WO2023273619A1 - 天线模组及通信设备 - Google Patents

天线模组及通信设备 Download PDF

Info

Publication number
WO2023273619A1
WO2023273619A1 PCT/CN2022/091734 CN2022091734W WO2023273619A1 WO 2023273619 A1 WO2023273619 A1 WO 2023273619A1 CN 2022091734 W CN2022091734 W CN 2022091734W WO 2023273619 A1 WO2023273619 A1 WO 2023273619A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
frequency band
antenna module
antenna
ground
Prior art date
Application number
PCT/CN2022/091734
Other languages
English (en)
French (fr)
Inventor
雍征东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023273619A1 publication Critical patent/WO2023273619A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point

Definitions

  • the present application relates to the technical field of communication, and in particular to an antenna module and communication equipment.
  • a communication device usually communicates with other communication devices, so as to locate the communication device or the other communication devices.
  • the communication device usually includes an antenna module, and the positioning function is implemented by sending and receiving electromagnetic wave signals through the antenna module.
  • the positioning effect is not good.
  • the embodiment of the present application provides an antenna module, and the antenna module includes:
  • the second radiator is stacked with the first radiator and arranged at intervals;
  • the antenna ground is laminated with the second radiator and arranged at intervals, and the antenna ground is arranged on a side of the second radiator away from the first radiator;
  • the feeder is electrically connected to the first radiator and the second radiator;
  • a plurality of second grounding elements are electrically connected to the second radiator and the antenna ground, and the antenna module sends and receives electromagnetic wave signals in the first frequency band and the second frequency band, wherein the second The frequency band is different from the first frequency band.
  • the embodiment of the present application further provides a communication device, where the communication device includes the antenna module as described in the first aspect.
  • FIG. 1 is a schematic diagram of a communication device provided in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of transmitting and receiving electromagnetic wave signals by the communication device in Fig. 1;
  • FIG. 3 is a schematic diagram of communication between a communication device and a base station provided in an embodiment of the present application
  • FIG. 4 is a schematic diagram of positioning a communication device by multiple base stations
  • FIG. 5 is a schematic perspective view of an antenna module provided in an embodiment of the present application.
  • FIG. 6 is an exploded perspective view of the antenna module shown in FIG. 5;
  • Fig. 7 is a cross-sectional view of the antenna module shown in Fig. 5 along the I-I line;
  • FIG. 8 is a schematic perspective view of an antenna module provided in another embodiment of the present application.
  • FIG. 9 is an exploded schematic view of the antenna module provided in FIG. 8;
  • Figure 10 is a top view of the antenna module provided in Figure 5;
  • FIG. 11 is a schematic diagram of the size identification of some components of the antenna module in FIG. 7;
  • FIG. 12 is a schematic cross-sectional view of an antenna module provided in another embodiment of the present application.
  • FIG. 13 is a schematic cross-sectional view of an antenna module provided in another embodiment of the present application.
  • FIG. 14 is a schematic diagram of an antenna module provided in yet another embodiment of the present application.
  • FIG. 15 is a schematic diagram of an antenna module provided in another embodiment of the present application.
  • Fig. 16 is an S parameter curve diagram of the antenna module shown in Fig. 5 to Fig. 7;
  • FIG. 17 is a graph showing the total efficiency of the antenna module system shown in FIGS. 5 to 7;
  • FIG. 18 is a 3D pattern of the antenna module 10 at a frequency of 6.5 GHz;
  • FIG. 19 is a 2D pattern of the horizontal plane of the antenna module 10 at a frequency of 6.5 GHz;
  • Figure 20 is a 3D pattern of the antenna module at a frequency of 8.0 GHz;
  • Figure 21 is a 2D pattern of the horizontal plane of the antenna module at a frequency of 8.0 GHz;
  • Figure 22 is the vertical/horizontal polarization ratio pattern of the antenna module at the 6.5GHz frequency point
  • Figure 23 is the vertical/horizontal polarization ratio pattern of the antenna module at the 8.0GHz frequency point
  • Figure 24 is a diagram of the electric field distribution of the antenna module at a frequency of 6.3 GHz;
  • Figure 25 is the electric field distribution diagram of the antenna module at the 6.5GHz frequency point
  • Fig. 26 is an electric field distribution diagram of the antenna module at a frequency of 8.0 GHz.
  • Reference numerals communication device 1, base station 2, antenna module 10, first antenna module 10a, second antenna module 10b, first radiator 110, second radiator 120, antenna ground 130, feeder 140, The first power feeder 141, the second power feeder 142, the first ground member 150, the second ground member 160, the dielectric layer 170, the first dielectric layer 171, the second dielectric layer 172, the radio frequency chip 180, the first region 101 , the second area 102, the first center O1, the second center O2, the third center O3, the gaps 110a, 120a.
  • the present application provides an antenna module, and the antenna module includes:
  • the second radiator is stacked with the first radiator and arranged at intervals;
  • the antenna ground is laminated with the second radiator and arranged at intervals, and the antenna ground is arranged on a side of the second radiator away from the first radiator;
  • the feeder is electrically connected to the first radiator and the second radiator;
  • a plurality of second grounding elements are electrically connected to the second radiator and the antenna ground, and the antenna module sends and receives electromagnetic wave signals in the first frequency band and the second frequency band, wherein the second The frequency band is different from the first frequency band.
  • the plurality of first grounding elements are used to excite the TM01 mode of the first frequency band; the plurality of second grounding elements are used to excite the TM01 and TM02 modes of the second frequency band.
  • the antenna module further includes a dielectric layer, and the dielectric layer includes:
  • the second dielectric layer is disposed between the second radiator and the antenna ground;
  • the multiple second grounding elements are arranged around the feeding element, and the distance r between the second grounding element and the feeding element satisfies:
  • ⁇ 0 is the wavelength of the electromagnetic wave signal in the second frequency band in free space
  • ⁇ r is the equivalent dielectric constant of the dielectric layer, wherein the equivalent dielectric constant and the second The dielectric constant of the first dielectric layer is related to the dielectric constant of the second dielectric layer.
  • the antenna module is vertically polarized in the first frequency band, and the antenna module is vertically polarized in the second frequency band.
  • the plurality of first grounding elements are arranged around the feeding element, the plurality of second grounding elements are arranged around the feeding element, and the plurality of second grounding elements are arranged on the first radiator
  • the projection in the plane where the first ground element is located surrounds the projection of the plurality of first grounding elements in the plane where the first radiator is located.
  • the first grounding element at least partially faces the second grounding element, and the first grounding element is connected to the second grounding element.
  • the first frequency band is high frequency
  • the second frequency band is low frequency
  • the range of the first frequency band is 7.75GHz-8.25GHz; the range of the second frequency band is 6.25GHz-6.75GHz.
  • the first radiator, the second radiator and the antenna ground are all circular conductive patches, and the feeding parts are electrically connected to the center of the first radiator and the second radiator respectively.
  • the center of the radiator passes through the center of the antenna ground and is insulated from the antenna ground, wherein the radius of the first radiator is r1, the radius of the second radiator is r2, and the antenna
  • the radius of the ground is r3, the distance between the first grounding part and the feeding part is r4, and the distance between the second grounding part and the feeding part is r5, wherein r1 ⁇ r2, r2 ⁇ r3, r4 ⁇ r1, r4 ⁇ r5.
  • r1 10mm ⁇ 2mm
  • r2 14mm ⁇ 2mm
  • r3 20mm ⁇ 2mm
  • r4 6.75mm ⁇ 2mm
  • r5 9.8mm ⁇ 2mm.
  • the antenna module also includes:
  • a radio frequency chip is disposed on the side of the antenna away from the second radiator, and is electrically connected to the feeding element.
  • the center of the first radiator is the first center
  • the center of the second radiator is the second center
  • the center of the antenna ground is the third center
  • the feeding parts are respectively electrically connected to the The first center and the second center
  • the feeder passes through the third center and is insulated from the ground of the antenna.
  • the first radiator, the second radiator and the ground of the antenna are all conductive patches, and at least one of the first radiator and the second radiator is provided with a slot or a groove.
  • the first frequency band is greater than the second frequency band
  • the second radiator has a notch, wherein the notch includes a slot or a groove, and the second radiator and the antenna are in the The orthographic projection in the plane where the first radiator is located falls within the area where the first radiator is located.
  • an embodiment of the present application provides a communication device, wherein the communication device includes the antenna module according to any one of the first aspect and the first aspect.
  • the present application provides an antenna module 10, which is applied to a communication device 1, and the communication device 1 includes but is not limited to a mobile phone, a watch, an Internet device (mobile internet device, MID), an electronic book, a portable playback station (Play Station Portable , PSP) or Personal Digital Assistant (Personal Digital Assistant, PDA) and other devices with communication functions.
  • the antenna module 10 is an antenna module 10 using Ultra Wide Band (UWB) technology.
  • the antenna module 10 of the UWB technology does not use a carrier wave, but a non-sinusoidal narrow pulse of nanosecond to microsecond level to transmit data. Therefore, it occupies a wide spectrum range and is suitable for high-speed and short-distance communication.
  • FIG. 1 is a schematic diagram of a communication device provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of transmitting and receiving electromagnetic wave signals by the communication device in FIG. 1 .
  • the communication device 1 includes two antenna modules, for the convenience of description, the two antenna modules are named as the first antenna module 10a and the second antenna module 10b respectively.
  • Fig. 2 represent the first antenna module 10a with P 1 point, represent the second antenna module 10b with P 2 points, represent the position that the electromagnetic wave signal comes over with P 3 points; P 4 points represent P The midpoint of the line connecting 1 and P2.
  • ⁇ 1 represents the angle between the connecting line P 1 P 2 and the connecting line P 3 P 1
  • ⁇ 2 represents the angle between the connecting line P 1 P 2 and the connecting line P 3 P 2
  • represents the angle between the connection line of P 1 P 2 and the connection line of P 3 P 4
  • represents the complementary angle of ⁇
  • D represents the distance between P 3 P 4
  • represents the first antenna module 10a and the wavelength of the electromagnetic wave signal sent and received by the second antenna module 10b
  • f represents the frequency of the electromagnetic wave signal sent and received by the first antenna module 10a and the second antenna module 10b
  • d max represents the first antenna module 10a and the second antenna module The maximum value of the pitch for group 10b.
  • first antenna module 10a and the second antenna module 10b are antenna modules utilizing UWB technology, therefore:
  • the range of f is 6.25GHz ⁇ 8.25GHz;
  • the range of ⁇ /2 is 18.2mm to 24mm.
  • the time difference t1 when the electromagnetic wave signal reaches the first antenna module 10a and the second antenna module 10b is:
  • c represents the speed of light
  • t1 represents the time difference between the arrival of the electromagnetic wave signal at the first antenna module 10a and the second antenna module 10b, it is also called the time difference of arrival (Time Difference of Arrival, TDOA)
  • the phase difference between the electromagnetic wave signal reaching the first antenna module 10a and the second antenna module 10b for:
  • phase difference of arrival Phase Difference of Arrival
  • represents the angle of arrival (Angle of Arrival, AOA). It can be seen from (4) that the angle of arrival (AOA) ⁇ and phase difference of arrival (PDOA) relevant.
  • FIG. 3 is a schematic diagram of a communication device communicating with a base station according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of multiple base stations positioning a communication device.
  • the communication device 1 transmits a first signal to the base station 2, the base station 2 receives the first signal, and transmits a second signal to the communication device 1 after a response time T reply , and the communication device 1 receives For the second signal, where the time difference between the communication device 1 receiving the second signal and the communication device 1 transmitting the first signal is T loop , then:
  • D is the distance between the communication device 1 and the base station
  • the positioning algorithm of the communication device 1 is the TDOA algorithm, that is, the positioning algorithm using time difference.
  • the distance between the communication device 1 and the base station can be determined, and by comparing the time difference between the first signal sent by the communication device 1 and reaching multiple different base stations 2, the communication device can be made 1 is the intersection point of the hyperbola with the focal point and the distance difference being the major axis, and the intersection point is the position of the communication device 1 .
  • the distance difference is equal to the speed of light c*time difference.
  • the antenna module 10 will be introduced in detail below.
  • the antenna module 10 may be the first antenna module 10a in the communication device 1 mentioned above, or the second antenna module 10b in the communication device 1 above, which is not limited here. It should be noted that although an application scenario of the antenna module 10 in the communication device 1 is introduced above, it can be understood that the antenna module 10 (the first antenna module 10a and the The second antenna module 10b) should not be construed as a limitation to the specific structure of the antenna module 10 provided below in this application.
  • Fig. 5 is a three-dimensional schematic view of the antenna module provided by an embodiment of the present application
  • Fig. 6 is a perspective exploded view of the antenna module shown in Fig. 5
  • Fig. 7 is a perspective view of Fig. 5
  • the antenna module 10 includes a first radiator 110 , a second radiator 120 , an antenna ground 130 , a feeding element 140 , a plurality of first ground elements 150 and a plurality of second ground elements 160 .
  • the second radiator 120 is stacked with the first radiator 110 and arranged at intervals.
  • the antenna ground 130 is stacked with the second radiator 120 and arranged at intervals, and the antenna ground 130 is arranged on a side of the second radiator 120 away from the first radiator 110 .
  • the plurality of feeding elements 140 are respectively electrically connected to the first radiator 110 and the second radiator 120 .
  • the first ground member 150 is electrically connected to the first radiator 110 and the second radiator 120 .
  • the plurality of second grounding elements 160 are electrically connected to the second radiator 120 and the antenna ground 130, and the antenna module 10 transmits and receives electromagnetic wave signals in the first frequency band and the second frequency band, wherein the second frequency band is connected to the antenna ground 130.
  • the first frequency band mentioned above is different.
  • the first radiator 110 may be, but not limited to, a conductive patch.
  • the shape of the first radiator 110 may be a circle, a rectangle, an ellipse, a polygon and so on. In this implementation manner, it is illustrated by taking the first radiator 110 as an example of a circular conductive patch.
  • the second radiator 120 may be, but not limited to, a conductive patch.
  • the shape of the second radiator 120 may be a circle, a rectangle, an ellipse, a polygon and so on.
  • the shape of the second radiator 120 may be the same as that of the first radiator 110 or may be different from that of the first radiator 110 . In this implementation manner, it is illustrated by taking the second radiator 120 as an example of a circular conductive patch.
  • the antenna ground 130 may be, but not limited to, a conductive patch.
  • the shape of the antenna ground 130 may be a circle, a rectangle, an ellipse, a polygon, and the like.
  • the shape of the antenna ground 130 may be the same as that of the first radiator 110, or may be different from the shape of the first radiator 110; correspondingly, the shape of the antenna ground 130 may be different from that of the second radiator 110.
  • the shape of the radiator 120 is the same, or may be different from that of the second radiator 120 . In this implementation manner, it is illustrated by taking the antenna ground 130 as an example of a circular conductive patch.
  • the second radiator 120 is stacked with the first radiator 110 and spaced apart
  • the antenna ground 130 is stacked with the second radiator 120 and spaced apart
  • the antenna ground 130 The side of the second radiator 120 away from the first radiator 110 is disposed, that is, the first radiator 110 , the second radiator 120 and the antenna ground 130 are sequentially stacked and arranged at intervals.
  • the first radiator 110, the second radiator 120, and the antenna ground 130 taking the stacking direction of the first radiator 110, the second radiator 120, and the antenna ground 130 as the Z axis as an example, the first radiator 110, the second radiator Both the body 120 and the antenna ground 130 are located in the XY plane for illustration.
  • the stacking directions of the first radiator 110, the second radiator 120 and the antenna ground 130 are different in the direction of the XYZ coordinate axis, And the plane where the first radiator 110 is located, the plane where the second radiator 120 is located, and the plane where the antenna ground 130 is located are different in XYZ coordinate axes.
  • a first dielectric layer 171 is provided between the first radiator 110 and the second radiator 120
  • a second dielectric layer 171 is provided between the second radiator 120 and the antenna ground 130 .
  • the two dielectric layers 172, and the first dielectric layer 171 and the second dielectric layer 172 are not gas are taken as examples for illustration.
  • the first dielectric layer 171 and the second dielectric layer 172 may be, but not limited to, plastic, plastic, or the like.
  • both the first dielectric layer 171 and the second dielectric layer 172 are gas, in other words, gas is disposed between the first radiator 110 and the second radiator 120, Gas is disposed between the second radiator 120 and the antenna ground 130 .
  • the composition of the gas is related to the environment where the antenna module 10 is located, for example, the antenna module 10 is set in the air
  • the first dielectric layer 171 and the second dielectric layer 172 are air
  • the antenna module 10 is in oxygen
  • the first dielectric layer 171 and the second dielectric layer 172 are oxygen
  • the first dielectric layer 171 and the second dielectric layer 172 are gas
  • first dielectric layer 171 and the second dielectric layer 172 are gas, as long as the first radiator 110 and the second radiator 120 are arranged at intervals, and the The second radiator 120 and the antenna ground 130 can be arranged at intervals.
  • the manners of the feeder 140 electrically connecting the first radiator 110 and the second radiator 120 with the antenna ground 130 may include but not limited to the following manners.
  • the first radiator 110 , the second radiator 120 and the antenna ground 130 are all provided with through holes, and the feeder 140 is provided on the first radiator 110 The through hole, the through hole of the second radiator 120 and the through hole of the antenna ground 130, and the feed member 140 is electrically connected with the first radiator 110 and the second radiator 120, Moreover, the feeder 140 is insulated from the antenna ground 130 .
  • FIG. 8 and FIG. 9 together FIG. 8 is a perspective view of an antenna module provided in another embodiment of the present application;
  • FIG. 9 is an exploded view of the antenna module provided in FIG. 8 .
  • the first radiator 110, the second radiator 120 and the antenna ground 130 are not provided with through holes, and a part of the feeder 140 (the first feeder 141) is arranged on the first between the radiator 110 and the second radiator 120, and electrically connect the first radiator 110 and the second radiator 120; the other part of the feeding part 140 (the second feeding part 142) It is disposed between the second radiator 120 and the antenna ground 130 and is electrically connected to the second radiator 120 .
  • the first radiator 110, the second radiator 120 and the antenna ground 130 are all provided with through holes, and the feeder 140 is provided on the first radiator 110.
  • the through hole, the through hole of the second radiator 120 and the through hole of the antenna ground 130 are taken as examples to illustrate.
  • the feeder 140 is used to receive the excitation signal, and transmit the excitation signal to the first radiator 110 and the second radiator 120 through the electrical connection relationship with the first radiator 110 and the second radiator 120.
  • the second radiator 120 is used to receive the excitation signal, and transmit the excitation signal to the first radiator 110 and the second radiator 120 through the electrical connection relationship with the first radiator 110 and the second radiator 120.
  • the second radiator 120 is used to receive the excitation signal, and transmit the excitation signal to the first radiator 110 and the second radiator 120 through the electrical connection relationship with the first radiator 110 and the second radiator 120.
  • the second radiator 120 is used to receive the excitation signal, and transmit the excitation signal to the first radiator 110 and the second radiator 120 through the electrical connection relationship with the first radiator 110 and the second radiator 120.
  • the first ground member 150 is electrically connected to the first radiator 110 and the second radiator 120 .
  • the first radiator 110 is provided with a plurality of through holes
  • the second radiator 120 is provided with a plurality of through holes
  • the first ground member 150 is provided on the first radiator 110 and the through hole of the second radiator 120 .
  • neither the first radiator 110 nor the second radiator 120 has a through hole
  • the first grounding member 150 is arranged between the first radiator 110 and the second radiator. 120, and electrically connect the first radiator 110 and the second radiator 120.
  • the schematic diagram of this embodiment it is illustrated by taking the first ground member 150 disposed in the through hole of the first radiator 110 and the through hole of the second radiator 120 as an example. Further, in this implementation manner, it is illustrated by taking the arrangement of the plurality of first grounding elements 150 around the feeding element 140 as an example.
  • the second grounding element 160 is electrically connected to the second radiator 120 and the antenna ground 130 , in other words, the second grounding element 160 is used to ground the second radiator 120 and ground.
  • the second radiator 120 is provided with a plurality of through holes
  • the antenna ground 130 is provided with a plurality of through holes
  • the second ground member 160 is provided in the second radiator 120 through holes. hole and the through hole of the antenna ground 130
  • the second ground member 160 is electrically connected to the second radiator 120 and the antenna ground 130 respectively.
  • neither the second radiator 120 nor the antenna ground 130 has a through hole
  • the second ground member 160 is disposed between the second radiator 120 and the antenna ground 130, And electrically connect the second radiator 120 and the antenna ground 130 .
  • the schematic diagram of this embodiment it is illustrated by taking the second ground member 160 disposed in the through hole of the second radiator 120 and the through hole of the antenna ground 130 as an example. Further, in this implementation manner, it is illustrated by taking the plurality of second grounding elements 160 surrounding the feeding element 140 as an example.
  • the antenna module 10 of this embodiment can transmit and receive electromagnetic wave signals in a first frequency band and electromagnetic wave signals in a second frequency band, and the first frequency band is different from the second frequency band.
  • the first frequency band is high frequency
  • the second frequency band is low frequency.
  • the first frequency band is low frequency
  • the second frequency band is high frequency.
  • the frequency bands of the first frequency band and the second frequency band are related to the size of the first radiator 110, the second radiator 120 and the antenna ground 130, and are also related to the size of the first radiator 110 and the second radiator.
  • the dielectric constant of the dielectric layer 170 between the bodies 120 and the dielectric constant of the dielectric layer 170 between the second radiator 120 and the antenna ground 130 are related.
  • the first frequency band is high frequency
  • the second frequency band is low frequency. It should not be understood as a limitation on the frequency band of the electromagnetic wave signal that the antenna module 10 provided in the embodiment of the present application can send and receive, as long as the above conditions are satisfied. It is sufficient that the first frequency band is different from the second frequency band.
  • the antenna module 10 provided in the embodiment of the present application can excite electromagnetic wave signals in the first frequency band and electromagnetic wave signals in the second frequency band, so that the antenna module 10 has a wider bandwidth, so that the antenna module 10 can use It has better communication effect and positioning effect when positioning.
  • the feeding element 140 is used to electrically connect the first radiator 110 and the second radiator 120
  • the first grounding element 150 is used to electrically connect all the radiators.
  • the first radiator 110 and the second radiator 120, and the second ground 160 are used to electrically connect the second radiator 120 and the antenna ground 130, so that the antenna module 10 has a relatively Small size and low profile.
  • the multiple first grounding elements 150 are used to excite the TM01 mode in the first frequency band; the multiple second grounding elements 160 are used to excite the TM01 and TM02 modes in the second frequency band.
  • the TM01 mode of the first frequency band and the TM01 mode and TM02 mode of the second frequency band will be described later with reference to the simulation diagram.
  • FIG. 10 is a top view of the antenna module provided in FIG. 5 ;
  • FIG. 11 is a schematic diagram of dimension marking of some components of the antenna module in FIG. 7 .
  • the antenna module 10 further includes a dielectric layer 170 , and the dielectric layer 170 includes a first dielectric layer 171 and a second dielectric layer 172 .
  • the first dielectric layer 171 is disposed between the first radiator 110 and the second radiator 120 .
  • the second dielectric layer 172 is disposed between the second radiator 120 and the antenna ground 130 .
  • the first dielectric layer 171 and the second dielectric layer 172 are omitted for the convenience of illustrating the spaces between the first radiator 110 , the second radiator 120 and the antenna ground 130 .
  • the plurality of second grounding elements 160 are arranged around the feeding element 140, and the distance r between the second grounding elements 160 and the feeding element 140 satisfies:
  • ⁇ 0 is the wavelength of the electromagnetic wave signal in the second frequency band in free space
  • ⁇ r is the equivalent dielectric constant of the dielectric layer 170, wherein the equivalent dielectric constant and the The dielectric constant of the first dielectric layer 171 is related to the dielectric constant of the second dielectric layer 172 .
  • the TM01 mode and the TM02 mode of the second frequency band are relatively far apart, and when the distance between the plurality of second grounding elements 160 and the feeding element 140 satisfies the condition (1), the plurality of A second grounding member 160 is located near the voltage zero point of the TM02 mode of the second frequency band.
  • the TM01 The mode and the TM02 mode are close to each other, that is, the TM01 mode is shifted to a high frequency, and the TM02 mode is shifted to a low frequency, which makes it easier to form a double resonance.
  • the bandwidth of the second frequency band is larger.
  • the value of a satisfies: 1.1 ⁇ a ⁇ 1.3.
  • the antenna module 10 forms a double resonance in the second frequency band and the second frequency band has a larger bandwidth.
  • the influence of the dielectric layer 170 in the antenna module 10 on the first frequency band and the second frequency band will be introduced below. Specifically, when the equivalent dielectric constant of the dielectric layer 170 is larger, the first frequency band and the second frequency band shift toward a lower frequency; when the equivalent dielectric constant of the dielectric layer 170 is higher As the hour increases, the first frequency band and the second frequency band shift toward higher frequencies.
  • the dielectric constant of the first dielectric layer 171 when the dielectric constant of the second dielectric layer 172 is larger, the equivalent dielectric constant of the dielectric layer 170 is larger; correspondingly, When the dielectric constant of the first dielectric layer 171 is constant, the smaller the dielectric constant of the second dielectric layer 172 is, the smaller the equivalent dielectric constant of the dielectric layer 170 is.
  • the dielectric constant of the second dielectric layer 172 when the dielectric constant of the first dielectric layer 171 is larger, the equivalent dielectric constant of the dielectric layer 170 is larger; correspondingly, When the dielectric constant of the second dielectric layer 172 is constant, the smaller the dielectric constant of the first dielectric layer 171 is, the smaller the equivalent dielectric constant of the dielectric layer 170 is.
  • the dielectric constant of the second dielectric layer 172 when the dielectric constant of the second dielectric layer 172 is constant, the larger the dielectric constant of the first dielectric layer 171, the lower the first frequency band and the second frequency band shift. ; The smaller the dielectric constant of the first dielectric layer 171 is, the higher the offset of the first frequency band and the second frequency band will be.
  • the dielectric constant of the first dielectric layer 171 is ⁇ r1
  • the dielectric constant of the second dielectric layer 172 is ⁇ r2
  • the first frequency band is F1
  • the second frequency band is F2
  • the dielectric constant of the first dielectric layer 171 is ⁇ ' r1
  • the dielectric constant of the second dielectric layer 172 is ⁇ ' r2
  • the first frequency band is F1'
  • the second frequency band is F2'.
  • ⁇ r2 ⁇ ' r2 , if ⁇ ' r1 > ⁇ r1 , then F1' ⁇ F1, F2' ⁇ F2; if ⁇ ' r1 ⁇ ⁇ r1 , then F1'> F1, F2'>F2.
  • the dielectric constant of the first dielectric layer 171 is constant
  • the larger the dielectric constant of the second dielectric layer 172 the lower the first frequency band and the second frequency band shift.
  • the dielectric constant of the first dielectric layer 171 is ⁇ r1
  • the dielectric constant of the second dielectric layer 172 is ⁇ r2
  • the first frequency band is F1
  • the second frequency band is F2
  • the dielectric constant of the first dielectric layer 171 is ⁇ ' r1
  • the dielectric constant of the second dielectric layer 172 is ⁇ ' r2
  • the first frequency band is F1'
  • the second frequency band is F2'.
  • ⁇ r1 ⁇ ' r1 , if ⁇ ' r2 > ⁇ r2 , then F1' ⁇ F1, F2' ⁇ F2; if ⁇ ' r2 ⁇ ⁇ r2 , then F1'> F1, F2'>F2.
  • the plurality of first grounding elements 150 are arranged around the feeding element 140
  • the plurality of second grounding elements 160 are arranged around the feeding element 140
  • the plurality of second grounding elements 160 are arranged around the feeding element 140.
  • the projection of the element 160 in the plane where the first radiator 110 is located surrounds the projection of the plurality of first ground elements 150 in the plane where the first radiator 110 is located.
  • FIG. 12 is a schematic cross-sectional view of an antenna module provided in another embodiment of the present application.
  • the first grounding piece 150 is at least partially facing the second grounding piece 160 , and the first grounding piece 150 is connected to the second grounding piece 160 .
  • At least part of the first grounding member 150 faces the second grounding member 160, and the first grounding member 150 is connected to the second grounding member 160.
  • the connected first grounding member 150 and The second ground member 160 can be formed in the same manufacturing process, thereby saving the manufacturing time of the antenna module 10 .
  • a plurality of through holes are formed on the first radiator 110, the second radiator 120 and the antenna ground 130, so that the first radiator 110 A through hole on the second radiator 120 and a through hole on the antenna ground 130 are used as examples to describe the preparation process of the first ground member 150 and the second ground member 160 .
  • the one through hole of the first radiator 110, the one through hole of the second radiator 120, and the one through hole of the antenna ground 130 are at least partially facing each other, and the first radiator A conductive material is formed in the one first through hole of the body 110, the one through hole of the second radiator 120, and the one through hole of the antenna ground 130, and is located between the first radiator 110 and the antenna ground 130.
  • the conductive material between the second radiator 120 is formed as the first ground member 150
  • the conductive material between the second radiator 120 and the antenna ground 130 is formed as the second ground member 160 . It can be seen that the first ground member 150 and the second ground member 160 can be formed during the process of forming the conductive material, thus, the preparation time of the antenna module 10 can be saved.
  • the size of the first radiator 110 has a more obvious impact on the first frequency band, and the size of the second radiator 120 has a more obvious impact on the second frequency band.
  • the following describes the first radiator 110 The influence of the size of 120 on the first frequency band and the size of the second radiator 120 on the second frequency band is introduced as follows.
  • the smaller the size of the first radiator 110 the higher the first frequency band. frequency offset; the larger the size of the first radiator 110 is, the lower the first frequency band is offset.
  • the first radiator 110, the second radiator 120 and the antenna ground 130 are all circular patches, so the first radiator 110, the The size of the second radiator 120 and the antenna ground 130 can be selected as a radius.
  • the sizes of the first radiator 110, the second radiator 120 and the antenna ground 130 can be selected is the length.
  • the dimensions of the first radiator 110, the second radiator 120, and the antenna ground 130 may be, but not limited to, radius, length, etc., as long as the first radiator 110, the second radiator 120 And the size of the antenna ground 130 is only related to the antenna module 10 transmitting and receiving electromagnetic wave signals in the first frequency band and the second frequency band.
  • the number of the first grounding elements 150 has an influence on the first frequency band, and the influence of the number of the first grounding elements 150 on the first frequency band will be introduced in detail below. Specifically, the more the number of the first grounding elements 150 is, the higher the shift of the first frequency band is; the less the number of the first grounding elements 150 is, the lower the shifting of the first frequency band is.
  • the number of the first grounding elements 150 is N1, and correspondingly, the first frequency band is F1; in another implementation manner, the The number of the first grounding elements 150 is N1', and correspondingly, the first frequency band is F1'. If N1'>N1, then F1'>F1. If N1' ⁇ N1, then F1' ⁇ F1.
  • the number of the second grounding elements 160 has an influence on the second frequency band, and the influence of the number of the second grounding elements 160 on the second frequency band is introduced below. Specifically, the more the number of the second grounding elements 160 is, the higher the shift of the second frequency band is; the less the number of the second grounding elements 160 is, the lower the shifting of the second frequency band is.
  • the number of the second grounding elements 160 is N2, and correspondingly, the second frequency band is F2; in another implementation manner, the The number of the second grounding elements 160 is N2', and correspondingly, the second frequency band is F2'. If N2'>N2, then F2'>F2. If N2' ⁇ N2, then F2' ⁇ F2.
  • the first frequency band is high frequency
  • the second frequency band is low frequency
  • the first frequency band is low frequency
  • the second frequency band is high frequency
  • the dimensions of the first radiator 110, the second radiator 120, and the antenna ground 130 are drawn with the first frequency band being high frequency and the second frequency band being low frequency.
  • the first frequency band ranges from 7.75GHz to 8.25GHz; the second frequency band ranges from 6.25GHz to 6.75GHz. That is, the first frequency band is the CH9 frequency band, and the second frequency band is the CH5 frequency band.
  • the first radiator 110, the second radiator 120 and the antenna ground 130 are all circular conductive patches, and the feeder 140 is electrically connected to the The center of the first radiator 110, the center of the second radiator 120, and the center of the antenna ground 130 pass through and are insulated from the antenna ground 130, wherein the radius of the first radiator 110 is r1 , the radius of the second radiator 120 is r2, the radius of the antenna ground 130 is r3, the distance between the first ground member 150 and the feeding member 140 is r4, and the distance between the second ground member 160 and the The distance between the feeder 140 is r5, wherein r1 ⁇ r2, r2 ⁇ r3, r4 ⁇ r1, r4 ⁇ r5.
  • the first radiator 110 is a circular patch
  • the second radiator 120 is a circular patch
  • the antenna ground 130 is a circular patch
  • the feeding elements 140 are respectively It is electrically connected to the center of the first radiator 110, the center of the second radiator 120 and passes through the center of the antenna ground 130 and is insulated from the antenna ground 130, which can more effectively excite the first frequency band and the second frequency band.
  • the feeder 140 is respectively electrically connected to the center of the first radiator 110, the center of the second radiator 120, passes through the center of the antenna ground 130, and is insulated from the antenna ground 130 , the TM01 mode of the first frequency band can be excited more effectively and the TM01 mode and TM02 mode of the second frequency band can be excited more effectively.
  • r1 ⁇ r2, r2 ⁇ r3, r4 ⁇ r1, r4 ⁇ r5 which can make the first radiator 110, the second radiator 120 and the antenna ground 130 in the antenna module 10 more easily laminated , and the first grounding element 150 and the second grounding element 160 are easier to set.
  • the plurality of first grounding elements 150 surround the periphery of the power feeding element 140 and are evenly arranged; the plurality of second grounding elements 160 surround the periphery of the power feeding element 140 , and set evenly.
  • the plurality of first grounding elements 150 surround the periphery of the feeding element 140 and are uniformly arranged so that the current of the excitation signal can flow between the first radiator 110 and the second radiator 110 .
  • the two radiators 120 are evenly distributed, so that the antenna module 10 has a better transceiving effect when transmitting and receiving electromagnetic wave signals in the first frequency band.
  • the plurality of second grounding elements 160 surround the periphery of the feeding element 140 and are evenly arranged, so that the current of the excitation signal can flow between the second radiator 120 and the antenna.
  • the ground 130 is evenly distributed, so that the antenna module 10 has a better sending and receiving effect when sending and receiving electromagnetic wave signals in the second frequency band.
  • the feeder 140 may not be electrically connected to the center of the first radiator 110 , the center of the second radiator 120 and the center of the antenna ground 130 . .
  • the first radiator 110, the second radiator 120, and the antenna ground 130 may not be circular, but other shapes, for example, the first A radiator 110 can also be a rectangular patch, an elliptical patch, a polygonal patch, etc.; correspondingly, the second radiator 120 can also be a rectangular patch, an elliptical patch, a polygonal patch, etc.;
  • the antenna ground 130 may also be a rectangular patch, an elliptical patch, a polygonal patch, or the like.
  • the center of the first radiator 110 is the first center O1
  • the center of the second radiator 120 is The second center O2
  • the center of the antenna ground 130 is the third center O3
  • the feeder 140 is respectively electrically connected to the first center O1, the second center O2, and passes through the third center O3 and is connected to the second center O3.
  • the antenna ground 130 is insulated.
  • the feeder 140 is electrically connected to the first center O1, the second center O2 and passes through the third center O3 respectively, so as to more effectively excite the first frequency band and the second frequency band.
  • the multiple first grounding elements 150 are used to excite the TM01 mode of the first frequency band
  • the multiple second grounding elements 160 are used to excite the TM01 and TM02 modes of the second frequency band mode, when the feeder 140 is respectively electrically connected to the first center O1 and the second center O2 and passes through the third center O3, it can more effectively excite the TM01 mode of the first frequency band and more effectively excite Start the TM01 mode and TM02 mode of the second frequency band.
  • FIG. 13 is a schematic cross-sectional view of an antenna module provided in another embodiment of the present application.
  • the first frequency band is high frequency
  • the second frequency band is low frequency
  • the antenna module 10 further includes a radio frequency chip 180
  • the radio frequency chip 180 is arranged on the antenna ground 130 away from the One side of the second radiator 120 is electrically connected to the feeding element 140 .
  • the antenna module 10 in this embodiment further includes a radio frequency chip 180 that can be combined into the antenna module 10 provided in any of the preceding embodiments.
  • the radio frequency chip 180 is used to generate the excitation signal, and transmit the excitation signal to the first radiator 110 , the second radiator 120 and the antenna ground 130 through the feeder 140 .
  • the first radio frequency chip 180 is arranged on the side of the antenna ground 130 away from the second radiator 120, and the first frequency band is low frequency, the The second frequency band is high frequency; then, when the antenna module 10 sends and receives electromagnetic wave signals in the second frequency band, it will be blocked by the first radiator 110 and the second radiator 120, and because the second frequency band is High frequency, the wavelength of the high frequency electromagnetic wave signal is relatively short, therefore, when the high frequency electromagnetic wave signal of the second frequency band is blocked, the transmitting and receiving effect of the antenna module 10 when transmitting and receiving the electromagnetic wave signal of the second frequency band is not good, This further leads to poor communication performance of the antenna module 10 .
  • the radio frequency chip 180 is arranged on the side of the antenna ground 130 away from the second radiator 120, and the first frequency band is high frequency, and the second frequency band It is a low frequency, therefore, it has better transceiving effect for the first frequency band of high frequency and the second frequency band of low frequency.
  • the radiator for transmitting and receiving high-frequency electromagnetic wave signals is arranged at the farthest point away from the radio frequency chip 180 of the antenna module 10 (that is, arranged on the top of the antenna module 10), in this embodiment, the antenna module 10 When transmitting and receiving high-frequency electromagnetic wave signals, it is not easily blocked by the antenna ground 130 and the radio frequency chip 180 in the antenna module 10, so it has better transmitting and receiving performance.
  • the antenna module 10 transmits and receives low-frequency electromagnetic wave signals in the second frequency band, the electromagnetic wave signals in the second frequency band are blocked by the first radiator 110 and the second radiator 120, but because the wavelength of the low-frequency electromagnetic wave signals is longer, it can go around Through the first radiator 110 and the second radiator 120 , it also has a better transceiving effect, which further makes the communication performance of the antenna module 10 better.
  • FIG. 14 is a schematic diagram of an antenna module provided in yet another embodiment of the present application.
  • the first radiator 110, the second radiator 120, and the antenna ground 130 are all conductive patches, and at least one of the first radiator 110 and the second radiator 120 has a gap ( crevices or grooves).
  • the first radiator 110 has a notch 110a
  • the second radiator 120 has the notch 120a as an example for illustration.
  • At least one of the first radiator 110 and the second radiator 120 has a slot or a groove, and the electromagnetic wave signal of the first frequency band and the electromagnetic wave signal of the second frequency band transmitted and received by the antenna module 10 must be In the case of , the size of the radiator provided with the slit or the groove is small, which is beneficial to the miniaturization of the antenna module 10 .
  • the slit or the groove is named as a notch, that is, the notch includes a slit or a groove.
  • the current distribution on the radiator with the gap is different from the current distribution without the gap. Therefore, in the transmission and reception When the frequency band of the electromagnetic wave signal is fixed, opening the gap can reduce the size of the radiator.
  • the first frequency band of the antenna module 10 provided in the first embodiment is equal to that of the antenna module 10 provided in the second embodiment
  • the second frequency band of the antenna module 10 provided by the first embodiment is equal to the second frequency band of the antenna module 10 provided in the second embodiment
  • the antenna module provided by the first embodiment The first radiator 110 in the group 10 is the same as the first radiator 110 of the antenna module 10 provided in the second embodiment
  • the antenna ground 130 in the antenna module 10 provided in the first embodiment is the same as that in the second embodiment
  • the antenna ground 130 of the provided antenna module 10 is the same
  • the second radiator 120 in the antenna module 10 provided in the second embodiment has a gap and the second radiator 120 in the antenna module 10 provided in the first embodiment
  • the body 120 does not have a gap, or the gap of the second radiator 120 in the antenna module 10 provided in the second embodiment is larger than the gap of the second radiator 120 in the antenna module 10 in the first embodiment, then , the size of the second radiator 120 in the second embodiment is larger than the size of the
  • the first frequency band of the antenna module 10 provided in the first embodiment is equal to the antenna module 10 provided in the second embodiment.
  • the antenna provided in the first embodiment The second radiator 120 in the module 10 is the same as the second radiator 120 of the antenna module 10 provided in the second embodiment, and the antenna ground 130 in the antenna module 10 provided in the first embodiment is the same as that in the second embodiment
  • the antenna ground 130 of the antenna module 10 provided in the second embodiment is the same, the first radiator 110 in the antenna module 10 provided in the second embodiment has a gap and the first radiator 110 in the antenna module 10 provided in the first embodiment
  • the radiator 110 does not have a gap, or, the gap of the first radiator 110 in the antenna module 10 provided in the second embodiment is larger than the gap of the first radiator 110 in the antenna module 10 in the first embodiment, Then, the size of the
  • the above embodiment is only described as an example where any one of the first radiator 110 and the second radiator 120 has a gap.
  • the first radiator Both 110 and the second radiator 120 have notches, which is more conducive to the miniaturization of the antenna module 10 .
  • the antenna ground 130 has a first notch 121 as an example for illustration, and for the convenience of illustrating the first radiator 110, the second radiator 120 and the antenna ground 130, the antenna of this embodiment
  • the first medium 171 and the second medium 172 are omitted in the module 10 .
  • FIG. 15 is a schematic diagram of an antenna module provided in another embodiment of the present application.
  • the first frequency band is greater than the second frequency band
  • the second radiator 120 is provided with a notch 121, wherein the notch 121 includes a slot or a groove, and the second radiator 120 And the orthographic projection of the antenna ground 130 on the plane where the first radiator 110 is located falls within the area where the first radiator 110 is located.
  • opening a notch 121 in the second radiator 120 can make the second radiator 120 have a smaller size; the notch 121 is opened through the second radiator 120, and the second The orthographic projection of the plane where the first radiator 110 is located where the radiator 120 and the antenna ground 130 is located falls within the area where the first radiator 110 is located, that is, the second radiator in the antenna module 10
  • the size of the body 120 is smaller than or equal to the size of the first radiator 110, and the size of the antenna ground 130 is smaller than or equal to the size of the first radiator 110, so that the overall size of the antenna module 10 is smaller small.
  • the first medium 171 and the second medium 172 are omitted in the antenna module 10 of this embodiment.
  • the following simulates the antenna module 10 provided by an embodiment of the present application.
  • the following various simulations are performed with the antenna module 10 provided in FIGS. 5 to 7 and their related descriptions.
  • the dielectric constant of the dielectric layer 170 is 3.5
  • the thickness t2 of the second dielectric layer 172 between the second radiator 120 and the antenna ground 130 1mm
  • the first The dielectric constant of the first dielectric layer 171 and the second dielectric layer 172 is 3.5
  • FIG. 16 is the S parameter curve diagram of the antenna module shown in FIG. 5 to FIG. 7;
  • FIG. 17 is the total efficiency curve of the antenna module system shown in FIG. 5 to FIG. 7 picture.
  • the abscissa is the frequency, the unit is GHz;
  • the ordinate is the S parameter, the unit is dB.
  • the antenna module 10 can work in the first frequency band and the second frequency band.
  • the first frequency band ranges from 7.75GHz to 8.25GHz; the second frequency band ranges from 6.25GHz to 6.75GHz. That is, the first frequency band is the CH9 frequency band, and the second frequency band is the CH5 frequency band.
  • the resonance frequency of the first frequency band is 8.0 GHz; the second frequency band is double resonance, wherein one resonance frequency is at 6.13 GHz and the other resonance frequency is at 6.5 GHz.
  • the abscissa is the frequency, the unit is GHz; the ordinate is the total efficiency of the system (Total Efficiency), the unit is dB. It can be seen from FIG. 17 that the antenna module 10 has higher overall system efficiency.
  • FIG. 18 is a 3D pattern of the antenna module 10 at a frequency of 6.5 GHz
  • FIG. 19 is a 2D pattern of the horizontal plane of the antenna module 10 at a frequency of 6.5 GHz.
  • the 3D pattern of the antenna module 10 at the 6.5GHz frequency point is similar to a bowl shape, that is, it has a monopole-like pattern;
  • a 2D pattern of points is visible, omnidirectional in the horizontal plane. Since the 2D pattern of the antenna module 10 at the 6.5 GHz frequency point is omnidirectional, the positioning effect of the antenna module 10 in the second frequency band is better, and can be applied to label positioning and finding objects.
  • the antenna module 10 there is a zero point in the antenna module 10 on the horizontal plane. On the one hand, it will cause the detection distance of the antenna module 10 to be unbalanced in all directions, and the detection distance at the zero point is not far; on the other hand, the angle measurement at the zero point will also cause There are inaccuracies.
  • the omnidirectionality of the antenna module 10 provided in the embodiment of the present application within the range of the horizontal plane can make the detection distance of the antenna module 10 in all directions relatively balanced, and the detection distance is relatively long.
  • the measurement at the zero point Angles are also more accurate.
  • Figure 20 is the 3D pattern of the antenna module at the 8.0GHz frequency point
  • Figure 21 is the 2D pattern of the antenna module at the 8.0GHz frequency point on the horizontal plane. It can be seen from FIG. 20 and FIG. 21 that the 3D pattern of the antenna module 10 at the frequency of 8.0 GHz is similar to a bowl shape, that is, it has a monopole-like pattern; the antenna module 10 at the frequency of 8.0 GHz A 2D pattern of points is visible, omnidirectional in the horizontal plane. Since the 2D pattern of the antenna module 10 at the frequency point of 8.0 GHz is omnidirectional, the positioning effect of the antenna module 10 in the first frequency band is better.
  • Figure 22 is the vertical/horizontal polarization ratio direction diagram of the antenna module at 6.5GHz frequency point
  • Figure 23 is the vertical/horizontal polarization ratio direction diagram of the antenna module at 8.0GHz frequency point picture. It can be seen from FIG. 22 and FIG. 23 that the antenna module 10 is vertically polarized at 6.5 GHz and 8.0 GHz. That is, the antenna module 10 is vertically polarized in the first frequency band, and the antenna module 10 is vertically polarized in the second frequency band.
  • Figure 24 is the electric field distribution diagram of the antenna module at 6.3GHz frequency
  • Figure 25 is the electric field distribution diagram of the antenna module at 6.5GHz frequency
  • Figure 26 is the antenna module The electric field distribution diagram of the group at 8.0GHz frequency point. It can be seen from Fig. 24 that the electric field of the antenna module 10 at the frequency point of 6.13 GHz is mainly concentrated on the third patch, and the direction of the electric field at the center is consistent with the direction of the electric field at the edge, which is a typical TM01 mode electric field distribution picture. It can be seen from Fig.
  • the electric field of the antenna module 10 at the frequency point of 6.5 GHz is also concentrated at the antenna ground 130, and the direction of the electric field at the center is opposite to the direction of the electric field at the edge, which is the electric field distribution diagram of the TM02 mode.
  • the electric field of the antenna module 10 is concentrated between the first radiator 110 and the antenna ground 130 at the frequency point of 8.0 GHz, and the electric field distribution diagram is a high frequency TM01 mode electric field distribution diagram.
  • the first radiator 110 , the second radiator 120 and the third radiator 130 are stacked in sequence and arranged at intervals, and the feeder 140 is used to electrically connect the The first radiator 110, the second radiator 120 and the antenna ground 130, and the first radiator 110 and the second radiator 120 are electrically connected by the first grounding member 150, and the The second ground member 160 is electrically connected to the second radiator 120 and the antenna ground 130 , so that the antenna module 10 has a smaller volume and a lower profile.
  • the antenna module 10 provided in the embodiment of the present application can excite the low-frequency TM01 mode and TM02 mode and the high-frequency TM01 mode, so that the antenna module 10 can operate at low frequencies and high frequencies.
  • the frequency average has a relatively wide bandwidth.
  • the antenna module 10 has dual frequency bands, which can realize omnidirectional vertically polarized radiation.
  • the radiation pattern is similar to a bowl-shaped pattern, which ensures omnidirectionality within the horizontal plane range. Therefore, the antenna module 10 has better positioning and communication effects.
  • the antenna module 10 is an antenna module of UWB technology as an example for illustration and description
  • the antenna module 10 is The antenna module of Bluetooth technology
  • the first frequency band and the second frequency band in the antenna module 10 are frequency bands supported by Bluetooth technology, for example, the first frequency band Bluetooth 5G frequency band (5.15GHz-5.85GHz)
  • the second frequency band is the Bluetooth 2.4G frequency band (2.4GHz-2.48GHz).
  • the antenna module 10 can also be an antenna module of Wireless Fidelity (Wireless Fidelity, WIFI) technology, and correspondingly, the first frequency band and the second frequency band in the antenna module 10 are WIFI Frequency bands supported by the technology.
  • WIFI Wireless Fidelity

Abstract

本申请提供一种天线模组及通信设备,天线模组包括第一辐射体、第二辐射体、天线地、馈电件、多个第一接地件及多个第二接地件;第二辐射体与第一辐射体层叠且间隔设置;天线地与第二辐射体层叠且间隔设置,且天线地设置于第二辐射体背离第一辐射体的一侧;馈电件电连接第一辐射体及第二辐射体;第一接地件电连接第一辐射体与第二辐射体;第二接地件电连接第二辐射体及天线地,天线模组收发第一频段及第二频段的电磁波信号,其中,第二频段与第一频段不同。本申请实施方式提供的天线模组的定位效果较好。

Description

天线模组及通信设备
本申请要求2021年6月30日递交的申请名称为“天线模组及通信设备”的申请号为202110748269.8的在先申请优先权,上述在先申请的内容以引用的方式并入本文本中。
技术领域
本申请涉及通信技术领域,具体涉及一种天线模组及通信设备。
背景技术
随着通信技术的发展,通信设备通常与其他通信设备进行通信,以实现对所述通信设备或者对所述其他通信设备的定位。具体地,通信设备中通常包括天线模组,通过所述天线模组收发电磁波信号实现定位功能。然而,相关技术中,当利用所述通信设备中的天线模组进行定位时,通常定位效果不好。
发明内容
第一方面,本申请实施例提供一种天线模组,所述天线模组包括:
第一辐射体;
第二辐射体,所述第二辐射体与所述第一辐射体层叠且间隔设置;
天线地,所述天线地与所述第二辐射体层叠且间隔设置,且所述天线地设置于所述第二辐射体背离所述第一辐射体的一侧;
馈电件,所述馈电件电连接所述第一辐射体及所述第二辐射体;
多个第一接地件,所述多个第一接地件电连接所述第一辐射体与所述第二辐射体;以及
多个第二接地件,所述多个第二接地件电连接所述第二辐射体及天线地,所述天线模组收发第一频段及第二频段的电磁波信号,其中,所述第二频段与所述第一频段不同。
第二方面,本申请实施例还提供一种通信设备,所述通信设备包括如第一方面所述的天线模组。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
为了更清楚的说明本申请实施方式中的技术方案,下面将对实施方式中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施方式提供的通信设备的示意图;
图2为图1中通信设备收发电磁波信号的示意图;
图3为本申请一实施方式提供的通信设备与基站进行通信时的示意图;
图4为多个基站对通信设备进行定位时的示意图;
图5为本申请一实施方式提供的天线模组的立体示意图;
图6为图5中所示的天线模组的立体分解图;
图7为图5中所示的天线模组沿I-I线的剖视图;
图8为本申请另一实施方式提供的天线模组的立体示意图;
图9为图8中提供的天线模组的分解示意图;
图10为图5中提供的天线模组的俯视图;
图11为图7中的天线模组部分部件的尺寸标识示意图;
图12为本申请另一实施方式提供的天线模组剖面示意图;
图13为本申请又一实施方式提供的天线模组的剖面示意图;
图14为本申请再一实施方式提供的天线模组的示意图;
图15为本申请另一实施方式提供的天线模组的示意图;
图16为图5至图7所示的天线模组的S参数曲线图;
图17为图5至图7所示的天线模组的系统的总效率曲线图;
图18为天线模组10在6.5GHz频点的3D方向图;
图19为天线模组10在6.5GHz频点的水平面的2D方向图;
图20为天线模组在8.0GHz频点的3D方向图;
图21为天线模组在8.0GHz频点的水平面的2D方向图;
图22为天线模组在6.5GHz频点的垂直/水平极化比方向图;
图23为天线模组在8.0GHz频点的垂直/水平极化比方向图;
图24为天线模组在6.3GHz频点的电场分布图;
图25为天线模组在6.5GHz频点的电场分布图;
图26为天线模组在8.0GHz频点的电场分布图。
标号说明:通信设备1,基站2,天线模组10,第一天线模组10a,第二天线模组10b,第一辐射体110,第二辐射体120,天线地130,馈电件140,第一馈电部141,第二馈电部142,第一接地件150,第二接地件160,介质层170,第一介质层171,第二介质层172,射频芯片180,第一区域101,第二区域102,第一中心O1,第二中心O2,第三中心O3,缺口110a、120a。
具体实施方式
第一方面,本申请提供一种天线模组,所述天线模组包括:
第一辐射体;
第二辐射体,所述第二辐射体与所述第一辐射体层叠且间隔设置;
天线地,所述天线地与所述第二辐射体层叠且间隔设置,且所述天线地设置于所述第二辐射体背离所述第一辐射体的一侧;
馈电件,所述馈电件电连接所述第一辐射体及所述第二辐射体;
多个第一接地件,所述多个第一接地件电连接所述第一辐射体与所述第二辐射体;以及
多个第二接地件,所述多个第二接地件电连接所述第二辐射体及天线地,所述天线模组收发第一频段及第二频段的电磁波信号,其中,所述第二频段与所述第一频段不同。
其中,所述多个第一接地件用于激励起第一频段的TM01模式;所述多个第二接地件用于激励起第二频段的TM01和TM02模式。
其中,所述天线模组还包括介质层,所述介质层包括:
第一介质层,所述第一介质层设置于所述第一辐射体与所述第二辐射体之间;以及
第二介质层,所述第二介质层设置于所述第二辐射体与所述天线地之间;
所述多个第二接地件环绕所述馈电件设置,且所述第二接地件与所述馈电件之间的距离r满足:
Figure PCTCN2022091734-appb-000001
其中,1.0≤a≤1.5,λ 0为第二频段的电磁波信号在自由空间的波长,ε r为所述介质层的等效介电常数,其中,所述等效介电常数和所述第一介质层的介电常数及第二介质层的介电常数相关。
其中,1.1≤a≤1.3。
其中,所述天线模组在所述第一频段为垂直极化,且所述天线模组在所述第二频段为垂直极化。
其中,所述第一介质层的介电常数越大,所述第一频段及所述第二频段越往低偏移;所述第一介质层的介电常数越小,所述第一频段及所述第二频段越往高偏移;且所述第二介质层的介电常数越大, 所述第一频段及所述第二频段越往低偏移;所述第二介质层的介电常数越小,所述第一频段及所述第二频段越往高偏移。
其中,所述多个第一接地件环绕所述馈电件设置,所述多个第二接地件环绕所述馈电件设置,且所述多个第二接地件在所述第一辐射体所在的平面内的投影环绕所述多个第一接地件在所述第一辐射体所在的平面内的投影。
其中,所述第一接地件至少部分正对所述第二接地件,且所述第一接地件与所述第二接地件相连。
其中,所述第一辐射体的尺寸越小,所述第一频段往高偏移,所述第一辐射体的尺寸越大,所述第一频段越往低偏移;所述第二辐射体的尺寸越小,所述第二频段越往高偏移,所述第二辐射体的尺寸越大,所述第二频段越往低偏移。
其中,所述第一接地件的数目越多,所述第一频段越往往高偏移;所述第一接地件的数目越少,所述第一频段越往低偏移。
其中,所述第二接地件的数目越多,所述第二频段越往高偏移;所述第二接地件的数目越少,所述第二频段越往低偏移。
其中,所述第一频段为高频,所述第二频段为低频。
其中,所述第一频段的范围为7.75GHz~8.25GHz;所述第二频段的范围为6.25GHz~6.75GHz。
其中,所述第一辐射体、所述第二辐射体及所述天线地均为圆形导电贴片,所述馈电件分别电连接至所述第一辐射体的圆心及所述第二辐射体的圆心,且穿过所述天线地的圆心且与所述天线地绝缘设置,其中,所述第一辐射体的半径为r1,所述第二辐射体的半径为r2,所述天线地的半径为r3,所述第一接地件与所述馈电件的距离为r4,所述第二接地件与所述馈电件的距离为r5,其中,r1≤r2,r2≤r3,r4≤r1,r4≤r5。
其中,r1=10mm±2mm,r2=14mm±2mm,r3=20mm±2mm,r4=6.75mm±2mm,r5=9.8mm±2mm。
其中,所述天线模组还包括:
射频芯片,所述射频芯片设置于所述天线地背离所述第二辐射体的一侧,且电连接所述馈电件。
其中,所述第一辐射体的中心为第一中心,所述第二辐射体的中心为第二中心,所述天线地的中心为第三中心,所述馈电件分别电连接至所述第一中心及第二中心,且所述馈电件穿过第三中心且与所述天线地绝缘设置。
其中,所述第一辐射体、所述第二辐射体及所述天线地均为导电贴片,所述第一辐射体及所述第二辐射体中的至少一个开设有缝隙或凹槽。
其中,所述第一频段大于所述第二频段,所述第二辐射体开设有缺口,其中,所述缺口包括缝隙或凹槽,且所述第二辐射体及所述天线地在所述第一辐射体所在的平面内的正投影落在所述第一辐射体所在的区域内。
第二方面,本申请实施方式提供一种通信设备,其特征在于,所述通信设备包括如第一方面及第一方面任意一种所述的天线模组。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
本申请提供一种天线模组10,应用于通信设备1,所述通信设备1包括但不仅限于为手机、手表、互联网设备(mobile internet device,MID)、电子书、便携式播放站(Play Station Portable,PSP)或个 人数字助理(Personal Digital Assistant,PDA)等具有通信功能的设备。在一实施方式中,所述天线模组10为利用超宽带(Ultra Wide Band,UWB)技术的天线模组10。所述UWB技术的天线模组10不是采用载波,而是采用纳秒至微秒级的非正弦波窄脉冲传输数据,因此,所占的频谱范围较宽,适用于高速、近距离通信。FCC规定,UWB技术的天线模组10的工作频段范围从3.1GHz到10.6GHz,最小工作频宽为500MHz。下面结合图1及图2对本申请以实施方式提供的天线模组的测角原理进行介绍。图1为本申请一实施方式提供的通信设备的示意图;图2为图1中通信设备收发电磁波信号的示意图。所述通信设备1包括两个天线模组,为了方便描述,两个天线模组分别命名为第一天线模组10a及第二天线模组10b。
请参阅图2,在图2中,以P 1点表示第一天线模组10a,以P 2点表示第二天线模组10b,以P 3点表示电磁波信号过来的位置;P 4点表示P 1和P 2连线的中点。在本实施方式中,θ 1表示P 1P 2连线与P 3P 1连线之间的夹角;θ 2表示P 1P 2连线与P 3P 2的连线之间的夹角;θ表示P 1P 2的连线与P 3P 4的连线之间的夹角;α表示θ的余角;D表示P 3P 4之间的距离;λ表示第一天线模组10a及第二天线模组10b收发的电磁波信号的波长;f表示第一天线模组10a及第二天线模组10b收发的电磁波信号的频率;d max表示第一天线模组10a及第二天线模组10b的间距的最大值。
其中,D远大于λ,则有θ 1≈θ 2≈θ
由于所述第一天线模组10a及第二天线模组10b为利用UWB技术的天线模组,因此:
f的范围为6.25GHz~8.25GHz;
相应地,
λ的范围为36.4mm~48mm,则有:
λ/2的范围为18.2mm~24mm。
d max=18mm;
d 1=d cos θ=d sin α     (1)
电磁波信号达到第一天线模组10a和第二天线模组10b的时间差t 1为:
Figure PCTCN2022091734-appb-000002
其中,c表示光速,由于t 1表示电磁波信号达到第一天线模组10a和第二天线模组10b的时间差,因此,也称为到达时间差(Time Difference of Arrival,TDOA)
电磁波信号达到第一天线模组10a和第二天线模组10b的相位差
Figure PCTCN2022091734-appb-000003
为:
Figure PCTCN2022091734-appb-000004
由于
Figure PCTCN2022091734-appb-000005
表示电磁波信号达到第一天线模组10a和第二天线模组10b的相位差,因此,也称为到达相位差(Phase Difference of Arrival,PDOA)。
Figure PCTCN2022091734-appb-000006
其中,α表示达到角度(Angle of Arrival,AOA)。由(4)可见,到达角度(AOA)α和到达相位差(PDOA)
Figure PCTCN2022091734-appb-000007
相关。
下面对本申请的测距原理进行介绍。请一并参阅图3及图4,图3为本申请一实施方式提供的通信设备与基站进行通信时的示意图;图4为多个基站对通信设备进行定位时的示意图。所述通信设备1发射第一信号至所述基站2,所述基站2接收到第一信号,并经过反应时间T reply后发射第二信号至所述通信设备1,所述通信设备1接收到所述第二信号,其中,所述通信设备1接收到所述第二信号以及所述通信设备1发射所述第一信号的时间差为T loop,那么,则有:
TOF=(T loop-T reply)/2       (5)
D=c*TOF       (6)
其中,D为通信设备1与所述基站的距离,c为光速=3*10 8m/s。
所述通信设备1进行定位的算法为TDOA算法,即,利用时间差进行定位的算法。通过测量信号达到基站的时间,可确定出通信设备1与基站之间的距离,通过比较通信设备1发出的第一信号达到多个不同的基站2之间的时间差,就能做出以通信设备1为焦点、距离差为长轴的双曲线的交点,该交点即为通信设备1的位置。其中,所述距离差等于光速c*时间差。
下面对天线模组10的进行详细介绍。所述天线模组10可为前面所述通信设备1中的第一天线模组10a,也可以为前面通信设备1中的第二天线模组10b,在此不做限定。需要说明的是,虽然前面对所述天线模组10在通信设备1中一种应用场景进行介绍,但是可以理解地是,上述通信设备1中天线模组10(第一天线模组10a及第二天线模组10b)并不应当理解为对本申请接下来提供的天线模组10的具体结构的限定。
请参阅图5、图6及图7,图5为本申请一实施方式提供的天线模组的立体示意图;图6为图5中所示的天线模组的立体分解图;图7为图5中所示的天线模组沿I-I线的剖视图。所述天线模组10包括第一辐射体110、第二辐射体120、天线地130、馈电件140、多个第一接地件150及多个第二接地件160。所述第二辐射体120与所述第一辐射体110层叠且间隔设置。所述天线地130与所述第二辐射体120层叠且间隔设置,且所述天线地130设置于所述第二辐射体120背离所述第一辐射体110的一侧。所述多个馈电件140分别电连接所述第一辐射体110及所述第二辐射体120。所述第一接地件150电连接所述第一辐射体110与所述第二辐射体120。所述多个第二接地件160电连接所述第二辐射体120及天线地130,所述天线模组10收发第一频段及第二频段的电磁波信号,其中,所述第二频段与所述第一频段不同。
所述第一辐射体110可以为但不仅限于为导电贴片。所述第一辐射体110的形状可以为圆形、矩形、椭圆形、多边形等。在本实施方式中,以所述第一辐射体110为圆形导电贴片为例进行示意。
所述第二辐射体120可以为但不仅限于为导电贴片。所述第二辐射体120的形状可以为圆形、矩形、椭圆形、多边形等。所述第二辐射体120的形状可以与所述第一辐射体110的形状相同,也可以与所述第一辐射体110的形状不同。在本实施方式中,以所述第二辐射体120为圆形导电贴片为例进行示意。
所述天线地130可以为但不仅限于为导电贴片。所述天线地130的形状可以为圆形、矩形、椭圆形、多边形等。所述天线地130的形状可以与所述第一辐射体110的形状相同,也可以与所述第一辐射体110的形状不同;相应地,所述天线地130的形状可以与所述第二辐射体120的形状相同,也可以与所述第二辐射体120的形状不同。在本实施方式中,以所述天线地130为圆形导电贴片为例进行示意。
在本实施方式中,所述第二辐射体120与所述第一辐射体110层叠且间隔设置,所述天线地130 与所述第二辐射体120层叠且间隔设置,且所述天线地130设置与所述第二辐射体120背离所述第一辐射体110的一侧,即,所述第一辐射体110、所述第二辐射体120及所述天线地130依次层叠且间隔设置。在本实施方式中,以所述第一辐射体110、所述第二辐射体120及所述天线地130的层叠方向为Z轴为例,所述第一辐射体110、所述第二辐射体120及所述天线地130均位于XY平面内为例进行示意。可以理解地,当所述天线模组10的摆放位置不同时,所述第一辐射体110、所述第二辐射体120及所述天线地130的层叠方向在XYZ坐标轴的方向不同,且所述第一辐射体110所在的平面、所述第二辐射体120所在的平面及所述天线地130所在的平面在XYZ坐标轴中的平面不同。
在本实施方式中,以所述第一辐射体110与所述第二辐射体120之间设置第一介质层171,且以所述第二辐射体120与所述天线地130之间设置第二介质层172,且所述第一介质层171与所述第二介质层172均不为气体为例进行示意。在本实施方式中,所述第一介质层171及所述第二介质层172可以为但不仅限于为为塑料、塑料等。在其他实施方式中,所述第一介质层171与所述第二介质层172均为气体,换而言之,所述第一辐射体110与所述第二辐射体120之间设置气体,所述第二辐射体120与所述天线地130之间设置气体。当所述第一介质层171及所述第二介质层172为气体时,所述气体的成分和所述天线模组10所处的环境相关,比如,所述天线模组10设置于空气中时,所述第一介质层171及所述第二介质层172均为空气,当所述天线模组10处于氧气中时,所述第一介质层171及所述第二介质层172为氧气。当所述第一介质层171及所述第二介质层172为气体时,相当于所述第一辐射体110与所述第二辐射体120间隔设置,所述第二辐射体120与所述天线地130之间间隔设置。本实施方式中,对所述第一介质层171及所述第二介质层172是否为气体不做限定,只要满足所述第一辐射体110与所述第二辐射体120间隔设置,且所述第二辐射体120与所述天线地130间隔设置即可。
所述馈电件140电连接所述第一辐射体110及所述第二辐射体120及所述天线地130的方式可包括但不仅限于包括如下方式。在本实施方式中,所述第一辐射体110、所述第二辐射体120及所述天线地130上均设置有通孔,所述馈电件140设置于所述第一辐射体110的通孔、所述第二辐射体120的通孔及所述天线地130的通孔内,且所述馈电件140与所述第一辐射体110及所述第二辐射体120电连接,且所述馈电件140与所述天线地130绝缘设置。在其他实施方式中,请一并参阅图8及图9,图8为本申请另一实施方式提供的天线模组的立体示意图;图9为图8中提供的天线模组的分解示意图。所述第一辐射体110、所述第二辐射体120及所述天线地130上均不开设通孔,所述馈电件140的一部分(第一馈电部141)设置于所述第一辐射体110及所述第二辐射体120之间,且电连接所述第一辐射体110及所述第二辐射体120;所述馈电件140的另一部分(第二馈电部142)设置于所述第二辐射体120与所述天线地130之间,且电连接所述第二辐射体120。在本实施方式中,以所述第一辐射体110、所述第二辐射体120及所述天线地130上均设置通孔,所述馈电件140设置于所述第一辐射体110的通孔、所述第二辐射体120的通孔以及所述天线地130的通孔中为例进行示意。
所述馈电件140用于接收激励信号,并通过与所述第一辐射体110及所述第二辐射体120的电连接关系,将所述激励信号传输至所述第一辐射体110及所述第二辐射体120。
所述第一接地件150电连接所述第一辐射体110与所述第二辐射体120。在本实施方式中,所述第一辐射体110上设置有多个贯孔,所述第二辐射体120上设置有多个贯孔,所述第一接地件150设置在第一辐射体110的贯孔以及所述第二辐射体120的贯孔内。在其他实施方式中,所述第一辐射体110、所述第二辐射体120均不开设贯孔,所述第一接地件150设置于所述第一辐射体110与所述第二辐射体120之间,且电连接所述第一辐射体110及所述第二辐射体120。在本实施方式的示意图中,以所述第一接地件150设置于所述第一辐射体110的贯孔以及所述第二辐射体120的贯孔内为例进行示意。进一步地,在本实施方式中,以所述多个第一接地件150环绕所述馈电件140设置为例进行示意。
所述第二接地件160电连接所述第二辐射体120与所述天线地130,换而言之,所述第二接地件160用于将所述第二辐射体120及接地。在本实施方式中,所述第二辐射体120上设置有多个贯孔,所述天线地130上设置有多个贯孔,所述第二接地件160设置在第二辐射体120的贯孔以及所述天线地130的贯孔内,且所述第二接地件160分别与所述第二辐射体120及所述天线地130电连接。在其他实施方式中,所述第二辐射体120、所述天线地130均不开设贯孔,所述第二接地件160设置于所述第二 辐射体120与所述天线地130之间,且电连接所述第二辐射体120及所述天线地130。在本实施方式的示意图中,以所述第二接地件160设置于所述第二辐射体120的贯孔以及所述天线地130的贯孔内为例进行示意。进一步地,在本实施方式中,以所述多个第二接地件160环绕所述馈电件140为例进行示意。
本实施方式的天线模组10可收发第一频段的电磁波信号及第二频段的电磁波信号,所述第一频段与所述第二频段不同。在一实施方式中,所述第一频段为高频,所述第二频段为低频。在其他实施方式中,所述第一频段为低频,所述第二频段为高频。所述第一频段及所述第二频段的频段和所述第一辐射体110、第二辐射体120及所述天线地130的尺寸相关,也和第一辐射体110与所述第二辐射体120之间的介质层170的介电常数,以及第二辐射体120与所述天线地130之间的介质层170的介电常数相关。可以理解地,本实施方式中第一频段为高频,所述第二频段为低频不应当理解为对本申请实施方式提供的天线模组10能够收发的电磁波信号的频段的限定,只要满足所述第一频段与所述第二频段不同即可。
本申请实施方式提供的天线模组10,可激励起第一频段的电磁波信号及第二频段的电磁波信号,使得所述天线模组10具有较宽的带宽,从而使得所述天线模组10利进行定位时具有较好的通信效果及定位效果。此外,本申请实施方式提供的天线模组10,利用所述馈电件140电连接所述第一辐射体110及所述第二辐射体120,且利用所述第一接地件150电连接所述第一辐射体110与所述第二辐射体120,以及利用所述第二接地件160电连接所述第二辐射体120与所述天线地130,从而使得所述天线模组10具有较小的体积以及较低的剖面。
在本实施方式中,所述多个第一接地件150用于激励起第一频段的TM01模式;所述多个第二接地件160用于激励起第二频段的TM01和TM02模式。稍后会结合仿真图对所述第一频段的TM01模式以及第二频段的TM01模式及TM02模式进行说明。
请一并参阅图10及图11,图10为图5中提供的天线模组的俯视图;图11为图7中的天线模组部分部件的尺寸标识示意图。结合图5至图7,所述天线模组10还包括介质层170,所述介质层170包括第一介质层171及第二介质层172。所述第一介质层171设置于所述第一辐射体110与所述第二辐射体120之间。所述第二介质层172设置于所述第二辐射体120与所述天线地130之间。在图10中所示的天线模组中,为了方便示意出第一辐射体110、第二辐射体120及天线地130之间,省略了第一介质层171及第二介质层172。所述多个第二接地件160环绕所述馈电件140设置,且所述第二接地件160与所述馈电件140之间的距离r满足:
Figure PCTCN2022091734-appb-000008
其中,1.0≤a≤1.5,λ 0为第二频段的电磁波信号在自由空间的波长,ε r为所述介质层170的等效介电常数,其中,所述等效介电常数和所述第一介质层171的介电常数及第二介质层172的介电常数相关。
通常情况下,所述第二频段的TM01模式及TM02模式相隔得比较远,所述多个第二接地件160与所述馈电件140之间的距离满足条件(1)时,所述多个第二接地件160位于第二频段的TM02模式的电压零点附近,当所述多个第二接地件160位于第二频段的TM02模式的电压零点附近时,可使得原本相隔得比较远的TM01模式和TM02模式相互靠近,即,使得所述TM01模式往高频偏移,TM02模式向低频偏移,更容易形成双谐振。当形成所述双谐振时,所述第二频段的带宽较大。
当a的值满足:1.0≤a≤1.5,使得所述r位于所述第二频段的TM02模式的零点附近,所述TM01模式往高频偏移,TM02模式向低频偏移,更容易形成双谐振。当形成所述双谐振时,所述第二频段的带宽较大。
在一实施方式中,a的值满足:1.1≤a≤1.3。当a的值满足:1.1≤a≤1.3时,所述天线模组10在所述第二频段内形成双谐振且第二频段具有更大的带宽。
在一实施方式中,所述a=1.2,即,所述多个第二接地件160位于第二频段的TM02模式的电压零点处,从而使得所述天线模组10在所述第二频段内形成双谐振且所述第二频段的带宽更大。
下面对所述天线模组10中的介质层170对所述第一频段及所述第二频段的影响进行介绍。具体而 言,当所述介质层170的等效介电常数越大时,所述第一频段及所述第二频段越往低频偏移;当所述介质层170的等效介电常数越小时,所述第一频段及所述第二频段越往高频偏移。
当所述第一介质层171的介电常数一定的情况下,当所述第二介质层172的介电常数越大,则所述介质层170的等效介电常数越大;相应地,在所述第一介质层171的介电常数一定的情况下,当所述第二介质层172的介电常数越小时,则所述介质层170的等效介电常数越小。
在所述第二介质层172的介电常数一定的情况下,当所述第一介质层171的介电常数越大,则所述介质层170的等效介电常数越大;相应地,在所述第二介质层172的介电常数一定的情况下,当所述第一介质层171的介电常数越小时,则所述介质层170的等效介电常数越小。
具体地,在所述第二介质层172的介电常数一定的情况下,所述第一介质层171的介电常数越大,所述第一频段及所述第二频段越往低偏移;所述第一介质层171的介电常数越小,所述第一频段及所述第二频段越往高偏移。
举例而言,在一种情况下,所述第一介质层171的介电常数为ε r1,所述第二介质层172的介电常数为ε r2,相应地,所述第一频段为F1,所述第二频段为F2;在另一种情况下,所述第一介质层171的介电常数为ε’ r1,所述第二介质层172的介电常数为ε’ r2,相应地,所述第一频段为F1’,所述第二频段为F2’。其中,ε r2=ε’ r2,若ε’ r1>ε r1的情况下,则F1’<F1,F2’<F2;若ε’ r1<ε r1的情况下,则F1’>F1,F2’>F2。
具体地,在所述第一介质层171的介电常数一定的情况下,所述第二介质层172的介电常数越大,所述第一频段及所述第二频段越往低偏移;所述第二介质层172的介电常数越小,所述第一频段及所述第二频段越往高偏移。
举例而言,在一种情况下,所述第一介质层171的介电常数为ε r1,所述第二介质层172的介电常数为ε r2,相应地,所述第一频段为F1,所述第二频段为F2;在另一种情况下,所述第一介质层171的介电常数为ε’ r1,所述第二介质层172的介电常数为ε’ r2,相应地,所述第一频段为F1’,所述第二频段为F2’。其中,ε r1=ε’ r1,若ε’ r2>ε r2的情况下,则F1’<F1,F2’<F2;若ε’ r2<ε r2的情况下,则F1’>F1,F2’>F2。
在本实施方式中,所述多个第一接地件150环绕所述馈电件140设置,所述多个第二接地件160环绕所述馈电件140设置,且所述多个第二接地件160在所述第一辐射体110所在的平面内的投影环绕所述多个第一接地件150在所述第一辐射体110所在的平面内的投影。
请一并参阅图12,图12为本申请另一实施方式提供的天线模组剖面示意图。在本实施方式中,所述第一接地件150至少部分正对所述第二接地件160,且所述第一接地件150与所述第二接地件160相连。
所述第一接地件150的至少部分正对所述第二接地件160,且所述第一接地件150与所述第二接地件160相连,在制备时,相连的第一接地件150和第二接地件160可在同一制程中制备形成,从而节约所述天线模组10的制备时间。举例而言,当制备所述天线模组10时,在所述第一辐射体110、所述第二辐射体120及所述天线地130上均形成多个通孔,以第一辐射体110的一个通孔、所述第二辐射体120的一个通孔及所述天线地130上的一个通孔为例说明所述第一接地件150及所述第二接地件160的制备过程。所述第一辐射体110的所述一个通孔、所述第二辐射体120的所述一个通孔及所述天线地130的所述一个通孔至少部分正对,在所述第一辐射体110的所述一个第一通孔、所述第二辐射体120 的所述一个通孔及所述天线地130的所述一个通孔中形成导电材料,位于所述第一辐射体110与所述第二辐射体120之间的导电材料形成为所述第一接地件150,位于所述第二辐射体120与所述天线地130之间的导电材料形成为所述第二接地件160。由此可见,所述第一接地件150及所述第二接地件160可在形成导电材料的制程中形成,因此,可节约所述天线模组10的制备时间。
所述第一辐射体110的尺寸对所述第一频段的影响较为明显,所述第二辐射体120的尺寸对所述第二频段的影响较为明显,下面对所述第一辐射体110的尺寸对所述第一频段,以及所述第二辐射体120的尺寸对所述第二频段的影响介绍如下。
所述第一辐射体110尺寸越小,所述第一频段越往高偏移;所述第一辐射体110的尺寸越大,所述第一频段越往低偏移。
具体地,在所述第二辐射体120的尺寸一定的情况下及所述天线地130的尺寸一定的情况下,所述第一辐射体110的尺寸越小,所述第一频段越往高频偏移;所述第一辐射体110的尺寸越大,所述第一频段越往低频偏移。举例而言,在一种实施方式提供的天线模组10中,所述第一辐射体110的尺寸为L1,所述第二辐射体120的尺寸为L2,所述天线地130的尺寸为L3,相应地,所述第一频段为F1,所述第二频段为F2;在另一种实施方式中,所述第一辐射体110的尺寸为L1’,所述第二辐射体120的尺寸为L2’,所述天线地130的尺寸为L3’,相应地,所述第一频段为F1’,若L2’=L2,L3’=L3,且L1’>L1的情况下,则,F1’<F1;若L2’=L2,L3’=L3,且L1’<L1的情况下,则F1’>F1。
相应地,所述第二辐射体120尺寸越小,所述第二频段越往高偏移;所述第二辐射体120的尺寸越大,所述第二频段越往低偏移。若L1’=L1,L3’=L3,且L2’>L2的情况下,则且F2’<F2;若L1’=L1,L3’=L3,且L2’<L2的情况下,则F2’>F2。
可以理解地,在本实施方式中,所述第一辐射体110、所述第二辐射体120及所述天线地130均为圆形贴片,所以以所述第一辐射体110、所述第二辐射体120及所述天线地130的尺寸可选取为半径。当所述第一辐射体110、所述二辐射体及所述天线地130为长方形时,所述第一辐射体110、所述第二辐射体120及所述天线地130的尺寸均可选取为长度。所述第一辐射体110、所述第二辐射体120及所述天线地130的尺寸可以为但不仅限于为半径、长度等,只要所述第一辐射体110、所述第二辐射体120及所述天线地130的尺寸和所述天线模组10收发第一频段及所述第二频段的电磁波信号有关即可。
所述第一接地件150的数目对所述第一频段具有影响,下面对所述第一接地件150的数目对所述第一频段的影响详细介绍如下。具体地,所述第一接地件150的数目越多,所述第一频段越往往高偏移;所述第一接地件150的数目越少,所述第一频段越往低偏移。
举例而言,在一种实施方式中提供的天线模组10中,所述第一接地件150的数目为N1,相应地,所述第一频段为F1;在另一种实施方式中,所述第一接地件150的数目为N1’,相应地,所述第一频段为F1’。若N1’>N1的情况下,则F1’>F1。若N1’<N1的情况下,则F1’<F1。
所述第二接地件160的数目对所述第二频段具有影响,下面对所述第二接地件160的数目对所述第二频段的影响介绍如下。具体地,所述第二接地件160的数目越多,所述第二频段越往高偏移;所述第二接地件160的数目越少,所述第二频段越往低偏移。
举例而言,在一种实施方式中提供的天线模组10中,所述第二接地件160的数目为N2,相应地,所述第二频段为F2;在另一种实施方式中,所述第二接地件160的数目为N2’,相应地,所述第二频段为F2’。若N2’>N2的情况下,则F2’>F2。若N2’<N2的情况下,则F2’<F2。
在一实施方式中,所述第一频段为高频,所述第二频段为低频。在另一实施方式中,所述第一频段为低频,所述第二频段为高频。在本实施方式的示意图中,均以所述第一频段为高频且所述二频段为低频来绘制所述第一辐射体110、所述第二辐射体120及所述天线地130的尺寸。
在一实施方式中,所述第一频段的范围为7.75GHz~8.25GHz;所述第二频段的范围为6.25GHz~6.75GHz。即,所述第一频段为CH9频段,所述第二频段为CH5频段。
请继续参阅图5至图7,所述第一辐射体110、所述第二辐射体120及所述天线地130均为圆形导电贴片,所述馈电件140分别电连接至所述第一辐射体110的圆心、所述第二辐射体120的圆心及穿过所述天线地130的圆心且与所述天线地130绝缘设置,其中,所述第一辐射体110的半径为r1,所述第 二辐射体120的半径为r2,所述天线地130的半径为r3,所述第一接地件150与所述馈电件140的距离为r4,所述第二接地件160与所述馈电件140的距离为r5,其中,r1≤r2,r2≤r3,r4≤r1,r4≤r5。
在本实施方式中,所述第一辐射体110为圆形贴片、所述第二辐射体120为圆形贴片及所述天线地130为圆形贴片,所述馈电件140分别电连接至所述第一辐射体110的圆心、所述第二辐射体120的圆心且穿过所述天线地130的圆心且与所述天线地130绝缘设置,可更有效地激励起第一频段及第二频段。结合前面的一个实施方式,即,当所述多个第一接地件150用于激励起第一频段的TM01模式;所述多个第二接地件160用于激励起第二频段的TM01和TM02模式,所述馈电件140分别电连接至所述第一辐射体110的圆心、所述第二辐射体120的圆心且穿过所述天线地130的圆心且与所述天线地130绝缘设置时,可更有效地激励起第一频段的TM01模式以及更有效地激励起第二频段的TM01模式和TM02模式。
此外,r1≤r2,r2≤r3,r4≤r1,r4≤r5,可使得所述天线模组10中的第一辐射体110、所述第二辐射体120及所述天线地130更容易层叠,且第一接地件150及所述第二接地件160更容易设置。
在本实施方式中,所述多个第一接地件150环绕在所述馈电件140的周缘,且均匀设置;所述多个第二接地件160环绕在所述馈电件140的周缘,且均匀设置。
在本实施方式中,所述多个第一接地件150环绕在所述馈电件140的周缘,且均匀设置,可使得所述激励信号的电流在所述第一辐射体110及所述第二辐射体120上均匀分布,进而使得所述天线模组10收发第一频段的电磁波信号时具有较好的收发效果。在本实施方式中,所述多个第二接地件160环绕在所述馈电件140的周缘,且均匀设置,可使得所述激励信号的电流在所述第二辐射体120与所述天线地130上均匀分布,进而使得所述天线模组10收发第二频段的电磁波信号时具有较好的收发效果。
当然,在其他实施方式中,所述馈电件140也可不电连接至所述第一辐射体110的圆心、所述第二辐射体120的圆心以及且不穿过所述天线地130的圆心。
可以理解地,在其他实施方式中,所述第一辐射体110、所述第二辐射体120及所述天线地130也可以不为圆形,而是为其他的形状,比如,所述第一辐射体110也可为矩形贴片、椭圆形贴片、多边形贴片等;相应地,所述第二辐射体120也可以为矩形贴片、椭圆形贴片、多边形贴片等;所述天线地130也可为矩形贴片、椭圆形贴片、多边形贴片等。无论所述第一辐射体110、所述第二辐射体120及所述天线地130为什么形状,所述第一辐射体110的中心为第一中心O1,所述第二辐射体120的中心为第二中心O2,所述天线地130的中心为第三中心O3,所述馈电件140分别电连接至所述第一中心O1、第二中心O2以及穿过第三中心O3且与所述天线地130绝缘设置。所述馈电件140分别电连接至所述第一中心O1、第二中心O2且穿过及第三中心O3,可更有效地激励起第一频段及第二频段。结合前面的一个实施方式,即,当所述多个第一接地件150用于激励起第一频段的TM01模式;所述多个第二接地件160用于激励起第二频段的TM01和TM02模式时,所述馈电件140分别电连接至所述第一中心O1、第二中心O2且穿过第三中心O3时,可更有效地激励起第一频段的TM01模式以及更有效地激励起第二频段的TM01模式和TM02模式。
在本实施方式中,所述天线模组10为了收发第一频段的电磁波信号以及第二频段的电磁波信,选取r1~r5的尺寸如下:r1=10mm±2mm,r2=14mm±2mm,r3=20mm±2mm,r4=6.75mm±2mm,r5=9.8mm±2mm。
请一并参阅图13,图13为本申请又一实施方式提供的天线模组的剖面示意图。在本实施方式中,所述第一频段为高频,所述第二频段为低频,所述天线模组10还包括射频芯片180,所述射频芯片180设置于所述天线地130背离所述第二辐射体120的一侧,且电连接所述馈电件140。本实施方式中的天线模组10还包括射频芯片180可结合到前面任意实施方式提供的天线模组10中。在此仅以所述天线模组10包括所述射频芯片180结合到前面的一种实施方式介绍的天线模组10中为例进行示意,不应当理解为对本申实施方式提供的天线模组10的限定。
所述射频芯片180用于产生所述激励信号,并将所述激励信号通过所述馈电件140传输至所述第一辐射体110、所述第二辐射体120及所述天线地130。
为了说明本实施方式的有益效果,进行如下假设:倘若所述第一射频芯片180设置于所述天线地 130背离所述第二辐射体120的一侧,且所述第一频段为低频,所述第二频段为高频;那么,所述天线模组10收发第二频段的电磁波信号时,会被所述第一辐射体110及第二辐射体120遮挡,且由于所述第二频段为高频,高频的电磁波信号的波长较短,因此,高频的第二频段的电磁波信号被遮挡时,会导致所述天线模组10收发第二频段的电磁波信号时的收发效果不好,进而导致所述天线模组10的通信性能不好。
本实施方式提供的天线模组10中,所述射频芯片180设置于所述天线地130背离所述第二辐射体120的一侧,且所述第一频段为高频,所述第二频段为低频,因此,对于高频的第一频段及低频的第二频段而言,均具有较好的收发效果。具体地,由于收发高频的电磁波信号的辐射体设置于天线模组10背离射频芯片180的最远处(即,设置于天线模组10的顶部),因此,本实施方式中,天线模组10收发高频的电磁波信号时,不容易被天线模组10中的天线地130及射频芯片180遮挡,因此,具有较好的收发性能。虽然天线模组10收发低频的第二频段的电磁波信号时,第二频段的电磁波信号被第一辐射体110及第二辐射体120遮挡,但是,由于低频的电磁波信号的波长较长,可绕过所述第一辐射体110及所述第二辐射体120,因此也具有较好的收发效果,进而使得所述天线模组10的通信性能较好。
请一并参阅图14,图14为本申请再一实施方式提供的天线模组的示意图。所述第一辐射体110、所述第二辐射体120及所述天线地130均为导电贴片,所述第一辐射体110及所述第二辐射体120中的至少一个开设有缺口(缝隙或凹槽)。在本实施方式中,以所述第一辐射体110具有缺口110a,所述第二辐射体120开设有所述缺口120a为例进行示意。
所述第一辐射体110与所述第二辐射体120中的至少一个开设有缝隙或凹槽,在所述天线模组10收发的第一频段的电磁波信号以及第二频段的电磁波信号信号一定的情况下,开设有所述缝隙或所述凹槽的辐射体的尺寸较小,有利于所述天线模组10的小型化。为了方便描述,所述缝隙或所述凹槽均命名为缺口,即,所述缺口包括缝隙或凹槽。开设有所述缺口的辐射体相较于未开设所述缺口的辐射体而言,开设有所述缺口的辐射体上的电流分布与未开设所述缺口的电流分布不同,因此,在收发的电磁波信号的频段一定的情况下,开设所述缺口可使得辐射体的尺寸变小。
举例而言,在第一种实施方式及在第二种实施方式提供的天线模组10中,第一实施方式提供的天线模组10的第一频段等于第二实施方式中提供的天线模组10的第一频段,且第一实施方式提供的天线模组10的第二频段等于第二实施方式中提供的天线模组10中的第二频段的情况下,第一实施方式提供的天线模组10中的第一辐射体110与第二实施方式中提供的天线模组10的第一辐射体110相同,第一实施方式提供的天线模组10中的天线地130与第二实施方式中提供的天线模组10的天线地130相同,第二实施方式提供的天线模组10中的所述第二辐射体120具有缺口而第一种实施方式提供的天线模组10中的第二辐射体120不具有缺口,或者,所述第二实施方式提供的天线模组10中的第二辐射体120的缺口大于第一实施方式中天线模组10中的第二辐射体120的缺口,那么,第二实施方式的第二辐射体120的尺寸大于第一实施方式中第二辐射体120的尺寸,因此,第二实施方式中的天线模组10的尺寸小于第一实施方式中的天线模组10的尺寸。
又举例而言,在第一种实施方式及在第二种实施方式提供的天线模组10中,第一实施方式提供的天线模组10的第一频段等于第二实施方式中提供的天线模组10的第一频段,且第一实施方式提供的天线模组10的第二频段等于第二实施方式中提供的天线模组10中的第二频段的情况下,第一实施方式提供的天线模组10中的第二辐射体120与第二实施方式中提供的天线模组10的第二辐射体120相同,第一实施方式提供的天线模组10中的天线地130与第二实施方式中提供的天线模组10的天线地130相同,第二实施方式提供的天线模组10中的所述第一辐射体110具有缺口而第一种实施方式提供的天线模组10中的第一辐射体110不具有缺口,或者,所述第二实施方式提供的天线模组10中的第一辐射体110的缺口大于第一实施方式中天线模组10中的第一辐射体110的缺口,那么,第二实施方式的第一辐射体110的尺寸大于第一实施方式中第一辐射体110的尺寸,因此,第二实施方式中的天线模组10的尺寸小于第一实施方式中的天线模组10的尺寸。
可以理解地,上面实施方式仅以所述第一辐射体110、及所述第二辐射体120中的任意一个辐射体具有缺口为例进行描述,在其他实施方式中,所述第一辐射体110及所述第二辐射体120均具有缺口更 加利于天线模组10的小型化。在本实施方式的示意图中,以所述天线地130具有第一缺口121为例进行示意,且为了方便示意出第一辐射体110、第二辐射体120及天线地130,本实施方式的天线模组10中省略了第一介质171及第二介质172。
请一并参阅图15,图15为本申请另一实施方式提供的天线模组的示意图。在本实施方式中,所述第一频段大于所述第二频段,所述第二辐射体120开设有缺口121,其中,所述缺口121包括缝隙或凹槽,且所述第二辐射体120及所述天线地130在所述第一辐射体110所在的平面内的正投影落在所述第一辐射体110所在的区域内。
在本实施方式中,在所述第二辐射体120开设缺口121,可使得所述第二辐射体120具有较小的尺寸;通过所述第二辐射体120开设缺口121,且所述第二辐射体120及所述天线地130所在所述第一辐射体110所在的平面的正投影落在所述第一辐射体110所在的区域内,即,使得所述天线模组10中第二辐射体120的尺寸小于或等于所述第一辐射体110的尺寸,以及使得所述天线地130的尺寸小于或等于所述第一辐射体110的尺寸,使得所述天线模组10的整体尺寸较小。在本实施方式的示意图中,为了方便示意出第一辐射体110、第二辐射体120及天线地130,本实施方式的天线模组10中省略了第一介质171及第二介质172。
下面对本申请一实施方式提供的天线模组10进行仿真。接下来的各种仿真以图5至图7及其相关描述中提供的天线模组10进行仿真。本实施方式中,选取r1=10mm,r2=14mm,r3=20mm,r4=6.75mm,r5=9.8mm,所述介质层170的介电常数为3.5,所述第一辐射体110与所述第二辐射体120之间的第一介质层171的厚度t1=1mm,所述第二辐射体120与所述天线地130之间的第二介质层172的厚度t2=1mm,且所述第一介质层171及所述第二介质层172的介电常数为3.5,所述第一接地件150的个数N1=12,所述第二接地件160的个数N2=12。
请一并参阅图16及图17,图16为图5至图7所示的天线模组的S参数曲线图;图17为图5至图7所示的天线模组的系统的总效率曲线图。在图16中,横坐标为频率,单位为GHz;纵坐标为S参数,单位为dB。由图16可见,所述天线模组10可工作在第一频段及第二频段。所述第一频段的范围为7.75GHz~8.25GHz;所述第二频段的范围为6.25GHz~6.75GHz。即,所述第一频段为CH9频段,所述第二频段为CH5频段。此外,还可以看到,所述第一频段的谐振频点为8.0GHz;在所述第二频段为双谐振,其中一个谐振频点在6.13GHz,另一个谐振频点在6.5GHz。在图17中,横坐标为频率,单位为GHz;纵坐标为系统的总效率(Total Efficiency),单位为dB。由图17可见,所述天线模组10具有较高的系统总效率。
请一并参阅图18及图19,图18为天线模组10在6.5GHz频点的3D方向图;图19为天线模组10在6.5GHz频点的水平面的2D方向图。由图18及图19可见,所述天线模组10在6.5GHz频点的3D方向图类似碗状,即具有类单极子(Monopole-Like)的方向图;天线模组10在6.5GHz频点的2D方向图可见,在水平面范围内的全向性。由于所述天线模组10在6.5GHz频点的2D方向图具有全向性,因此,所述天线模组10在第二频段的定位效果较好,可应用于标签定位和寻找物品等方面。
相关技术中,天线模组10在水平面上存在零点,一方面会导致天线模组10在各个方向上探测距离不均衡,在零点处探测距离不远;另一方面,在零点处测角也会存在不准确的问题。
本申请实施方式提供的天线模组10在水平面范围内的全向性,从而可使得所述天线模组10在各个方向上探测距离较为均衡,且探测距离较远,此外,在零点处的测角也较为准确。
请一并参阅图20及图21,图20为天线模组在8.0GHz频点的3D方向图;图21为天线模组在8.0GHz频点的水平面的2D方向图。由图20及图21可见,所述天线模组10在8.0GHz频点的3D方向图类似碗状,即具有类单极子(Monopole-Like)的方向图;天线模组10在8.0GHz频点的2D方向图可见,在水平面范围内的全向性。由于所述天线模组10在8.0GHz频点的2D方向图具有全向性,因此,所述天线模组10在第一频段的定位效果较好。
请一并参阅图22及图23,图22为天线模组在6.5GHz频点的垂直/水平极化比方向图;图23为天线模组在8.0GHz频点的垂直/水平极化比方向图。由图22及图23可见,天线模组10在6.5GHz及8.0GHz时为垂直极化。即,所述天线模组10在所述第一频段为垂直极化,且所述天线模组10在所述第二频段 为垂直极化。
请一并参阅图24、图25及图26,图24为天线模组在6.3GHz频点的电场分布图;图25为天线模组在6.5GHz频点的电场分布图;图26为天线模组在8.0GHz频点的电场分布图。由图24可见,所述天线模组10在6.13GHz频点处,电场主要集中在所述第三贴片上,且中心处电场方向与边缘处电场方向保持一致,为典型的TM01模式电场分布图。由图25可见,所述天线模组10在6.5GHz频点处电场也集中在所述天线地130处,中心处电场方向与边缘处电场方向反向,为TM02模式电场分布图。由图26可见,所述天线模组10在8.0GHz频点处电场集中在第一辐射体110与天线地130之间,电场分布图为高频的TM01模式电场分布图。
本申请实施方式提供的天线模组10,所述第一辐射体110、所述第二辐射体120及所述第三辐射体130依次层叠且间隔设置,利用所述馈电件140电连接所述第一辐射体110、所述第二辐射体120及所述天线地130,且利用所述第一接地件150电连接所述第一辐射体110与所述第二辐射体120,以及利用所述第二接地件160电连接所述第二辐射体120与所述天线地130,从而使得所述天线模组10具有较小的体积以及较低的剖面。此外,结合上面的各个仿真图可见,本申请实施方式提供的天线模组10可激励起所述低频的TM01模式及TM02模式及高频的TM01模式,使得所述天线模组10在低频和高频均具有较宽的带宽,此外,所述天线模组10具有双频段,可实现全向性垂直极化辐射,辐射方向图类似碗状方向图,保证了在水平面范围内的全向性,因此,所述天线模组10具有较好的定位效果及通信效果。
此外,需要说明的是,虽然在上述各个实施方式中,以所述天线模组10为UWB技术的天线模组为例进行示意及说明,在另一实施方式中,所述天线模组10为蓝牙技术的天线模组,相应地,所述天线模组10中的第一频段和第二频段为蓝牙技术所支持的频段,比如,所述第一频段蓝牙5G频段(5.15GHz-5.85GHz),所述第二频段为蓝牙2.4G频段(2.4GHz-2.48GHz)。在其他实施方式中,所述天线模组10还可以为无线保真(Wireless Fidelity,WIFI)技术的天线模组,相应地,所述天线模组10中的第一频段和第二频段为WIFI技术所支持的频段。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型,这些改进和润饰也视为本申请的保护范围。

Claims (20)

  1. 一种天线模组,其中,所述天线模组包括:
    第一辐射体;
    第二辐射体,所述第二辐射体与所述第一辐射体层叠且间隔设置;
    天线地,所述天线地与所述第二辐射体层叠且间隔设置,且所述天线地设置于所述第二辐射体背离所述第一辐射体的一侧;
    馈电件,所述馈电件电连接所述第一辐射体及所述第二辐射体;
    多个第一接地件,所述多个第一接地件电连接所述第一辐射体与所述第二辐射体;以及
    多个第二接地件,所述多个第二接地件电连接所述第二辐射体及天线地,所述天线模组收发第一频段及第二频段的电磁波信号,其中,所述第二频段与所述第一频段不同。
  2. 如权利要求1所述的天线模组,其中,所述多个第一接地件用于激励起第一频段的TM01模式;所述多个第二接地件用于激励起第二频段的TM01和TM02模式。
  3. 如权利要求2所述的天线模组,其中,所述天线模组还包括介质层,所述介质层包括:
    第一介质层,所述第一介质层设置于所述第一辐射体与所述第二辐射体之间;以及
    第二介质层,所述第二介质层设置于所述第二辐射体与所述天线地之间;
    所述多个第二接地件环绕所述馈电件设置,且所述第二接地件与所述馈电件之间的距离r满足:
    Figure PCTCN2022091734-appb-100001
    其中,1.0≤a≤1.5,λ 0为第二频段的电磁波信号在自由空间的波长,ε r为所述介质层的等效介电常数,其中,所述等效介电常数和所述第一介质层的介电常数及第二介质层的介电常数相关。
  4. 如权利要求3所述的天线模组,其中,1.1≤a≤1.3。
  5. 如权利要求1所述的天线模组,其中,
    所述天线模组在所述第一频段为垂直极化,且所述天线模组在所述第二频段为垂直极化。
  6. 如权利要求3所述的天线模组,其中,
    所述第一介质层的介电常数越大,所述第一频段及所述第二频段越往低偏移;所述第一介质层的介电常数越小,所述第一频段及所述第二频段越往高偏移;且所述第二介质层的介电常数越大,所述第一频段及所述第二频段越往低偏移;所述第二介质层的介电常数越小,所述第一频段及所述第二频段越往高偏移。
  7. 如权利要求1所述的天线模组,其中,所述多个第一接地件环绕所述馈电件设置,所述多个第二接地件环绕所述馈电件设置,且所述多个第二接地件在所述第一辐射体所在的平面内的投影环绕所述多个第一接地件在所述第一辐射体所在的平面内的投影。
  8. 如权利要求1所述的天线模组,其中,所述第一接地件至少部分正对所述第二接地件,且所述第一接地件与所述第二接地件相连。
  9. 如权利要求1所述的天线模组,其中,所述第一辐射体的尺寸越小,所述第一频段往高偏移,所述第一辐射体的尺寸越大,所述第一频段越往低偏移;所述第二辐射体的尺寸越小,所述第二频段越往高偏移,所述第二辐射体的尺寸越大,所述第二频段越往低偏移。
  10. 如权利要求1所述的天线模组,其中,所述第一接地件的数目越多,所述第一频段越往往高偏移;所述第一接地件的数目越少,所述第一频段越往低偏移。
  11. 如权利要求10所述的天线模组,其中,所述第二接地件的数目越多,所述第二频段越往高偏移;所述第二接地件的数目越少,所述第二频段越往低偏移。
  12. 如权利要求1所述的天线模组,其中,所述第一频段为高频,所述第二频段为低频。
  13. 如权利要求12所述的天线模组,其中,所述第一频段的范围为7.75GHz~8.25GHz;所述第二频段的范围为6.25GHz~6.75GHz。
  14. 如权利要求13所述的天线模组,其中,所述第一辐射体、所述第二辐射体及所述天线地均为圆形导电贴片,所述馈电件分别电连接至所述第一辐射体的圆心及所述第二辐射体的圆心,且穿过所述天线地的圆心且与所述天线地绝缘设置,其中,所述第一辐射体的半径为r1,所述第二辐射体的半径为r2,所述天线地的半径为r3,所述第一接地件与所述馈电件的距离为r4,所述第二接地件与所述馈电件的距离为r5,其中,r1≤r2,r2≤r3,r4≤r1,r4≤r5。
  15. 如权利要求14所述的天线模组,其中,r1=10mm±2mm,r2=14mm±2mm,r3=20mm±2mm,r4=6.75mm±2mm,r5=9.8mm±2mm。
  16. 如权利要求12所述的天线模组,其中,所述天线模组还包括:
    射频芯片,所述射频芯片设置于所述天线地背离所述第二辐射体的一侧,且电连接所述馈电件。
  17. 如权利要求1所述的天线模组,其中,所述第一辐射体的中心为第一中心,所述第二辐射体的中心为第二中心,所述天线地的中心为第三中心,所述馈电件分别电连接至所述第一中心及第二中心,且所述馈电件穿过第三中心且与所述天线地绝缘设置。
  18. 如权利要求1所述的天线模组,其中,所述第一辐射体、所述第二辐射体及所述天线地均为导电贴片,所述第一辐射体及所述第二辐射体中的至少一个开设有缝隙或凹槽。
  19. 如权利要求18所述的天线模组,其中,所述第一频段大于所述第二频段,所述第二辐射体开设有缺口,其中,所述缺口包括缝隙或凹槽,且所述第二辐射体及所述天线地在所述第一辐射体所在的平面内的正投影落在所述第一辐射体所在的区域内。
  20. 一种通信设备,其中,所述通信设备包括如权利要求1-19任意一项所述的天线模组。
PCT/CN2022/091734 2021-06-30 2022-05-09 天线模组及通信设备 WO2023273619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110748269.8A CN113437521B (zh) 2021-06-30 2021-06-30 天线模组及通信设备
CN202110748269.8 2021-06-30

Publications (1)

Publication Number Publication Date
WO2023273619A1 true WO2023273619A1 (zh) 2023-01-05

Family

ID=77758657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091734 WO2023273619A1 (zh) 2021-06-30 2022-05-09 天线模组及通信设备

Country Status (2)

Country Link
CN (1) CN113437521B (zh)
WO (1) WO2023273619A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437521B (zh) * 2021-06-30 2023-05-26 Oppo广东移动通信有限公司 天线模组及通信设备
CN114156640A (zh) * 2021-12-16 2022-03-08 歌尔科技有限公司 天线组件、无人机及无人机定位方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171675A1 (en) * 2007-06-06 2010-07-08 Carmen Borja Dual-polarized radiating element, dual-band dual-polarized antenna assembly and dual-polarized antenna array
CN110233360A (zh) * 2019-04-23 2019-09-13 中天宽带技术有限公司 一种双频天线及电子设备
CN110854529A (zh) * 2019-11-14 2020-02-28 中国传媒大学 一种基于平面结构的紧凑型低耦合三极化mimo天线
CN111276800A (zh) * 2020-02-04 2020-06-12 Oppo广东移动通信有限公司 双频毫米波天线模组和电子设备
US20200194889A1 (en) * 2018-12-12 2020-06-18 Nokia Solutions And Networks Oy Multi-band antenna and components of multi-band antenna
CN111919335A (zh) * 2018-07-17 2020-11-10 华为技术有限公司 一种集成电路和终端设备
CN113437521A (zh) * 2021-06-30 2021-09-24 Oppo广东移动通信有限公司 天线模组及通信设备
CN113437477A (zh) * 2021-06-30 2021-09-24 Oppo广东移动通信有限公司 天线模组及通信设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084815B2 (en) * 2004-03-22 2006-08-01 Motorola, Inc. Differential-fed stacked patch antenna
CN103457029A (zh) * 2013-09-04 2013-12-18 北京合众思壮科技股份有限公司 双频天线
CN108199134B (zh) * 2018-01-11 2020-03-27 淮阴师范学院 一种多频天线装置
CN108461924B (zh) * 2018-03-15 2024-03-08 深圳市维力谷无线技术股份有限公司 一种卫星双频天线
CN108808232B (zh) * 2018-06-06 2023-09-29 中天宽带技术有限公司 一种双辐射方向的双频双极化贴片天线
CN111834731B (zh) * 2019-04-19 2022-03-01 Oppo广东移动通信有限公司 天线模组及电子设备
CN112234344B (zh) * 2019-06-30 2022-03-15 Oppo广东移动通信有限公司 天线装置及电子设备
CN110707427B (zh) * 2019-10-30 2021-12-24 上海无线电设备研究所 一种硅基小型共口径双频双极化宽带阵列天线
CN112751158B (zh) * 2019-10-31 2022-05-17 华为技术有限公司 一种天线组件及通信设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100171675A1 (en) * 2007-06-06 2010-07-08 Carmen Borja Dual-polarized radiating element, dual-band dual-polarized antenna assembly and dual-polarized antenna array
CN111919335A (zh) * 2018-07-17 2020-11-10 华为技术有限公司 一种集成电路和终端设备
US20200194889A1 (en) * 2018-12-12 2020-06-18 Nokia Solutions And Networks Oy Multi-band antenna and components of multi-band antenna
CN110233360A (zh) * 2019-04-23 2019-09-13 中天宽带技术有限公司 一种双频天线及电子设备
CN110854529A (zh) * 2019-11-14 2020-02-28 中国传媒大学 一种基于平面结构的紧凑型低耦合三极化mimo天线
CN111276800A (zh) * 2020-02-04 2020-06-12 Oppo广东移动通信有限公司 双频毫米波天线模组和电子设备
CN113437521A (zh) * 2021-06-30 2021-09-24 Oppo广东移动通信有限公司 天线模组及通信设备
CN113437477A (zh) * 2021-06-30 2021-09-24 Oppo广东移动通信有限公司 天线模组及通信设备

Also Published As

Publication number Publication date
CN113437521B (zh) 2023-05-26
CN113437521A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2023273619A1 (zh) 天线模组及通信设备
US8884833B2 (en) Broadband monopole antenna with dual radiating structures
US7714795B2 (en) Multi-band antenna apparatus disposed on a three-dimensional substrate, and associated methodology, for a radio device
WO2023273618A1 (zh) 天线模组及通信设备
KR102614892B1 (ko) 안테나 유닛 및 단말 장비
WO2022199314A1 (zh) 天线装置、壳体、电子标签设备以及天线匹配方法
US20170033461A1 (en) Low-profile antenna with high isolation for bluetooth and wifi coexistence
WO2022179324A1 (zh) 天线装置、壳体及电子设备
WO2021022941A1 (zh) 天线阵列及终端
JP2005192183A (ja) UWB(Ultra−WideBand)通信用アンテナ
JP2008028734A (ja) 表面実装型アンテナ及びそれを搭載した通信機器
WO2023040561A1 (zh) 天线模组及通信设备
WO2022199321A1 (zh) 电子设备
WO2023134405A1 (zh) 电子设备
US7262741B2 (en) Ultra wideband antenna
CN113067151B (zh) 天线组件、电子设备及通信系统
JPH0279602A (ja) マイクロストリップアンテナ
US7193580B2 (en) Antenna device
WO2022268086A1 (zh) 边射天线、封装天线和通讯设备
WO2022017220A1 (zh) 一种电子设备
KR20020061208A (ko) 휴대전화 단말기 및 이동통신을 위한 개구면 결합 십자형슬롯 원편파 마이크로스트립 패치안테나
US6980172B2 (en) Multi-band cable antenna
US10381733B2 (en) Multi-band patch antenna module
US11923620B1 (en) Compact ceramic chip antenna array based on ultra-wide band three-dimensional direction finding
US20140035789A1 (en) Multi-band antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22831446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE