所述使所述轴流风机反转,包括:
    使所述轴流风机的转速随着所述压差的增大而增大。
  6. 根据权利要求2-5中任一项所述的风冷式冰箱的除霜控制方法,其中,
    在响应于所述制冷室的温度上升到了第三预设温度,使所述轴流风机停止转动之后,所述除霜控制方法还包括:
    使所述加热装置停止加热,并使所述蒸发器进行制冷;
    响应于所述蒸发器制冷预设时长,使所述轴流风机再次反转;
    响应于所述制冷室的温度下降到了第四预设温度,使所述轴流风机正转;
    其中,所述第四预设温度不大于所述第一预设温度。
  7. 根据权利要求2-5中任一项所述的风冷式冰箱的除霜控制方法,其中,
    所述第一预设温度不大于0℃,所述第三预设温度不小于5℃。
  8. 根据权利要求1-5中任一项所述的风冷式冰箱的除霜控制方法,其中,
    所述阀门组件包括:
    第一单向阀,其仅允许正转的所述轴流风机驱动气体流经所述制冷风道,而不允许反转的所述轴流风机驱动气体流经所述制冷风道;
    第二单向阀,其仅允许正转的所述轴流风机驱动气体流经所述回风通道,而不允许反转的所述轴流风机驱动气体流经所述回风通道;
    第三单向阀,其仅允许反转的所述轴流风机驱动气体流经所述除霜风道,而不允许正转的所述轴流风机驱动气体流经所述除霜风道。
  9. 根据权利要求8所述的风冷式冰箱的除霜控制方法,其中,
    所述第一单向阀、所述第二单向阀和所述第三单向阀均是与所述冰箱本体枢转连接的薄片,
    每一个所述薄片的枢转轴均位于相应所述薄片的顶部,以使所述第一单向阀、所述第二单向阀和所述第三单向阀能够在自身重力的作用下关闭。
  10. 一种风冷式冰箱,包括处理器、存储器和存储在所述存储器上的执行指令,所述执行指令设置成在被所述处理器执行时能够使所述风冷式冰箱执行权利要求1至9中任一项所述的除霜控制方法。
PCT/CN2022/121711 2021-10-11 2022-09-27 风冷式冰箱及其除霜控制方法 WO2023061212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111182741.2 2021-10-11
CN202111182741.2A CN115962601A (zh) 2021-10-11 2021-10-11 风冷式冰箱及其除霜控制方法

Publications (1)

Publication Number Publication Date
WO2023061212A1 true WO2023061212A1 (zh) 2023-04-20

Family

ID=85888935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121711 WO2023061212A1 (zh) 2021-10-11 2022-09-27 风冷式冰箱及其除霜控制方法

Country Status (2)

Country Link
CN (1) CN115962601A (zh)
WO (1) WO2023061212A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117436289A (zh) * 2023-12-21 2024-01-23 诚联恺达科技有限公司 真空焊接炉冷却单元的优化方法、优化系统、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129795A (ko) * 2012-05-21 2013-11-29 동부대우전자 주식회사 냉장고
JP2015117850A (ja) * 2013-12-17 2015-06-25 株式会社東芝 冷蔵庫
CN106766532A (zh) * 2016-12-28 2017-05-31 青岛海尔股份有限公司 恒温冰箱及其控制方法
CN112665286A (zh) * 2021-01-04 2021-04-16 珠海格力电器股份有限公司 一种冰箱除湿化霜装置、控制方法和冰箱
CN113227684A (zh) * 2018-11-30 2021-08-06 三星电子株式会社 冰箱及其控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130129795A (ko) * 2012-05-21 2013-11-29 동부대우전자 주식회사 냉장고
JP2015117850A (ja) * 2013-12-17 2015-06-25 株式会社東芝 冷蔵庫
CN106766532A (zh) * 2016-12-28 2017-05-31 青岛海尔股份有限公司 恒温冰箱及其控制方法
CN113227684A (zh) * 2018-11-30 2021-08-06 三星电子株式会社 冰箱及其控制方法
CN112665286A (zh) * 2021-01-04 2021-04-16 珠海格力电器股份有限公司 一种冰箱除湿化霜装置、控制方法和冰箱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117436289A (zh) * 2023-12-21 2024-01-23 诚联恺达科技有限公司 真空焊接炉冷却单元的优化方法、优化系统、设备及介质
CN117436289B (zh) * 2023-12-21 2024-03-05 诚联恺达科技有限公司 真空焊接炉冷却单元的优化方法、优化系统、设备及介质

Also Published As

Publication number Publication date
CN115962601A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
CN104956168B (zh) 遮蔽装置及包括该遮蔽装置的冰箱
JP3738169B2 (ja) 湿度調節式冷蔵庫
WO2016173226A1 (zh) 一种冷冻冷藏装置及其除霜控制方法
CN106196826A (zh) 风冷冰箱及其除湿方法
JP3688892B2 (ja) 冷凍冷蔵庫
WO2023061212A1 (zh) 风冷式冰箱及其除霜控制方法
JPH08327208A (ja) 冷蔵庫及び冷蔵庫の冷気循環方法
JP4088474B2 (ja) 冷蔵庫
JP2007147112A (ja) 冷蔵庫
JP2014044025A (ja) 冷蔵庫
CN108344230A (zh) 防凝露冰箱及其运行方法
JP2004037042A (ja) 冷蔵庫
WO2023029516A1 (zh) 风冷式制冷设备
CN216409427U (zh) 风冷式冰箱
JPH11148759A (ja) 2つの蒸発器を備えた冷蔵庫
WO2020119516A1 (zh) 冰箱
JPH09236369A (ja) 冷蔵庫
WO2023061211A1 (zh) 风冷式冰箱
JP2001074355A (ja) 間接冷却式冷蔵庫及び間接冷却式冷蔵庫の制御装置
JPH07159015A (ja) 低温庫
WO2023030186A1 (zh) 冰箱
CN110887287A (zh) 冰箱的换热器组件及冰箱
WO2023273739A1 (zh) 冰箱
JP3601810B2 (ja) 冷却貯蔵庫
WO2023061163A1 (zh) 风冷式冰箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE