WO2023273705A1 - 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 - Google Patents
用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 Download PDFInfo
- Publication number
- WO2023273705A1 WO2023273705A1 PCT/CN2022/094975 CN2022094975W WO2023273705A1 WO 2023273705 A1 WO2023273705 A1 WO 2023273705A1 CN 2022094975 W CN2022094975 W CN 2022094975W WO 2023273705 A1 WO2023273705 A1 WO 2023273705A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bypass
- evaporator
- refrigeration
- refrigerating
- bypass heating
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims abstract description 110
- 238000007710 freezing Methods 0.000 title claims abstract description 48
- 230000008014 freezing Effects 0.000 title claims abstract description 44
- 238000010438 heat treatment Methods 0.000 claims abstract description 140
- 238000001704 evaporation Methods 0.000 claims abstract description 93
- 239000003507 refrigerant Substances 0.000 claims abstract description 61
- 238000001816 cooling Methods 0.000 claims description 59
- 230000008020 evaporation Effects 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 18
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 238000010257 thawing Methods 0.000 abstract description 38
- 238000000034 method Methods 0.000 abstract description 17
- 238000010586 diagram Methods 0.000 description 10
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/30—Expansion means; Dispositions thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D11/00—Self-contained movable devices, e.g. domestic refrigerators
- F25D11/02—Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D21/00—Defrosting; Preventing frosting; Removing condensed or defrost water
- F25D21/06—Removing frost
Definitions
- the invention relates to refrigeration technology, in particular to a refrigeration system for a refrigeration and freezing device and a refrigeration and freezing device.
- Refrigeration and freezing devices such as refrigerators, freezers, and freezers, use refrigeration systems to achieve refrigeration.
- the refrigeration system is running the refrigeration function, due to the low surface temperature of the evaporator, it is easy to frost, which will lead to a decrease in the refrigeration efficiency of the evaporator. Therefore, it is necessary to implement the defrosting operation in a timely manner.
- An object of the present invention is to overcome at least one technical defect in the prior art, and provide a refrigeration system for a refrigerating and freezing device and a refrigerating and freezing device.
- a further object of the present invention is to improve the defrosting mode of the multi-system refrigerating and freezing device, and increase the defrosting rate of the evaporator of the multi-system refrigerating and freezing device.
- Another further object of the present invention is to simplify the structure of a multi-system refrigerating and freezing device, so as to realize simultaneous defrosting of multiple evaporators with a simplified structure.
- a still further object of the present invention is to increase the energy efficiency of refrigeration systems and refrigerator-freezers.
- a refrigerating system for a refrigerating and freezing device comprising: a refrigerating assembly having a compressor forming a refrigerating circuit and a plurality of evaporating parts, each evaporating part including at least one evaporator; and A plurality of bypass heating parts are provided in one-to-one correspondence with the evaporation part; and each bypass heating part includes at least one bypass heating pipe, which is thermally connected with at least one evaporator of the corresponding evaporation part, and the bypass heating pipe is used for Refrigerant from the compressor is circulated to generate heat, which heats the evaporator.
- each evaporation section includes a plurality of evaporators; and each bypass heating section includes a plurality of bypass heating pipes connected in series.
- each bypass heating part further includes a bypass attachment pipe connected in series upstream of the plurality of bypass heating pipes for thermal connection with the water receiving tray of the refrigerating and freezing device to heat the water receiving tray.
- the refrigeration system further includes: a plurality of bypass cooling pipelines, connected to the bypass heating parts one by one, for guiding the refrigerant flowing through the bypass heating parts to heat the corresponding evaporating part to another evaporating part. At least one evaporator of one part, so that at least one evaporator of another evaporator part provides cooling capacity.
- a bypass throttling device is respectively arranged on each bypass cooling pipeline for throttling the refrigerant flowing through.
- each evaporating part is arranged in parallel with each other; the evaporators of each evaporating part are arranged in series; Refrigerant throttling of multiple evaporators
- each evaporation section includes two evaporators.
- each bypass heater is respectively connected to a discharge port of the compressor to allow refrigerant from the compressor to flow thereinto.
- the refrigerating assembly further includes a condenser, which is arranged in the refrigerating circuit and connected between the exhaust port of the compressor and the plurality of evaporators; and the refrigerating system further includes a first switching valve connected to the exhaust The gas port has a first valve port communicating with the condenser and a plurality of second valve ports communicating with each bypass heating part; the first switching valve is used to open the corresponding first valve port when a bypass heating part heats the corresponding evaporation part Two valve ports and close the first valve port.
- a refrigerating and freezing device comprising: a box body with a storage compartment formed therein; inside the body, and use the evaporator to provide cold energy to the storage compartment.
- the refrigerating system for refrigerating and freezing devices and the refrigerating and freezing device of the present invention provide a defrosting method suitable for multi-system refrigerating and freezing devices by improving the structure of the refrigerating system.
- the refrigeration assembly has a plurality of evaporators, each evaporator includes at least one evaporator, a plurality of bypass heating parts correspond to the evaporators one by one, and each bypass heating part has at least one evaporator corresponding to the corresponding evaporator
- the thermally connected at least one bypass heating pipe can use the bypass heating part to heat the entire evaporation part corresponding to it, so that the entire evaporation part defrosts at the same time.
- the defrosting method of the present invention can improve the defrosting rate of the evaporator of the multi-system refrigerating and freezing device.
- each evaporating part includes a plurality of evaporators
- each bypass heating part includes a plurality of bypass heating pipes connected in series
- it can heat multiple evaporators corresponding to the evaporating part, which is beneficial to simplify the structure of the multi-system refrigeration and freezing device, so that the refrigeration system can realize multiple evaporators with a simplified structure. evaporator defrosting at the same time.
- the refrigeration system and refrigeration-freezing device of the present invention when one evaporating part defrosts, since the refrigerant flowing through the bypass heating part that heats the evaporating part can be guided to another evaporating part, so that another evaporating part provides cooling, and multiple evaporating parts complement each other to realize the organic combination of defrosting function and cooling function, which makes the refrigeration system of the present invention effectively utilize the mechanical work of the compressor, which is beneficial to Improve the energy efficiency of refrigeration systems and refrigeration and freezer installations.
- FIG. 1 is a schematic block diagram of a refrigeration system for a refrigeration freezer according to one embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a refrigeration system for a refrigerator-freezer according to an embodiment of the present invention
- FIG. 3 is a schematic structural diagram of a refrigeration system for a refrigeration freezer according to another embodiment of the present invention.
- FIG. 4 is a schematic structural diagram of a refrigerating system for a refrigerating and freezing device according to yet another embodiment of the present invention.
- Fig. 5 is a schematic structural diagram of a refrigerating and freezing device according to an embodiment of the present invention.
- Fig. 1 is a schematic block diagram of a refrigeration system 200 for a refrigerator-freezer 10 according to an embodiment of the present invention.
- the refrigeration system 200 may generally include a refrigeration assembly 210 and a bypass assembly including a plurality of bypass heaters.
- the refrigeration assembly 210 is used to form a refrigeration circuit. In the case of no defrosting of the evaporator, the refrigeration system 200 only utilizes the refrigeration circuit to provide cooling for the evaporator.
- the bypass assembly is connected to the refrigeration circuit, for example may be attached to the refrigeration circuit to form a bypass branch. Refrigerant can flow through both the refrigeration circuit and the bypass branch.
- the refrigeration system 200 adjusts the working state of the evaporator by adjusting the flow path of the refrigerant in the refrigeration circuit and the bypass branch.
- the working state of the evaporator includes cooling state and defrosting state.
- Fig. 2 is a schematic structural diagram of a refrigeration system 200 for a refrigeration and freezing device 10 according to an embodiment of the present invention.
- the refrigerating assembly 210 has a compressor 211 forming a refrigerating circuit and a plurality of evaporating parts, and each evaporating part includes at least one evaporator.
- each evaporator can be used as an evaporator group.
- the evaporating parts can be arranged in parallel with each other, or can be arranged in series with each other.
- the structure of the refrigeration system 200 is further described by taking the case where two evaporators are connected in parallel with each other as an example. Those skilled in the art should be fully capable of determining the number and connection mode of the evaporators on the basis of understanding this embodiment. To perform transformation, no more examples will be given here.
- the two evaporation parts may be the first evaporation part 212a and the second evaporation part 212b respectively.
- a plurality of bypass heating parts are provided in one-to-one correspondence with the evaporation parts. That is, one bypass heating part corresponds to one evaporation part.
- the number of bypass heating parts may be the same as the number of evaporation parts.
- the bypass heating part may include a first bypass heating part 225a corresponding to the first evaporating part (shown as a dotted line in FIG. 2 ) and a second bypass heating part 225b corresponding to the second evaporating part 212b (as shown in a dotted line in FIG. shown in the box).
- Each bypass heating part includes at least one bypass heating pipe, which is thermally connected with at least one evaporator of the corresponding evaporating part. That is, one bypass heating tube is thermally connected to one evaporator.
- the number of bypass heating pipes in each bypass heating part may be the same as the number of evaporators in the corresponding evaporating part. For example, when the first evaporating part 212a includes two evaporators, the first bypass heating part 225a includes two bypass heating pipes, and are respectively thermally connected to one evaporator of the first evaporating part 212a, so as to utilize the first The bypass heating part 225a heats each evaporator of the first evaporating part 212a.
- the bypass heating pipe is used to circulate the refrigerant from the compressor 211 to generate heat, thereby heating the evaporator.
- the inlet of each bypass heating part can be connected to the exhaust port of the compressor 211 through a connecting pipeline, or can be connected with a section downstream of the exhaust port of the compressor 211 through a connecting pipeline, as long as it can lead in and out High-pressure or high-temperature refrigerant for the compressor 211 is sufficient.
- the refrigerant flows through the bypass heating pipe of the bypass heating part, it can release heat and condense to generate heat.
- the above-mentioned connecting pipeline may have the same structure as the connecting pipeline between various components in the refrigeration circuit, as long as the function of guiding the refrigerant can be realized.
- the structure of the bypass heating pipe may be substantially the same as that of the condensing pipe of the condenser 213, as long as the high-pressure or high-temperature refrigerant flowing through it can condense and release heat.
- the refrigeration system 200 of this embodiment provides a defrosting method suitable for the multi-system refrigerator-freezer 10 by improving the structure. Since the refrigeration assembly 210 has a plurality of evaporators, each evaporator includes at least one evaporator, a plurality of bypass heating parts correspond to the evaporators one by one, and each bypass heating part has a A thermally connected at least one bypass heating pipe, so the bypass heating part can be used to heat the entire evaporating part corresponding to it, so that the entire evaporating part can defrost at the same time.
- the defrosting method of this embodiment can improve the defrosting rate of the evaporator of the multi-system refrigerating and freezing device 10 .
- Each evaporating part can use the heat generated by its corresponding bypass defrosting part to defrost.
- the refrigeration system 200 is configured to use the bypass heating unit to heat one evaporation unit, and use the other evaporation unit to provide cold energy to prevent the temperature fluctuation of the storage compartment 110 , which is beneficial to improve the freshness preservation performance of the refrigerating and freezing device 10 .
- the bypass heating tube can be wound around the evaporator, or placed next to the evaporator to achieve thermal connection. Winding the bypass heating tube around the evaporator can increase the contact area between the bypass heating tube and the evaporator, improve the heat transfer efficiency, and thus facilitate the rapid defrosting of the evaporator. Arranging the bypass heating pipe close to the evaporator can simplify the connection process of the heat connection and reduce the manufacturing cost.
- each evaporator may include an evaporator, and accordingly, the refrigerating and freezing device 10 may have a dual-system structure.
- each evaporator may include multiple evaporators.
- each bypass heating part includes a plurality of bypass heating pipes connected in series in sequence. Since the multiple bypass heating tubes are connected in series, when the refrigerant from the compressor 211 flows in multiple bypass heating tubes connected in series, it can heat multiple evaporators corresponding to the evaporator, which is beneficial to simplify multi-system refrigeration
- the structure of the refrigeration device 10 enables the refrigeration system 200 to realize simultaneous defrosting of multiple evaporators with a simplified structure.
- the number of evaporators in each evaporating section may be two, for example, they may be respectively a first evaporator and a second evaporator.
- the first evaporator of the first evaporator 212a is 212a-1, the second evaporator is 212a-2; the first evaporator of the second evaporator 212b is 212b-1, and the second evaporator is 212b-2.
- the first bypass heating pipe 225a-1 of the first bypass heating part 225a is thermally connected to the first evaporator 212a-1 of the first evaporating part 212a, and the second bypass heating pipe 225a of the first bypass heating part 225a -2 is thermally connected with the second evaporator 212a-2 of the first evaporating part 212a.
- the first bypass heating pipe 225b-1 of the second bypass heating part 225b is thermally connected to the first evaporator 212b-1 of the second evaporating part 212b
- the second bypass heating pipe 225b of the second bypass heating part 225b -2 is thermally connected to the second evaporator 212b-2 of the second evaporator 212b.
- the refrigeration system 200 only needs to regulate the opening and closing states of the common inlets of multiple bypass heating pipes to control whether the refrigerant flows through the bypass heating pipes, and does not need to control each bypass heating pipe separately, which is conducive to simplifying the refrigeration system 200 of the control process.
- Each bypass heating part in this embodiment may further include a bypass attachment pipe connected in series upstream of a plurality of bypass heating pipes for thermal connection with the water tray of the refrigerating and freezing device 10 to heat the water tray . That is to say, for each bypass heating part, it has a bypass attachment pipe and a plurality of bypass heating pipes connected in series in sequence, and the outlet of the bypass attachment pipe communicates with the inlets of the plurality of bypass heating pipes.
- the inlet of the bypass attachment pipe can serve as the inlet of the local bypass heating.
- the bypass attachment pipe can be wound around or at least partially embedded in the water receiving tray, or placed against the water receiving tray to achieve thermal connection.
- first bypass heating part 225a includes a first bypass attachment pipe 225a-3
- second bypass heating part 225b includes a second bypass attachment pipe 225b-3.
- Each bypass attachment pipe communicates with a second bypass heating pipe of the corresponding bypass heating portion.
- this embodiment provides a new way of treating accumulated water, so that the refrigeration system 200 can heat the accumulated water in the water receiving tray of the refrigerating and freezing device 10 so that it absorbs heat and evaporates.
- the bypass heating part is formed by connecting the bypass attachment pipe and a plurality of bypass heating pipes in series. While defrosting the multiple evaporators corresponding to the evaporation part, it can also absorb heat and evaporate the accumulated water in the water receiving tray. It serves multiple purposes, the control process is simple, and the energy utilization rate is high.
- the cooling assembly 210 may further include a plurality of bypass cooling pipelines, which are connected to the bypass heating parts one by one. That is, a bypass cooling pipeline is connected to a bypass heating part, for example, may be connected to an outlet of the bypass heating part.
- the outlet of the bypass heating part may refer to the outlet of the bypass heating pipe through which the refrigerant flows last in the bypass heating part.
- the number of bypass cooling pipelines and the number of bypass heating parts can be the same.
- the bypass cooling pipeline in this embodiment may include a first bypass cooling pipeline 222a connected to the first bypass heating part 225a and a second bypass cooling pipeline connected to the second bypass heating part 225b 222b.
- the bypass cooling pipeline is used to guide the refrigerant flowing through the bypass heating part to heat the corresponding evaporator part to at least one evaporator of another evaporator part, so that at least one evaporator of another evaporator part can provide cooling capacity .
- the first bypass cooling pipeline 222a is equivalent to the "connecting channel" between the first bypass heating part 225a and the second evaporating part 212b, and can flow through the second evaporating part 212a when the first evaporating part 212a defrosts.
- the refrigerant bypassing the heating part 225a is guided to the second evaporating part 212b, so that at least one evaporator of the second evaporating part 212b uses the introduced refrigerant for cooling.
- the second bypass cooling pipeline 222b is equivalent to the "connecting channel" between the second bypass heating part 225b and the first evaporating part 212a.
- the refrigerant in the part 225b is guided to the first evaporating part 212a, so that at least one evaporator of the first evaporating part 212a provides cooling with the introduced refrigerant.
- Each bypass cooling pipeline is respectively provided with a bypass throttling device for throttling the refrigerant flowing through.
- the first bypass cooling pipeline 222a may be connected to the inlet of an evaporator of the second evaporator 212b, and the first bypass cooling pipeline 222a is provided with a first bypass throttling device 227a for The refrigerant flowing to the second evaporator 212b is throttled.
- the first bypass cooling pipeline 222a is used to use the first bypass throttling device 227a to control the heat flow out of the first bypass heating part when the first evaporator 212a uses the heat generated by the first bypass heating part 225a to defrost. 225a and the refrigerant flowing to the second evaporator 212b is throttled.
- the first bypass cooling pipeline 222a can also use the first bypass throttling device 227a to throttle the refrigerant while guiding the refrigerant, so that the throttled refrigerant flows through the second evaporator
- the second evaporating portion 212b can evaporate and absorb heat, so that the second evaporating portion 212b can provide cooling.
- the second bypass cooling pipeline 222b is connected to the inlet of an evaporator of the first evaporator 212a, and the second bypass cooling pipeline 222b is provided with a second bypass throttling device 227b for convective flow to the first evaporator.
- the refrigerant in an evaporator 212a is throttled.
- the second bypass cooling pipeline 222b is used to use the second bypass throttling device 227b to control the flow out of the second bypass heating part when the second evaporator 212b uses the heat generated by the second bypass heating part 225b to defrost. 225b and the refrigerant flowing to the first evaporator 212a is throttled.
- the second bypass cooling pipeline 222b can also use the second bypass throttling device 227b to throttle the refrigerant while guiding the refrigerant, so that the throttled refrigerant flows through the first evaporator
- the first evaporating portion 212a can evaporate and absorb heat, so that the first evaporating portion 212a provides cooling.
- the refrigeration system 200 of this embodiment when one evaporator is defrosted, since the refrigerant flowing through the bypass heating part that heats the evaporator can be guided to another evaporator, so that the other evaporator is cooled, A plurality of evaporators complement each other, realizing the organic combination of the defrosting function and the cooling function, which enables the refrigeration system 200 of the present invention to effectively utilize the mechanical work of the compressor 211, which is conducive to improving the performance of the refrigeration system 200 and the refrigerating and freezing device 10. efficiency.
- Each evaporator is arranged in parallel with each other, which facilitates the refrigeration system 200 to flexibly adjust the working state of the evaporator.
- the evaporators of each evaporating section are arranged in series with each other, which can simplify the connection structure between multiple evaporators in the evaporating section.
- the refrigeration assembly 210 also includes a plurality of refrigeration throttling devices, which are provided in one-to-one correspondence with the evaporator, and are used to throttle the refrigerant flowing to the plurality of evaporators corresponding to the evaporator. That is to say, when the evaporator is cooling, the refrigerant first flows through the refrigeration throttling device and is throttled, and then flows into the multiple evaporators of the evaporator, so that the refrigerant evaporates and absorbs heat in the multiple evaporators of the evaporator .
- the refrigeration throttling device may include a first refrigeration throttling device 214a corresponding to the first evaporation part 212a and a second refrigeration throttling device 214b corresponding to the second evaporation part 212b.
- a refrigeration throttling device By arranging a refrigeration throttling device at the entrance of each evaporator, each evaporator can smoothly realize the cooling function.
- each evaporation section may include two evaporators, namely a first evaporator and a second evaporator.
- the first evaporator may be connected in series upstream of the second evaporator, for example, the first evaporator may be located between the corresponding cooling throttling device and the second evaporator.
- the outlet of the second evaporator may be connected to the suction port of the compressor 211 .
- the first evaporator may be a refrigeration evaporator
- the second evaporator may be a freezing evaporator.
- the outlet of the first bypass cooling pipeline 222a can be connected to the inlet of the first evaporator 212b-1 of the second evaporating part 212b.
- the first evaporator 212b-1 of the second evaporating part 212b and the second The evaporator 212b-2 uses the refrigerant fed through the first bypass cooling pipeline 222a for cooling.
- the outlet of the second bypass cooling pipeline 222b can be connected to the inlet of the first evaporator 212a-1 of the first evaporating part 212a, at this time, the first evaporator 212a-1 of the first evaporating part 212a and the second
- the evaporator 212a-2 uses the refrigerant fed through the second bypass cooling pipeline 222b for cooling.
- Each bypass heating part is respectively connected to the discharge port of the compressor 211 to allow the refrigerant from the compressor 211 to flow thereinto. That is, the inlet of each bypass heating part is connected to the exhaust port of the compressor 211, and the high-temperature or high-pressure refrigerant flowing out of the compressor 211 can be directly connected to release a large amount of heat, which is conducive to improving the defrosting efficiency of the evaporator And the water treatment efficiency of the water tray.
- the refrigeration assembly 210 further includes a condenser 213 disposed in the refrigeration circuit and connected between the exhaust port of the compressor 211 and the plurality of evaporators. That is, the condenser 213 is located upstream of the plurality of evaporators.
- the refrigeration system 200 further includes a first switching valve 260 connected to the discharge port of the compressor 211 , and having a first valve port communicating with the condenser 213 and a plurality of second valve ports communicating with each bypass heating part.
- the number of the second valve ports is the same as the number of the bypass heating parts, and each second valve port communicates with a bypass heating part one by one, for example, may communicate with a bypass attachment pipe of the bypass heating part.
- the first switching valve 260 is used to open the corresponding second valve port and close the first valve port when a bypass heating part heats the corresponding evaporation part.
- the first switching valve 260 opens the second valve port communicating with the first bypass heating portion 225a, and closes the other valve ports.
- the first switching valve 260 opens the second valve port communicating with the second bypass heating portion 225b, and closes the other valve ports.
- Each valve port of the first switching valve 260 is not opened simultaneously.
- Using the first switching valve 260 to adjust the flow path of the refrigerant can simplify the structure of the refrigeration system 200 and simplify the control process of the refrigeration system 200 .
- the control process of the refrigeration system 200 will be described in detail below by taking the defrosting of the first evaporator 212a as an example.
- the first switching valve 260 opens the valve port communicating with the first bypass heating part 225a, and closes the other valve ports, and the refrigerant flows through the bypass attachments of the first bypass heating part 225a in sequence.
- the second bypass heating pipe 225a-2 and the first bypass heating pipe 225a-1 it flows into the first bypass cooling pipeline 222a, and then flows through the first evaporator of the second evaporator 212b in sequence.
- 212b-1 and the second evaporator 212b-2 and return to the compressor 211, thus completing the entire refrigeration-defrosting cycle.
- the first switching valve 260 opens the valve port communicating with the second bypass heating part 225b, and closes the other valve ports, and the refrigerant flows through the bypass attachments of the second bypass heating part 225b in sequence.
- the second bypass heating pipe 225a-2 and the first bypass heating pipe 225a-1 it flows into the second bypass cooling pipeline 222b, and then flows through the first evaporator of the first evaporator 212a in sequence.
- 212a-1 and the second evaporator 212a-2 and return to the compressor 211, thus completing the entire refrigeration-defrosting cycle.
- the refrigeration assembly 210 may further include a second switching valve 218 connected to the outlet of the condenser 213 (that is, the inlet of the second switching valve 218 is connected to the outlet of the condenser 213), and It has a valve port communicating with the first refrigeration throttling device 214a and a valve port communicating with the second refrigeration throttling device 214b.
- the second switching valve 218 adjusts the flow path of refrigerant flowing therethrough according to the operating states of the first evaporating part 212a and the second evaporating part 212b.
- the second switching valve 218 can open two valve ports, and when any evaporator is defrosting, the second switching valve 218 can close both valve ports.
- the operating reliability of the refrigeration system 200 can be improved.
- the cooling assembly 210 may further include a dew prevention pipe 219 , a filter 216 , and a cooling fan 217 .
- the anti-dew pipe 219 and the filter 216 may be serially connected downstream of the condenser 213 and located upstream of the first cooling throttling device 214a and the second cooling throttling device 214b.
- the anti-dew pipe 219 can be used to be arranged on the edge around the door body of the refrigerating and freezing device 10 to prevent condensation on the edge of the door body.
- the filter 216 functions to filter impurities in the refrigerant and prevent ice blockage.
- the heat dissipation fan 217 can be arranged close to the condenser 213 to accelerate the heat dissipation of the condenser 213 to the surroundings.
- the cooling assembly 210 may further include a third cooling throttling device 214c and a fourth cooling throttling device 214d.
- the second switching valve 218 may be provided with two additional valve ports, respectively communicating with the third throttling refrigeration device 214c and the fourth refrigeration throttling device 214d.
- the third refrigerating throttling device 214c also communicates with the second evaporator 212a-2 of the first evaporator part 212a
- the fourth refrigerating throttling device 214d also communicates with the second evaporator 212b-2 of the second evaporating part 212b.
- the refrigerant flowing out of the condenser 213 can flow to the first evaporator 212a-1 and The first evaporator 212b-1 of the second evaporator 212b can directly flow to the second evaporator 212a-2 and The second evaporator 212b-2 of the second evaporator 212b is beneficial to improve the cooling flexibility of the refrigeration system 200.
- the refrigeration assembly 210 may further include a liquid storage bag 215 and a refrigeration return air pipe.
- the liquid storage bag 215 is arranged in the refrigeration circuit, for example, it can be arranged downstream of the two evaporators and upstream of the suction port of the compressor 211, and is used to adjust the amount of refrigerant required by each component of the refrigeration assembly 210 .
- the refrigeration return pipe is arranged in the refrigeration circuit, for example, can be arranged between the liquid storage bag 215 and the suction port of the compressor 211 to reduce the superheat of the refrigerant returning to the suction port of the compressor 211 .
- Fig. 3 is a schematic structural diagram of a refrigeration system 200 for a refrigeration-freezing device 10 according to another embodiment of the present invention.
- each evaporator includes an evaporator, for example, the first evaporator may be omitted.
- each bypass heating part includes a bypass heating pipe, for example, the first bypass heating pipe can be omitted.
- the refrigeration system 200 can be applied to a dual-system refrigerator.
- Fig. 4 is a schematic structural diagram of a refrigeration system 200 for a refrigeration-freezing device 10 according to yet another embodiment of the present invention.
- the defrosting method of the evaporator can be changed, for example, a heating wire arranged on the evaporator can be used to defrost through electric heating.
- the two evaporators can defrost in turn, and when one evaporator defrosts, the other evaporator provides cooling to prevent temperature fluctuations in the storage compartment.
- Fig. 5 is a schematic structural diagram of a refrigerating and freezing device 10 according to an embodiment of the present invention.
- the refrigerating and freezing device 10 may generally include a box body 100 and the refrigeration system 200 of any one of the above-mentioned embodiments, and utilize the evaporating part of the refrigeration system to provide cold energy to the storage compartment.
- a storage compartment 110 is formed inside the box body 100 .
- the interior of the storage compartment forms a storage space 111 .
- the plurality of evaporators of the refrigeration assembly 210 of the above-mentioned refrigeration system 200 can be used to provide cold energy to the same storage compartment 110, and the storage compartment 110 can be a refrigerator compartment, a freezer compartment, a cryogenic compartment or a variable temperature compartment. any one of the rooms.
- each evaporator of each evaporating portion of the cooling assembly 210 is used to provide cold energy to a storage compartment.
- the cooling capacity provided by each evaporator of each evaporator can also be transported to other storage compartments 110 through the air supply duct, so as to realize cooling between multiple storage compartments 110. Quantity sharing.
- the refrigerating system 200 for the refrigerating and freezing device 10 of the present invention and the refrigerating and freezing device 10 provide a defrosting method suitable for the multi-system refrigerating and freezing device 10 by improving the structure of the refrigerating system 200 .
- the refrigeration assembly 210 has a plurality of evaporators, each evaporator includes at least one evaporator, a plurality of bypass heating parts correspond to the evaporators one by one, and each bypass heating part has a A thermally connected at least one bypass heating pipe, so the bypass heating part can be used to heat the entire evaporating part corresponding to it, so that the entire evaporating part can defrost at the same time.
- the defrosting method of the present invention can improve the defrosting rate of the evaporator of the multi-system refrigerating and freezing device 10 .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Defrosting Systems (AREA)
Abstract
一种用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置。制冷系统,包括:制冷组件,其具有形成制冷回路的压缩机和多个蒸发部,每一蒸发部包括至少一个蒸发器;和多个旁通加热部,与蒸发部一一对应设置;且每一旁通加热部包括至少一个旁通加热管,与对应的蒸发部的至少一个蒸发器一一热连接,且旁通加热管用于流通来自压缩机的制冷剂以产生热量,从而加热蒸发器。由于来自压缩机的制冷剂在流经旁通加热管时能够产生大量的热,因此,采用该化霜方式能够提高多系统冷藏冷冻装置的蒸发器的化霜速率。
Description
本发明涉及制冷技术,特别是涉及用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置。
冷藏冷冻装置,例如冰箱、冰柜及冷藏柜等,利用制冷系统实现制冷。在制冷系统运行制冷功能时,由于蒸发器的表面温度较低,很容易结霜,这会导致蒸发器的制冷效率下降,因此,有必要适时地实施化霜操作。
传统的冷藏冷冻装置采用电热丝加热蒸发器的方式进行化霜,发明人认识到,这种化霜方式不但化霜速率缓慢,化霜周期长,而且会导致储物间室产生明显的温升。因此,有必要改进蒸发器的化霜方式。
在此基础上,发明人还认识到,为了满足用户的储物需求,现有的冷藏冷冻装置往往具有多个蒸发器,因此,如何改进多系统冷藏冷冻装置的化霜方式,成为本领域技术人员亟待解决的技术问题。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置。
本发明一个进一步的目的是要改进多系统冷藏冷冻装置的化霜方式,提高多系统冷藏冷冻装置的蒸发器的化霜速率。
本发明另一个进一步的目的是要简化多系统冷藏冷冻装置的结构,以利用精简的结构实现多个蒸发器同时化霜。
本发明再一个进一步的目的是要提高制冷系统及冷藏冷冻装置的能效。
根据本发明的一方面,提供了一种用于冷藏冷冻装置的制冷系统,包括:制冷组件,其具有形成制冷回路的压缩机和多个蒸发部,每一蒸发部包括至少一个蒸发器;和多个旁通加热部,与蒸发部一一对应设置;且每一旁通加热部包括至少一个旁通加热管,与对应的蒸发部的至少一个蒸发器一一热连接,且旁通加热管用于流通来自压缩机的制冷剂以产生热量,从而加热蒸发器。
可选地,每一蒸发部包括多个蒸发器;且每一旁通加热部包括依次串接 的多个旁通加热管。
可选地,每一旁通加热部还包括旁通附接管,串接于多个旁通加热管的上游,用于与冷藏冷冻装置的接水盘热连接,以加热接水盘。
可选地,制冷系统还包括:多个旁通供冷管路,与旁通加热部一一连接,用于将流经旁通加热部以加热对应蒸发部的制冷剂导引至另一蒸发部的至少一个蒸发器,以使另一蒸发部的至少一个蒸发器提供冷量。
可选地,每一旁通供冷管路上分别设置有旁通节流装置,用于对流经的制冷剂进行节流。
可选地,每一蒸发部相互并联设置;每一蒸发部的蒸发器相互串联设置;且制冷组件还包括多个制冷节流装置,与蒸发部一一对应设置,用于对流向对应蒸发部的多个蒸发器的制冷剂进行节流
可选地,蒸发部为两个,且每一蒸发部包括两个蒸发器。
可选地,每一旁通加热部分别连接至压缩机的排气口,以允许来自压缩机的制冷剂流入其中。
可选地,制冷组件还包括冷凝器,设置于制冷回路内,且连接于压缩机的排气口与多个蒸发部之间;且制冷系统还包括第一切换阀,连接至压缩机的排气口,且其具有连通冷凝器的第一阀口、以及连通每一旁通加热部的多个第二阀口;第一切换阀用于在一旁通加热部加热对应蒸发部时打开对应的第二阀口且关闭第一阀口。
根据本发明的另一方面,还提供了一种冷藏冷冻装置,包括:箱体,其内部形成有储物间室;以及如上述任一项的用于冷藏冷冻装置的制冷系统,设置于箱体内,并利用蒸发部向储物间室提供冷量。
本发明的用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置,通过改进制冷系统的结构,提供了一种适用于多系统冷藏冷冻装置的化霜方式。由于制冷组件具有多个蒸发部,每一蒸发器包括至少一个蒸发器,多个旁通加热部与蒸发部一一对应,且每一旁通加热部具有与对应蒸发部的至少一个蒸发器一一热连接的至少一个旁通加热管,因此可以利用旁通加热部对与之对应的整个蒸发部进行加热,从而使得整个蒸发部同时化霜。此外,由于来自压缩机的制冷剂在流经旁通化霜管时能够产生大量的热,因此,采用本发明的化霜方式能够提高多系统冷藏冷冻装置的蒸发器的化霜速率。
进一步地,本发明的用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置, 由于每一蒸发部包括多个蒸发器,且每一旁通加热部包括依次串接的多个旁通加热管,当来自压缩机的制冷剂在多个串接的旁通加热管内流动时,可以加热对应蒸发部的多个蒸发器,这有利于简化多系统冷藏冷冻装置的结构,使得制冷系统利用精简的结构实现多个蒸发器同时化霜。
更进一步地,本发明的用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置,在一蒸发部化霜时,由于可以将流经加热该蒸发部的旁通加热部的制冷剂导引至另一蒸发部,以使另一蒸发部供冷,多个蒸发部相辅相成,实现了化霜功能和供冷功能的有机结合,这使得本发明的制冷系统能够有效地利用压缩机的机械功,有利于提高制冷系统及冷藏冷冻装置的能效。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的用于冷藏冷冻装置的制冷系统的示意性框图;
图2是根据本发明一个实施例的用于冷藏冷冻装置的制冷系统的示意性结构图;
图3是根据本发明另一实施例的用于冷藏冷冻装置的制冷系统的示意性结构图;
图4是根据本发明又一实施例的用于冷藏冷冻装置的制冷系统的示意性结构图;
图5是根据本发明一个实施例的冷藏冷冻装置的示意性结构图。
图1是根据本发明一个实施例的用于冷藏冷冻装置10的制冷系统200的示意性框图。制冷系统200一般性地可包括制冷组件210和旁通组件,旁通组件包括多个旁通加热部。
制冷组件210用于形成制冷回路。在无蒸发器化霜的情况下,制冷系统200仅利用制冷回路使蒸发器供冷。旁通组件连接至制冷回路,例如可以附 接至制冷回路,以形成旁通支路。制冷回路和旁通支路均可以流通制冷剂。制冷系统200通过调节制冷剂在制冷回路和旁通支路中的流动路径来调节蒸发器的工作状态。蒸发器的工作状态包括供冷状态和化霜状态。
图2是根据本发明一个实施例的用于冷藏冷冻装置10的制冷系统200的示意性结构图。
制冷组件210具有形成制冷回路的压缩机211和多个蒸发部,每一蒸发部包括至少一个蒸发器。例如,每一蒸发部可以作为一个蒸发器组。蒸发部之间可以相互并联设置,或者可以相互串联设置。本实施例以两个蒸发部相互并联的情况为例,对制冷系统200的结构进行进一步阐述,本领域技术人员在了解本实施例的基础上,应当完全有能力针对蒸发部的数量和连接方式进行变换,此处不再一一举例。例如,两个蒸发部可以分别为第一蒸发部212a和第二蒸发部212b。
多个旁通加热部与蒸发部一一对应设置。即,一个旁通加热部对应一个蒸发部。旁通加热部的数量与蒸发部的数量可以相同。旁通加热部可以包括与第一蒸发部对应的第一旁通加热部225a(如图2虚线框所示)以及与第二蒸发部212b对应的第二旁通加热部225b(如图2虚线框所示)。
每一旁通加热部包括至少一个旁通加热管,与对应的蒸发部的至少一个蒸发器一一热连接。即,一个旁通加热管与一个蒸发器热连接。每一旁通加热部的旁通加热管的数量与对应蒸发部的蒸发器的数量可以相同。例如,当第一蒸发部212a包括两个蒸发器时,第一旁通加热部225a包括两个旁通加热管,且分别热连接至第一蒸发部212a的一个蒸发器,以便于利用第一旁通加热部225a对第一蒸发部212a的每个蒸发器进行加热。
旁通加热管用于流通来自压缩机211的制冷剂以产生热量,从而加热蒸发器。例如,每一旁通加热部的入口可以通过连接管路连接至压缩机211的排气口,或者可以通过连接管路与压缩机211排气口下游的某个区段相连通,只要能够导入流出压缩机211的高压或高温的制冷剂即可。制冷剂在流经旁通加热部的旁通加热管时可以放热冷凝,从而产生热量。
上述连接管路可以与制冷回路内的各个部件之间的连接管路的构造相同,只要能够实现导引制冷剂的功能即可。旁通加热管可以与冷凝器213的冷凝管的构造大致相同,只要能使流经其的高压或高温的制冷剂能够冷凝放热即可。
本实施例的制冷系统200,通过改进结构,提供了一种适用于多系统冷藏冷冻装置10的化霜方式。由于制冷组件210具有多个蒸发部,每一蒸发器包括至少一个蒸发器,多个旁通加热部与蒸发部一一对应,且每一旁通加热部具有与对应蒸发部的至少一个蒸发器一一热连接的至少一个旁通加热管,因此可以利用旁通加热部对与之对应的整个蒸发部进行加热,从而使得整个蒸发部同时化霜。此外,由于来自压缩机211的制冷剂在流经旁通加热管时能够产生大量的热,因此,采用本实施例的化霜方式能够提高多系统冷藏冷冻装置10的蒸发器的化霜速率。
每个蒸发部分别可以利用各自对应的旁通化霜部所产生的热量进行化霜。制冷系统200配置成在利用旁通加热部加热一蒸发部时,利用另一蒸发部提供冷量,以防储物间室110的温度波动,这有利于提高冷藏冷冻装置10的保鲜性能。
旁通加热管可以缠绕于蒸发器,或与蒸发器贴靠设置,以实现热连接。将旁通加热管缠绕于蒸发器,可以增大旁通加热管与蒸发器之间的接触面积,提高热量传递效率,从而有利于蒸发器的快速化霜。将旁通加热管贴靠设置于蒸发器上,可以简化热连接的连接过程,降低制造成本。
在一些实施例中,每一蒸发部可以包括一个蒸发器,相应地,冷藏冷冻装置10可以为双系统结构。
本实施例中,每一蒸发部可以包括多个蒸发器。且每一旁通加热部包括依次串接的多个旁通加热管。由于多个旁通加热管为串接,当来自压缩机211的制冷剂在多个串接的旁通加热管内流动时,可以加热对应蒸发部的多个蒸发器,这有利于简化多系统冷藏冷冻装置10的结构,使得制冷系统200利用精简的结构实现多个蒸发器的同时化霜。每一蒸发部的蒸发器的数量可以为两个,例如可以分别为第一蒸发器和第二蒸发器。第一蒸发部212a的第一蒸发器为212a-1,第二蒸发器为212a-2;第二蒸发部212b的第一蒸发器为212b-1,第二蒸发器为212b-2。第一旁通加热部225a的第一旁通加热管225a-1与第一蒸发部212a的第一蒸发器为212a-1热连接,第一旁通加热部225a的第二旁通加热管225a-2与第一蒸发部212a的第二蒸发器为212a-2热连接。第二旁通加热部225b的第一旁通加热管225b-1与第二蒸发部212b的第一蒸发器为212b-1热连接,第二旁通加热部225b的第二旁通加热管225b-2与第二蒸发部212b的第二蒸发器212b-2热连接。
制冷系统200仅需要对多个旁通加热管的公共入口的开闭状态进行调控即可控制制冷剂是否流通旁通加热管,无需对每一旁通加热管单独进行控制,这有利于简化制冷系统200的控制过程。
本实施例的每一旁通加热部还可以进一步地包括旁通附接管,串接于多个旁通加热管的上游,用于与冷藏冷冻装置10的接水盘热连接,以加热接水盘。也就是说,对于每一旁通加热部而言,其具有依次串接的旁通附接管以及多个旁通加热管,旁通附接管的出口连通多个旁通加热管的入口。旁通附接管的入口可以作为所在旁通加热部的入口。旁通附接管可以缠绕于或者至少部分地嵌设于接水盘,或与接水盘贴靠设置,以实现热连接。例如,第一旁通加热部225a包括第一旁通附接管225a-3,第二旁通加热部225b包括第二旁通附接管225b-3。每一旁通附接管与对应旁通加热部的第二旁通加热管连通。
由于旁通附接管与接水盘热连接,来自压缩机211的制冷剂在流经旁通附接管时能够产生大量的热,能够使接水盘内的积水吸热而蒸发。因此,本实施例提供了一种新的积水处理方式,使得制冷系统200能够加热冷藏冷冻装置10的接水盘内的积水,使其吸热蒸发。
利用旁通附接管和多个旁通加热管依次串接形成旁通加热部,在使对应蒸发部的多个蒸发器化霜的同时,还可使接水盘内的积水吸热蒸发,一举多得,控制过程简单,且能量利用率高。
制冷组件210可以进一步地包括多个旁通供冷管路,与旁通加热部一一连接。即,一个旁通供冷管路连接一个旁通加热部,例如可以与旁通加热部的出口连接。旁通加热部的出口可以指制冷剂在旁通加热部内最后一个流经的旁通加热管的出口。旁通供冷管路的数量与旁通加热部的数量可以相同。本实施例的旁通供冷管路可以包括与第一旁通加热部225a连接的第一旁通供冷管路222a以及与第二旁通加热部225b连接的第二旁通供冷管路222b。
旁通供冷管路用于将流经旁通加热部以加热对应蒸发部的制冷剂导引至另一蒸发部的至少一个蒸发器,以使另一蒸发部的至少一个蒸发器提供冷量。
也就是说,第一旁通供冷管路222a相当于第一旁通加热部225a与第二蒸发部212b之间的“连接通道”,可以在第一蒸发部212a化霜时将流经第一旁通加热部225a的制冷剂导引至第二蒸发部212b,使得第二蒸发部212b 的至少一个蒸发器利用导入的制冷剂供冷。第二旁通供冷管路222b相当于第二旁通加热部225b与第一蒸发部212a之间的“连接通道”,可以在第二蒸发部212b化霜时将流经第二旁通加热部225b的制冷剂导引至第一蒸发部212a,使得第一蒸发部212a的至少一个蒸发器利用导入的制冷剂供冷。
每一旁通供冷管路上分别设置有旁通节流装置,用于对流经的制冷剂进行节流。
例如,第一旁通供冷管路222a可以连接至第二蒸发部212b的一个蒸发器的入口,且第一旁通供冷管路222a上设置有第一旁通节流装置227a,用于对流向第二蒸发部212b的制冷剂进行节流。第一旁通供冷管路222a用于在第一蒸发部212a利用第一旁通加热部225a产生的热量进行化霜时,利用第一旁通节流装置227a对流出第一旁通加热部225a且流向第二蒸发部212b的制冷剂进行节流。也就是说,第一旁通供冷管路222a在导引制冷剂的同时还能利用第一旁通节流装置227a对制冷剂进行节流,使得被节流的制冷剂流经第二蒸发部212b时能够蒸发吸热,从而使得第二蒸发部212b供冷。
第二旁通供冷管路222b连接至第一蒸发部212a的一个蒸发器的入口,且第二旁通供冷管路222b上设置有第二旁通节流装置227b,用于对流向第一蒸发部212a的制冷剂进行节流。第二旁通供冷管路222b用于在第二蒸发部212b利用第二旁通加热部225b产生的热量进行化霜时,利用第二旁通节流装置227b对流出第二旁通加热部225b且流向第一蒸发部212a的制冷剂进行节流。也就是说,第二旁通供冷管路222b在导引制冷剂的同时还能利用第二旁通节流装置227b对制冷剂进行节流,使得被节流的制冷剂流经第一蒸发部212a时能够蒸发吸热,从而使得第一蒸发部212a供冷。
本实施例的制冷系统200,在一蒸发部化霜时,由于可以将流经加热该蒸发部的旁通加热部的制冷剂导引至另一蒸发部,以使另一蒸发部供冷,多个蒸发部相辅相成,实现了化霜功能和供冷功能的有机结合,这使得本发明的制冷系统200能够有效地利用压缩机211的机械功,有利于提高制冷系统200及冷藏冷冻装置10的能效。
每一蒸发部相互并联设置,这便于制冷系统200灵活调节蒸发部的工作状态。每一蒸发部的蒸发器相互串联设置,这可以简化蒸发部内的多个蒸发器之间的连接结构。
制冷组件210还包括多个制冷节流装置,与蒸发部一一对应设置,用于 对流向对应蒸发部的多个蒸发器的制冷剂进行节流。也就是说,在蒸发部供冷时,制冷剂先流经制冷节流装置并被节流后再流入蒸发部的多个蒸发器,使得制冷剂在蒸发部的多个蒸发器内蒸发吸热。例如,制冷节流装置可以包括与第一蒸发部212a对应的第一制冷节流装置214a以及与第二蒸发部212b对应的第二制冷节流装置214b。通过在每一蒸发部的入口设置一个制冷节流装置,可使每个蒸发部顺利实现供冷功能。
例如,每一蒸发部可以包括两个蒸发器,分别为第一蒸发器和第二蒸发器。第一蒸发器可以串接于第二蒸发器的上游,例如第一蒸发器可以位于对应的制冷节流装置与第二蒸发器之间。第二蒸发器的出口可以连接至压缩机211的吸气口。
第一蒸发器可以为冷藏蒸发器,第二蒸发器可以为冷冻蒸发器。第一旁通供冷管路222a的出口可以连接至第二蒸发部212b的第一蒸发器212b-1的入口,此时可使第二蒸发部212b的第一蒸发器212b-1和第二蒸发器212b-2利用经由第一旁通供冷管路222a通入的制冷剂供冷。第二旁通供冷管路222b的出口可以连接至第一蒸发部212a的第一蒸发器212a-1的入口,此时可使第一蒸发部212a的第一蒸发器212a-1和第二蒸发器212a-2利用经由第二旁通供冷管路222b通入的制冷剂供冷。
每一旁通加热部分别连接至压缩机211的排气口,以允许来自压缩机211的制冷剂流入其中。即,每一旁通加热部的入口连通压缩机211的排气口,可以直接通入流出压缩机211的高温或高压的制冷剂,从而放出大量的热,这有利于提高蒸发器的化霜效率和接水盘的积水处理效率。
制冷组件210还包括冷凝器213,设置于制冷回路内,且连接于压缩机211的排气口与多个蒸发部之间。即,冷凝器213位于多个蒸发部的上游。
制冷系统200还包括第一切换阀260,连接至压缩机211的排气口,且其具有连通冷凝器213的第一阀口、以及连通每一旁通加热部的多个第二阀口。第二阀口的数量与旁通加热部的数量相同,且每一第二阀口与一旁通加热部一一连通,例如可以与旁通加热部的旁通附接管连通。第一切换阀260用于在一旁通加热部加热对应蒸发部时打开对应的第二阀口且关闭第一阀口。例如,当第一蒸发部212a化霜时,第一切换阀260打开连通第一旁通加热部225a的第二阀口,关闭其他阀口。当第二蒸发部212b化霜时,第一切换阀260打开连通第二旁通加热部225b的第二阀口,关闭其他阀口。
第一切换阀260的每个阀口不同时打开。利用第一切换阀260调节制冷剂的流动路径,可以简化制冷系统200的结构,且简化制冷系统200的控制过程。
下面以第一蒸发部212a化霜的情况为例,对制冷系统200的控制过程进行详细介绍。在第一蒸发部212a化霜时,第一切换阀260打开连通第一旁通加热部225a的阀口,且关闭其他阀口,制冷剂依次流经第一旁通加热部225a的旁通附接管225a-3、第二旁通加热管225a-2以及第一旁通加热管225a-1后流入第一旁通供冷管路222a,然后依次流经第二蒸发部212b的第一蒸发器212b-1和第二蒸发器212b-2,并回流至压缩机211,从而完成整个制冷-化霜循环。
在第二蒸发部212b化霜时,第一切换阀260打开连通第二旁通加热部225b的阀口,且关闭其他阀口,制冷剂依次流经第二旁通加热部225b的旁通附接管225b-3、第二旁通加热管225a-2以及第一旁通加热管225a-1后流入第二旁通供冷管路222b,然后依次流经第一蒸发部212a的第一蒸发器212a-1和第二蒸发器212a-2,并回流至压缩机211,从而完成整个制冷-化霜循环。
在一些可选的实施例中,制冷组件210还可以进一步地包括第二切换阀218,连接至冷凝器213的出口(即,第二切换阀218的入口连接至冷凝器213的出口),且其具有连通第一制冷节流装置214a的阀口以及连通第二制冷节流装置214b的阀口。第二切换阀218根据第一蒸发部212a和第二蒸发部212b的工作状态调节流经其的制冷剂的流动路径。例如,在第一蒸发部212a和第二蒸发部212b供冷时,第二切换阀218可以打开两个阀口,在任一蒸发部化霜时,第二切换阀218可以关闭两个阀口。通过增设第二切换阀218,可以提高制冷系统200运行的可靠性。
制冷组件210还可以进一步地包括防露管219、过滤器216、散热风机217。防露管219和过滤器216可以依次串接于冷凝器213的下游,并位于第一制冷节流装置214a和第二制冷节流装置214b的上游。例如防露管219可以用于设置于冷藏冷冻装置10的门体四周的边缘部位,防止门体边缘凝露。过滤器216起到过滤制冷剂中的杂质、防止产生冰堵的作用。散热风机217可以靠近设置于冷凝器213设置,用于加快冷凝器213向周围散热。
在另一些实施例中,制冷组件210可以进一步地包括第三制冷节流装置 214c和第四制冷节流装置214d。第二切换阀218可以增设两个阀口,分别连通第三节流制冷装置214c和第四制冷节流装置214d。第三制冷节流装置214c还连通第一蒸发部212a的第二蒸发器212a-2,第四制冷节流装置214d还连通第二蒸发部212b的第二蒸发器212b-2。在无蒸发器化霜时,流出冷凝器213的制冷剂既可以经由第一制冷节流装置214a和第二制冷节流装置214b分别流至第一蒸发部212a的第一蒸发器212a-1和第二蒸发部212b的第一蒸发器212b-1,又可以经由第三制冷节流装置214c和第四制冷节流装置214d分别直接流至第一蒸发部212a的第二蒸发器212a-2和第二蒸发部212b的第二蒸发器212b-2,这有利于提高制冷系统200的供冷灵活性。
制冷组件210还可以进一步地包括储液包215和制冷回气管。储液包215设置于制冷回路内,例如,可以设置于两个蒸发部的下游,且位于压缩机211的吸气口的上游,用于调节制冷组件210的各个部件所需的制冷剂的量。制冷回气管,设置于制冷回路内,例如,可以设置于储液包215与压缩机211的吸气口之间,用于降低回流至压缩机211吸气口的制冷剂的过热度。
图3是根据本发明另一实施例的用于冷藏冷冻装置10的制冷系统200的示意性结构图。本实施例中,每个蒸发部包括一个蒸发器,例如可以省略第一蒸发器。相应地,每个旁通加热部包括一个旁通加热管,例如可以省略第一旁通加热管。该制冷系统200可以适用于双系统冰箱。
图4是根据本发明又一实施例的用于冷藏冷冻装置10的制冷系统200的示意性结构图。在图3所示制冷系统200的基础上,本实施例可以变换蒸发器的化霜方式,例如可以采用布设在蒸发器上的加热丝通过电加热的方式化霜。两个蒸发器可以轮流化霜,且在一个蒸发器化霜时,另一蒸发器供冷,以防储物间室的温度波动。
图5是根据本发明一个实施例的冷藏冷冻装置10的示意性结构图。
冷藏冷冻装置10一般性地可包括箱体100和上述任一实施例的制冷系统200,并利用制冷系统的蒸发部向储物间室提供冷量。
箱体100的内部形成有储物间室110。储物间室的内部形成储物空间111。储物间室110可以为多个。上述制冷系统200的制冷组件210的多个蒸发部可以用于向同一储物间室110提供冷量,该储物间室110可以为冷藏间室、冷冻间室、深冷间室或者变温间室中的任意一个。在一些实施例中,制冷组件210的每个蒸发部的每个蒸发器分别用于向一个储物间室提供冷 量。在又一些实施例中,每个蒸发部的每个蒸发器所提供的冷量还可以通过送风风道输送至其他储物间室110,以实现多个储物间室110之间的冷量共享。
本发明的用于冷藏冷冻装置10的制冷系统200以及冷藏冷冻装置10,通过改进制冷系统200的结构,提供了一种适用于多系统冷藏冷冻装置10的化霜方式。由于制冷组件210具有多个蒸发部,每一蒸发器包括至少一个蒸发器,多个旁通加热部与蒸发部一一对应,且每一旁通加热部具有与对应蒸发部的至少一个蒸发器一一热连接的至少一个旁通加热管,因此可以利用旁通加热部对与之对应的整个蒸发部进行加热,从而使得整个蒸发部同时化霜。此外,由于来自压缩机211的制冷剂在流经旁通化霜管时能够产生大量的热,因此,采用本发明的化霜方式能够提高多系统冷藏冷冻装置10的蒸发器的化霜速率。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。
Claims (10)
- 一种用于冷藏冷冻装置的制冷系统,包括:制冷组件,其具有形成制冷回路的压缩机和多个蒸发部,每一所述蒸发部包括至少一个蒸发器;和多个旁通加热部,与所述蒸发部一一对应设置;且每一所述旁通加热部包括至少一个旁通加热管,与对应的所述蒸发部的所述至少一个蒸发器一一热连接,且所述旁通加热管用于流通来自所述压缩机的制冷剂以产生热量,从而加热所述蒸发器。
- 根据权利要求1所述的制冷系统,其中,每一所述蒸发部包括多个蒸发器;且每一所述旁通加热部包括依次串接的多个旁通加热管。
- 根据权利要求2所述的制冷系统,其中,每一所述旁通加热部还包括旁通附接管,串接于所述多个旁通加热管的上游,用于与所述冷藏冷冻装置的接水盘热连接,以加热所述接水盘。
- 根据权利要求2或3所述的制冷系统,还包括:多个旁通供冷管路,与所述旁通加热部一一连接,用于将流经所述旁通加热部以加热对应所述蒸发部的制冷剂导引至另一所述蒸发部的至少一个蒸发器,以使另一所述蒸发部的至少一个蒸发器提供冷量。
- 根据权利要求4所述的制冷系统,其中,每一所述旁通供冷管路上分别设置有旁通节流装置,用于对流经的制冷剂进行节流。
- 根据权利要求2或3所述的制冷系统,其中,每一所述蒸发部相互并联设置;每一所述蒸发部的所述蒸发器相互串联设置;且所述制冷组件还包括多个制冷节流装置,与所述蒸发部一一对应设置,用于对流向对应所述蒸发部的所述多个蒸发器的制冷剂进行节流。
- 根据权利要求2或3所述的制冷系统,其中,所述蒸发部为两个,且每一所述蒸发部包括两个蒸发器。
- 根据权利要求1-3中任一项所述的制冷系统,其中,每一所述旁通加热部分别连接至所述压缩机的排气口,以允许来自所述压缩机的制冷剂流入其中。
- 根据权利要求1-3中任一项所述的制冷系统,其中,所述制冷组件还包括冷凝器,设置于所述制冷回路内,且连接于所述压缩机的排气口与所述多个蒸发部之间;且所述制冷系统还包括第一切换阀,连接至所述压缩机的排气口,且其具有连通所述冷凝器的第一阀口、以及连通每一所述旁通加热部的多个第二阀口;所述第一切换阀用于在一所述旁通加热部加热对应所述蒸发部时打开对应的所述第二阀口且关闭所述第一阀口。
- 一种冷藏冷冻装置,包括:箱体,其内部形成有储物间室;以及如权利要求1-9中任一项所述的用于冷藏冷冻装置的制冷系统,设置于所述箱体内,并利用所述蒸发部向所述储物间室提供冷量。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110727067.5A CN115540404A (zh) | 2021-06-29 | 2021-06-29 | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 |
CN202110727067.5 | 2021-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023273705A1 true WO2023273705A1 (zh) | 2023-01-05 |
Family
ID=84692490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/094975 WO2023273705A1 (zh) | 2021-06-29 | 2022-05-25 | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115540404A (zh) |
WO (1) | WO2023273705A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63223477A (ja) * | 1987-03-11 | 1988-09-16 | 中野冷機株式会社 | 冷凍装置 |
JP2007162992A (ja) * | 2005-12-12 | 2007-06-28 | Daikin Ind Ltd | 冷凍装置 |
CN202853236U (zh) * | 2012-11-14 | 2013-04-03 | 合肥晶弘电器有限公司 | 利用冷凝器热自动化霜的风冷系统 |
CN105466112A (zh) * | 2014-09-03 | 2016-04-06 | 青岛海尔开利冷冻设备有限公司 | 热气融霜节能制冷系统 |
WO2019245096A1 (ko) * | 2018-06-20 | 2019-12-26 | 티이컴퍼니 유한회사 | 효율적인 제상 운전이 가능한 복합식 냉각 시스템 |
CN215892860U (zh) * | 2021-06-29 | 2022-02-22 | 青岛海尔电冰箱有限公司 | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 |
-
2021
- 2021-06-29 CN CN202110727067.5A patent/CN115540404A/zh active Pending
-
2022
- 2022-05-25 WO PCT/CN2022/094975 patent/WO2023273705A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63223477A (ja) * | 1987-03-11 | 1988-09-16 | 中野冷機株式会社 | 冷凍装置 |
JP2007162992A (ja) * | 2005-12-12 | 2007-06-28 | Daikin Ind Ltd | 冷凍装置 |
CN202853236U (zh) * | 2012-11-14 | 2013-04-03 | 合肥晶弘电器有限公司 | 利用冷凝器热自动化霜的风冷系统 |
CN105466112A (zh) * | 2014-09-03 | 2016-04-06 | 青岛海尔开利冷冻设备有限公司 | 热气融霜节能制冷系统 |
WO2019245096A1 (ko) * | 2018-06-20 | 2019-12-26 | 티이컴퍼니 유한회사 | 효율적인 제상 운전이 가능한 복합식 냉각 시스템 |
CN215892860U (zh) * | 2021-06-29 | 2022-02-22 | 青岛海尔电冰箱有限公司 | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 |
Also Published As
Publication number | Publication date |
---|---|
CN115540404A (zh) | 2022-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211739588U (zh) | 一种可提高换热性能的空调 | |
US10495368B2 (en) | Refrigerator and operation method of the same | |
WO2020015407A1 (zh) | 一种具有深冷功能的双系统风冷冰箱及其制冷控制方法 | |
KR20160011001A (ko) | 냉장고 및 그 제어방법 | |
CN216409376U (zh) | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 | |
CN215892860U (zh) | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 | |
US10288335B2 (en) | Refrigerator having a refrigeration system with first and second conduit paths | |
CN215892902U (zh) | 冷藏冷冻装置 | |
CN215892861U (zh) | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 | |
CN215864171U (zh) | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 | |
CN210374250U (zh) | 冷藏冷冻装置 | |
CN216409420U (zh) | 冷藏冷冻装置 | |
CN215892903U (zh) | 冷藏冷冻装置 | |
CN209893748U (zh) | 冰箱 | |
CN109780776B (zh) | 冰箱及其控制方法 | |
WO2023273705A1 (zh) | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 | |
WO2023029522A1 (zh) | 用于冷藏冷冻装置的制冷系统及具有其的冷藏冷冻装置 | |
JPH10300321A (ja) | 冷凍冷蔵庫用冷却装置およびその除霜方法 | |
WO2023273711A1 (zh) | 冷藏冷冻装置 | |
WO2023273709A1 (zh) | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 | |
WO2023273710A1 (zh) | 冷藏冷冻装置 | |
WO2023029777A1 (zh) | 用于冷藏冷冻装置的制冷系统及具有其的冷藏冷冻装置 | |
WO2023273707A1 (zh) | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 | |
WO2023273706A1 (zh) | 冷藏冷冻装置 | |
WO2023273708A1 (zh) | 用于冷藏冷冻装置的制冷系统以及冷藏冷冻装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22831528 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22831528 Country of ref document: EP Kind code of ref document: A1 |