WO2023273706A1 - 冷藏冷冻装置 - Google Patents

冷藏冷冻装置 Download PDF

Info

Publication number
WO2023273706A1
WO2023273706A1 PCT/CN2022/094977 CN2022094977W WO2023273706A1 WO 2023273706 A1 WO2023273706 A1 WO 2023273706A1 CN 2022094977 W CN2022094977 W CN 2022094977W WO 2023273706 A1 WO2023273706 A1 WO 2023273706A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
evaporators
bypass
refrigeration
valve
Prior art date
Application number
PCT/CN2022/094977
Other languages
English (en)
French (fr)
Inventor
姬立胜
陈建全
崔展鹏
金文佳
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023273706A1 publication Critical patent/WO2023273706A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/08Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation using ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Definitions

  • the invention relates to refrigeration technology, in particular to a refrigerating and freezing device.
  • Refrigerating and freezing devices such as refrigerators, freezers, and freezers, use the evaporator of the refrigeration system to provide cold energy to the storage compartment. Since the surface temperature of the evaporator is low when it is cooling, it is easy to frost, and the accumulation of frost layer will lead to a decrease in the cooling efficiency of the evaporator. Therefore, it is necessary to stop the cooling and defrost the evaporator in a timely manner.
  • Some refrigerating and freezing devices in the prior art use defrosting heating wires to heat the evaporator to defrost.
  • the inventor realized that this defrosting method not only has a slow defrosting rate and a long defrosting period, but also causes a significant temperature rise in the storage compartment, which affects the fresh-keeping performance of the refrigerator and freezer.
  • An object of the present invention is to overcome at least one technical defect in the prior art, and provide a refrigerating and freezing device.
  • a further object of the present invention is to improve the defrosting rate of the evaporator of the refrigerating and freezing device, and prevent the obvious temperature rise of the storage compartment caused by the defrosting of the evaporator, thereby improving the freshness preservation performance.
  • Another further object of the present invention is to simplify the structure of the refrigeration system of the refrigerator-freezer.
  • a still further object of the present invention is to simplify the control process of the refrigeration system of the refrigerator-freezer.
  • Yet a further object of the present invention is to increase the energy efficiency of a refrigerator freezer.
  • the present invention provides a refrigerating and freezing device, comprising: a cabinet with a storage compartment formed therein; and a refrigerating system comprising: a refrigerating assembly having a compressor and a plurality of evaporators forming a refrigerating circuit , a plurality of evaporators are respectively used to provide cooling capacity to the storage compartment; and a bypass assembly, which has a plurality of bypass defrosting pipes, connected to the refrigeration circuit and communicated with the evaporators one by one, for The refrigerant is passed into each evaporator to defrost the evaporator, and the refrigeration system is configured to use the other evaporators to provide cooling when the bypass defrost line is used to defrost one evaporator to prevent storage compartments from temperature fluctuations.
  • the refrigeration assembly further includes a plurality of throttling devices, which are arranged in the refrigeration circuit and communicate with the evaporators one by one, for throttling the refrigerant flowing to the evaporator so that the evaporator can provide cooling capacity;
  • the bypass defrosting pipeline of each evaporator is set in parallel with the throttling device.
  • the refrigerating system further includes at least one first switching valve connected downstream of the discharge port of the compressor, and the at least one first switching valve is formed to communicate with each throttling device and each bypass defrosting pipeline respectively.
  • the valve port is used to adjust the flow path of the refrigerant flowing through it by controlling the opening or closing of the valve port.
  • the number of the first switching valve is the same as that of the evaporators, and they are arranged in one-to-one correspondence with the evaporators; each first switching valve has two valve ports, one of which is connected to the throttling valve of the corresponding evaporator device, the other valve port is connected to the bypass defrosting pipeline of the corresponding evaporator; and the first switching valve is used to open the valve port connected to the throttling device when the corresponding evaporator provides cooling capacity, and the corresponding evaporator When there is frost, open the valve port connecting the bypass defrosting pipeline.
  • the refrigeration assembly further includes a condenser, which is arranged in the refrigeration circuit and connected to the discharge port of the compressor; and the first switching valve is connected to the outlet of the condenser.
  • the bypass assembly further includes a plurality of bypass cooling pipelines, corresponding to the evaporators one by one, and connecting the outlet of the corresponding evaporator with the inlet of the throttling device corresponding to another evaporator, so as to sequentially The refrigerant flowing through the bypass defrosting pipeline and the evaporator is led to another evaporator so that the other evaporator can provide cooling capacity.
  • the refrigeration system further includes a plurality of second switching valves, corresponding to the evaporators one by one, and connected to the outlet of the evaporator; each second switching valve has two valve ports, one of which is used to communicate with The suction port of the compressor, the other valve port is connected to the bypass cooling pipeline; and the second switching valve is used to open the valve port connected to the suction port of the compressor when the corresponding evaporator provides cooling capacity, and the corresponding When the evaporator defrosts, open the valve port connecting the bypass cooling pipeline.
  • multiple throttling devices are respectively connected in series with corresponding evaporators to form multiple refrigeration branches; and the multiple refrigeration branches are arranged in parallel with each other.
  • an installation space for installing the evaporator is also formed inside the box; and the refrigerating and freezing device also includes a thermal insulation partition, which is arranged in the installation space, and separates the installation space into a plurality of subspaces, which are respectively used to install a Evaporators to reduce heat exchange between evaporators.
  • the refrigerating and freezing device of the present invention because the refrigeration system can use the bypass defrosting pipeline to directly introduce the refrigerant from the compressor to the evaporator to defrost the evaporator, and the evaporator relies on the heat generated by itself to defrost "from the inside out".
  • the refrigeration system is configured to defrost in one evaporator When using other evaporators to provide cooling capacity, this helps to prevent the obvious temperature rise of the storage compartment caused by the defrosting of the evaporator, and helps to improve the fresh-keeping performance of the refrigerator and freezer.
  • the refrigerating and freezing device of the present invention only by attaching a bypass assembly on the refrigeration circuit, for example, adding a bypass defrosting pipeline in parallel with the throttling device on the refrigeration circuit, and adding a bypass supply line between the evaporators.
  • the cold pipeline can improve the fresh-keeping performance of the refrigerating and freezing device, which is beneficial to simplify the structure of the refrigeration system of the refrigerating and freezing device, so that the performance of the refrigerating and freezing device can be improved by simple structural improvement.
  • the refrigeration and freezing device of the present invention by arranging two evaporators in the refrigeration circuit, when one of the evaporators defrosts, the other evaporator is used for cooling, which can improve the fresh-keeping performance of the refrigeration and freezing device.
  • the evaporators complement each other, which can not only simplify the structure of the refrigeration system, but also simplify the control process of the refrigeration system.
  • the bypass cooling pipeline can guide the refrigerant flowing through the corresponding bypass defrosting pipeline and the corresponding evaporator to another evaporator, so that the other evaporator can evaporate
  • the refrigerator can use the imported refrigerant to provide cooling capacity, which can not only prevent the obvious temperature rise of the storage compartment, but also improve the energy efficiency of the refrigeration and freezing device, which serves multiple purposes.
  • Fig. 1 is a schematic block diagram of a refrigerator-freezer according to one embodiment of the present invention
  • Figure 2 is a schematic perspective view of a refrigerator-freezer according to one embodiment of the present invention.
  • Fig. 3 is a schematic block diagram of a refrigerating and freezing device according to another embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a refrigeration system of a refrigerator-freezer according to an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a refrigerating system of a refrigerating and freezing device according to another embodiment of the present invention.
  • Fig. 1 is a schematic block diagram of a refrigerating and freezing device 10 according to an embodiment of the present invention.
  • Fig. 2 is a schematic perspective view of a refrigerator-freezer 10 according to one embodiment of the present invention.
  • the refrigerating and freezing device 10 may generally include a cabinet 100 and a refrigeration system 200 .
  • a storage compartment 110 is formed inside the box body 100 .
  • the plurality of evaporators 212 of the refrigeration assembly 210 of the refrigeration system 200 described below are used to provide cold energy to the same storage compartment 110, which can be a refrigerated compartment, a freezer compartment, a cryogenic compartment or a variable temperature compartment. any one of the compartments.
  • the cooling capacity provided by the plurality of evaporators 212 of the refrigeration assembly 210 can also be transported to other storage compartments 110 through the air supply duct, so as to realize the cooling capacity between the plurality of storage compartments 110 shared.
  • the temperature zone of the storage compartment 110 can be set according to actual needs, for example, it can be any one of a refrigerated compartment, a freezer compartment, a cryogenic compartment or a variable temperature compartment.
  • the refrigeration system 200 includes a refrigeration assembly 210 and a bypass assembly 220 .
  • the refrigeration assembly 210 is used to form a refrigeration circuit.
  • the refrigeration system 200 utilizes a refrigeration circuit to supply cooling to the evaporator 212 .
  • the bypass assembly 220 is connected to the refrigeration circuit, for example may be attached to the refrigeration circuit to form a bypass branch. Refrigerant can flow through both the refrigeration circuit and the bypass branch.
  • the refrigerating system 200 adjusts the working state of the evaporator 212 by adjusting the flow path of the refrigerant in the refrigerating circuit and the bypass branch (such as the bypass defrosting pipeline 221 and/or the bypass cooling pipeline 222 described below).
  • the working state of the evaporator 212 includes a cooling state and a defrosting state.
  • the refrigeration assembly 210 has a compressor 211 and a plurality of evaporators 212 forming a refrigeration circuit.
  • the plurality of evaporators 212 are respectively used to provide cold energy to the storage compartment 110 .
  • a plurality of evaporators 212 are disposed downstream of the discharge port of the compressor 211 .
  • the evaporators 212 may be arranged in parallel with each other, or may be arranged in series with each other.
  • the bypass assembly 220 has a plurality of bypass defrosting pipelines 221, which are connected to the refrigeration circuit and communicate with the evaporators 212 one by one, and are used to pass the refrigerant from the compressor 211 into each evaporator 212 to make the evaporator 212 defrost. Frost.
  • the refrigeration system 200 is configured to use the other evaporators 212 to provide cooling capacity when using the bypass defrosting pipeline 221 to defrost one evaporator 212 , so as to prevent the temperature fluctuation of the storage compartment 110 .
  • the refrigeration system 200 prevents multiple bypass defrosting pipelines 221 from communicating simultaneously, so that multiple evaporators 212 do not defrost simultaneously, and as long as there is one evaporator 212 defrosting, there will be another one or more An evaporator 212 for cooling.
  • the one-to-one communication between the bypass defrosting pipeline 221 and the evaporator 212 means that one bypass defrosting pipeline 221 communicates with one evaporator 212, and each evaporator 212 has a bypass defrosting pipeline 221 communicating with it, Each evaporator 212 can pass through the unthrottled refrigerant from the compressor 211, and the refrigerant releases heat and condenses in the evaporator 212, so that the evaporator 212 acts as a condenser, thereby realizing the defrosting of the evaporator 212 .
  • the bypass defrosting pipeline 221 may communicate with the inlet of the evaporator 212 .
  • each bypass defrosting pipeline 221 is also connected to the exhaust port of the compressor 211 , so that the high-pressure refrigerant flowing out of the compressor 211 can pass into the evaporator 212 through the bypass defrosting pipeline 221 .
  • the structure of the bypass defrosting pipeline 221 may be the same as that of the connecting pipelines between the various components in the refrigeration circuit, as long as it can realize the function of guiding the refrigerant.
  • the refrigeration system 200 can use the bypass defrosting pipeline 221 to directly introduce the refrigerant from the compressor 211 to the evaporator 211 to defrost the evaporator 212, the evaporator 212 relies on the heat generated by itself Defrost "from the inside out", which is beneficial to improve the defrosting rate of the evaporator 212 of the refrigerating and freezing device 10, shorten the defrosting cycle, and because the refrigeration system 200 has multiple The evaporator 212, the refrigeration system 200 is configured to use the other evaporator 212 to provide cooling capacity when one evaporator 212 defrosts, which is beneficial to prevent the storage compartment 110 from having a significant temperature rise due to the defrosting of the evaporator 212. It helps to improve the fresh-keeping performance of the refrigerating and freezing device 10.
  • Fig. 3 is a schematic block diagram of a refrigerating and freezing device 10 according to another embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a refrigeration system 200 of a refrigeration-freezing device 10 according to an embodiment of the present invention.
  • the refrigeration system 200 is suitable for the case where there are two evaporators 212, for example, the first evaporator 212a and the second evaporator 212a respectively. Evaporator 212b.
  • the refrigeration assembly 210 of this embodiment may further include a plurality of throttling devices 214, which are arranged in the refrigeration circuit and communicate with the evaporators 212 one by one, and are used to throttle the refrigerant flowing to the evaporator 212 so as to evaporate Device 212 provides cooling.
  • the one-to-one communication between the throttling device 214 and the evaporator 212 means that one throttling device 214 communicates with one evaporator 212, and each evaporator 212 has a throttling device 214 communicated therewith, so that each evaporator 212
  • the throttled refrigerant from the compressor 211 can be fed into both, so that the refrigerant absorbs heat and evaporates in the evaporator 212 to realize the cooling function of the evaporator 212 .
  • the throttling device 214 may include a first throttling device 214a and a second throttling device 214b.
  • the bypass defrosting pipeline 221 communicating with each evaporator 212 is arranged in parallel with the throttling device 214 . That is to say, each evaporator 212 corresponds to a bypass defrosting pipeline 221 and a throttling device 214, and the bypass defrosting pipeline 221 and the throttling device 214 corresponding to the evaporator 212 are arranged in parallel, and the refrigerant It can be passed into the evaporator 212 through the bypass defrosting pipeline 221 , and can also be passed into the evaporator 212 through the throttling device 214 .
  • bypass defrosting line 221 and the throttling device 214 may be respectively connected to the outlet of the condenser 213 described below.
  • the bypass defrost pipeline 221 may include a first bypass defrost pipeline 221a and a second bypass defrost pipeline 221b.
  • the parallel connection of the bypass defrosting pipeline 221 to the throttling device 214 is beneficial to shorten the length of the bypass defrosting pipeline 221 and reduce the manufacturing cost of the refrigeration system 200 .
  • the refrigeration system 200 of this embodiment may further include at least one first switching valve 230 connected to the downstream of the discharge port of the compressor 211, the first switching valve 230 connected to the downstream of the discharge port of the compressor 211 refers to the first
  • the inlet of the switching valve 230 is connected downstream of the discharge port of the compressor 211, for example, may be connected to the outlet of the condenser 213 described below.
  • At least one first switching valve 230 is formed with a valve port respectively used to communicate with each throttling device 214 and each bypass defrosting pipeline 221, and is used to regulate the refrigerant flowing through it by opening or closing the valve port in a controlled manner. flow path.
  • the first switching valve 230 adjusts the flow path of the refrigerant flowing to each evaporator 212 by opening and closing the valve port, thereby adjusting the working state of each evaporator 212 .
  • the inlet of the first switching valve 230 may communicate with the outlet of the condenser 213 , and the valve port in this embodiment and the following embodiments refers to the outlet of the switching valve.
  • the number of the first switching valve 230 is one or more. Take the case where there are multiple first switching valves 230 as an example.
  • the number of the first switching valve 230 is the same as that of the evaporators 212 , and is set in one-to-one correspondence with the evaporators 212 . That is, one evaporator 212 corresponds to one first switching valve 230 to adjust the flow path of refrigerant flowing thereto using the first switching valve 230 .
  • the first switching valve 230 corresponding to the first evaporator 212a is 230a
  • the first switching valve 230 corresponding to the second evaporator 212b is 230b.
  • Each first switching valve 230 has two valve ports, one of which is connected to the throttling device 214 of the corresponding evaporator 212, and the other valve port is connected to the bypass defrosting pipeline 221 of the corresponding evaporator 212, That is, one valve port communicates with the corresponding throttling device 214 , and the other valve port communicates with the corresponding bypass defrosting pipeline 221 .
  • the first switching valve 230 may be a three-way valve, such as a three-way solenoid valve.
  • the first switching valve 230 is used to open the valve port communicating with the throttling device 214 when the corresponding evaporator 212 provides cooling capacity, so as to allow the refrigerant to throttle first and then flow into the evaporator 212, and open when the corresponding evaporator 212 defrosts
  • the valve port of the bypass defrost line 221 is connected to allow the refrigerant to flow into the evaporator 212 without throttling.
  • the first switching valve 230 may be disposed in the press chamber of the refrigerating and freezing device 10 .
  • the working state of the evaporator 212 can be easily switched, with a simple method and a simple structure.
  • the refrigeration assembly 210 can further include a condenser 213, which is arranged in the refrigeration circuit and connected to the exhaust port of the compressor 211.
  • the condenser 213 can be connected in series between the exhaust port of the compressor 211 and between throttling devices 214 .
  • the first switching valve 230 may be connected to the outlet of the condenser 213 .
  • the bypass assembly 220 may further include a plurality of bypass cooling pipelines 222 corresponding to the evaporators 212 one by one, and connecting the outlet of the corresponding evaporator 212 with the inlet of the throttling device 214 corresponding to another evaporator 212 , used to guide the refrigerant flowing sequentially through the bypass defrosting pipeline 221 and the evaporator 212 to another evaporator 212 so that the other evaporator 212 provides cooling capacity.
  • the bypass cooling pipeline 222 may include a first bypass cooling pipeline 222a and a second bypass cooling pipeline 222b.
  • the one-to-one correspondence between the bypass cooling pipelines 222 and the evaporators 212 means that one evaporator 212 corresponds to one bypass cooling pipeline 222 , and the number of evaporators 212 is the same as the number of bypass cooling pipelines 222 .
  • the bypass cooling pipeline 222 communicates with the outlet of the corresponding evaporator 212 and the inlet of the throttling device 214 corresponding to the other evaporator 212.
  • the "channel" between the evaporators 212 can guide the refrigerant flowing through the corresponding evaporator 212 to another evaporator 212 when the corresponding evaporator 212 defrosts, so that other evaporators 212 can provide cooling.
  • bypass cooling pipeline 222 can guide the refrigerant flowing through the corresponding bypass defrosting pipeline 221 and the corresponding evaporator 212 to the other evaporator 212, so that the other evaporator 212 can utilize the introduced refrigeration.
  • the agent provides cooling capacity, which can not only prevent the storage compartment 110 from producing a significant temperature rise, but also improve the energy efficiency of the refrigerating and freezing device 10, which serves multiple purposes.
  • a bypass defrosting pipeline 221 connected in parallel with the throttling device 214 is added on the refrigeration circuit, and a bypass defrosting pipeline 221 is added between the evaporators 212
  • Bypassing the cooling pipeline 222 can improve the freshness preservation performance of the refrigerator-freezer 10, which is beneficial to simplify the structure of the refrigeration system 200 of the refrigerator-freezer 10, so that the performance of the refrigerator-freezer 10 can be improved by simple structural improvements.
  • the refrigeration system 200 further includes a plurality of second switching valves 240 corresponding to the evaporators 212 and connected to the outlet of the evaporators 212 . That is, the number of the second switching valve 240 is the same as the number of the evaporators 212 , and one second switching valve 240 is installed at the outlet of each evaporator 212 for adjusting the flow path of the refrigerant flowing out of the corresponding evaporator 212 .
  • the second switching valve 240 corresponding to the first evaporator 212a is 240a
  • the second switching valve 240 corresponding to the second evaporator 212b is 240b.
  • Each second switching valve 240 has two valve ports respectively. Among them, one valve port is used to communicate with the suction port of the compressor 211, that is, the refrigerant flowing out from the valve port can flow to the suction port of the compressor 211; the other valve port is connected to the bypass cooling pipeline 222, namely , the refrigerant flowing out of the valve port can flow into the bypass cooling pipeline 222 .
  • the second switching valve 240 may be a three-way valve, such as a three-way solenoid valve.
  • the second switching valve 240 may be disposed in the storage compartment 110 .
  • the two valve ports of the second switching valve 240 are not opened simultaneously.
  • the second switching valve 240 is used to open the valve connected to the suction port of the compressor 211 when the corresponding evaporator 212 provides cooling capacity, and open the valve connected to the bypass cooling pipeline 222 when the corresponding evaporator 212 defrosts mouth.
  • bypass cooling pipeline 222 By arranging the bypass cooling pipeline 222 at the outlet of each evaporator 212, and using the second switching valve 240 to adjust the flow path of refrigerant flowing out of each evaporator 212, "defrosting and cooling can be achieved simultaneously" , and at the same time, the mechanical power of the compressor 211 can be effectively utilized, which has the advantage of a compact structure.
  • multiple throttling devices 214 are connected in series with corresponding evaporators 212 to form multiple refrigeration branches.
  • each evaporator 212 is connected in series with the outlet of the corresponding throttling device 214 .
  • Each cooling branch has a throttling device 214 and an evaporator 212 connected in series, and a throttling device 214 and a corresponding evaporator 212 together form a cooling branch.
  • a plurality of refrigeration branches are arranged in parallel with each other, which enables the refrigeration system 200 to flexibly adjust the working state of each evaporator 212, which not only enables the evaporators 212 to provide cooling at the same time to increase the cooling rate of the storage compartment 110, but also The storage compartment 110 is prevented from being significantly increased in temperature due to defrosting of the evaporator 212 .
  • the number of evaporators 212 can be set arbitrarily according to the volume of the storage compartment 110, and can be any value greater than or equal to two. For example, there may be two evaporators 212, namely a first evaporator 212a and a second evaporator 212b, which can simplify the structure of the refrigeration system 200 and simplify the control logic of the switching valve.
  • bypass defrosting pipelines 221 namely the first bypass defrosting pipeline 221a and the second bypass defrosting pipeline 221b
  • throttling devices 214 They are respectively the first throttling device 214a and the second throttling device 214b
  • bypass cooling pipelines 222 which are respectively the first bypass cooling pipeline 222a and the second bypass cooling pipeline 222b, and the second bypass cooling pipeline 222b.
  • switching valves 230 and two switching valves 240 respectively.
  • first bypass defrosting pipeline 221a, the first throttling device 214a and the first bypass cooling pipeline 222a are respectively arranged corresponding to the first evaporator 212a.
  • the second bypass defrosting pipeline 221b, the second throttling device 214b and the second bypass cooling pipeline 222b are respectively arranged corresponding to the second evaporator 212b.
  • the control process of the refrigeration system 200 will be described in detail below by taking the defrosting of the first evaporator 212a as an example.
  • the corresponding first switching valve 230a opens the valve port communicating with the first bypass defrosting pipeline 221a, and closes the valve port communicating with the first throttling device 214a, and the first evaporator
  • the second switching valve 240a corresponding to the device 212a opens the valve port connected to the first bypass cooling pipeline 222a, and closes the valve port used to communicate with the suction port of the compressor 211; the first switching valve corresponding to the second evaporator 212b
  • the valve 230b can close the two valve ports, and the second switching valve 240b corresponding to the second evaporator 212b opens the valve port used to communicate with the suction port of the compressor 211, and closes the valve port connected to the second bypass cooling pipeline 222b.
  • the valve port allows the refrigerant flowing through to flow back to the compressor 211,
  • the corresponding first switching valve 230b opens the valve port communicating with the second bypass defrosting pipeline 221b, and closes the valve port communicating with the second throttling device 214b, and the second evaporator
  • the second switching valve 240b corresponding to the device 212b opens the valve port communicating with the second bypass cooling pipeline 222b, and closes the valve port communicating with the suction port of the compressor 211; the first switching valve corresponding to the first evaporator 212a
  • the valve 230a can close the two valve ports, and the second switching valve 240a corresponding to the first evaporator 212a opens the valve port connected to the suction port of the compressor 211, and closes the valve port connected to the first bypass cooling pipeline 222a.
  • the valve port allows the refrigerant flowing through to flow back to the compressor 211, thereby completing the entire refrigeration cycle.
  • the two evaporators 212 By arranging two evaporators 212 in the refrigeration circuit, when one of the evaporators 212 defrosts, the other evaporator 212 is used for cooling, which can improve the freshness preservation performance of the refrigeration and freezing device 10, and the two evaporators 212 complement each other , which can not only simplify the structure of the refrigeration system 200, but also simplify the control process of the refrigeration system 200.
  • the refrigeration assembly 210 can further include a liquid storage bag 215, which is arranged in the refrigeration circuit, for example, can be arranged between the outlet of the evaporator 212 and the suction port of the compressor 211, and is used to adjust the temperature of the refrigeration assembly. The amount of refrigerant required by each component of 210.
  • the number of evaporators 212 can also be changed to three, correspondingly, there are three bypass defrosting pipelines 221, namely, the first bypass defrosting pipeline 221a, the second bypass defrosting pipeline 221a
  • the pipeline 221b and the third bypass defrosting pipeline have three throttling devices 214, which are respectively the first throttling device 214a, the second throttling device 214b and the third throttling device, and the bypass cooling pipeline 222 is Three, respectively the first bypass cooling pipeline 222a, the second bypass cooling pipeline 222b and the third bypass cooling pipeline, the first switching valve 230 and the second switching valve 240 are also three .
  • first bypass defrosting pipeline 221a, the first throttling device 214a and the first bypass cooling pipeline 222a are respectively arranged corresponding to the first evaporator 212a.
  • the second bypass defrosting pipeline 221b, the second throttling device 214b and the second bypass cooling pipeline 222b are respectively arranged corresponding to the second evaporator 212b.
  • the newly added third bypass defrosting pipeline, the third throttling device and the third bypass cooling pipeline are set corresponding to the newly added third evaporator respectively.
  • the third bypass cooling pipeline can communicate with the outlet of the third evaporator and the inlet of the second throttling device 214b or the inlet of the first throttling device 214a.
  • the third bypass cooling pipeline also communicates with the inlet of the second throttling device 214b and the inlet of the first throttling device 214a at the same time, as long as the second switching valve corresponding to the third evaporator 240 can be converted into a four-way solenoid valve.
  • the third evaporator defrosts the first evaporator 212a and the second evaporator 212b are used to supply cooling simultaneously, which can improve the refrigeration efficiency of the refrigeration system 200 .
  • an installation space 120 for installing the evaporator 212 is also formed inside the box body 100 .
  • the installation space 120 may be located at one side of the storage compartment 110 , such as the lower side or the rear side.
  • the refrigerating and freezing device 10 can further include a thermal insulation partition 130, which is arranged in the installation space 120, and separates the installation space 120 into a plurality of subspaces, which are respectively used to install an evaporator 212, so as to reduce the heat between the evaporators 212. Exchange, which can prevent the heat generated by the defrosting evaporator 212 from affecting the cooling effect of other evaporators 212.
  • the number of subspaces is the same as the number of evaporators 212 .
  • the subspaces can be arranged in a way of one left and one right or one up and one down, so that the evaporators 212 can be arranged side by side or stacked up and down, which can save the installation space of the evaporators 212, Improve space utilization and improve aesthetics.
  • a plurality of air supply channels are formed in the box body 100 , corresponding to the evaporators 212 one by one, and each air supply channel is used to transport the cold energy provided by the corresponding evaporator 212 to the storage compartment 110 .
  • Each air supply duct is set independently of each other, which can avoid turbulent air flow, ensure the efficiency of cooling delivery, and improve the freshness preservation effect of the storage compartment 110 .
  • the refrigerating and freezing device 10 may further include a plurality of fans 150, which are arranged in one-to-one correspondence with the evaporators 212, and are used to promote the formation of air flowing through the corresponding air supply duct and the storage room when the corresponding evaporator 212 provides cold energy.
  • the blower 150 can only be turned on when the corresponding evaporator 212 supplies cooling.
  • the fan 150 can prevent the heat generated by the evaporator 212 from entering the storage compartment 110 by using the fan 150 shielding means.
  • the number of fan 150 can also be changed to one, and it is set on the common flow path between multiple air supply ducts and the storage compartment 110, so that the fan 150 can serve as a plurality of air supply channels at the same time.
  • the air flow actuating device of the air duct is conducive to further simplifying the structure of the refrigerating and freezing device 10 .
  • Fig. 5 is a schematic structural diagram of a refrigeration system 200 of a refrigeration-freezing device 10 according to another embodiment of the present invention.
  • the first switching valve 230 in this embodiment is one, and it has four valve ports. In this case, one switching valve can be omitted, which is beneficial to further simplify the structure of the refrigeration system 200.
  • the first switching valve 230 can be a five-way solenoid valve, its inlet is connected to the outlet of the condenser 213, and the four valve ports are respectively connected to the first bypass defrosting pipeline 221a, the first throttling device 214a, and the second bypass defrosting pipe. Road 221b, second throttling device 214b.
  • the bypass assembly 220 may be provided with a bypass condensation branch.
  • the bypass condensation branch in this embodiment is arranged in parallel with the condenser 213 and communicates with the exhaust port of the compressor 211 and the inlet of the first switching valve 230 .
  • the refrigeration system 200 can add a third switching valve, which is connected to the exhaust port of the compressor 211, and has two valve ports, one of which is connected to the inlet of the condenser 213, and the other is connected to the bypass condensing valve.
  • the third switching valve adjusts the flow path of the refrigerant flowing through it by opening and closing the two valve ports in a controlled manner.
  • the third switching valve can open the valve port connected to the bypass condensing branch, and close the valve port connected to the condenser 213, and the refrigerant flowing out of the compressor 211 can directly pass through the bypass condensing branch. ground into the bypass defrosting pipeline 221 and flow into the defrosting evaporator 212, which is beneficial to further increase the defrosting rate of the evaporator 212.
  • the refrigeration system 200 can use the bypass defrosting pipeline 221 to directly introduce the refrigerant from the compressor 211 to the evaporator 211 to defrost the evaporator 212, the evaporator 212 relies on the heat generated by itself.
  • Defrosting from the "inside out” is beneficial to increase the defrosting rate of the evaporator 212 of the refrigerating and freezing device 10, shorten the defrosting cycle, and because the refrigeration system 200 has multiple evaporators for supplying cooling to the storage compartment 110 212, the refrigeration system 200 is configured to use other evaporators 212 to provide cooling capacity when one evaporator 212 defrosts, which is beneficial to prevent the obvious temperature rise of the storage compartment 110 caused by the defrosting of the evaporators 212, and helps To improve the fresh-keeping performance of the refrigerating and freezing device 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

一种冷藏冷冻装置,包括:箱体,其内部形成有储物间室;和制冷系统,其包括:制冷组件,其具有形成制冷回路的压缩机和多个蒸发器,多个蒸发器分别用于向储物间室提供冷量;以及旁通组件,其具有多个旁通化霜管路,连接至制冷回路并与蒸发器一一连通,用于将来自压缩机的制冷剂通入每一蒸发器以使蒸发器化霜,且制冷系统配置成在利用旁通化霜管路使得一蒸发器化霜时,利用其他蒸发器提供冷量,以防储物间室的温度波动。该冷藏冷冻装置能有效防止因蒸发器化霜而导致储物间室产生明显的温升,具备更优的保鲜性能。

Description

冷藏冷冻装置 技术领域
本发明涉及制冷技术,特别是涉及冷藏冷冻装置。
背景技术
冷藏冷冻装置,例如冰箱、冰柜及冷藏柜等,利用制冷系统的蒸发器向储物间室提供冷量。由于蒸发器供冷时表面温度较低,易于结霜,霜层累积会导致蒸发器的制冷效率下降,因此需使蒸发器适时地停止供冷并化霜。
现有技术中的部分冷藏冷冻装置采用化霜加热丝加热蒸发器的方式进行化霜。发明人认识到,这种化霜方式不但化霜速率缓慢,化霜周期长,而且会导致储物间室产生明显的温升,影响冷藏冷冻装置的保鲜性能。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种冷藏冷冻装置。
本发明一个进一步的目的是要提高冷藏冷冻装置的蒸发器化霜速率,且防止因蒸发器化霜而导致储物间室产生明显的温升,从而提高保鲜性能。
本发明另一个进一步的目的是要简化冷藏冷冻装置的制冷系统的结构。
本发明再一个进一步的目的是要简化冷藏冷冻装置的制冷系统的控制过程。
本发明又一个进一步的目的是要提高冷藏冷冻装置的能效。
特别地,本发明提供了一种冷藏冷冻装置,包括:箱体,其内部形成有储物间室;和制冷系统,其包括:制冷组件,其具有形成制冷回路的压缩机和多个蒸发器,多个蒸发器分别用于向储物间室提供冷量;以及旁通组件,其具有多个旁通化霜管路,连接至制冷回路并与蒸发器一一连通,用于将来自压缩机的制冷剂通入每一蒸发器以使蒸发器化霜,且制冷系统配置成在利用旁通化霜管路使得一蒸发器化霜时,利用其他蒸发器提供冷量,以防储物间室的温度波动。
可选地,蒸发器为两个。
可选地,制冷组件还包括多个节流装置,设置于制冷回路内并与蒸发器一一连通,用于对流向蒸发器的制冷剂进行节流,以使蒸发器提供冷量;且 连通每一蒸发器的旁通化霜管路与节流装置并联设置。
可选地,制冷系统还包括至少一个第一切换阀,连接至压缩机的排气口下游,且至少一个第一切换阀形成有分别用于连通每一节流装置以及每一旁通化霜管路的阀口,并用于通过受控地打开或关闭阀口以调节流经其的制冷剂的流动路径。
可选地,第一切换阀与蒸发器的数量相同,并与蒸发器一一对应设置;每一第一切换阀分别具有两个阀口,其中一个阀口连通连接至对应蒸发器的节流装置,另一阀口连通连接至对应蒸发器的旁通化霜管路;且第一切换阀用于在对应的蒸发器提供冷量时打开连通节流装置的阀口,在对应的蒸发器化霜时打开连通旁通化霜管路的阀口。
可选地,制冷组件还包括冷凝器,设置于制冷回路内并连接至压缩机的排气口;且第一切换阀连接至冷凝器的出口。
可选地,旁通组件还包括多个旁通供冷管路,与蒸发器一一对应,且连通对应的蒸发器的出口与另一蒸发器对应的节流装置的入口,用于将依次流经旁通化霜管路以及蒸发器的制冷剂导引至另一蒸发器,以使另一蒸发器提供冷量。
可选地,制冷系统还包括多个第二切换阀,与蒸发器一一对应,且连接至蒸发器的出口;每一第二切换阀分别具有两个阀口,其中一阀口用于连通压缩机的吸气口,另一阀口连通旁通供冷管路;且第二切换阀用于在对应的蒸发器提供冷量时打开连通压缩机的吸气口的阀口,在对应的蒸发器化霜时打开连通旁通供冷管路的阀口。
可选地,多个节流装置分别与对应的蒸发器串接,形成多个制冷支路;且多个制冷支路相互并联设置。
可选地,箱体的内部还形成有用于安装蒸发器的安装空间;且冷藏冷冻装置还包括保温隔板,设置于安装空间内,并将安装空间分隔出多个子空间,分别用于安装一个蒸发器,以减少蒸发器之间的热交换。
本发明的冷藏冷冻装置,由于制冷系统能够利用旁通化霜管路向蒸发器直接导入来自压缩机的制冷剂以使蒸发器化霜,蒸发器依靠自身产生的热量“由内而外”地化霜,这有利于提高冷藏冷冻装置的蒸发器化霜速率,缩短化霜周期,并且由于制冷系统具有用于向储物间室供冷的多个蒸发器,制冷系统配置成在一蒸发器化霜时利用其他蒸发器提供冷量,这有利于防止因蒸 发器化霜而导致储物间室产生明显的温升,有助于提高冷藏冷冻装置的保鲜性能。
进一步地,本发明的冷藏冷冻装置,仅通过在制冷回路上附接旁通组件,例如在制冷回路上增设与节流装置并联的旁通化霜管路,并在蒸发器之间增设旁通供冷管路,即可提高冷藏冷冻装置的保鲜性能,这有利于简化冷藏冷冻装置的制冷系统的结构,使得冷藏冷冻装置利用简单的结构改进实现性能提升。
进一步地,本发明的冷藏冷冻装置,通过在制冷回路内布置两个蒸发器,使其中一个蒸发器化霜时,利用另一个蒸发器供冷,即可提升冷藏冷冻装置的保鲜性能,两个蒸发器之间相辅相成,这既可以简化制冷系统的结构,又可以简化制冷系统的控制过程。
更进一步地,本发明的冷藏冷冻装置,由于旁通供冷管路能够将依次流经对应的旁通化霜管路以及对应的蒸发器的制冷剂导引至另一蒸发器,使得另一蒸发器能够利用导入的制冷剂提供冷量,这既能防止储物间室产生明显的温升,又能提高冷藏冷冻装置的能效,一举多得。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的示意性框图;
图2是根据本发明一个实施例的冷藏冷冻装置的示意性透视图;
图3是根据本发明另一实施例的冷藏冷冻装置的示意性框图;
图4是根据本发明一个实施例的冷藏冷冻装置的制冷系统的示意性结构图;
图5是根据本发明另一实施例的冷藏冷冻装置的制冷系统的示意性结构图。
具体实施方式
图1是根据本发明一个实施例的冷藏冷冻装置10的示意性框图。图2 是根据本发明一个实施例的冷藏冷冻装置10的示意性透视图。冷藏冷冻装置10一般性地可包括箱体100和制冷系统200。
箱体100的内部形成有储物间室110。储物间室110可以为多个。下述制冷系统200的制冷组件210的多个蒸发器212用于向同一储物间室110提供冷量,该储物间室110可以为冷藏间室、冷冻间室、深冷间室或者变温间室中的任意一个。在一些实施例中,制冷组件210的多个蒸发器212所提供的冷量还可以通过送风风道输送至其他储物间室110,以实现多个储物间室110之间的冷量共享。在另一些实施例中,储物间室110可以为一个。该储物间室110的温区可以根据实际需要进行设置,例如可以为冷藏间室、冷冻间室、深冷间室或者变温间室中的任意一个。
制冷系统200包括制冷组件210和旁通组件220。其中制冷组件210用于形成制冷回路。在无蒸发器化霜的情况下,制冷系统200利用制冷回路使蒸发器212供冷。旁通组件220连接至制冷回路,例如可以附接至制冷回路,以形成旁通支路。制冷回路和旁通支路均可以流通制冷剂。制冷系统200通过调节制冷剂在制冷回路和旁通支路(例如下述旁通化霜管路221和/或旁通供冷管路222)的流动路径来调节蒸发器212的工作状态。蒸发器212的工作状态包括供冷状态和化霜状态。
制冷组件210具有形成制冷回路的压缩机211和多个蒸发器212。多个蒸发器212分别用于向储物间室110提供冷量。多个蒸发器212设置于压缩机211的排气口下游。在制冷回路内,蒸发器212可以相互并联设置,或者可以相互串联设置。
旁通组件220具有多个旁通化霜管路221,连接至制冷回路并与蒸发器212一一连通,用于将来自压缩机211的制冷剂通入每一蒸发器212以使蒸发器212化霜。且制冷系统200配置成在利用旁通化霜管路221使得一蒸发器212化霜时,利用其他蒸发器212提供冷量,以防储物间室110的温度波动。即,制冷系统200使得多个旁通化霜管路221不会同时地连通,使得多个蒸发器212不会同时地化霜,且只要有一个蒸发器212化霜,就会有另外一个或多个蒸发器212供冷。
其中,旁通化霜管路221与蒸发器212一一连通是指,一个旁通化霜管路221连通一个蒸发器212,每个蒸发器212均具有与之连通的一个旁通化霜管路221,使得每个蒸发器212均可以通入来自压缩机211的未被节流的 制冷剂,制冷剂在蒸发器212内放热冷凝,使蒸发器212充当冷凝器,从而实现蒸发器212的化霜。例如,旁通化霜管路221可以连通蒸发器212的入口。又如,每一旁通化霜管路221还连通压缩机211的排气口,使得流出压缩机211的高压的制冷剂可以经由旁通化霜管路221通入蒸发器212。旁通化霜管路221的构造可以与制冷回路内的各个部件之间的连接管路的构造相同,只要能够实现导引制冷剂的功能即可。
本实施例的冷藏冷冻装置10,由于制冷系统200能够利用旁通化霜管路221向蒸发器212直接导入来自压缩机211的制冷剂以使蒸发器212化霜,蒸发器212依靠自身产生的热量“由内而外”地化霜,这有利于提高冷藏冷冻装置10的蒸发器212化霜速率,缩短化霜周期,并且由于制冷系统200具有用于向储物间室110供冷的多个蒸发器212,制冷系统200配置成在一蒸发器212化霜时利用其他蒸发器212提供冷量,这有利于防止因蒸发器212化霜而导致储物间室110产生明显的温升,有助于提高冷藏冷冻装置10的保鲜性能。
图3是根据本发明另一实施例的冷藏冷冻装置10的示意性框图。图4是根据本发明一个实施例的冷藏冷冻装置10的制冷系统200的示意性结构图,该制冷系统200适用于蒸发器212为两个的情况,例如分别为第一蒸发器212a和第二蒸发器212b。本实施例的制冷组件210还可以进一步地包括多个节流装置214,设置于制冷回路内并与蒸发器212一一连通,用于对流向蒸发器212的制冷剂进行节流,以使蒸发器212提供冷量。其中,节流装置214与蒸发器212一一连通是指,一个节流装置214连通一个蒸发器212,每个蒸发器212均具有与之连通的一个节流装置214,使得每个蒸发器212均可以通入来自压缩机211、且被节流的制冷剂,从而使得制冷剂在蒸发器212内吸热蒸发,实现蒸发器212的供冷功能。节流装置214可以包括第一节流装置214a和第二节流装置214b。
连通每一蒸发器212的旁通化霜管路221与节流装置214并联设置。也就是说,每一蒸发器212均对应有一个旁通化霜管路221和一个节流装置214,与该蒸发器212对应的旁通化霜管路221和节流装置214并联设置,制冷剂既可以经由旁通化霜管路221通入蒸发器212,也可以经由节流装置214通入蒸发器212。例如,旁通化霜管路221和节流装置214分别可以连接至下述冷凝器213的出口。旁通化霜管路221可以包括第一旁通化霜管路 221a和第二旁通化霜管路221b。
将旁通化霜管路221并联至节流装置214,有利于缩短旁通化霜管路221的长度,降低制冷系统200的制造成本。
本实施例的制冷系统200还可以进一步地包括至少一个第一切换阀230,连接至压缩机211的排气口下游,第一切换阀230连接至压缩机211的排气口下游是指第一切换阀230的入口连接至压缩机211的排气口下游,例如,可以连接至下述冷凝器213的出口。至少一个第一切换阀230形成有分别用于连通每一节流装置214以及每一旁通化霜管路221的阀口,并用于通过受控地打开或关闭阀口以调节流经其的制冷剂的流动路径。对于流向每一蒸发器212的制冷剂而言,具有两条流动路径,其一是经由旁通化霜管路221流入蒸发器212,其二是经由节流装置214流入蒸发器212。第一切换阀230通过开闭阀口调节流向每一蒸发器212的制冷剂的流动路径,从而调节每一蒸发器212的工作状态。第一切换阀230的入口可以连通冷凝器213的出口,本实施例以及以下实施例的阀口是指切换阀的出口。
第一切换阀230的数量为一个或多个。以第一切换阀230的数量为多个的情况为例。第一切换阀230与蒸发器212的数量相同,并与蒸发器212一一对应设置。即,一个蒸发器212对应一个第一切换阀230,以利用该第一切换阀230调节流向其的制冷剂的流动路径。与第一蒸发器212a对应的第一切换阀230为230a,与第二蒸发器212b对应的第一切换阀230为230b。
每一第一切换阀230分别具有两个阀口,其中一个阀口连通连接至对应蒸发器212的节流装置214,另一阀口连通连接至对应蒸发器212的旁通化霜管路221,即,一个阀口连通对应的节流装置214,另一个阀口连通对应的旁通化霜管路221。第一切换阀230可以为三通阀,例如三通电磁阀。第一切换阀230用于在对应的蒸发器212提供冷量时打开连通节流装置214的阀口,以允许制冷剂先节流再流入蒸发器212,在对应的蒸发器212化霜时打开连通旁通化霜管路221的阀口,以允许制冷剂未被节流即流入蒸发器212。第一切换阀230可以设置于冷藏冷冻装置10的压机仓内。
通过在制冷系统200中布置切换阀并利用切换阀调节流向蒸发器212的制冷剂的流动路径,可以简便地切换蒸发器212的工作状态,方法简便,结构简单。
本实施例中,制冷组件210还可以进一步地包括冷凝器213,设置于制 冷回路内并连接至压缩机211的排气口,例如,冷凝器213可以串接于压缩机211的排气口与节流装置214之间。第一切换阀230可以连接至冷凝器213的出口。
旁通组件220还可以进一步地包括多个旁通供冷管路222,与蒸发器212一一对应,且连通对应的蒸发器212的出口与另一蒸发器212对应的节流装置214的入口,用于将依次流经旁通化霜管路221以及蒸发器212的制冷剂导引至另一蒸发器212,以使另一蒸发器212提供冷量。例如,旁通供冷管路222可以包括第一旁通供冷管路222a和第二旁通供冷管路222b。
其中,旁通供冷管路222与蒸发器212一一对应是指,一个蒸发器212对应一个旁通供冷管路222,蒸发器212的数量与旁通供冷管路222的数量相同。旁通供冷管路222连通对应的蒸发器212的出口与另一蒸发器212对应的节流装置214的入口是指,每一旁通供冷管路222作为对应蒸发器212与其他另一蒸发器212之间的“通道”,从而可以在对应蒸发器212化霜时将流经对应蒸发器212的制冷剂导引至其他另一蒸发器212,使其他蒸发器212供冷。
由于旁通供冷管路222能够将依次流经对应的旁通化霜管路221以及对应的蒸发器212的制冷剂导引至另一蒸发器212,使得另一蒸发器212能够利用导入的制冷剂提供冷量,这既能防止储物间室110产生明显的温升,又能提高冷藏冷冻装置10的能效,一举多得。
本实施例的冷藏冷冻装置10,仅通过在制冷回路上附接旁通组件220,例如在制冷回路上增设与节流装置214并联的旁通化霜管路221,并在蒸发器212之间增设旁通供冷管路222,即可提高冷藏冷冻装置10的保鲜性能,这有利于简化冷藏冷冻装置10的制冷系统200的结构,使得冷藏冷冻装置10利用简单的结构改进实现性能提升。
制冷系统200还包括多个第二切换阀240,与蒸发器212一一对应,且连接至蒸发器212的出口。即,第二切换阀240的数量与蒸发器212的数量相同,每个蒸发器212的出口均安装有一个第二切换阀240,用于调节流出对应蒸发器212的制冷剂的流动路径。例如,与第一蒸发器212a对应的第二切换阀240为240a,与第二蒸发器212b对应的第二切换阀240为240b。
每一第二切换阀240分别具有两个阀口。其中,一阀口用于连通压缩机211的吸气口,即,从该阀口流出的制冷剂可以流向压缩机211的吸气口; 另一阀口连通旁通供冷管路222,即,从该阀口流出的制冷剂可以流至旁通供冷管路222内。第二切换阀240可以为三通阀,例如三通电磁阀。第二切换阀240可以设置于储物间室110内。
第二切换阀240的两个阀口不同时地打开。第二切换阀240用于在对应的蒸发器212提供冷量时打开连通压缩机211的吸气口的阀口,在对应的蒸发器212化霜时打开连通旁通供冷管路222的阀口。
通过在每一蒸发器212的出口布置旁通供冷管路222,并利用第二切换阀240调节流出每一蒸发器212的制冷剂流动路径,可以实现“化霜、供冷两不误”,且同时可以有效利用压缩机211的机械功,具备结构精巧的优点。
本实施例中,多个节流装置214与对应的蒸发器212串接,形成多个制冷支路,例如,每一蒸发器212串接于与之对应的节流装置214的出口。每一制冷支路内分别具有串接的一个节流装置214和一个蒸发器212,一个节流装置214、以及与之对应的一个蒸发器212共同形成一个制冷支路。
多个制冷支路相互并联设置,这可使制冷系统200灵活地调节每个蒸发器212的工作状态,既可使蒸发器212同时地供冷从而提高储物间室110的降温速率,又可使储物间室110避免因蒸发器212化霜而产生明显的温升。
蒸发器212的数量可以根据储物间室110的容积进行任意设置,可以为大于等于二的任意值。例如,蒸发器212可以为两个,分别为第一蒸发器212a和第二蒸发器212b,这可以简化制冷系统200的结构,且简化切换阀的控制逻辑。当蒸发器212为两个时,相应地,旁通化霜管路221为两个,分别为第一旁通化霜管路221a和第二旁通化霜管路221b,节流装置214为两个,分别为第一节流装置214a和第二节流装置214b,旁通供冷管路222为两个,分别为第一旁通供冷管路222a和第二旁通供冷管路222b,第一切换阀230和第二切换阀240也分别为两个。其中,第一旁通化霜管路221a、第一节流装置214a和第一旁通供冷管路222a分别与第一蒸发器212a对应设置。第二旁通化霜管路221b、第二节流装置214b和第二旁通供冷管路222b分别与第二蒸发器212b对应设置。
下面以第一蒸发器212a化霜的情况为例,对制冷系统200的控制过程进行详细介绍。在第一蒸发器212a化霜时,与之对应的第一切换阀230a打开连通第一旁通化霜管路221a的阀口,且关闭连通第一节流装置214a的阀口,与第一蒸发器212a对应的第二切换阀240a打开连通第一旁通供冷管路 222a的阀口,且关闭用于连通压缩机211吸气口的阀口;与第二蒸发器212b对应的第一切换阀230b可以关闭两个阀口,与第二蒸发器212b对应的第二切换阀240b则打开用于连通压缩机211吸气口的阀口,且关闭连通第二旁通供冷管路222b的阀口,使得流经的制冷剂回流至压缩机211,从而完成整个制冷循环。
在第二蒸发器212b化霜时,与之对应的第一切换阀230b打开连通第二旁通化霜管路221b的阀口,且关闭连通第二节流装置214b的阀口,与第二蒸发器212b对应的第二切换阀240b打开连通第二旁通供冷管路222b的阀口,且关闭用于连通压缩机211吸气口的阀口;与第一蒸发器212a对应的第一切换阀230a可以关闭两个阀口,与第一蒸发器212a对应的第二切换阀240a则打开用于连通压缩机211吸气口的阀口,且关闭连通第一旁通供冷管路222a的阀口,使得流经的制冷剂回流至压缩机211,从而完成整个制冷循环。
通过在制冷回路内布置两个蒸发器212,使其中一个蒸发器212化霜时,利用另一个蒸发器212供冷,即可提升冷藏冷冻装置10的保鲜性能,两个蒸发器212之间相辅相成,这既可以简化制冷系统200的结构,又可以简化制冷系统200的控制过程。
本实施例中,制冷组件210还可以进一步地包括储液包215,设置于制冷回路内,例如,可以设置于蒸发器212的出口与压缩机211的吸气口之间,用于调节制冷组件210的各个部件所需的制冷剂的量。
在一些可选的实施例中,蒸发器212的数量也可以变换为三个,相应地,旁通化霜管路221为三个,分别为第一旁通化霜管路221a、第二旁通化霜管路221b和第三旁通化霜管路,节流装置214为三个,分别为第一节流装置214a、第二节流装置214b和第三节流装置,旁通供冷管路222为三个,分别为第一旁通供冷管路222a、第二旁通供冷管路222b和第三旁通供冷管路,第一切换阀230和第二切换阀240也分别为三个。其中,第一旁通化霜管路221a、第一节流装置214a和第一旁通供冷管路222a分别与第一蒸发器212a对应设置。第二旁通化霜管路221b、第二节流装置214b和第二旁通供冷管路222b分别与第二蒸发器212b对应设置。新增的第三旁通化霜管路、第三节流装置和第三旁通供冷管路分别与新增的第三蒸发器对应设置。第三旁通供冷管路可以连通第三蒸发器的出口与第二节流装置214b的入口或者第一 节流装置214a的入口。在一些实施例中,第三旁通供冷管路也同时连通第二节流装置214b的入口和第一节流装置214a的入口,此时只要将与第三蒸发器对应的第二切换阀240变换为四通电磁阀即可实现。在第三蒸发器化霜时,利用第一蒸发器212a和第二蒸发器212b同时供冷,可以提高制冷系统200的制冷效率。
在一些可选的实施例中,箱体100的内部还形成有用于安装蒸发器212的安装空间120。该安装空间120可以位于储物间室110的一侧,例如下侧或者后侧。冷藏冷冻装置10还可以进一步地包括保温隔板130,设置于安装空间120内,并将安装空间120分隔出多个子空间,分别用于安装一个蒸发器212,以减少蒸发器212之间的热交换,这可以避免化霜的蒸发器212所产生的热量影响其他蒸发器212的供冷效果。
子空间的数量与蒸发器212的数量相同。以蒸发器212为两个的情况为例,子空间可以按照一左一右或者一上一下的方式布置,使得蒸发器212可以并列布置或者上下叠置,这可以节约蒸发器212的安装空间,提高空间利用率,且提高美观度。
箱体100内形成有多个送风风道,与蒸发器212一一对应,每一送风风道用于将对应蒸发器212所提供的冷量输送至储物间室110。每个送风风道相互独立设置,这可以避免气流乱流,保证冷量输送效率,提高储物间室110的保鲜效果。且
相应地,冷藏冷冻装置10还可以进一步地包括多个风机150,与蒸发器212一一对应设置,用于在对应蒸发器212提供冷量时促使形成流经对应送风风道以及储物间室110的换热气流。风机150可以仅在对应蒸发器212供冷时开启。且风机150可以采用风机150遮蔽手段防止蒸发器212化霜时产生的热量进入储物间室110。在一些可选的实施例中,风机150的数量也可以变换为一个,设置于多个送风风道与储物间室110之间的公共流路上,使得该风机150可以同时作为多个送风风道的气流促动装置,这有利于进一步简化冷藏冷冻装置10的结构。
在一些可选的实施例中,可以针对第一切换阀230的数量和阀口数量进行变换。图5是根据本发明另一实施例的冷藏冷冻装置10的制冷系统200的示意性结构图。对于蒸发器212为两个的情况而言,本实施例的第一切换阀230为一个,且其具有四个阀口,此时可以省略一个切换阀,有利于进一 步简化制冷系统200的结构。该第一切换阀230可以为五通电磁阀,其入口连通冷凝器213的出口,四个阀口分别连通第一旁通化霜管路221a、第一节流装置214a、第二旁通化霜管路221b、第二节流装置214b。
在又一些可选的实施例中,旁通组件220可以增设旁通冷凝支路。本实施例的旁通冷凝支路与冷凝器213并联设置,且连通压缩机211的排气口以及第一切换阀230的入口。相应地,制冷系统200可以增设第三切换阀,连接至压缩机211的排气口,且其具有两个阀口,其中一个阀口连通冷凝器213的入口,另一阀口连通旁通冷凝支路的入口,第三切换阀通过受控地开闭两个阀口来调节流经其的制冷剂的流动路径。在任一蒸发器212化霜时,第三切换阀可以打开连通旁通冷凝支路的阀口,且关闭连通冷凝器213的阀口,流出压缩机211的制冷剂可以经由旁通冷凝支路直接地通入旁通化霜管路221并流入化霜的蒸发器212,这有利于进一步地提高蒸发器212的化霜速率。
本发明的冷藏冷冻装置10,由于制冷系统200能够利用旁通化霜管路221向蒸发器212直接导入来自压缩机211的制冷剂以使蒸发器212化霜,蒸发器212依靠自身产生的热量“由内而外”地化霜,这有利于提高冷藏冷冻装置10的蒸发器212化霜速率,缩短化霜周期,并且由于制冷系统200具有用于向储物间室110供冷的多个蒸发器212,制冷系统200配置成在一蒸发器212化霜时利用其他蒸发器212提供冷量,这有利于防止因蒸发器212化霜而导致储物间室110产生明显的温升,有助于提高冷藏冷冻装置10的保鲜性能。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冷藏冷冻装置,包括:
    箱体,其内部形成有储物间室;和
    制冷系统,其包括:
    制冷组件,其具有形成制冷回路的压缩机和多个蒸发器,所述多个蒸发器分别用于向所述储物间室提供冷量;以及
    旁通组件,其具有多个旁通化霜管路,连接至所述制冷回路并与所述蒸发器一一连通,用于将来自所述压缩机的制冷剂通入每一所述蒸发器以使所述蒸发器化霜,且所述制冷系统配置成在利用所述旁通化霜管路使得一蒸发器化霜时,利用其他蒸发器提供冷量,以防止所述储物间室的温度波动。
  2. 根据权利要求1所述的冷藏冷冻装置,其中,
    所述蒸发器为两个。
  3. 根据权利要求1或2所述的冷藏冷冻装置,其中,
    所述制冷组件还包括多个节流装置,设置于所述制冷回路内并与所述蒸发器一一连通,用于对流向所述蒸发器的制冷剂进行节流,以使所述蒸发器提供冷量;且
    连通每一所述蒸发器的所述旁通化霜管路与所述节流装置并联设置。
  4. 根据权利要求3所述的冷藏冷冻装置,其中,
    所述制冷系统还包括至少一个第一切换阀,连接至所述压缩机的排气口下游,且所述至少一个第一切换阀形成有分别用于连通每一所述节流装置以及每一所述旁通化霜管路的阀口,并用于通过受控地打开或关闭所述阀口以调节流经其的制冷剂的流动路径。
  5. 根据权利要求4所述的冷藏冷冻装置,其中,
    所述第一切换阀与所述蒸发器的数量相同,并与所述蒸发器一一对应设置;
    每一所述第一切换阀分别具有两个阀口,其中一个阀口连通连接至对应所述蒸发器的所述节流装置,另一阀口连通连接至对应所述蒸发器的所述旁 通化霜管路;且
    所述第一切换阀用于在对应的所述蒸发器提供冷量时打开连通所述节流装置的阀口,在对应的所述蒸发器化霜时打开连通所述旁通化霜管路的阀口。
  6. 根据权利要求4或5所述的冷藏冷冻装置,其中,
    所述制冷组件还包括冷凝器,设置于所述制冷回路内并连接至所述压缩机的排气口;且
    所述第一切换阀连接至所述冷凝器的出口。
  7. 根据权利要求3所述的冷藏冷冻装置,其中,
    所述旁通组件还包括多个旁通供冷管路,与所述蒸发器一一对应,且连通对应的蒸发器的出口与另一蒸发器对应的节流装置的入口,用于将依次流经所述旁通化霜管路以及所述蒸发器的制冷剂导引至另一蒸发器,以使另一所述蒸发器提供冷量。
  8. 根据权利要求7所述的冷藏冷冻装置,其中,
    所述制冷系统还包括多个第二切换阀,与所述蒸发器一一对应,且连接至所述蒸发器的出口;每一所述第二切换阀分别具有两个阀口,其中一阀口用于连通所述压缩机的吸气口,另一阀口连通所述旁通供冷管路;且
    所述第二切换阀用于在对应的所述蒸发器提供冷量时打开连通所述压缩机的吸气口的阀口,在对应的所述蒸发器化霜时打开连通所述旁通供冷管路的阀口。
  9. 根据权利要求3所述的冷藏冷冻装置,其中,
    多个所述节流装置分别与对应的所述蒸发器串接,形成多个制冷支路;且
    多个所述制冷支路相互并联设置。
  10. 根据权利要求1或2所述的冷藏冷冻装置,其中,
    所述箱体的内部还形成有用于安装所述蒸发器的安装空间;且
    所述冷藏冷冻装置还包括保温隔板,设置于所述安装空间内,并将所述 安装空间分隔出多个子空间,分别用于安装一个蒸发器,以减少所述蒸发器之间的热交换。
PCT/CN2022/094977 2021-06-29 2022-05-25 冷藏冷冻装置 WO2023273706A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110727064.1A CN115540441A (zh) 2021-06-29 2021-06-29 冷藏冷冻装置
CN202110727064.1 2021-06-29

Publications (1)

Publication Number Publication Date
WO2023273706A1 true WO2023273706A1 (zh) 2023-01-05

Family

ID=84692491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094977 WO2023273706A1 (zh) 2021-06-29 2022-05-25 冷藏冷冻装置

Country Status (2)

Country Link
CN (1) CN115540441A (zh)
WO (1) WO2023273706A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782030A (zh) * 2017-10-24 2018-03-09 澳柯玛股份有限公司 一种降负荷保冷热气融霜系统和制冷设备
CN209541255U (zh) * 2018-11-13 2019-10-25 广州擎天实业有限公司 一种冰箱的无霜制冷系统
CN212205123U (zh) * 2020-05-14 2020-12-22 珠海格力电器股份有限公司 一种热泵水机组
CN112880218A (zh) * 2021-03-26 2021-06-01 珠海格力电器股份有限公司 冰箱除霜系统、冰箱以及冰箱除霜方法
CN215892902U (zh) * 2021-06-29 2022-02-22 青岛海尔电冰箱有限公司 冷藏冷冻装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107782030A (zh) * 2017-10-24 2018-03-09 澳柯玛股份有限公司 一种降负荷保冷热气融霜系统和制冷设备
CN209541255U (zh) * 2018-11-13 2019-10-25 广州擎天实业有限公司 一种冰箱的无霜制冷系统
CN212205123U (zh) * 2020-05-14 2020-12-22 珠海格力电器股份有限公司 一种热泵水机组
CN112880218A (zh) * 2021-03-26 2021-06-01 珠海格力电器股份有限公司 冰箱除霜系统、冰箱以及冰箱除霜方法
CN215892902U (zh) * 2021-06-29 2022-02-22 青岛海尔电冰箱有限公司 冷藏冷冻装置

Also Published As

Publication number Publication date
CN115540441A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
CN216409376U (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
US20070033962A1 (en) Refrigerator and control method thereof
CN106679215A (zh) 冰箱节能制冷系统、具有该系统的冰箱及其运行方法
CN112393452B (zh) 冰箱制冷系统及其运行方法
CN215892902U (zh) 冷藏冷冻装置
CN215892861U (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN215892860U (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN215864171U (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN215892903U (zh) 冷藏冷冻装置
CN210374250U (zh) 冷藏冷冻装置
WO2023273706A1 (zh) 冷藏冷冻装置
CN216409420U (zh) 冷藏冷冻装置
CN109780776B (zh) 冰箱及其控制方法
WO2023029522A1 (zh) 用于冷藏冷冻装置的制冷系统及具有其的冷藏冷冻装置
WO2023273707A1 (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
WO2023273708A1 (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
WO2023273705A1 (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
WO2023273710A1 (zh) 冷藏冷冻装置
WO2023273709A1 (zh) 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置
CN104930784A (zh) 冰箱
WO2023029777A1 (zh) 用于冷藏冷冻装置的制冷系统及具有其的冷藏冷冻装置
WO2023273711A1 (zh) 冷藏冷冻装置
JP2023528838A (ja) 冷蔵庫の除霜制御方法
CN216011388U (zh) 一种冰箱
CN221099029U (zh) 制冷系统及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE