WO2022199314A1 - 天线装置、壳体、电子标签设备以及天线匹配方法 - Google Patents

天线装置、壳体、电子标签设备以及天线匹配方法 Download PDF

Info

Publication number
WO2022199314A1
WO2022199314A1 PCT/CN2022/077673 CN2022077673W WO2022199314A1 WO 2022199314 A1 WO2022199314 A1 WO 2022199314A1 CN 2022077673 W CN2022077673 W CN 2022077673W WO 2022199314 A1 WO2022199314 A1 WO 2022199314A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
module
antenna device
radiation
Prior art date
Application number
PCT/CN2022/077673
Other languages
English (en)
French (fr)
Inventor
雍征东
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2022199314A1 publication Critical patent/WO2022199314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 

Definitions

  • the present application relates to the field of mobile communication technologies, and in particular, to an antenna device, a casing, an electronic label device, and an antenna matching method.
  • the Internet of Everything can be understood as a direct communication connection between objects.
  • the communication connection between two objects is generally realized through antennas configured on the two objects.
  • the object A is provided with an antenna A
  • the object B is provided with an electronic tag B.
  • the electronic tag B is a tag antenna, which is configured to transmit a signal with a wide bandwidth
  • the antenna A is usually a receiving antenna, which is configured to receive the signal sent by the electronic tag B to realize the communication between the two.
  • the polarization characteristics of electronic tag B will change with the change of its attitude. Under different attitudes, electronic tag B has different polarization characteristics, which makes electronic tag B and antenna A have different polarization characteristics when matching. The high probability of polarization mismatch makes it difficult for the two to match and connect.
  • Embodiments of the present application provide an antenna device, a casing, an electronic label, and an antenna matching method.
  • an embodiment of the present application provides an antenna device.
  • the antenna device includes a feed module, a first feed line, a second feed line, and a switch module.
  • the radiation module is provided with a first feeding point and a second feeding point; the first feeding line is electrically connected between the first feeding point and the feeding source module, and the feeding source module is configured to send the excitation current through the first feeding line, the second feeding line A feed point is fed into the radiation module, so that the radiation module radiates a signal with the first linear polarization characteristic.
  • the second feeder is electrically connected between the second feed point and the feed module, and the feed module is configured to feed the excitation current into the radiation module through the second feeder and the second feed point, so that the radiation module has a first A signal with dual linear polarization characteristics, wherein the first linear polarization and the second linear polarization are cross-polarized.
  • the switch module is arranged on the feed circuit from the feed module to the first feed point, and on the feed circuit from the feed module to the second feed point; the switch module is configured to control the feed module to radiate the radiation On/off of the excitation current fed into the module.
  • an embodiment of the present application further provides a casing, including a casing body and any one of the above-mentioned antenna devices, wherein the antenna device is disposed on the casing body.
  • an embodiment of the present application further provides an electronic tag, including any one of the above-mentioned antenna devices.
  • an embodiment of the present application further provides an antenna matching method, which is applied to matching between an antenna device and a matching device, where the antenna device includes a feed module and a radiation module.
  • the radiation module is provided with a first feeding point and a second feeding point, and the feed source module is configured to feed the excitation current into the radiation module through the first feeding point, so that the radiation module radiates the first linear polarization characteristic.
  • a signal The feed module is configured to feed the excitation current into the radiation module via the second feed point, so that the radiation module radiates a second signal having a second linear polarization characteristic, wherein the first linear polarization and the second linear polarization for cross-polarization.
  • the antenna matching method includes: controlling the antenna device to radiate a first signal with a first linear polarization characteristic, and radiating a second signal with a second linear polarization characteristic; the antenna device receives a feedback signal sent by a matching object, wherein the feedback signal is composed of The matching object is generated based on the received signal, and the feedback signal includes the first strength of the first signal and the second strength of the second signal received by the matching object; based on the first strength and the second strength, between the first signal and the second signal A target communication signal is determined from the signal; the antenna device communicates with the matching object based on the target communication signal.
  • the embodiments of the present application further provide an antenna matching method, which is applied to matching between a mobile terminal and an antenna device, where the antenna device includes a feed module and a radiation module.
  • the radiation module is provided with a first feeding point and a second feeding point, and the feed source module is configured to feed the excitation current into the radiation module through the first feeding point, so that the radiation module radiates the first linear polarization characteristic.
  • a signal The feed module is configured to feed the excitation current into the radiation module via the second feed point, so that the radiation module radiates a second signal having a second linear polarization characteristic, wherein the first linear polarization and the second linear polarization for cross-polarization.
  • the antenna matching method includes: receiving a first signal and a second signal transmitted by an antenna device, the linear polarization characteristics of the first signal and the second signal being cross-polarized; generating a feedback signal based on the received signal, and sending the feedback signal to Antenna device; wherein, the feedback signal includes the first strength of the first signal and the second strength of the second signal received by the mobile terminal, and the feedback signal is used to instruct the antenna device to determine the target communication signal in the first signal and the second signal; And the mobile terminal communicates with the antenna device based on the target communication signal.
  • the embodiments of the present application further provide an antenna matching method, which is applied to matching between a mobile terminal and an antenna device.
  • the antenna device includes a feed module and a radiation module, and the radiation module is provided with a first feed point and a second feed point.
  • a feed point the feed module is configured to feed the excitation current into the radiation module via the first feed point, so that the radiation module radiates the first signal with the first linear polarization characteristic;
  • the feed module is configured to feed the excitation current
  • the radiation module is fed through the second feeding point, so that the radiation module radiates a second signal with a second linear polarization characteristic, wherein the first linear polarization and the second linear polarization are crossed polarizations.
  • the antenna matching method includes: receiving a first signal and a second signal transmitted by an antenna device, and the linear polarization characteristics of the first signal and the second signal are cross-polarized; communicating with the antenna device based on the received signal, and receiving the antenna device based on the The first information sent by the first signal and the second information sent based on the second signal; the confidence level of the first information is determined based on the signal strength of the first signal, and the confidence level of the second information is determined based on the signal strength of the second signal; and According to the confidence level of the first information and the confidence level of the second information, target information is determined in the first information and the second information, and the target information is processed.
  • FIG. 1 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an antenna device provided in a first embodiment of the present application.
  • FIG. 3 is a schematic diagram of another flexible structure of the antenna device shown in FIG. 2 .
  • FIG. 4 is a schematic diagram of another flexible structure of the antenna device shown in FIG. 2 .
  • FIG. 5 is a schematic diagram of still another flexible structure of the antenna device shown in FIG. 2 .
  • FIG. 6 is a schematic cross-sectional structural diagram of an antenna device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an antenna device provided by a second embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of the antenna device shown in FIG. 7 .
  • FIG. 9 is a schematic cross-sectional view of a flexible structure of the antenna device shown in FIG. 8 .
  • FIG. 10 is a schematic diagram of another flexible structure of the antenna device shown in FIG. 7 .
  • FIG. 11 is a schematic diagram of another flexible structure of the antenna device shown in FIG. 7 .
  • FIG. 12 is a schematic cross-sectional view of the antenna device shown in FIG. 11 .
  • FIG. 13 is a schematic structural diagram of an end-fire antenna of the antenna device shown in FIG. 12 .
  • FIG. 14 is a schematic structural diagram of an end-fire antenna of the antenna device shown in FIG. 12 .
  • FIG. 15 is a schematic structural diagram of an end-fire antenna of the antenna device shown in FIG. 12 .
  • FIG. 16 is a schematic structural diagram of an antenna device provided by a third embodiment of the present application.
  • FIG. 17 is a schematic diagram of a housing provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of an electronic label device provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of an application scenario of the antenna matching method provided by the embodiment of the present application.
  • FIG. 20 is a schematic flowchart of an antenna matching method provided by an embodiment of the present application.
  • FIG. 21 is a schematic flowchart of another antenna matching method provided by an embodiment of the present application.
  • FIG. 22 is a schematic flowchart of another antenna matching method provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram of calculation of the azimuth angle of the antenna device measured by the mobile terminal in the antenna matching method shown in FIG. 22 .
  • a “mobile terminal” as used in the embodiments of this application includes, but is not limited to, is configured to connect via a wired line (eg, via a public switched telephone network (PSTN), digital subscriber line (DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (eg, for cellular networks, wireless local area networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters, and/or A device for receiving/transmitting communication signals through a wireless interface of another communication terminal.
  • a communication terminal arranged to communicate over a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal”, “electronic device” and/or “electronic device”.
  • Examples of mobile terminals include, but are not limited to, satellite or cellular telephones; Personal Communication System (PCS) terminals that may combine cellular radio telephones with data processing, fax, and data communication capabilities; may include radio telephones, pagers, Internet/Intranet access , Web browsers, notepads, calendars, and/or PDAs with global positioning system (GPS) receivers; and conventional laptop and/or palmtop receivers, game consoles, or other electronic devices including radiotelephone transceivers.
  • PCS Personal Communication System
  • GPS global positioning system
  • an embodiment of the present application provides an antenna device 100 , which includes a feed module 10 and a radiation module 30 .
  • the feed module 10 is electrically connected to the radiation module 30 and is configured to feed excitation to the radiation module 30 .
  • the current enables the radiation module 30 to transmit and receive radio frequency signals in a predetermined frequency band.
  • the antenna device 100 may further include a first feeder 50 and a second feeder 70 .
  • the radiation module 30 is provided with a first feeding point 301 and a second feeding point 303 , the first feeding line 50 is electrically connected between the first feeding point 301 and the feeding module 10 , and the second feeding line 70 is electrically connected to the first feeding point 301 and the feeding module 10 . Between the two feeding points 303 and the feeding module 10 .
  • the feed module 10 is configured to feed the excitation current into the radiation module 30 via the first feed line 50, so that the radiation module 30 radiates a signal having a first linear polarization characteristic.
  • the feed module 10 is further configured to feed the excitation current into the radiation module 30 via the second line 70, so that the radiation module 30 radiates a signal having a second linear polarization characteristic, wherein the first linear polarization characteristic is different from the second linear polarization characteristic.
  • the polarization characteristics of the polarization characteristics are crossed.
  • the first linear polarization can be vertical polarization and the second linear polarization can be horizontal polarization; for another example, the first linear polarization can be horizontal polarization and the second linear polarization can be horizontal polarization.
  • the linear polarization may be vertical polarization; for another example, the first linear polarization may not necessarily be strictly vertical polarization, but has a polarization component in the vertical direction, and the second linear polarization may not necessarily be strictly horizontal is polarized, but has a polarized component in the horizontal direction.
  • the signal radiated by the antenna device 100 as a whole has the characteristics of cross-polarization (for example, it may be orthogonally polarized, or have components in orthogonal directions), no matter the matching object of the antenna device 100 (for example, moving Regardless of the polarization characteristics of the antenna of the terminal, another antenna device, etc.), it can ensure that one of the polarization characteristics of the antenna device 100 is consistent with the polarization characteristics of the matching object, so that the antenna device 100 can more easily match the matching object. Match connections without being constrained to a specific relative azimuth. Therefore, the above-mentioned connection steps of the antenna device 100 are convenient and fast, which can ensure high efficiency of the matching process between the antenna device 100 and its matching object.
  • the antenna device 100 may further include a switch module 90 , and the switch module 90 is arranged on the feed circuit of the feed module 10 to the first feed point 301 , and at the same time is arranged on the feed circuit of the feed module 10 to the second feed point 303 superior.
  • the switch module 90 is configured to control the on-off of the excitation current fed by the feed module 10 to the radiation module 30, which allows the antenna device 100 to pass through the two antennas having the first linear polarization characteristic and the second linear polarization characteristic. After the channel signal is matched and connected with the matching object, the switch module 90 can selectively retain one channel of the signal to transmit valid data information, which can ensure that the antenna device 100 has low power consumption and less interference to the signal in the process of transmitting data. Small.
  • the switch module 90 may include at least one switch, and the at least one switch may be disposed on the first feeder 50 or the second feeder 70 , and the at least one switch is used to control the current on the first feeder 50 or the second feeder 70 on and off.
  • the switch module 90 includes a first switch 92 and a second switch 94 .
  • the first switch 92 is disposed on the first feeder 50 and is used to control the on-off of the first feeder 50 .
  • the second switch 92 is disposed on the second feeder 70 and is used to control the on-off of the second feeder 70 .
  • each switch may be a single-pole single-throw switch or an electronic switch tube or the like.
  • the electronic switch tube may be a MOS tube, a transistor, or the like.
  • the specific components of the switch module 90 are not further limited, as long as they meet the on-off control conditions for the corresponding feeder current.
  • the switch module 90 may also be configured to select a radiation module 30 for radiating signals based on the attitude of the antenna device 100 .
  • the switch module 90 may also be configured to select a radiation module 30 for radiating signals based on the attitude of the antenna device 100 .
  • each radiation module 30 is provided with a first feeding point 301 and a second feeding point 303, so that each radiation module 30 can transmit cross-polarized signals.
  • One of the two radiation modules 30 is an edge-fire antenna module, and the other of the two radiation modules 30 is an end-fire antenna module.
  • the switch module 90 is configured to control the on-off of the excitation current fed by the feed module 10 to the side-fire antenna module and the end-fire antenna module based on the attitude of the antenna device 100 .
  • the switch module 90 can select the end-fire antenna module to transmit signals, and when the antenna device 100 is approximately in a vertical state, the switch module 90 can select the side-fire antenna module to transmit signals, thereby The radiation efficiency of the antenna device 100 can be higher and the loss is lower.
  • the antenna device 100 may determine the attitude based on the attitude sensor electrically connected to the switch module 90 .
  • the schematic structure of the switch module 90 may not be shown in the drawings of the following embodiments, but This should not be construed as a limitation on the embodiments of the present application.
  • the antenna device 100 may or may not include the switch module 90 .
  • FIG. 2 shows a possible schematic structural diagram of the antenna apparatus 100 provided by the first embodiment of the present application.
  • the radiation module 30 includes a radiator group 32 .
  • the concept of "radiator group” can be understood as a concept for summarizing one or more radiators.
  • the bodies can be spaced apart from each other, or a plurality of radiators can radiate radio frequency signals independently of each other, and there is basically no energy coupling phenomenon between each other.
  • the radiator group 32 may include a first radiator 321 and a second radiator 323 arranged at intervals from each other, the first feed point 301 is arranged on the first radiator 321, and the second feed point 303 is arranged on the second radiator 323.
  • the patterns of the first radiator 321 and the second radiator 323 are complementary to ensure that they are orthogonally polarized antennas.
  • the feed module 10 may include a first feed 12 and a second feed 14, the first feed 50 is connected between the first radiator 321 and the first feed 12, and the second feed 70 is connected to between the second radiator 323 and the second feed 14 .
  • the first radiator 321 is a dual-frequency antenna radiator, which is used for transmitting and receiving signals of two frequency bands.
  • the first radiator 321 may include a first radiating part 3211 and a second radiating part 3213. Both the first radiating part 3211 and the second radiating part 3213 are connected to the first feed source 12 through the first feed line 50, wherein the first The feed source 12 is configured to feed the excitation current into the first radiating part 3211 via the first feeder 50 so that the first radiating part 3211 radiates the signal of the first frequency band, and is also configured to feed the excitation current into the first radiating part 3211 via the first feeder 50
  • the second radiating part 3213 so that the second radiating part 3213 radiates the signal of the second frequency band, wherein the second frequency band is different from the first frequency band.
  • the first radiator 321 can be a multi-frequency (eg, dual-frequency or more) antenna, which can be configured with a combiner and multiple feeds through one radiator to realize the sending
  • the first radiator 321 is an ultra-wide bandwidth (Ultra Wide Band, UWB) antenna radiator, and the signals of the first frequency band and the second frequency band are ultra-wide bandwidth signals.
  • UWB antenna is a short-distance wireless communication method, its transmission distance is usually less than 10 meters, and usually uses more than 1GHz bandwidth.
  • UWB antenna does not use carrier, but uses nanosecond to microsecond non-sinusoidal narrow pulse to transmit data. Therefore, it occupies a wide spectrum range and is suitable for high-speed and short-range wireless communication, and its communication efficiency is also relatively high. high.
  • the Federal Communications Commission (FCC) stipulates that the working frequency range of the UWB antenna is from 3.1GHz to 10.6GHz, and the minimum working bandwidth is 500MHz.
  • the center frequencies of the mainstream UWB antenna frequency bands are 6.5GHz and 8GHz, and the bandwidth is required to be more than 500MHz.
  • the first radiation part 3211 may be a high frequency radiation patch, the center frequency of the first frequency band is approximately 8 GHz, and the bandwidth is greater than or equal to 500 MHz; the second radiation part 3213 may be a low frequency radiation patch, The center frequency of the second frequency band is approximately 6.5 GHz, and the bandwidth is greater than or equal to 500 MHz.
  • the first radiation part 3211 and the second radiation part 3213 may be rectangular patches, and the circumference of the first radiation part 3211 is smaller than the circumference of the second radiation part 3213 to ensure the operation of the first radiation part 3211
  • the frequency band is higher than the working frequency band of the second radiation part 3213 .
  • the first radiating part 3211 and the second radiating part 3213 can be arranged side by side, for example, the first radiating part 3211 and the second radiating part 3213 can be arranged on the same plane (eg, a dielectric substrate) substantially parallel to each other along the same line.
  • the value range of the distance between the first radiation part 3211 and the second radiation part 3213 may be 0.8 mm to 1.2 mm (including the endpoint value), for example, the distance between the first radiation part 3211 and the second radiation part 3213 may be 0.8mm, 0.85mm, 0.9mm, 0.95mm, 1mm, 1.05mm, 1.15mm, 1.15mm, 1.2mm, etc.
  • the second radiator 323 is disposed adjacent to the first radiator 321 and is spaced apart from the first radiator 321 .
  • the second radiator 323 and the first radiator 321 are substantially flat radiators, and they are substantially elongated, and the second radiator 323 and the first radiator
  • the length directions of the radiators 321 intersect, for example, the length directions of the two are perpendicular to each other, so that the second radiator 323 and the first radiator 321 can respectively radiate signals with different linear polarization characteristics (for example, the signals of the two are positive). cross-polarization).
  • the second radiator 323 and the first radiator 321 may not necessarily have a regular elongated (eg, rectangular) structure, but the second radiator 323 and the first radiator 321 The geometric structure features of the the long side of the rectangle); the second radiator 323 may have a second long side 3230, and the second long side 3230 is the straight side with the longest current path on the second radiator 323; The straight lines where the side 3230 is located intersect, so that the second radiator 323 and the first radiator 321 can respectively radiate signals with different linear polarization characteristics (for example, the two signals are orthogonally polarized).
  • the structure and size parameters of the second radiator 323 may be substantially the same as those of the first radiator 321 , for example, it may be a dual-frequency antenna radiator, or a UWB antenna radiator, which will not be repeated in this specification. Similar to the first radiator 321 , the second radiator 323 may also include a first radiator 3231 and a second radiator 3233 .
  • Both the first radiating part 3231 and the second radiating part 3233 are connected to the second feed source 14 through the second feed line 70 , wherein the second feed source 14 is configured to feed the excitation current into the first radiating part 3231 via the second feed line 70 , so that the first radiating part 3231 radiates the signal of the first frequency band, and is also configured to feed the excitation current into the second radiating part 3233 via the second feeder 70, so that the second radiating part 3233 radiates the signal of the second frequency band, wherein , the second frequency band is different from the first frequency band.
  • the first radiating part 3231 and the second radiating part 3233 can be rectangular patches, and the perimeter of the first radiating part 3231 is smaller than the perimeter of the second radiating part 3233 to ensure that the working frequency band of the first radiating part 3231 is higher than that of the second radiating part Section 3233 operating frequency band.
  • the first radiating part 3231 and the second radiating part 3233 can be arranged side by side, for example, the first radiating part 3231 and the second radiating part 3233 can be arranged on the same plane (eg, a dielectric substrate) substantially parallel to each other along the same line.
  • one of the first radiator 321 and the second radiator 323 is a dual-frequency antenna radiator, and the other may be a dual-frequency antenna radiator or a single-frequency antenna radiator, so as to The cost of the antenna device 100 is lower while having a wider frequency band.
  • the first radiating part 3211 and the second radiating part 3213 in the first radiator 321 have a physical connection relationship, and the two can be directly integrally formed and receive power from the same first feeder 50 .
  • There is a physical connection relationship between the first radiating part 3231 and the second radiating part 3233 in the second radiator 323 the two can be directly integrally formed, and receive the same second feeder 70 for feeding.
  • the first radiating portion 3211 and the second radiating portion 3213 in the first radiator 321 may be arranged at intervals without a direct electrical connection relationship.
  • the first radiating portion 3231 and the second radiating portion 3233 in the second radiator 323 may be arranged at intervals without a direct electrical connection relationship.
  • the first radiating part 3211 and the second radiating part 3213 are provided with first feeding points 301 , and each first feeding line 50 is correspondingly connected between a first feeding point 301 and a first feeding source 12 , wherein A first feed source 12 is configured to feed the excitation current into the first radiating part 3211 through the corresponding first feeding line 50 and the corresponding first feeding point 301, so that the first radiating part 3211 radiates the signal of the first frequency band, The other first feed source 12 is configured to feed the excitation current into the second radiating part 3213 through the corresponding first feeding line 50 and the corresponding first feeding point 301 , so that the second radiating part 3213 radiates the signal of the second frequency band .
  • Both the first radiating part 3231 and the second radiating part 3233 are provided with second feeding points 303 , and each second feeding line 70 is connected between a second feeding point 303 and a second feeding source 14 correspondingly, wherein A second feed source 14 is configured to feed the excitation current into the first radiating part 3231 through the corresponding second feeding line 70 and the corresponding second feeding point 303, so that the first radiating part 3231 radiates the signal of the first frequency band, The other second feed source 14 is configured to feed the excitation current into the second radiating part 3233 through the corresponding second feeding line 70 and the corresponding second feeding point 303 , so that the second radiating part 3233 radiates the signal of the second frequency band .
  • one radiator group 32 is taken as an example for description. It should be understood that, in other embodiments, the number of radiator groups 32 is not limited to one, for example, referring to FIG. 4 and FIG. 5 , in the antenna device 100, the number of radiator groups 32 may also be two, The two radiator groups 32 are generally arranged symmetrically in the center, and at the same time, the corresponding feed sources, feed lines and feed points also have similar layouts, which will not be described in detail in this specification.
  • FIG. 6 shows a schematic cross-sectional structure diagram of the antenna device 100 in the embodiment of the present application.
  • the antenna device 100 may further include a dielectric substrate 60 and a metal floor 80 .
  • the dielectric substrate 60 is disposed between the metal floor 80 and the radiation module 30 , and the metal floor 80 is used to ground the radiation module 30 .
  • the dielectric substrate 60 may be made of epoxy resin (FR4Epoxy), the relative permittivity of the dielectric substrate 60 is 4.4, and the dielectric loss tangent value thereof is 0.02.
  • the dielectric substrate 60 and the metal floor 80 can be integrated into a printed circuit board, and the printed circuit board can be a multi-layer board (other layer structures are not shown in the figure), and the radiation module 30 of the antenna device 100 can pass through the The etching method is formed on the surface of the printed circuit board.
  • a void area 82 may be provided on the metal floor 80 corresponding to the radiation module 30 , and the void area 82 is a part of the metal floor 80 from which material is removed, so that a gap or through hole is formed on the metal floor 80 to avoid metal Excessive coupling current is generated on the floor 80, therefore, the vacant region 82 can cut off the current path on the metal floor 80, thereby improving the electric field distribution of the metal floor 80, so that the antenna device 100 has good pattern characteristics.
  • the void area 82 may correspond to a hollow area provided on the printed circuit board, which may be along the printed circuit board and along the thickness of the printed circuit board The direction runs through the printed circuit board to facilitate the formation of the void area 82 .
  • the “position corresponding to” in this specification should be understood to mean that the positions of the two objects are roughly opposite in space, for example, projected on the plane where the metal floor 80 is located, the projection of the radiation module 30 may be partially or completely falls within the range defined by the vacancy area 82 .
  • the antenna device 100 may include a dielectric substrate 60 and a metal floor 80 , and the dielectric substrate 60 is disposed between the metal floor 80 and the radiation module 30 .
  • the radiation module 30 includes a radiation patch 34, the radiation patch 34 is disposed on the surface of the dielectric substrate 60, the first feeding point 301 and the second feeding point 303 are both disposed on the radiation patch 34, and the first feeding point 301 and The second feeding points 303 are spaced apart from each other.
  • the first feeding point 301 is located closer to one edge of the radiation patch 34, and the second feeding point 303 is located closer to the other edge of the radiation patch 34, so that the first feeding point 301 and the second
  • the two feeding points 303 are located at different edges of the radiation patch 34 respectively, and the direction of the electric field generated by the excitation current fed through the first feeding point 301 and the direction of the electric field generated by the excitation current fed through the second feeding point 303 intersect, so as to ensure that the excitation current fed into the radiation patch 34 via the first feeding point 301 can make the radiation patch 34 radiate a signal with the first linear polarization characteristic, and feed into the radiation patch via the second feeding point 303
  • the excitation current of 34 can make the radiation patch 34 radiate a signal with a second linear polarization characteristic, and the first linear polarization and the second linear polarization are cross-polarized, that is, one radiation patch 34 can radiate a cross-polarized signal. signal of.
  • the radiation patch 34 may be an edge-emitting antenna, which may be disposed at a substantially central position of the dielectric substrate 60 .
  • the radiation patch 34 may be a relatively regular geometric shape patch, for example, the radiation patch 34 may be a square patch, a diamond patch, etc., and this specification takes a square patch as an example for description.
  • the radiation patch 34 includes a first side 341 and a second side 343 intersecting with the first side 341 .
  • the first side 341 and the second side 343 can be understood as two adjacent sides of a square patch.
  • the first feeding point 301 is disposed closer to the first side 341, that is, the distance between the first feeding point 301 and the first side 341 is smaller than that of the first feeding point The distance between 301 and the second side edge 343.
  • the second feeding point 303 is disposed closer to the second side 343, that is, the distance between the second feeding point 303 and the second side 343 is smaller than that of the second feeding Distance between point 303 and first side 341 .
  • the feed module 10 may include a first feed 12 and a second feed 14 , the first feed 50 is connected between the first feed point 301 and the first feed 12 , and the second feed 70 is connected between the second feeding point 303 and the second feeding source 14 .
  • the first feeder 50 and the second feeder 70 may be microstrip feeders, which may be arranged on the surface of the dielectric substrate 60 . In other embodiments, please refer to FIG.
  • the first feeder 50 and the second feeder 70 may be conductive vias, and the first feeder 50 passes through the dielectric substrate 60 and the metal floor 80 and electrically connects the first feed point 301 Connected to the first feed source 12 , the second feed line 70 penetrates the dielectric substrate 60 and the metal floor 80 and electrically connects the second feed point 303 to the second feed source 14 .
  • the dielectric substrate 60 and the metal floor 80 may be integrated into a printed circuit board, and the printed circuit board may be a multi-layer board (as shown in FIG. 9 ).
  • the second feed line 70 can pass through the multilayer board and be electrically connected with the corresponding feed source.
  • the radiation module 30 may include two radiation patches 34, and correspondingly, the number of dielectric substrates 60 may be two, The metal floor 80 is disposed between the two dielectric substrates 60 , and the two radiation patches 34 are disposed on the two dielectric substrates 60 respectively.
  • the two radiation patches 34 may include a first radiation patch 345 and a second radiation patch 347 .
  • the first radiation patch 345 is disposed on the surface of one of the dielectric substrates 60 facing away from the metal floor 80
  • the second radiation patch 345 is
  • the patch 347 is disposed on the surface of the other dielectric substrate 60 facing away from the metal floor 80 .
  • the number of radiation patches 34 may be one, and one radiation patch 34 is disposed on the surface of the dielectric substrate 60 .
  • the radiation module 30 also It may include a first radiator 36 and a second radiator 38 spaced from each other, the first radiator 36 is provided with a first feeding point 301, the second radiator 38 is provided with a second feeding point 303, and the first radiator Both the body 36 and the second radiator 38 are spaced apart from the radiation patch 34 .
  • the first radiator 36 in this embodiment may have any one or more features or/and structures or/and combinations of parameters of the first radiator 321 provided in the above-mentioned embodiments.
  • the second radiator 38 may have any one or more features or/and combinations of structures or/and parameters of the second radiator 323 provided in the above embodiments, which will not be described in detail in this specification.
  • the radiation patch 34 may be disposed approximately in the middle of the dielectric substrate 60.
  • the radiation patch 34 may be approximately disposed in the geometric center of the dielectric substrate 60.
  • the first The radiator 36 and the second radiator 38 may be disposed approximately at the edge positions of the dielectric substrate 60 .
  • the metal floor 80 is not laid at a position corresponding to the first radiator 36 or/and the second radiator 38 , or the metal floor 80 is placed at a position corresponding to the first radiator 36 or/and the second radiator 38 .
  • the “position corresponding to” in this specification should be understood to mean that the positions of the two objects are substantially opposite in space, for example, the metal floor 80 is corresponding to the first radiator 36 or/and the second radiator.
  • There is a vacancy area 82 at the position of 38 which can be understood as: with the projection of the plane where the metal floor 80 is located, the projection of the first radiator 36 or/and the second radiator 38 may partially or completely fall into the vacancy area 82. in the range.
  • the radiation module 30 may include one or more radiation patches 34 , one or more first radiators 36 , and one or more second radiators 38 .
  • the radiation patch 34 may be an edge-fire antenna
  • the first radiator 36 and the second radiator 38 may be end-fire antennas
  • the end-fire antenna and the side-fire antenna cover at least one of two frequency bands of 6.5GHz and 8GHz.
  • the side-emitting antenna may be in the form of a PIFA antenna, a Patch antenna, etc.
  • the side-emitting antenna may refer to the description of the embodiments in FIGS. 8-9 above, and details are not repeated here.
  • the end-fire antenna can be in the form of a dipole antenna, a monopole antenna, a Vivaldi antenna, etc.
  • the end-fire antenna can be a vertically polarized antenna or a horizontally polarized antenna, which is not limited in this specification, and the following will be combined with the accompanying drawings.
  • the end-fire antenna may include a first radiating member 391 , a second radiating member 393 and a dielectric layer 395 , and the first radiating member 391 and the second radiating member 393 are respectively disposed in Opposite sides of dielectric layer 395 .
  • first radiating member 391 and the second radiating member 393 in the figure are not completely laid on the surface of the dielectric layer 395, but protrude from the edge of the dielectric layer 395, and these structures do not correspond to the actual structure of the end-fire antenna.
  • the structure of part of the dielectric layer 395 is omitted in the drawings to clearly express the structure of the first radiating part 391 and the second radiating part 393 and the positional relationship between them, or, it can also be considered that the first The radiating element 391 and the second radiating element 393 may protrude from the edge of the dielectric layer 395 and be arranged substantially opposite to each other.
  • FIG. 13( a ) shows a schematic three-dimensional layout of the end-fire antenna in this embodiment
  • FIG. 13( b ) shows a schematic diagram of an orthographic projection of the end-fire antenna in this embodiment.
  • the first radiating element 391 includes a main body 3911 and a radiating support arm 3913 .
  • the main body 3911 is roughly elongated, one end of which is connected to the feed and is disposed on the surface of the dielectric layer 395 .
  • the radiation support arm 3913 is roughly in the shape of a bar, and is connected to one end of the main body 3911 away from the feed.
  • An acute angle is formed between the radiation support arm 3913 and the main body 3911, and the opening of the acute angle faces the direction of the feed source.
  • the structure of the second radiating element 393 is similar to that of the first radiating element 391 , and it also includes a main body 3931 and a radiating support arm 3933 . Another surface, where both bodies 3911, 3931 can be connected to the same feed.
  • the radiation support arm 3933 is roughly bar-shaped, and is connected to the other end of the main body 3931 away from the feed source.
  • An acute angle is formed between the radiation support arm 3933 and the main body 3931, and the opening of the acute angle faces the direction of the feed source.
  • the main body 3931 of the second radiating element 393 and the main body 3911 of the first radiating element 391 are substantially parallel to each other, and their projections on the plane where the dielectric layer 395 is located are substantially coincident.
  • the radiation arms 3933 of the second radiation element 393 and the radiation arms 3913 of the first radiation element 391 are arranged staggered, and their projections on the plane of the dielectric layer 395 are arranged symmetrically about the center line of the projection of the main body 3911 .
  • the end-fire antenna may include a first radiating member 491 , a second radiating member 493 and a dielectric layer 495 , and the first radiating member 491 and the second radiating member 493 are respectively disposed in Opposite sides of dielectric layer 495 .
  • the first radiating member 491 and the second radiating member 493 in the figure are not completely laid on the surface of the dielectric layer 495, but protrude from the edge of the dielectric layer 495, and these structures do not correspond to the actual structure of the end-fire antenna.
  • the structure of part of the dielectric layer 495 is omitted in the drawings to clearly express the positional relationship between the first radiating part 491 and the second radiating part 493, or, it can also be considered that the first radiating part 491, the The two radiating elements 493 may protrude from the edge of the dielectric layer 495 and be disposed substantially opposite to each other.
  • FIG. 14( a ) shows a schematic diagram of a three-dimensional layout of the end-fire antenna in this embodiment
  • FIG. 14( b ) shows a schematic diagram of an orthographic projection of the end-fire antenna in this embodiment.
  • the first radiating element 491 includes a main body 4911 and a radiating support arm 4913 .
  • the main body 4911 is roughly elongated, one end of which is connected to the feed and is disposed on the surface of the dielectric layer 495 .
  • the radiation support arm 4913 is substantially elongated, and is connected to the other end of the main body 4911 away from the feed source and is substantially perpendicular to the main body 4911 .
  • the end of the main body 4911 is connected to a substantially central position of the radiation support arm 4913, so that the first radiation element 491 is substantially in a "T" shape.
  • the first radiating element 491 is provided with a slot 497, the slot 497 penetrates through the main body 4911 and the radiating arm 4913, and the slot 497 has a substantially "T"-shaped slot structure.
  • the structure of the second radiating element 493 is substantially the same as that of the first radiating element 491, and it also includes a main body 4931 and a radiating arm 4933, wherein the two main bodies 4911 and 4931 can be connected to the same feed.
  • the second radiating element 493 and the first radiating element 491 are substantially parallel to each other, and their projections on the plane where the dielectric layer 495 is located are substantially coincident.
  • the end-fire antenna may include a first radiating member 591 , a second radiating member 593 and a dielectric layer 595 , and the first radiating member 591 and the second radiating member 593 are respectively disposed in Opposite sides of dielectric layer 595 .
  • the first radiating member 591 and the second radiating member 593 in the figure are not completely laid on the surface of the dielectric layer 595, but protrude from the edge of the dielectric layer 595, and these structures do not correspond to the actual structure of the end-fire antenna.
  • the structure of part of the dielectric layer 595 is omitted in the drawings to clearly express the structure of the first radiating part 591 and the second radiating part 593 and the positional relationship between them, or, it can also be considered that the first The radiating element 591 and the second radiating element 593 may protrude from the edge of the dielectric layer 595 and be disposed substantially opposite to each other.
  • FIG. 15( a ) shows a schematic three-dimensional layout of the end-fire antenna in this embodiment
  • FIG. 15( b ) shows a schematic diagram of an orthographic projection of the end-fire antenna in this embodiment.
  • the first radiating element 591 includes a main body 5911 and a radiating support arm 5913 .
  • the main body 5911 is roughly elongated, one end of which is connected to the feed, and is disposed on the surface of the dielectric layer 595 .
  • the radiating arm 5913 is roughly in the shape of a bar, and is connected to the end of the main body 5911 away from the feed.
  • the end of the radiation arm 5913 is connected to the end of the main body 5911 , and the radiation arm 5913 is substantially perpendicular to the main body 5911 .
  • the structure of the second radiating element 593 is similar to that of the first radiating element 591 , and it also includes a main body 5931 and a radiating support arm 5933 . Another surface, where both bodies 5911, 5931 can be connected to the same feed.
  • the radiation support arm 5933 is roughly in the shape of a bar, and is connected to the other end of the main body 5931 away from the feed source. The end of the radiation arm 5933 is connected to the end of the main body 5931 , and the radiation arm 5933 is substantially perpendicular to the main body 5931 .
  • the main body 5931 of the second radiating element 593 and the main body 5911 of the first radiating element 591 are arranged approximately staggered from each other, and their projections on the plane where the dielectric layer 595 is located do not overlap.
  • the radiation support arms 5933 of the second radiation element 593 and the radiation support arms 5913 of the first radiation element 591 extend in opposite directions relative to the corresponding main bodies 5931 and 5911 .
  • the antenna device 100 may further include an attitude sensor 40 (refer to FIG. 12 ), and the attitude sensor 40 may be electrically connected to the switch module 90 .
  • the attitude sensor 40 is configured to acquire the attitude of the antenna device 100
  • the switch module 90 is further configured to control the excitation current fed by the feed module 10 to the side-fire antenna radiator and the end-fire antenna radiator based on the attitude of the antenna device 100. on and off.
  • the switch module 90 can select the end-fire antenna radiator to transmit signals; when the attitude sensor 40 determines that the antenna device is generally in a vertical state, the switch module 90 can select the side The radiation antenna radiator emits signals, so that the radiation efficiency of the antenna device 100 can be higher.
  • the attitude sensor 40 may include, but is not limited to, a gyroscope, an accelerometer, and the like.
  • FIG. 16 shows a possible schematic structural diagram of the antenna apparatus 100 provided by the third embodiment of the present application.
  • the antenna device 100 may include a dielectric substrate 60 , and the radiation module 30 is disposed on the dielectric substrate 60 .
  • the radiation module 30 includes a plurality of radiation patches arranged in an array, and the plurality of radiation patches may include a first radiation patch 351 , a second radiation patch 353 , a third radiation patch 355 and a fourth radiation patch 357 .
  • a radiation patch 351 and a third radiation patch 353 are provided with a first feeding point 301
  • both the second radiation patch 353 and the fourth radiation patch 357 are provided with a second feeding point 303 .
  • each radiation patch is a linearly polarized radiation unit, and the four radiation patches are arranged on the dielectric substrate 60 approximately in 90° rotational symmetry.
  • the four radiation patches are excited by the continuous rotation feed
  • the current is flowing, it can continuously rotate 90° to radiate linearly polarized waves.
  • the polarized waves have a certain amplitude and phase, and the phases of the polarized waves radiated by the four radiating patches can be 90° different in turn, which is conducive to widening the antenna.
  • the operating bandwidth of the device 100 is a certain amplitude and phase, and the phases of the polarized waves radiated by the four radiating patches can be 90° different in turn, which is conducive to widening the antenna.
  • the radiation patch may be a geometric shape patch, such as a square, a rectangle, etc.
  • the two adjacent radiation patches have the same rotation angle relative to the geometric center, so that the two adjacent radiation patches (such as the first radiation patch 351 and The second radiation patch 353 , the third radiation patch 355 , and the fourth radiation patch 357 ) intersect the direction of the electric field generated by the excitation current, thereby ensuring that the first radiation patch 351 , the third radiation patch 351 , the third
  • the excitation current of the radiation patch 353 can make the first radiation patch 351 and the third radiation patch 353 radiate a signal with the first linear polarization characteristic, which is fed into the second radiation patch 353 and the second radiation patch 353 and the third radiation patch 353 through the second feeding point 303
  • the excitation current of the four radiation patches 357 enables the second radiation patch 353 and the
  • the specific structure of the antenna device is not limited to the implementation manners described in the specification, and may include a combination of one or more features provided by any of the foregoing implementation manners.
  • the radiation module is provided with a first feeding point and a second feeding point
  • the feeding source module is configured to feed the excitation current through the first feeding point.
  • the polarization characteristics of the first linear polarization characteristic and the second linear polarization characteristic cross, which makes the signal radiated by the antenna device as a whole have the characteristic of cross polarization (for example, it can be orthogonal polarization), no matter the antenna Regardless of the polarization characteristics of the antenna of the matching object of the device (such as a reader such as a mobile terminal), it can ensure that one of the polarization characteristics of the antenna device is consistent with the polarization characteristics of the matching object, so that the antenna device can be more easily matched and connected to the matching object. , without being restricted to a specific relative azimuth to match the connection. Therefore, the above-mentioned connection steps of the antenna device are convenient and fast, which can ensure high efficiency of the matching process between the antenna device and
  • the switch module of the above-mentioned antenna device is arranged on the feed circuit of the feed module to the first feed point, and is arranged on the feed circuit of the feed module to the second feed point; the switch module is configured to use It is used to control the on-off of the excitation current fed by the feed module to the radiation module, which allows the antenna device to be matched and connected to the matching object through the two-way signal with the first linear polarization characteristic and the second linear polarization characteristic, and can Selecting one of the signals to transmit valid data information can ensure that the antenna device has low power consumption and less interference to the signals during the data transmission process.
  • an embodiment of the present application further provides a casing 200 .
  • the casing 200 can be applied to electronic equipment.
  • the casing 200 can be used as a protective casing for an electronic device casing.
  • the casing 200 will be described below by taking the protective casing as an example.
  • the casing 200 is used as a protective case, it is used as an outer cover of the electronic device to protect the electronic device from damages such as impact, scratches and the like.
  • the electronic device can be, but is not limited to, a portable communication device (such as a mobile phone, etc.), a tablet computer, a personal digital assistant, and the like.
  • the housing 200 includes an antenna device 2001 and a housing body 2003.
  • the antenna device 2001 is disposed on the housing body 2003.
  • the configuration and parameters of the antenna device 2001 in this embodiment may be the same as those of the antenna device 100 in any of the foregoing embodiments. roughly the same.
  • the antenna device 2001 may be directly embedded in the casing body 2003, or may be disposed on the surface of the casing body 2003, which is not limited in this application.
  • the housing body 2003 includes a body 201 and a side wall 203 .
  • the antenna device 2001 is disposed on the main body 201 , and the side wall 203 is connected to the side of the main body 201 and extends in a direction substantially perpendicular to the main body 201 , so that the main body 201 and the side wall 203 together form a receiving space 2011 .
  • the accommodating space 2011 is used for accommodating electronic equipment.
  • the casing 200 can be used as a casing of the electronic device, which together with the display screen of the electronic device forms the appearance surface of the electronic device, and is used to accommodate and protect the internal electronic components of the electronic device.
  • an embodiment of the present application further provides an electronic tag 400 , which includes any one of the antenna devices 100 provided in the foregoing embodiments.
  • the electronic tag 400 adopts non-contact automatic identification technology, connects the target object and transmits relevant data through radio frequency signals, and the process of establishing the connection does not require manual intervention.
  • the electronic tag 400 can be connected with its matching object (eg, reader, etc.).
  • Matching objects may include, but are not limited to, smart mobile communication devices, radio frequency card readers, smart electronic label devices, and the like.
  • the electronic tag 400 may include a carrier 410 on which the antenna device 100 may be disposed.
  • the form of the carrier 410 is not limited, and it can be self-adhesive, paper, anti-theft buckle body, wristband, glasses, etc. objects that need to be matched and connected with the matching object by using the antenna device 100 .
  • the electronic tag 400 can be set on smart home equipment (such as TV, electric light, air conditioner, refrigerator, etc.), so that the smart home equipment can be matched and connected with the matching object (such as a smart mobile terminal such as a mobile phone) by means of the electronic tag 400, so as to realize a smart home Convenient control of the device.
  • FIG. 19 shows a schematic diagram of an application scenario of the electronic tag 400 .
  • the electronic tag 400 is disposed on at least one of a plurality of smart home devices, and the smart home device includes an air conditioner 430 , a TV 450 and an electric light 470 .
  • the electronic tag 400 can be attached to the smart home device, or directly integrated in the smart home device.
  • the electronic tag 400 is used for matching connection with the mobile terminal 500 .
  • the mobile terminal 500 is, but not limited to, an electronic device such as a mobile phone, a tablet computer, and a smart watch.
  • the mobile terminal 500 of the present embodiment will be described by taking a mobile phone as an example.
  • the mobile terminal 500 is equipped with an antenna module 510 , and the antenna module 510 is used for sending out a radio frequency signal to match with the electronic tag 400 .
  • the antenna module 510 sends a signal of a specific frequency
  • the antenna device 100 modulates its own input impedance by changing its own input impedance. Backscatter the signal to send information to the antenna module 510; in another scenario, the antenna module 510 of the mobile terminal 500 sends a signal to generate a strong magnetic field between the antenna module 510 and the electronic tag 400.
  • the magnetic field causes the antenna device 100 of the electronic tag 400 to generate an induced current for the antenna device 100 to transmit a feedback signal. Therefore, through the matching connection between the electronic tag 400 and the mobile terminal 500, the two can transmit information to each other, making the connection between objects more convenient.
  • the radiation module of the antenna device is provided with a first feeding point and a second feeding point
  • the feeding source module is configured to feed the excitation current into the radiation module through the first feeding point, so that the radiation module radiates the signal with the first linear polarization characteristic, and the excitation current is fed into the radiation module through the second feeding point, so that the radiation module radiates the signal with the second linear polarization characteristic, wherein the first linear
  • the polarization characteristic and the polarization characteristic of the second linear polarization characteristic cross which makes the signal radiated by the antenna device as a whole have the characteristic of cross polarization (for example, it can be orthogonal polarization), no matter the reading of the electronic tag Regardless of the polarization characteristics of the antenna of the reader (such as a mobile terminal, etc.), it can ensure that one of the polarization characteristics of the electronic tag is consistent with the polarization characteristics of the reader, so that the electronic tag is easier to match and connect with the reader without being restricted.
  • an embodiment of the present application further provides an antenna matching method.
  • the antenna matching method is applicable to the case where any of the above-mentioned antenna devices is matched with an external matching object, and can also be applied to the above-mentioned electronic tags for external matching.
  • the antenna device can be an electronic tag antenna, and the electronic tag antenna can be installed on smart home equipment (such as TVs, air conditioners, lamps, refrigerators, etc.), or can be installed on mobile terminals such as smart communication equipment, such as , the antenna device can be integrated into the casing or protective casing of the mobile terminal.
  • the antenna device is configured to be in communicative connection with the matching object.
  • the matching object can be a smart communication device, such as a smart phone, smart watch, tablet computer, notebook computer, PDA, personal digital assistant, smart remote control, smart card reader and other electronic devices, and the matching object is usually called a reader , which is used to read the information carried by the antenna device (electronic tag antenna).
  • the antenna device electronic tag antenna
  • the electronic tag antenna enters the working area of the reader, a part of the energy emitted by the reader is absorbed by the electronic tag antenna, and the other part of the energy is scattered with different intensities In all directions, part of the scattered energy is received by the reader antenna, and the relevant information of the electronic tag antenna can be obtained by amplifying and processing the received signal.
  • the foregoing antenna matching method may be performed by the antenna apparatus provided in the embodiment of the present application or an electronic device configured with the antenna apparatus.
  • the antenna device includes a feed module and a radiation module.
  • the radiation module is provided with a first feeding point and a second feeding point, and the feed source module is configured to feed the excitation current into the radiation module through the first feeding point, so that the radiation module radiates the first linear polarization characteristic.
  • a signal is configured to feed the excitation current into the radiation module via the second feed point, so that the radiation module radiates a second signal having a second linear polarization characteristic, wherein the first linear polarization and the second linear polarization for cross-polarization.
  • the antenna device may further include a switch module, the switch module is arranged on the feed circuit of the feed module to the first feeding point, and the switch module is arranged on the feed circuit of the feed module to the second feed point.
  • the switch module is configured to control the on-off of the excitation current fed by the feed module to the radiation module.
  • the steps of the antenna matching method of the embodiments of the present application may be executed in a computer system such as a set of computer-executable instructions, and although a logical sequence is shown in the description, in some cases, the The steps shown or described may be performed in a different order than herein.
  • the antenna matching method provided in this embodiment includes the following steps S110-S170:
  • Step S110 Control the antenna device to radiate a first signal with a first linear polarization characteristic and to radiate a second signal with a second linear polarization characteristic.
  • the antenna device may have a set of one or more features of any of the antenna devices provided in the foregoing embodiments, for example, the antenna device includes a radiation module and a feed module, and the feed module is provided with a first feed point and a second feed point, the feed module is configured to feed the excitation current into the radiation module via the first feed point, so that the radiation module radiates the first signal having the first linear polarization characteristic.
  • the feed module is configured to feed the excitation current into the radiation module via the second feed point, so that the radiation module radiates the second signal having the second linear polarization characteristic.
  • the radiation when the antenna device radiates the first signal and the second signal, the radiation may be alternately radiated in time sequence.
  • the feed module feeds the excitation current into the radiation module through the first feed point at the first moment, so that the radiation module radiates the first signal, and feeds the excitation current into the radiation module through the second feed point at the second moment, so that the radiation module radiates the second signal.
  • the antenna device can radiate the first signal and the second signal simultaneously.
  • the feed module feeds the excitation current into the radiation module through the first feed point and the second feed point at the same time.
  • the first signal or/and the second signal radiated by the antenna device can be coupled and matched with the antenna of the external matching object, and after the coupling and matching, the antenna device can receive the signal transmitted by the matching object.
  • the antenna device may be a passive electronic tag antenna, which may perform a pre-matching operation with the matching object before step S110, and based on the pre-matching operation, a pre-connection may be established between the antenna device and the matching object , the antenna device can receive the energy radiated by the matching object based on the pre-connection, and radiate the first signal and the second signal based on the received energy.
  • each radiation module is provided with a first feeding point and a second feeding point, so that each radiation module can transmit cross-polarized signals.
  • One of the two radiation modules is an edge-fire antenna module, and the other of the two radiation modules is an end-fire antenna module.
  • the antenna arrangement may include an attitude sensor.
  • the attitude sensor is electrically connected to the switch module, and is configured to obtain the attitude of the antenna device, and the switch module is also configured to control the excitation current fed by the feed module to the side-fire antenna module and the end-fire antenna module based on the attitude of the antenna device on and off.
  • the radiation module for radiating the signal when the antenna device radiates the first signal and the second signal, the radiation module for radiating the signal can be selected according to the posture of the antenna device.
  • the end-fire antenna module transmits the first signal and the second signal.
  • the antenna device When the antenna device is in a substantially vertical state, it can select the side-fire antenna module to transmit the first signal and the second signal, thereby making the radiation efficiency of the antenna device higher. , the loss is small.
  • step S110 may include: determining a current posture of the antenna device, where the current posture includes a first posture and a second posture that are distinguished; when the current posture of the antenna device is the first posture, the feed module Feeding excitation current to the end-fire antenna module, so that the end-fire antenna module radiates a first signal with a first linear polarization characteristic, and radiates a second signal with a second linear polarization characteristic; and when the current attitude of the antenna device In the second posture, the feed module feeds the excitation current to the side-fire antenna module, so that the side-fire antenna module radiates the first signal with the first linear polarization characteristic, and radiates the second signal with the second linear polarization characteristic. Signal.
  • the attitude sensor can be used for detection.
  • the first posture may be a posture in which the antenna device is placed approximately flat
  • the second posture may be a posture in which the antenna device is placed approximately vertically.
  • the first attitude can be understood as the pitch angle of the antenna device is between -45° (including the endpoint value) to +45° (including the endpoint value)
  • the second attitude can be understood as the antenna device.
  • the pitch angle is between -90° (including the endpoint value) to -45° (excluding the endpoint value) or between +45° (excluding the endpoint value) and +90° (including the endpoint value).
  • the elevation angle of the antenna device can be determined by using one of the sides of the rectangle as a reference, such as The pitch angle of the antenna device is determined by the included angle between the side and the horizontal direction.
  • Step S130 the antenna device receives a feedback signal sent by the matching object, wherein the feedback signal is generated by the matching object based on the received signal, and the feedback signal includes the first strength of the first signal and the second strength of the second signal received by the matching object .
  • the first signal and the second signal when the antenna device radiates a radio frequency signal, the first signal and the second signal have different linear polarization characteristics, that is, the first signal and the second signal are cross-polarized.
  • the antenna device radiates the first signal with the first linear polarization characteristic, if the relative azimuth angle between the antenna device and the antenna of the matching object satisfies the first preset range, the matching object can receive the first signal;
  • the relative azimuth angle between the two changes within the first preset range, and the strength of the first signal received by the matching object also changes.
  • the relative azimuth value between the two is closer to the end value of the first preset range , the signal strength of the first signal received by the matching object is weaker.
  • the matching object can receive the second signal.
  • the relative azimuth angle between the two changes within the second preset range, and the strength of the second signal received by the matching object also changes. , the weaker the signal strength of the second signal received by the matching object.
  • the intensities of the first signal and the second signal received by the matching object are also determined. Therefore, after receiving the first signal and the second signal, the matching object can generate a feedback signal based on the received first signal or/and the second signal, where the feedback signal carries the first strength of the first signal and the second signal the second intensity.
  • Step S150 Determine the target communication signal from the first signal and the second signal based on the first strength and the second strength.
  • the antenna device and the matching object tend to use a signal with a stronger signal for communication, so as to ensure higher signal transmission efficiency and stronger anti-interference ability. Therefore, the antenna device may be configured to determine the target communication signal among the first signal and the second signal based on the magnitude relationship between the first strength and the second strength, and the target communication signal is that the signal strength of the first signal and the second signal is larger.
  • the antenna device may include a switch module, and the switch module may be used to ensure the transmission of target communication signals, and may also be used to cut off non-target communication signals.
  • the switch module can be arranged on the feed circuit from the feed module to the first feed point, and on the feed circuit from the feed module to the second feed point; the switch module is configured to control the feed On-off of the excitation current fed by the source module to the radiation module.
  • the antenna device can use the switch module to control the excitation current for exciting the first signal and the second signal.
  • the switch module can be used to cut off the feeding circuit to the second feeding point to Cut off the second signal and keep the first signal as the target communication signal; or, when the target communication signal is the second signal, the switch module can be used to cut off the feeding circuit to the first feeding point to cut off the first signal, and The second signal is reserved as the target communication signal.
  • the steps S130 and S150 for determining the strength of the two-way signal may be performed by the antenna device, that is, in the steps S130 and S150, the antenna device may be based on the pre-communication connection with the matching object , determining the first strength of the first signal and the second strength of the second signal, and determining the target communication signal in the first signal and the second signal based on the first strength and the second strength.
  • the antenna device may further include two rectification circuits, two demodulation circuits, and two modulation circuits; each feeding point (the first feeding point and the second feeding point) of the antenna device is respectively connected to one rectifying and modulating circuit.
  • demodulation circuit the two-way rectifier output is directly connected to supply power to the antenna device at the same time.
  • the two-way demodulation circuit compares the envelope signals obtained by the detection to determine which antenna has a strong received signal, and generates an antenna selection signal; the antenna selection signal selects a signal with a strong received signal through the AND gate, and sends it to the digital baseband.
  • the antenna selection signal selects a modulator with strong signal through the AND gate for signal modulation, and backscatters the modulated signal back through this signal.
  • Step S170 The antenna device communicates with the matching object based on the target communication signal.
  • the cross-polarized first signal and the second signal are radiated by the antenna device, so that the signal radiated by the antenna device as a whole has the characteristic of cross-polarization (for example, it may be positive No matter what the polarization characteristics of the antenna of the matching object (such as mobile terminal, etc.) of the antenna device are, one of the polarization characteristics of the antenna device can be guaranteed to be consistent with the polarization characteristics of the matching object, so that the antenna It is easier for the device to match the connection with the matching object without being restricted to a specific relative azimuth to match the connection. Therefore, the above-mentioned connection steps of the antenna device are convenient and fast, which can ensure high efficiency of the matching process between the antenna device and its matching object.
  • the switch module of the above-mentioned antenna device is arranged on the feed circuit of the feed module to the first feed point, and is arranged on the feed circuit of the feed module to the second feed point; the switch module is configured to use It is used to control the on-off of the excitation current fed by the feed module to the radiation module, which allows the antenna device to be matched and connected to the matching object through the two-way signal with the first linear polarization characteristic and the second linear polarization characteristic, and can Selecting one of the signals to transmit valid data information can ensure that the antenna device has low power consumption and less interference to the signals during the data transmission process.
  • an embodiment of the present application further provides an antenna matching method.
  • the antenna matching method is applicable to the case where the mobile terminal is matched with any of the above-mentioned antenna devices, and can also be applied to the external matching of the above-mentioned electronic tags.
  • the application scenario shown in Figure 19 The antenna device can be an electronic tag antenna, and the electronic tag antenna can be set on smart home equipment (such as TVs, air conditioners, lamps, refrigerators, etc.), or can be set on mobile terminals such as smart communication equipment, for example, the antenna device 100 can be integrated
  • the mobile terminal is configured to be in communication connection with the antenna arrangement.
  • the mobile terminal can be an intelligent communication device, such as a smart phone, a smart watch, a tablet computer, a notebook computer, a handheld computer, a personal digital assistant, a smart remote control, a smart card reader, etc.
  • the mobile terminal is usually called a reader.
  • a reader which is used to read the information carried by the antenna device (electronic tag antenna).
  • the antenna device electronic tag antenna
  • the electronic tag antenna enters the working area of the reader, a part of the energy emitted by the reader is absorbed by the electronic tag antenna, and the other part of the energy is scattered with different intensities In all directions, part of the scattered energy is received by the reader antenna, and the relevant information of the electronic tag antenna can be obtained by amplifying and processing the received signal.
  • the above-mentioned antenna matching method may be performed based on the antenna apparatus provided in the embodiment of the present application or an electronic device configured with the antenna apparatus.
  • the antenna device includes a feed module and a radiation module.
  • the radiation module is provided with a first feeding point and a second feeding point, and the feed source module is configured to feed the excitation current into the radiation module through the first feeding point, so that the radiation module radiates the first linear polarization characteristic. a signal.
  • the feed module is configured to feed the excitation current into the radiation module via the second feed point, so that the radiation module radiates a second signal having a second linear polarization characteristic, wherein the first linear polarization and the second linear polarization for cross-polarization.
  • the antenna device may further include a switch module, the switch module is arranged on the feed circuit from the feed module to the first feed point, and on the feed circuit from the feed module to the second feed point; the switch module is configured to It is used to control the on-off of the excitation current fed by the feed module to the radiation module.
  • the steps of the antenna matching method of the embodiments of the present application may be executed in a computer system such as a set of computer-executable instructions, and although a logical sequence is shown in the description, in some cases, the The steps shown or described may be performed in a different order than herein.
  • the antenna matching method provided in this embodiment includes the following steps S210-S250:
  • Step S210 Receive the first signal and the second signal transmitted by the antenna device, and the linear polarization characteristics of the first signal and the second signal are cross polarization.
  • the mobile terminal receives the first signal and the second signal based on the antenna module configured by the mobile terminal.
  • the steps of transmitting the first signal and the second signal by the antenna device reference may be made to the introduction of step S110, and details are not repeated here.
  • Step S230 Generate a feedback signal based on the received signal, and send the feedback signal to the antenna device; wherein the feedback signal includes the first strength of the first signal and the second strength of the second signal received by the mobile terminal, and the feedback signal uses for instructing the antenna device to determine the target communication signal in the first signal and the second signal.
  • the antenna module of the mobile terminal after receiving the first signal and the second signal, the antenna module of the mobile terminal generates a feedback signal according to the received first strength of the first signal and the second strength of the second signal, and sends the feedback signal sent to the antenna unit.
  • Step S250 Communicate with the antenna device based on the target communication signal.
  • the mobile terminal receives the first signal and the second signal radiated by the antenna device that are cross-polarized. Orthogonal polarization), then regardless of the polarization characteristics of the antenna of the mobile terminal, one of the polarization characteristics of the antenna device can be guaranteed to be consistent with the polarization characteristics of the matching object, so that the antenna device can be more easily matched and connected to the matching object. There is no need to be constrained to a specific relative azimuth to match the connection.
  • the mobile terminal can determine the feedback signal based on the received strength of the first signal and the second signal, the feedback signal is used to instruct the antenna device to determine the target communication signal in the first signal and the second signal, and the target communication signal may be the first signal and the second signal.
  • the stronger signal strength ensures better signal strength and communication quality between the mobile terminal and the antenna device. Therefore, the above-mentioned connection steps of the antenna device are convenient and fast, which can ensure high efficiency of the matching process between the antenna device and its matching object.
  • an embodiment of the present application further provides an antenna matching method, and the antenna matching is applicable to a situation in which a mobile terminal is matched with any of the above-mentioned antenna devices.
  • the antenna matching method provided in this embodiment is similar to the embodiment shown in FIG. 21 , and the specific introduction of the relevant steps and conditions may refer to the above, which will not be repeated here.
  • the antenna matching method provided in this embodiment includes the following steps S310-S370:
  • Step S310 Receive the first signal and the second signal transmitted by the antenna device, and the linear polarization characteristics of the first signal and the second signal are cross polarization.
  • the mobile terminal receives the first signal and the second signal based on the antenna module configured by the mobile terminal.
  • the steps of transmitting the first signal and the second signal by the antenna device reference may be made to the introduction of step S110, and details are not repeated here.
  • Step S330 Communicate with the antenna device based on the received signal, and receive the first information sent by the antenna device based on the first signal and the second information sent based on the second signal.
  • the mobile terminal may communicate with the antenna device based on the first signal, and simultaneously communicate with the antenna device based on the second signal, and the communication information between the mobile terminal and the antenna device may be sent through two-way signals.
  • the antenna device since the polarization characteristics of the antenna module of the mobile terminal are unknown to the antenna device, in order to avoid that the mobile terminal may not receive the information carried by a certain channel of signals, the antenna device selects the The two channels of signals respectively send the first information and the second information, and the first information and the second information may be the same. Therefore, the mobile terminal can receive the first information sent based on the first signal and the second information sent based on the second signal.
  • the mobile terminal may select the information carried by a signal with a stronger signal to perform data processing.
  • Step S350 Determine the confidence level of the first information based on the signal strength of the first signal, and determine the confidence level of the second information based on the signal strength of the second signal.
  • the intensities of the first signal and the second signal received by the matching object are also determined. Therefore, after the mobile terminal receives the first signal and the second signal, the signal strengths of the two signals are also determined accordingly. Since the first signal and the second signal have cross-polarized characteristics, the signal strength of one of the two signals reaching the mobile terminal is usually greater than that of the other.
  • the mobile terminal may calculate the confidence level of the information carried by the two signals based on the strengths of the first signal and the second signal. For example, the higher the signal strength, the higher the confidence level of the information carried.
  • S370 Determine target information from the first information and the second information according to the confidence level of the first information and the confidence level of the second information, and process the target information.
  • the mobile terminal uses the information with a higher confidence level as the target information according to the confidence level of the first information and the confidence level of the second information, and performs subsequent processing on the target information. Subsequent processing operations may include: reading target information, storing target information, editing target information, calculating target information, and transmitting target information.
  • the mobile terminal may determine the corresponding signal as the target communication signal, and process the target information sent based on the target communication signal in the subsequent communication process, while ignoring the non-target communication information sent by the signal. For example, when the confidence level of the first information is greater than the confidence level of the second information, the mobile terminal determines that the first information is the target information, and determines the first signal corresponding to the first information as the target communication signal. In a subsequent communication process, the mobile terminal may process the first information sent based on the first signal and ignore the information sent based on the second signal.
  • the mobile terminal may further estimate the azimuth angle of the antenna device relative to the mobile terminal based on the target communication signal.
  • the azimuth angle can be calculated based on the phase and time when the target communication signal reaches the antenna module of the mobile terminal, or the azimuth angle can be determined by looking up a preset table, wherein the preset table includes the phase, time, and azimuth angle. corresponding relationship.
  • the step of processing the target information may include: acquiring the phase angle and the arrival time of the target information when it reaches the mobile terminal, and calculating the azimuth angle of the antenna device relative to the mobile terminal according to the phase angle and the arrival time .
  • the antenna module of the mobile terminal may include a first antenna unit and a second antenna unit (for example, as shown in FIG. 19 , the antenna module 510 of the mobile terminal 500 may include a first antenna unit 511 and a second antenna unit Antenna unit 513), the first antenna unit and the second antenna unit are both used for receiving target information.
  • the first antenna unit and the second antenna unit are arranged in parallel and spaced apart, and the mobile terminal is configured to calculate the azimuth angle of the antenna device relative to the mobile terminal based on the target information received by the first antenna unit and the second antenna unit .
  • the step of processing the target information may include: obtaining the first phase angle when the target information reaches the first antenna unit, and obtaining the second phase angle when the target information reaches the second antenna unit;
  • the phase angle and the second phase angle are used to determine the phase difference between the target information reaching the first antenna unit and the second antenna unit; the time difference between the target information reaching the first antenna unit and the second antenna unit is determined; according to the phase difference and the time difference, calculate The azimuth of the antenna arrangement relative to the mobile terminal.
  • the calculation process of calculating the azimuth angle of the antenna device with respect to the mobile terminal based on the first antenna unit and the second antenna unit will be described below by way of example.
  • the antenna device 100 transmits electromagnetic waves or pulses, and the signal path from the antenna device 100 to the first antenna unit 511 is longer than the path to the second antenna unit 513. Therefore, the signal transmitted from the antenna device 100 carries the target information.
  • PDOA phase difference of arrival
  • the phase difference can be characterized by a time difference of arrival (TDOA) of the signals at the first antenna unit 511 and the second antenna unit 513 .
  • TDOA time difference of arrival
  • the relative movement of the antenna device 100 can be calculated.
  • the azimuth angle ⁇ (angle of arrival, AOA) of the terminal in the vertical direction, the specific conversion process is listed as follows:
  • the range of the signal frequency f corresponding to the target information is 6.25-8.25 GHz;
  • the range of wavelength ⁇ is 36.4 ⁇ 48mm;
  • the distance D between the antenna device 100 and the antenna module of the mobile terminal is much larger than the wavelength ⁇ .
  • the arrival angle ⁇ 1 of the signal carrying the target information reaches the first antenna unit 511 , the arrival angle ⁇ 2 of the second antenna unit 513 , and the arrival angle of the antenna
  • the arrival angles ⁇ of the modules may be approximately equal; wherein, the reference position of the entire antenna module is based on the midpoint of the line connecting the first antenna unit 511 and the second antenna unit 513 .
  • the difference d1 between the distances between the antenna device 100 and the first antenna unit 511 and the second antenna unit 513 is:
  • the time difference of arrival (TDOA) t 1 of the signal carrying the target information reaching the first antenna unit 511 and the second antenna unit 513 is:
  • t 1 d*sin ⁇ /c, where c is the electromagnetic wave speed
  • phase difference (PDOA) of the signal carrying the target information reaching the first antenna unit 511 and the second antenna unit 513 can be obtained for:
  • the angle of arrival of the signal carrying the target information to the antenna module of the mobile terminal that is, the azimuth angle ⁇ (AOA) of the antenna device 100 relative to the mobile terminal in the vertical direction is:
  • the antenna module of the mobile terminal calculates the phase angle of the antenna device relative to the mobile terminal through the target information received in the two antenna units, so that the positioning of the antenna device by the mobile terminal can be more accurate.
  • the calculation of the phase angle of the antenna device relative to the mobile terminal can be calculated according to the calculation formula provided in the above-mentioned embodiment, and can also be obtained by the look-up table method provided below.
  • a calibration table is constructed in advance, and the calibration table includes the polarization state of the incoming electromagnetic wave received by the mobile terminal, the phase difference between the incoming electromagnetic wave reaching the two antenna elements of the antenna module, the relative relationship between the antenna device and the antenna device.
  • the relationship between the azimuth angles of the mobile terminal, and then according to the target information received by the mobile terminal, the azimuth angle of the antenna device relative to the mobile terminal is looked up in the calibration table.
  • the step of processing the target information in step S370 may include: calculating the phase difference between the target information reaching the first antenna unit and the second antenna unit of the antenna module; acquiring the communication signal corresponding to the target information According to the polarization state and the phase difference, based on a preset polarization state-arrival phase difference-relative azimuth relationship table, find the azimuth angle of the antenna device relative to the mobile terminal.
  • the relationship table can be pre-established in the mobile terminal. For example, the matching connection between the antenna device and the mobile terminal can be tested and verified for multiple times in two polarization states.
  • the azimuth angle of the antenna device can be regarded as a known parameter, and the phase difference of the signal transmitted by the antenna device reaching the two antenna units can also be calculated. Therefore, based on the data obtained from multiple tests and verifications, the polarization state can be established- Arrival phase difference - relative azimuth relationship table.
  • the relationship table includes the polarization state of the incoming electromagnetic wave received by the mobile terminal, the phase difference between the incoming electromagnetic wave reaching the two antenna units of the antenna module of the mobile terminal, and the azimuth angle between the antenna device relative to the mobile terminal.
  • the relationship table reflects the relationship between the above-mentioned phase difference and the relative azimuth angle under different polarization states. An example of the table is shown in Table 1 below.
  • the mobile terminal can obtain the azimuth angle of the antenna device relative to the mobile terminal by looking up a table based on the arrival phase of the target information.
  • the phase difference between the incoming electromagnetic wave reaching the two antenna units of the antenna module and “calculating the phase difference between the signal received by the mobile terminal reaching the first antenna unit and the second antenna unit” can refer to the calculation in the above step S370 , and will not be repeated here.
  • the data processing amount of the mobile terminal can be relatively small and the efficiency is high.
  • the method may include steps S352-S354.
  • S352 Determine the first strength of the first signal, and determine the second strength of the second signal; and determine the polarization state of the signal received by the mobile terminal according to the first strength and the second strength.
  • the first signal and the second signal when the antenna device radiates a radio frequency signal, the first signal and the second signal have different linear polarization characteristics, that is, the first signal and the second signal are cross-polarized.
  • the relative azimuth angle between the antenna device and the mobile terminal is basically determined, and the respective polarization characteristics of the first signal and the second signal are also basically determined.
  • the strength of the second signal has also been determined.
  • the mobile terminal may determine the first strength of the first signal and the second strength of the second signal based on the received first signal or/and the second signal.
  • the mobile terminal can be configured to: perform virtual polarization matching with the antenna device based on the first signal and the second signal sent by the antenna device, and determine the first strength of the first signal and the first intensity of the second signal during the virtual polarization matching process. Two strengths, based on the greater one of the first strength and the second strength, determine the polarization state of the signal with the greater strength as the polarization state of the signal received by the mobile terminal.
  • the virtual polarization matching between the mobile terminal and the antenna device may include: matching with the antenna device based on the first polarization characteristic of the first signal to obtain the first strength; and matching the antenna device with the antenna device based on the second polarization characteristic of the second signal Make a match to get the second intensity.
  • the antenna device can sequentially switch the input excitation current to the first feeding point and the second feeding point through the switch module, so as to transmit the first signal and the second signal in sequence, so as to allow the mobile terminal to Virtual polarization matching is performed based on the first signal and the second signal in sequence.
  • Step S354 Calculate the phase difference of the signal received by the mobile terminal reaching the first antenna unit and the second antenna unit; according to the phase difference and the polarization state of the signal received by the mobile terminal, based on the preset polarization state-arrival phase Difference-relative azimuth relationship table, look up the azimuth angle of the antenna device relative to the mobile terminal.
  • the phase difference between the signal received by the mobile terminal reaching the first antenna unit and the second antenna unit reference may be made to the calculation in the foregoing step S370, which is not repeated in this embodiment.
  • For the specific process of finding the azimuth angle in the preset polarization state-arrival phase difference-relative azimuth angle relationship table reference may be made to the above description, which will not be repeated here.
  • the mobile terminal receives the first signal and the second signal radiated by the antenna device that are cross-polarized. Orthogonal polarization), then regardless of the polarization characteristics of the antenna of the mobile terminal, one of the polarization characteristics of the antenna device can be guaranteed to be consistent with the polarization characteristics of the matching object, so that the antenna device can be more easily matched and connected to the matching object. There is no need to be constrained to a specific relative azimuth to match the connection.
  • the mobile terminal can determine the target communication signal based on the strength of the received first signal and the second signal, and the target communication signal can be the first signal and the second signal, whichever has the higher signal strength, which ensures that the mobile terminal and the antenna are connected.
  • the above-mentioned connection steps of the antenna device are convenient and fast, which can ensure high efficiency of the matching process between the antenna device and its matching object.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请涉及一种天线装置、壳体以及电子标签,以及天线匹配方法。天线装置包括馈源模块、第一馈线、第二馈线以及开关模块。辐射模块设有第一馈电点以及第二馈电点;第一馈线电性连接于第一馈电点与馈源模块之间,馈源模块被配置为使辐射模块辐射具有第一线性极化特性的信号。第二馈线电性连接于第二馈电点与馈源模块之间,馈源模块被配置为使辐射模块辐射具有第二线性极化特性的信号,其中,第一线性极化与第二线性极化为交叉极化。开关模块设置于馈源模块向第一馈电点的馈电电路上,以及设置于馈源模块向第二馈电点的馈电电路上。上述的天线装置与匹配对象的连接步骤便捷、快速,可以保证天线装置与其匹配对象的匹配过程的效率较高。

Description

天线装置、壳体、电子标签设备以及天线匹配方法
相关申请的交叉引用
本申请要求于2021年03月23日提交中国专利局的申请号为CN202110310623.9、名称为“天线装置、壳体、电子标签设备以及天线匹配方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种天线装置、壳体及电子标签设备,以及天线匹配方法。
背景技术
随着科技的发展进步,通信技术得到了飞速发展和长足的进步,而随着通信技术的提高,智能电子产品的普及提高到了一个前所未有的高度,越来越多的智能终端或电子设备成为人们生活中不可或缺的一部分,如智能手机、智能电视和电脑等,基于这些智能电子设备的万物互联也成为一种新趋势。万物互联可以理解为物与物之间能够实现直接的通信连接,在目前的产品中,一般通过在两个物体上各自配置的天线来实现两个物体之间的通信连接。
例如,物体A上设置有天线A,物体B上设置有电子标签B,通过天线A感测电子标签B并追踪电子标签B的信号,能够实现天线A和B之间的通信连接。其中,电子标签B为标签天线,其被配置为发射具有宽带宽的信号;天线A通常为接收天线,其被配置为接收电子标签B发出的信号以实现二者之间的通信。采用这样的通信连接方式,通常要求天线A和电子标签B的极化特性相同,二者方能实现可靠的匹配连接。然而,电子标签B的极化特性会随着其姿态变化而发生改变,在不同的姿态下,电子标签B具有不同的极化特性,这就使得电子标签B与天线A在匹配时会存在较大概率的极化失配现象,导致二者难以匹配连接。
发明内容
本申请实施例提供一种天线装置、壳体及电子标签,以及天线匹配方法。
第一方面,本申请实施例提供一种天线装置,天线装置包括馈源模块、第一馈线、第二馈线以及开关模块。辐射模块设有第一馈电点以及第二馈电点;第一馈线电性连接于第一馈电点与馈源模块之间,馈源模块被配置为将激励电流经由第一馈线、第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的信号。第二馈线电性连接于第二馈电点与馈源模块之间,馈源模块被配置为将激励电流经由第二馈线、第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的信号,其中,第一线性极化与第二线性极化为交叉极化。开关模块设置于馈源模块向第一馈电点的馈电电路上,以及设置于馈源模块向第二馈电点的馈电电路上;开关模块被配置为用于控制馈源模块向辐射模块馈入的激励电流的通断。
第二方面,本申请实施例还提供一种壳体,包括壳体本体以及上述任一项的天线装置,天线装置设置于壳体本体。
第三方面,本申请实施例还提供一种电子标签,包括上述任一项的天线装置。
第四方面,本申请实施例还提供一种天线匹配方法,应用于天线装置与匹配设备之间的匹配,天线装置包括馈源模块及辐射模块。辐射模块设有第一馈电点以及第二馈电点,馈源模块被配置为将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的第一信号。馈源模块被配置为将激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的第二信号,其中,第一线性极化与第二线性极化为交叉极化。天线匹配方法包括:控制天线装置辐射具有第一线性极化特性的第一信号,以及辐射具有第二线性极化特性的第二信号;天线装置接收匹配对象发送的反馈信号,其中,反馈信号由匹配对象基于所接收的信号而生成,反馈信号包括匹配对象所接收的第一信号的第一强度和第二信号的第二强度;基于第一强度和第二强度,在第一信号及第二信号中确定目标通信信号;天线装置基于目标通信信号与匹配对象通信。
第五方面,本申请实施例还提供一种天线匹配方法,应用于移动终端与天线装置之间的匹配,天线装置包括馈源模块及辐射模块。辐射模块设有第一馈电点以及第二馈电点,馈源模块被配置为将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的第一信号。馈源模块被配置为将激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的第二信号,其中,第一线性极化与第二线性极化为交叉极化。天线匹配方法包括:接收天线装置发射的第一信号及第二信号,第一信号和第二信号的线极化特性为交叉极化;基于所接收的信号生成反馈信号,并将反馈信号发送至天线装置;其中,反馈信号包括移动终端所接收的第一信号的第一强度和第二信号的第二强度,反馈信号用于指示天线装置在第一信号及第二信号中确定目标通信信号;以及移动终端基于目标通信信号与天线装置通信。
第六方面,本申请实施例还提供一种天线匹配方法,应用于移动终端与天线装置之间的匹配,天线装置包括馈源模块及辐射模块,辐射模块设有第一馈电点以及第二馈电点,馈源模块被配置为将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的第一信号;馈源模块被配置为将 激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的第二信号,其中,第一线性极化与第二线性极化为交叉极化。天线匹配方法包括:接收天线装置发射的第一信号及第二信号,第一信号和第二信号的线性极化特性为交叉极化;基于所接收的信号与天线装置通信,并接收天线装置基于第一信号发送的第一信息以及基于第二信号发送的第二信息;基于第一信号的信号强度确定第一信息的置信度,基于第二信号的信号强度确定第二信息的置信度;以及根据第一信息的置信度及第二信息的置信度,在第一信息及第二信息中确定目标信息,并对目标信息进行处理。
附图说明
为了更清楚地说明申请的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种天线装置的结构示意图。
图2是本申请第一实施例提供的天线装置的一种结构示意图。
图3是图2所示天线装置的另一种可变通结构的示意图。
图4是图2所示天线装置的又一种可变通结构的示意图。
图5是图2所示天线装置的再一种可变通结构的示意图。
图6是本申请实施例提供的一种天线装置的剖面结构示意图。
图7是本申请第二实施例提供的天线装置的一种结构示意图。
图8是图7所示天线装置的剖面示意图。
图9是图8所示天线装置的一种可变通结构的剖面示意图。
图10是图7所示天线装置的另一种可变通结构的示意图。
图11是图7所示天线装置的又一种可变通结构的示意图。
图12是图11所示天线装置的剖面示意图。
图13是图12所示天线装置的端射天线的一种结构示意图。
图14是图12所示天线装置的端射天线的一种结构示意图。
图15是图12所示天线装置的端射天线的一种结构示意图。
图16是本申请第三实施例提供的天线装置的一种结构示意图。
图17是本申请实施例提供的壳体的示意图。
图18是本申请实施例提供的电子标签设备的示意图。
图19是本申请实施例提供的天线匹配方法的一种应用场景示意图。
图20是本申请实施例提供的一种天线匹配方法的流程示意图。
图21是本申请实施例提供的另一种天线匹配方法的流程示意图。
图22是本申请实施例提供的又一种天线匹配方法的流程示意图。
图23是图22所示天线匹配方法中移动终端测定天线装置的方位角的计算示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
作为在本申请实施例中使用的“移动终端”包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(PSTN)、数字用户线路(DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的通信终端可以被称为“无线通信终端”、“无线终端”、“电子装置”以及/或“电子设备”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器、游戏机或包括无线电电话收发器的其它电子装置。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
请参阅图1,本申请实施方式提供一种天线装置100,其包括馈源模块10以及辐射模块30,馈源模块10电性连接于辐射模块30,并被配置为向辐射模块30馈入激励电流,使辐射模块30能够收发预定频段的射频信号。
在本申请实施例中,天线装置100还可以包括第一馈线50、第二馈线70。辐射模块30设有第一馈电点301以及第二馈电点303,第一馈线50电性连接于第一馈电点301与馈源模块10之间,第二馈线70电性连接于第二馈电点303与馈源模块10之间。馈源模块10被配置为将激励电流经由第一馈线50馈入辐 射模块30,以使辐射模块30辐射具有第一线性极化特性的信号。馈源模块10还被配置为将激励电流经由第二线70馈入辐射模块30,以使辐射模块30辐射具有第二线性极化特性的信号,其中,第一线性极化特性与第二线性极化特性的极化特性交叉。
在一些具体的实施例中,例如,第一线性极化可以为垂直极化,而第二线性极化可以为水平极化;又如,第一线性极化可以为水平极化,而第二线性极化可以为垂直极化;再如,第一线性极化可以不必为严格的垂直极化,而是在竖直方向上有极化分量,而第二线性极化可以不必为严格的水平极化,而是在水平方向上有极化分量。如此,天线装置100整体所辐射的信号具有交叉极化的特性(如,可以为正交极化,或具有在正交的方向上的分量),则无论该天线装置100的匹配对象(如移动终端、另一天线装置等阅读器)的天线的极化特性如何,均能保证天线装置100的其中一种极化特性与该匹配对象的极化特性一致,使天线装置100更易与该匹配对象匹配连接,而无需被限制在特定的相对方位角。因此,上述的天线装置100的连接步骤便捷、快速,可以保证天线装置100与其匹配对象的匹配过程的效率较高。
天线装置100还可以包括开关模块90,开关模块90设置于馈源模块10向第一馈电点301的馈电电路上,同时设置于馈源模块10向第二馈电点303的馈电电路上。开关模块90被配置为用于控制馈源模块10向辐射模块30馈入的激励电流的通断,这就允许天线装置100在通过具有第一线性极化特性、第二线性极化特性的两路信号与匹配对象进行匹配连接后,通过开关模块90可选择地保留其中的一路信号来传递有效数据信息,可以保证天线装置100在传递数据的过程中功耗较低、信号所受到的干扰较小。
在本申请实施例中,开关模块90可以包括至少一个开关,至少一个开关可以设置于第一馈线50或第二馈线70,该至少一个开关用于控制第一馈线50或第二馈线70上电流的通断。在图1所示的实施例中,开关模块90包括第一开关92以及第二开关94。第一开关92设置于第一馈线50,并用于控制第一馈线50的通断。第二开关92设置于第二馈线70,并用于控制第二馈线70的通断。在本实施例中,每个开关可以为单刀单掷开关或电子开关管等。其中,电子开关管可以为MOS管、晶体管等。在本申请实施例中,对开关模块90的具体组成器件不做进一步的限定,其满足符合对对应的馈线电流的通断控制条件即可。
在本申请实施例中,辐射模块30可以为两个或两个以上,开关模块90还可以被配置为基于天线装置100的姿态,选择用于辐射信号的辐射模块30。例如,辐射模块30可以为两个,每个辐射模块30均设有第一馈电点301以及第二馈电点303,使每个辐射模块30均可以发射交叉极化的信号。两个辐射模块30中的一个为边射天线模块,两个辐射模块30中另一个为端射天线模块。开关模块90被配置为基于天线装置100的姿态控制馈源模块10向边射天线模块及端射天线模块馈入的激励电流的通断。如,当天线装置100大致为平躺状态时,开关模块90可以选择端射天线模块发射信号,当天线装置100大致为竖直状态时,开关模块90可以选择边射天线模块发射信号,由此能够使得天线装置100的辐射效率较高、损耗较小。在一些实施例中,天线装置100可以基于与开关模块90电性连接的姿态传感器来确定姿态。
下文将以示例性的附图为例,对本申请有可能的几个实施例加以说明,为了简化附图的表达,下文的实施例附图中,可能未示出开关模块90的示意结构,但这不应当理解为对本申请实施例的限制,在具体的实施例中,尽管未示出开关模块90的示意结构,天线装置100也可以包括或者可以不包括开关模块90。
请参阅图2,图2示出了本申请第一实施例提供的天线装置100的一种可能的结构示意图。在图2的实施例中,辐射模块30包括辐射体组32。在本说明书中,“辐射体组”的概念可以理解为用于归纳一个或者多个辐射体的概念,在该辐射体组中,其所包含的多个(如两个或两个以上)辐射体之间可以彼此间隔设置,或者多个辐射体可以彼此独立地辐射射频信号、彼此之间基本不存在能量耦合现象。例如,辐射体组32可以包括彼此间隔设置的第一辐射体321及第二辐射体323,第一馈电点301设置于第一辐射体321,第二馈电点303设置于第二辐射体323。在本实施例中,第一辐射体321和第二辐射体323的方向图互补,以保证二者为正交极化天线。
在本实施例中,馈源模块10可以包括第一馈源12以及第二馈源14,第一馈线50连接于第一辐射体321与第一馈源12之间,第二馈线70连接于第二辐射体323与第二馈源14之间。
在一些实施例中,第一辐射体321为双频天线辐射体,其用于收发两个频段的信号。例如,第一辐射体321可以包括第一辐射部3211以及第二辐射部3213,第一辐射部3211以及第二辐射部3213均通过第一馈线50连接于第一馈源12,其中,第一馈源12被配置为经由第一馈线50将激励电流馈入第一辐射部3211,以使第一辐射部3211辐射第一频段的信号,还被配置为经由第一馈线50将激励电流馈入第二辐射部3213,以使第二辐射部3213辐射第二频段的信号,其中,第二频段与第一频段不相同。在另一些实施例中,第一辐射体321可以为多频(如双频或双频以上)天线,其可以通过一个辐射体配置合路器以及多个馈源,实现多个频段信号的收发。
在本申请实施例中,第一辐射体321为超宽带宽(Ultra Wide Band,UWB)天线辐射体,则第一频段及第二频段的信号为超宽带宽信号。UWB天线是一种短距离的无线通信方式,其传输距离通常在10米以内,且通常使用1GHz以上带宽。UWB天线不采用载波,而是利用纳秒至微秒级的非正弦波窄脉冲传输数据,因此,其所占的频谱范围很宽,适用于高速、近距离的无线通信,其通信效率也较高。美国联邦通 信委员会(Federal Communications Commission,FCC)规定,UWB天线的工作频段范围从3.1GHz到10.6GHz,最小工作频宽为500MHz。目前主流的UWB天线频段中心频率为6.5GHz和8GHz,带宽要求500MHz以上,CH5:6.25~6.75GHz;CH9:7.75~8.25GHz。在本申请实施例中,第一辐射部3211可以为高频辐射贴片,第一频段的中心频点大致为8GHz,且带宽大于或等于500MHz;第二辐射部3213可以为低频辐射贴片,第二频段的中心频点大致为6.5GHz,且带宽大于或等于500MHz。
在一些实施例中,第一辐射部3211及第二辐射部3213可以为矩形贴片,第一辐射部3211的周长小于第二辐射部3213的周长,以保证第一辐射部3211的工作频段高于第二辐射部3213的工作频段。第一辐射部3211和第二辐射部3213可以并排设置,例如,第一辐射部3211及第二辐射部3213可以沿着同一直线基本彼此平行地设置于同一个平面(如介质基板)上。第一辐射部3211与第二辐射部3213之间的距离的取值范围可以为0.8毫米~1.2毫米(含端点值),如,第一辐射部3211与第二辐射部3213之间的距离可以为0.8毫米、0.85毫米、0.9毫米、0.95毫米、1毫米、1.05毫米、1.15毫米、1.15毫米、1.2毫米等。
在本实施例中,第二辐射体323临近第一辐射体321设置,并与第一辐射体321相间隔。从排布的角度分析,在图2所示的实施例中,第二辐射体323与第一辐射体321大致为平面辐射体,二者大致呈长条形,第二辐射体323与第一辐射体321的长度方向相交,如二者的长度方向彼此垂直,以使第二辐射体323与第一辐射体321能够分别辐射具备不同的线性极化特性的信号(如二者的信号为正交极化)。
进一步地,在一些实施例中,第二辐射体323与第一辐射体321可以不必为规整的长条形(如矩形)等结构,而是采用第二辐射体323与第一辐射体321中的几何结构特征限定二者之间的相对位置关系,例如,第一辐射体321可以具有第一长边3210,第一长边3210为第一辐射体321上电流路径最长的直边(如矩形的长边);第二辐射体323可以具有第二长边3230,第二长边3230为第二辐射体323上电流路径最长的直边;第一长边3210所在直线与第二长边3230所在直线相交,以使第二辐射体323与第一辐射体321能够分别辐射具备不同的线性极化特性的信号(如二者的信号为正交极化)。
第二辐射体323的结构、尺寸参数可以与第一辐射体321大致相同,例如,其可以为双频天线辐射体,也可以为UWB天线辐射体,本说明书不再赘述。与第一辐射体321类似,第二辐射体323也可以包括第一辐射部3231以及第二辐射部3233。第一辐射部3231以及第二辐射部3233均通过第二馈线70连接于第二馈源14,其中,第二馈源14被配置为经由第二馈线70将激励电流馈入第一辐射部3231,以使第一辐射部3231辐射第一频段的信号,还被配置为经由第二馈线70将激励电流馈入第二辐射部3233,以使第二辐射部3233辐射第二频段的信号,其中,第二频段与第一频段不相同。第一辐射部3231及第二辐射部3233可以为矩形贴片,第一辐射部3231的周长小于第二辐射部3233的周长,以保证第一辐射部3231的工作频段高于第二辐射部3233的工作频段。第一辐射部3231和第二辐射部3233可以并排设置,例如,第一辐射部3231及第二辐射部3233可以沿着同一直线基本彼此平行地设置于同一个平面(如介质基板)上。应当理解的是,在其他的实施例中,第一辐射体321和第二辐射体323中的一个为双频天线辐射体,另一个可以为双频天线辐射体或者单频天线辐射体,以使天线装置100具有较宽频带的同时成本较低。
在上述的实施例中,第一辐射体321中的第一辐射部3211、第二辐射部3213之间存在实体连接关系,二者可以直接一体成型,并接收同一个第一馈线50馈电。第二辐射体323中的第一辐射部3231、第二辐射部3233之间存在实体连接关系,二者可以直接一体成型,并接收同一个第二馈线70馈电。
在本申请提供的另一些实施例中,如图3所示,第一辐射体321中的第一辐射部3211、第二辐射部3213之间可以间隔设置而不必存在直接的电性连接关系,第二辐射体323中的第一辐射部3231、第二辐射部3233之间可以间隔设置而不必存在直接的电性连接关系。相应地,第一馈电点301、第二馈电点303、第一馈线50、第二馈线70、第一馈源12、第二馈源14均可以为两个。第一辐射部3211及第二辐射部3213上均设置有第一馈电点301,每个第一馈线50对应地连接于一个第一馈电点301和一个第一馈源12之间,其中一个第一馈源12被配置为通过对应的第一馈线50以及对应的第一馈电点301将激励电流馈入第一辐射部3211,以使第一辐射部3211辐射第一频段的信号,另一个第一馈源12被配置为通过对应的第一馈线50以及对应的第一馈电点301将激励电流馈入第二辐射部3213,以使第二辐射部3213辐射第二频段的信号。第一辐射部3231及第二辐射部3233上均设置有第二馈电点303,每个第二馈线70对应地连接于一个第二馈电点303和一个第二馈源14之间,其中一个第二馈源14被配置为通过对应的第二馈线70以及对应的第二馈电点303将激励电流馈入第一辐射部3231,以使第一辐射部3231辐射第一频段的信号,另一个第二馈源14被配置为通过对应的第二馈线70以及对应的第二馈电点303将激励电流馈入第二辐射部3233,以使第二辐射部3233辐射第二频段的信号。
在上述的实施例中,以一个辐射体组32为例进行说明。应当理解的是,在其他的实施例中,辐射体组32的数量并不局限于一个,例如,请参阅图4及图5,在天线装置100中,辐射体组32也可以为两个,两个辐射体组32大致呈中心对称排布,同时,对应的馈源、馈线以及馈电点也具有类似的布局,本说明书不再一一赘述。
请参阅图6,图6示出了本申请实施例中天线装置100的一种剖面结构示意图。在本实施例中,天线装置100还可以包括介质基板60以及金属地板80,介质基板60设置于金属地板80和辐射模块30之间,金属地板80用实现辐射模块30的接地。在一些实施例中,介质基板60可以由环氧树脂(FR4Epoxy)制成,介质基板60的相对介电常数为4.4,其介电损耗正切值为0.02。在本实施例中,介质基板60与金属地板80可以集成于印刷电路板,该印刷电路板可以为多层板(图中未示出其他的层结构),天线装置100的辐射模块30可以通过刻蚀的方式形成于该印刷电路板的表面。在一些实施例中,金属地板80上对应于辐射模块30处可以设有空缺区82,空缺区82为金属地板80上去除材料的部分,使金属地板80上形成缺口或通孔,以避免金属地板80上产生过多耦合电流,因此,空缺区82能够切断金属地板80上的电流路径,从而改善金属地板80的电场分布,使天线装置100具有良好的方向图特性。在一些实施例中,当金属地板80和介质基板50集成于印刷电路板时,空缺区82可以相当于设置于印刷电路板上的镂空区域,其可以沿印刷电路板并沿印刷电路板的厚度方向贯穿印刷电路板,以便于空缺区82的制备成型。应当理解的是,本说明书的“对应……的位置处”应理解为两个物件的位置在空间上大致相对,如,以金属地板80所在平面投影,辐射模块30的投影可以部分或者全部地落入空缺区82所限定的范围中。
请参阅图7,图7示出了本申请第二实施例提供的天线装置100的一种可能的结构示意图。在图7及图8的实施例中,天线装置100可以包括介质基板60以及金属地板80,介质基板60设置于金属地板80和辐射模块30之间。辐射模块30包括辐射贴片34,辐射贴片34设置于介质基板60的表面,第一馈电点301及第二馈电点303均设置于辐射贴片34,且第一馈电点301及第二馈电点303彼此间隔。其中,第一馈电点301更为邻近辐射贴片34的其中一个边缘设置,而第二馈电点303更为邻近辐射贴片34的另一个边缘设置,使第一馈电点301及第二馈电点303分别位于辐射贴片34的不同的边缘处,经由第一馈电点301馈入的激励电流产生的电场方向和经由第二馈电点303馈入的激励电流产生的电场方向相交,从而保证经由第一馈电点301馈入辐射贴片34的激励电流能够使辐射贴片34辐射具有第一线性极化特性的信号,且经由第二馈电点303馈入辐射贴片34的激励电流能够使辐射贴片34辐射具有第二线性极化特性的信号,第一线性极化与第二线性极化为交叉极化,也即,一个辐射贴片34可以辐射交叉极化的信号。
具体在图7所示的实施例中,辐射贴片34可以为边射天线,其可以设置于介质基板60的大致中部位置。辐射贴片34可以为较为规则的几何形状贴片,如,辐射贴片34可以为正方形贴片、菱形贴片等等,本说明书以正方形贴片为例进行说明。辐射贴片34包括第一侧边341和以及与第一侧边341相交的第二侧边343,第一侧边341、第二侧边343可以理解为正方形贴片的相邻两个边。相较于第二馈电点303,第一馈电点301更为邻近第一侧边341设置,也即第一馈电点301与第一侧边341之间的距离小于第一馈电点301与第二侧边343之间的距离。相较于第一馈电点301,第二馈电点303更为近邻第二侧边343设置,也即,第二馈电点303与第二侧边343之间的距离小于第二馈电点303与第一侧边341之间的距离。
在本实施例中,馈源模块10可以包括第一馈源12以及第二馈源14,第一馈线50连接于第一馈电点301与第一馈源12之间,第二馈线70连接于第二馈电点303与第二馈源14之间。在本实施例中,第一馈线50、第二馈线70可以为微带线馈线,其可以布局于介质基板60的表面。在另一些实施例中,请参阅图8,第一馈线50、第二馈线70可以为导电过孔,第一馈线50穿设于介质基板60以及金属地板80并将第一馈电点301电性连接于第一馈源12,第二馈线70穿设于介质基板60以及金属地板80并将第二馈电点303电性连接于第二馈源14。应当理解的是,在本实施例中,介质基板60与金属地板80可以集成于印刷电路板,该印刷电路板可以为多层板(如图9所示),此时,第一馈线50、第二馈线70可以穿设于该多层板,并与对应的馈源电连接。
进一步地,在一些实施例中,辐射贴片34可以为一个或多个,例如,请参阅图10,辐射模块30可以包括两个辐射贴片34,相应地,介质基板60可以为两个,金属地板80设置于两个介质基板60之间,两个辐射贴片34分别设置于两个介质基板60上。具体而言,两个辐射贴片34可以包括第一辐射贴片345及第二辐射贴片347,第一辐射贴片345设置于其中一个介质基板60背离于金属地板80的表面,第二辐射贴片347设置于另一个介质基板60背离于金属地板80的表面。
请参阅图11,在另一些实施例中,辐射贴片34可以为一个,一个辐射贴片34设置于介质基板60的表面,而为了保证天线装置100具有较高的辐射效率,辐射模块30还可以包括彼此间隔设置的第一辐射体36及第二辐射体38,第一辐射体36设有第一馈电点301,第二辐射体38设有第二馈电点303,且第一辐射体36与第二辐射体38均与辐射贴片34相间隔设置。应当理解的是,本实施例中的第一辐射体36可以具备上述实施例所提供的第一辐射体321的任意一个或多个特征或/及结构或/及参数的组合,本实施例中的第二辐射体38可以具备上述实施例所提供的第二辐射体323的任意一个或多个特征或/及结构或/及参数的组合,本说明书不做赘述。
请同时参阅图11及图12,在本实施例中,辐射贴片34可以大致设置于介质基板60的中部位置,如,辐射贴片34可以大致设置于介质基板60的几何中心位置,第一辐射体36及第二辐射体38可以大致设置于介质基板60的边缘位置处。进一步地,金属地板80未铺设到对应于第一辐射体36或/及第二辐射体38 的位置处,或者,金属地板80在对应于第一辐射体36或/及第二辐射体38的位置处有设有空缺区82,以避免金属地板80基于第一辐射体36或/及第二辐射体38辐射的信号产生不必要的耦合电流,从而提高第一辐射体36或/及第二辐射体38的辐射效率。应当理解的是,本说明书的“对应……的位置处”应理解为两个物件的位置在空间上大致相对,如,金属地板80在对应于第一辐射体36或/及第二辐射体38的位置处有设有空缺区82,可以理解为:以金属地板80所在平面投影,第一辐射体36或/及第二辐射体38的投影可以部分或者全部地落入空缺区82所限定的范围中。
在本实施例中,辐射模块30可以包括一个或多个辐射贴片34、一个或多个第一辐射体36,以及一个或多个第二辐射体38。其中,辐射贴片34可以为边射天线,第一辐射体36及第二辐射体38可以为端射天线,端射天线和边射天线至少覆盖6.5GHz和8GHz两个频段中的一个。在本实施例中,边射天线可以采用PIFA天线,Patch天线等形式,边射天线可以参考上文关于图8-9的实施例描述,此处不再赘述。端射天线可以采用偶极子天线、单极子天线、Vivaldi天线等形式,进一步地,端射天线可以采用垂直极化天线或者水平极化天线,本说明书对此不作限制,下文将结合附图介绍本申请实施例所提供的端射天线的几种形式。请参阅图13,在本申请提供的一些实施例中,端射天线可以包括第一辐射件391、第二辐射件393以及介质层395,第一辐射件391、第二辐射件393分别设置于介质层395的相对两侧。应注意的是,图中的第一辐射件391、第二辐射件393未完全铺设在介质层395的表面,而是相对介质层395的边缘突出,这些结构不应对实际的端射天线的结构造成限定,可以认为是附图中省略了部分介质层395的结构以清楚地表达第一辐射件391、第二辐射件393的结构以及二者之间的位置关系,或者,也可以认为第一辐射件391、第二辐射件393可以是相对介质层395的边缘突出并大致相对设置的。
图13的(a)图示出了本实施例中的端射天线的立体布局示意图,图13的(b)图示出了本实施例中的端射天线的正投影示意图。在本实施例中,第一辐射件391包括主体3911以及辐射支臂3913,主体3911大致呈长条形,其一端连接于馈源,并设置于介质层395的表面。辐射支臂3913大致呈条形,其连接于主体3911远离馈源的一端。辐射支臂3913与主体3911之间呈锐角,且该锐角的开口朝向馈源所在方向。
第二辐射件393的结构与第一辐射件391的结构类似,其也包括主体3931以及辐射支臂3933,主体3931大致呈长条形,其一端连接于馈源,并设置于介质层395的另一个表面,其中,两个主体3911、3931可以连接于同一个馈源。辐射支臂3933大致呈条形,其连接于主体3931远离馈源的另一端。辐射支臂3933与主体3931之间呈锐角,且该锐角的开口朝向馈源所在方向。在本实施例中,第二辐射件393的主体3931与第一辐射件391的主体3911大致彼此平行,二者在介质层395所在平面的投影基本重合。第二辐射件393的辐射支臂3933与第一辐射件391的辐射支臂3913相错开设置,二者在介质层395所在平面的投影关于主体3911的投影的中心线对称设置。
请参阅图14,在本申请提供的一些实施例中,端射天线可以包括第一辐射件491、第二辐射件493以及介质层495,第一辐射件491、第二辐射件493分别设置于介质层495的相对两侧。应注意的是,图中的第一辐射件491、第二辐射件493未完全铺设在介质层495的表面,而是相对介质层495的边缘突出,这些结构不应对实际的端射天线的结构造成限定,可以认为是附图中省略了部分介质层495的结构以清楚地表达第一辐射件491、第二辐射件493之间的位置关系,或者,也可以认为第一辐射件491、第二辐射件493可以是相对介质层495的边缘突出并大致相对设置的。
图14的(a)图示出了本实施例中的端射天线的立体布局示意图,图14的(b)图示出了本实施例中的端射天线的正投影示意图。在本实施例中,第一辐射件491包括主体4911以及辐射支臂4913,主体4911大致呈长条形,其一端连接于馈源,并设置于介质层495的表面。辐射支臂4913大致呈长条形,其连接于主体4911远离馈源的另一端并大致垂直于主体4911。进一步地,主体4911的末端连接于辐射支臂4913的大致中部位置,使第一辐射件491大致呈“T”型结构。第一辐射件491设有开槽497,开槽497贯穿主体4911以及辐射支臂4913,开槽497大致呈“T”型槽结构。
第二辐射件493的结构与第一辐射件491的结构大致相同,其也包括主体4931以及辐射支臂4933,其中,两个主体4911、4931可以连接于同一个馈源。在本实施例中,第二辐射件493与第一辐射件491大致彼此平行,二者在介质层495所在平面的投影基本重合。
请参阅图15,在本申请提供的一些实施例中,端射天线可以包括第一辐射件591、第二辐射件593以及介质层595,第一辐射件591、第二辐射件593分别设置于介质层595的相对两侧。应注意的是,图中的第一辐射件591、第二辐射件593未完全铺设在介质层595的表面,而是相对介质层595的边缘突出,这些结构不应对实际的端射天线的结构造成限定,可以认为是附图中省略了部分介质层595的结构以清楚地表达第一辐射件591、第二辐射件593的结构以及二者之间的位置关系,或者,也可以认为第一辐射件591、第二辐射件593可以是相对介质层595的边缘突出并大致相对设置的。
图15的(a)图示出了本实施例中的端射天线的立体布局示意图,图15的(b)图示出了本实施例中的端射天线的正投影示意图。在本实施例中,第一辐射件591包括主体5911以及辐射支臂5913,主体5911大致呈长条形,其一端连接于馈源,并设置于介质层595的表面。辐射支臂5913大致呈条形,其连接于 主体5911远离馈源的一端。辐射支臂5913的端部连接于主体5911的端部,且辐射支臂5913大致垂直于主体5911。
第二辐射件593的结构与第一辐射件591的结构类似,其也包括主体5931以及辐射支臂5933,主体5931大致呈长条形,其一端连接于馈源,并设置于介质层595的另一个表面,其中,两个主体5911、5931可以连接于同一个馈源。辐射支臂5933大致呈条形,其连接于主体5931远离馈源的另一端。辐射支臂5933的端部连接于主体5931的端部,且辐射支臂5933大致垂直于主体5931。在本实施例中,第二辐射件593的主体5931与第一辐射件591的主体5911大致彼此相错设置,二者在介质层595所在平面的投影不重合。第二辐射件593的辐射支臂5933与第一辐射件591的辐射支臂5913相对于对应的主体5931、5911的延伸方向相反。
进一步地,在本实施例中,天线装置100还可以包括姿态传感器40(参考图12),姿态传感器40可以与开关模块90电性连接。姿态传感器40被配置为获取天线装置100的姿态,开关模块90还被配置为基于天线装置100的姿态,控制馈源模块10向边射天线辐射体及端射天线辐射体馈入的激励电流的通断。例如,当姿态传感器40确定天线装置100大致为平躺状态时,开关模块90可以选择端射天线辐射体发射信号,当姿态传感器40确定天线装置大致为竖直状态时,开关模块90可以选择边射天线辐射体发射信号,由此能够使得天线装置100的辐射效率较高。姿态传感器40可以包括但不限于包括陀螺仪、加速度计等。
请参阅图16,图16示出了本申请第三实施例提供的天线装置100的一种可能的结构示意图。在图16的实施例中,天线装置100可以包括介质基板60,辐射模块30设置于介质基板60。辐射模块30包括多个阵列排布的辐射贴片,多个辐射贴片可以包括第一辐射贴片351、第二辐射贴片353、第三辐射贴片355以及第四辐射贴片357,第一辐射贴片351、第三辐射贴片353均设有第一馈电点301,第二辐射贴片353以及第四辐射贴片357均设有第二馈电点303。第一辐射贴片351、第二辐射贴片353、第三辐射贴片355以及第四辐射贴片395按照预定的圆周极化旋转排列于介质基板60。在一些实施例中,每个辐射贴片均为线极化辐射单元,四个辐射贴片大致呈90°旋转对称地设置于介质基板60,当四个辐射贴片接受连续旋转馈电的激励电流时,能够连续旋转90°向外辐射线极化波,该极化波具有一定幅度和相位,且四个辐射贴片的辐射的极化波的相位可以依次相差90°,有利于拓宽天线装置100的工作带宽。
在本实施例中,辐射贴片可以为几何形状贴片,如正方形、矩形等等,第一辐射贴片351、第二辐射贴片353、第三辐射贴片355以及第四辐射贴片357大致关于其阵列排布的几何中心均布设置,相邻的两个辐射贴片相对于该几何中心的旋转角度相同,使相邻设置的两个辐射贴片(如第一辐射贴片351和第二辐射贴片353、第三辐射贴片355和第四辐射贴片357)基于激励电流产生的电场方向相交,从而保证经由第一馈电点301馈入第一辐射贴片351、第三辐射贴片353的激励电流能够使第一辐射贴片351、第三辐射贴片353辐射具有第一线性极化特性的信号,经由第二馈电点303馈入第二辐射贴片353以及第四辐射贴片357的激励电流能够使第二辐射贴片353以及第四辐射贴片357辐射具有第二线性极化特性的信号,第一线性极化与第二线性极化为交叉极化,也即,一个相邻的两个辐射贴片即可辐射交叉极化的信号。
应当理解的是,在本申请实施例中,天线装置的具体结构并不局限于说明书所描述的实施方式,其可以包括上述任意一种实施方式所提供的一个或多个特征的组合。本申请实施例提供的天线装置、壳体及电子标签中,辐射模块设有第一馈电点以及第二馈电点,而馈源模块被配置为将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的信号,并将激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的信号,其中,第一线性极化特性与第二线性极化特性的极化特性交叉,这就使得天线装置整体所辐射的信号具有交叉极化的特性(如,可以为正交极化),则无论该天线装置的匹配对象(如移动终端等阅读器)的天线的极化特性如何,均能保证天线装置的其中一种极化特性与匹配对象的极化特性一致,使天线装置更易与匹配对象匹配连接,而无需被限制在特定的相对方位角方能匹配连接。因此,上述的天线装置的连接步骤便捷、快速,可以保证天线装置与其匹配对象的匹配过程的效率较高。
进一步地,上述天线装置的开关模块设置于馈源模块向第一馈电点的馈电电路上,以及设置于馈源模块向第二馈电点的馈电电路上;开关模块被配置为用于控制馈源模块向辐射模块馈入的激励电流的通断,这就允许天线装置通过具有第一线性极化特性、第二线性极化特性的两路信号与匹配对象进行匹配连接后,可选择地保留其中的一路信号来传递有效数据信息,可以保证天线装置在传递数据的过程中功耗较低、信号所受到的干扰较小。
请参阅图17,基于上述的天线装置100,本申请实施例还提供一种壳体200,壳体200可以应用于电子设备,例如,壳体200可以作为电子设备的保护壳,也可以作为电子设备的外壳。下文以保护壳为例对壳体200进行说明。当壳体200作为保护壳时,其用于作为电子设备的外套件,保护电子设备免于撞击、刮擦等损伤。该电子设备可以为但不限于为:便携式通信装置(如手机等)、平板电脑、个人数字助理等等。
壳体200包括天线装置2001以及壳体本体2003,天线装置2001设置于壳体本体2003,本实施例的 天线装置2001的配置、参数等可以与上述实施例任一种天线装置100的配置、参数大致相同。天线装置2001可以直接嵌入壳体本体2003内,也可以设置在壳体本体2003的表面,本申请不作限制。壳体本体2003包括本体201和侧壁203。天线装置2001设置于本体201,侧壁203连接于本体201的侧边,且沿大致垂直于本体201的方向延伸,使本体201与侧壁203共同形成收容空间2011。收容空间2011用于收容电子设备。
在另一些实施例中,壳体200可以作为电子设备的外壳,其与电子设备的显示屏共同形成电子设备的外观面,并用于容纳、保护电子设备的内部电子元件。
请参阅图18,本申请实施例还提供一种电子标签400,其包括上述实施例提供的任一种天线装置100。电子标签400采用非接触式的自动识别技术,通过射频信号来连接目标对象并传递相关数据,建立连接的过程工作无需人工干预。例如,电子标签400可以与其匹配对象(如阅读器等)匹配连接。匹配对象可以包括但不限于包括:智能移动通信设备、射频读卡器、智能电子标签设备等等。
在一些实施例中,电子标签400可以包括载体410,天线装置100可以设置于载体410上。载体410的形式不受限制,其可以为不干胶、纸张、防盗扣主体、手环、眼镜等等需要采用天线装置100与匹配对象匹配连接的物体。电子标签400可设置于智能家居设备(如电视、电灯、空调、冰箱等)上,使智能家居设备能够借助电子标签400与匹配对象(如手机等智能移动终端)进行匹配连接,从而实现智能家居设备的便捷控制。
请参阅图19,图19示出了电子标签400的一种应用场景示意图。在该场景中,电子标签400设置于多个智能家居设备中的至少一个,该智能家居设备包括空调430、电视450以及电灯470。电子标签400可以贴附在智能家居设备上,或直接集成在智能家居设备中。电子标签400用于与移动终端500匹配连接。移动终端500但不限于为手机、平板电脑、智能手表等电子装置。本实施方式的移动终端500以手机为例进行说明。移动终端500配置有天线模组510,天线模组510用于发出射频信号,以与电子标签400匹配。在一种场景下,当天线模组510发送特定频率的信号时,电子标签400的天线装置100收到信号后或产生感应电流使天线装置100工作,天线装置100通过改变自身的输入阻抗从而调制反向散射信号来向天线模组510发送信息;在另一种场景下,移动终端500的天线模组510发送信号以在天线模组510和与电子标签400之间产生较强的磁场,这个磁场会使电子标签400的天线装置100产生感应电流来供天线装置100发射反馈信号。因此,通过电子标签400和移动终端500之间的匹配连接,二者能够彼此传递信息,使物与物之间的连接更为便捷。
本申请实施例提供的电子标签中,天线装置的辐射模块设有第一馈电点以及第二馈电点,而馈源模块被配置为将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的信号,并将激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的信号,其中,第一线性极化特性与第二线性极化特性的极化特性交叉,这就使得天线装置整体所辐射的信号具有交叉极化的特性(如,可以为正交极化),则无论该电子标签的阅读器(如移动终端等)的天线的极化特性如何,均能保证电子标签的其中一种极化特性与阅读器的极化特性一致,使电子标签更易与阅读器匹配连接,而无需被限制在特定的相对方位角方能匹配连接。因此,上述的电子标签的连接步骤便捷、快速,可以保证电子标签与其匹配对象的匹配过程的效率较高。
请参阅图20,本申请实施例还提供一种天线匹配方法,该天线匹配方法适用于上述的任一种天线装置与外部的匹配对象进行匹配的情况,也可以适用于上述的电子标签于外部的匹配对象进行匹配的情况,如图19所示的应用场景。在本实施例中,天线装置可以为电子标签天线,该电子标签天线可设置于智能家居设备(如电视、空调、电灯、冰箱等)上,也可以设置于智能通信设备等移动终端上,如,天线装置可集成于移动终端的壳体或保护壳。天线装置被配置为与匹配对象进行通信连接。该匹配对象可以为智能通讯设备,如智能手机、智能手表、平板电脑、笔记本电脑、掌上电脑、个人数字助理、智能遥控器、智能读卡器)等电子设备,该匹配对象通常称为阅读器,其用于读取天线装置(电子标签天线)所携带的信息,当电子标签天线进入阅读器的工作区域时,阅读器发射的一部分能量被电子标签天线吸收,另一部分能量以不同的强度散射到各个方向,散射的部分能量被阅读器天线接收,通过对接收信号的放大和处理,便可得到电子标签天线的相关信息。
上述的天线匹配方法可以由本申请实施例提供的天线装置或者配置有该天线装置的电子设备来执行。该天线装置包括馈源模块及辐射模块。辐射模块设有第一馈电点以及第二馈电点,馈源模块被配置为将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的第一信号。馈源模块被配置为将激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的第二信号,其中,第一线性极化与第二线性极化为交叉极化。天线装置还可以包括开关模块,开关模块设置于馈源模块向第一馈电点的馈电电路上,以及设置于馈源模块向第二馈电点的馈电电路上。开关模块被配置为用于控制馈源模块向辐射模块馈入的激励电流的通断。
需要说明的是,本申请实施例的天线匹配方法的步骤可以在诸如一组计算机可执行指令的计算机系统 中执行,并且,虽然在说明书中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。如图20所示,本实施例提供的天线匹配方法包括以下步骤S110-S170:
步骤S110:控制天线装置辐射具有第一线性极化特性的第一信号,以及辐射具有第二线性极化特性的第二信号。
在本实施例中,天线装置可以具有上述实施例提供的任一种天线装置的一个或多个特征的集合,如,天线装置包括辐射模块以及馈源模块,馈源模块设有第一馈电点和第二馈电点,馈源模块被配置为将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的第一信号。馈源模块被配置为将激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的第二信号。
在一些实施例中,天线装置辐射第一信号及第二信号时,可以依次时间顺序交替辐射。如,馈源模块在第一时刻将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射第一信号,在第二时刻将激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射第二信号。在第二实施例中,天线装置可以同时辐射第一信号及第二信号,如,馈源模块在同一时刻将激励电流经由第一馈电点及第二馈电点馈入辐射模块。
在本实施例中,天线装置辐射的第一信号或/及第二信号能够与外界的匹配对象的天线发生耦合匹配,在耦合匹配后,天线装置能够接收匹配对象所发射的信号。进一步地,在本实施例中,天线装置可以为无源电子标签天线,其可以在步骤S110之前与匹配对象执行预匹配的操作,基于预匹配操作,天线装置与匹配对象之间可以建立预连接,则天线装置可以基于预连接接收匹配对象所辐射的能量,并基于所接收的能量辐射第一信号及第二信号。
在一些实施例中,天线装置中的辐射模块可以为两个,每个辐射模块均设有第一馈电点以及第二馈电点,使每个辐射模块均可以发射交叉极化的信号。两个辐射模块中的一个为边射天线模块,两个辐射模块中另一个为端射天线模块。天线装置可以包括姿态传感器。姿态传感器与开关模块电性连接,并被配置为获取天线装置的姿态,开关模块还被配置为基于天线装置的姿态,控制馈源模块向边射天线模块及端射天线模块馈入的激励电流的通断。在本实施例中,在天线装置辐射第一信号以及第二信号时,可以根据天线装置的姿态来选择用于辐射信号的辐射模块,例如,当天线装置大致为平躺状态时,其可以选择端射天线模块发射第一信号以及第二信号,当天线装置大致为竖直状态时,其可以选择边射天线模块发射第一信号以及第二信号,由此能够使得天线装置的辐射效率较高、损耗较小。
基于此,在一些实施例中,步骤S110可以包括:确定天线装置的当前姿态,当前姿态包括相区别的第一姿态以及第二姿态;当天线装置的当前姿态为第一姿态时,馈源模块向端射天线模块馈入激励电流,以使端射天线模块辐射具有第一线性极化特性的第一信号,以及辐射具有第二线性极化特性的第二信号;以及当天线装置的当前姿态为第二姿态时,馈源模块向边射天线模块馈入激励电流,以使边射天线模块辐射具有第一线性极化特性的第一信号,以及辐射具有第二线性极化特性的第二信号。进一步地,在获取天线装置的姿态时,可以通过姿态传感器检测。在本实施例中,第一姿态可以为天线装置大致平放的姿态,第二姿态可以为天线装置大致竖直放置的姿态。以天线装置的俯仰角进行举例说明,第一姿态可以理解为天线装置的俯仰角在-45°(含端点值)~+45°(含端点值)之间,第二姿态可以理解为天线装置的俯仰角在-90°(含端点值)~-45°(不含端点值)或者在+45°(不含端点值)~+90°(含端点值)之间。在一些实施例中,当天线装置大致排布呈矩形时,如当应用天线装置的电子标签大致呈矩形时,天线装置的俯仰角可以以该矩形的其中一条边作为判定的参考基准,如可以以该条边与水平方向的夹角来判定天线装置的俯仰角。
步骤S130:天线装置接收匹配对象发送的反馈信号,其中反馈信号由匹配对象基于所接收的信号而生成,反馈信号包括匹配对象所接收的第一信号的第一强度和第二信号的第二强度。
在本申请实施例中,当天线装置辐射射频信号时,第一信号和第二信号具有不同的线性极化特性,也即,第一信号及第二信号为交叉极化。当天线装置辐射具有第一线性极化特性的第一信号时,若天线装置与匹配对象的天线之间的相对方位角满足第一预设范围,则匹配对象能够接收到第一信号;若二者之间的相对方位角在第一预设范围内变化,匹配对象所接收的第一信号的强度也发生变化,当二者之间的相对方位角数值越靠近第一预设范围的端点值,匹配对象所接收的第一信号的信号强度越弱。当天线装置辐射具有第二线性极化特性的第二信号时,若天线装置与匹配对象的天线之间的相对方位角满足第二预设范围,则匹配对象能够接收到第二信号,若二者之间的相对方位角在第二预设范围内变化,匹配对象所接收的第二信号的强度也发生变化,当二者之间的相对方位角数值越靠近第二预设范围的端点值,匹配对象所接收的第二信号的信号强度越弱。天线装置与匹配对象之间的相对方位角一旦确定,匹配对象所接收的第一信号、第二信号的强度也已确定。因此,匹配对象在接收到第一信号、第二信号后,可基于所接收的第一信号或/及第二信号所生成反馈信号,该反馈信号携带第一信号的第一强度以及第二信号的第二强度。
步骤S150:基于第一强度和第二强度,在第一信号及第二信号中确定目标通信信号。
在本申请实施例中,天线装置及匹配对象倾向于采用信号较强的一路信号进行通信,以保证信号传输效率较高、抗干扰能力较强。因此,天线装置可以被配置为基于第一强度和第二强度的大小关系,在第一 信号及第二信号中确定目标通信信号,目标通信信号为第一信号及第二信号中信号强度较大者。
在一些实施例中,天线装置可以包括开关模块,开关模块可以用于保证目标通信信号的传输,也可以用于切断非目标通信信号。进一步地,开关模块可以设置于馈源模块向第一馈电点的馈电电路上,以及设置于馈源模块向第二馈电点的馈电电路上;开关模块被配置为用于控制馈源模块向辐射模块馈入的激励电流的通断。天线装置可以利用开关模块控制用于激励第一信号、第二信号的激励电流,如,当目标通信信号为第一信号时,开关模块可以用于切断向第二馈电点的馈电电路以切断第二信号,并保留第一信号作为目标通信信号;或者,当目标通信信号为第二信号时,开关模块可以用于切断向第一馈电点的馈电电路以切断第一信号,并保留第二信号作为目标通信信号。
在另外一些实施例中,用于确定两路信号的强度的步骤S130及步骤S150可以由天线装置来执行,也即,在步骤S130、步骤S150中,天线装置可以基于与匹配对象的预通信连接,确定第一信号的第一强度以及第二信号的第二强度,并基于第一强度和第二强度,在第一信号及第二信号中确定目标通信信号。例如,天线装置还可以包括两路整流电路,两路解调电路,两路调制电路;天线装置的每一个馈电点(第一馈电点、第二馈电点)分别连接一路整流、调制、解调电路;两路整流器输出直接连接同时为天线装置供电。两路解调电路通过比较检波得到的包络信号来判断哪一路天线的接收信号强,产生天线选择信号;天线选择信号通过与门来选择接收信号强的一路信号,并将其送入数字基带;同时,天线选择信号通过与门来选择信号强的一路调制器进行信号调制,并通过这一路信号将调制信号反向散射回去。
步骤S170:天线装置基于目标通信信号与匹配对象通信。
在本申请实施例提供的天线匹配方法中,利用天线装置辐射交叉极化的第一信号及第二信号,这就使得天线装置整体所辐射的信号具有交叉极化的特性(如,可以为正交极化),则无论该天线装置的匹配对象(如移动终端等)的天线的极化特性如何,均能保证天线装置的其中一种极化特性与匹配对象的极化特性一致,使天线装置更易与匹配对象匹配连接,而无需被限制在特定的相对方位角方能匹配连接。因此,上述的天线装置的连接步骤便捷、快速,可以保证天线装置与其匹配对象的匹配过程的效率较高。
进一步地,上述天线装置的开关模块设置于馈源模块向第一馈电点的馈电电路上,以及设置于馈源模块向第二馈电点的馈电电路上;开关模块被配置为用于控制馈源模块向辐射模块馈入的激励电流的通断,这就允许天线装置通过具有第一线性极化特性、第二线性极化特性的两路信号与匹配对象进行匹配连接后,可选择地保留其中的一路信号来传递有效数据信息,可以保证天线装置在传递数据的过程中功耗较低、信号所受到的干扰较小。
请参阅图21,本申请实施例还提供一种天线匹配方法,该天线匹配方法适用于移动终端与上述的任一种天线装置进行匹配的情况,也可以适用于上述的电子标签于外部的匹配对象进行匹配的情况,如图19所示的应用场景。天线装置可以为电子标签天线,该电子标签天线可设置于智能家居设备(如电视、空调、电灯、冰箱等)上,也可以设置于智能通信设备等移动终端上,如,天线装置100可集成于移动终端的壳体或保护壳。移动终端被配置为与天线装置进行通信连接。该移动终端可以为智能通讯设备,如智能手机、智能手表、平板电脑、笔记本电脑、掌上电脑、个人数字助理、智能遥控器、智能读卡器)等电子设备,该移动终端通常称为阅读器,其用于读取天线装置(电子标签天线)所携带的信息,当电子标签天线进入阅读器的工作区域时,阅读器发射的一部分能量被电子标签天线吸收,另一部分能量以不同的强度散射到各个方向,散射的部分能量被阅读器天线接收,通过对接收信号的放大和处理,便可得到电子标签天线的相关信息。
上述的天线匹配方法可以基于本申请实施例提供的天线装置或者配置有该天线装置的电子设备来执行。该天线装置包括馈源模块、辐射模块。辐射模块设有第一馈电点以及第二馈电点,馈源模块被配置为将激励电流经由第一馈电点馈入辐射模块,以使辐射模块辐射具有第一线性极化特性的第一信号。馈源模块被配置为将激励电流经由第二馈电点馈入辐射模块,以使辐射模块辐射具有第二线性极化特性的第二信号,其中,第一线性极化与第二线性极化为交叉极化。天线装置还可以包括开关模块,开关模块设置于馈源模块向第一馈电点的馈电电路上,以及设置于馈源模块向第二馈电点的馈电电路上;开关模块被配置为用于控制馈源模块向辐射模块馈入的激励电流的通断。
需要说明的是,本申请实施例的天线匹配方法的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在说明书中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。如图20所示,本实施例提供的天线匹配方法包括以下步骤S210-S250:
步骤S210:接收天线装置发射的第一信号及第二信号,第一信号和第二信号的线性极化特性为交叉极化。
在本申请实施例中,移动终端基于自身所配置的天线模组接收第一信号及第二信号。天线装置发射第一信号及第二信号的步骤,可以参考步骤S110的介绍,此处不再赘述。
步骤S230:基于所接收的信号生成反馈信号,并将反馈信号发送至天线装置;其中,反馈信号包括移动终端所接收的第一信号的第一强度和第二信号的第二强度,反馈信号用于指示天线装置在第一信号及第 二信号中确定目标通信信号。
在本实施例中,移动终端的天线模组接收第一信号及第二信号后,根据所接收的第一信号的第一强度和第二信号的第二强度,生成反馈信号,并将反馈信号发送至天线装置。
步骤S250:基于目标通信信号与天线装置通信。
在本申请实施例提供的天线匹配方法中,移动终端接收天线装置辐射交叉极化的第一信号及第二信号,此时,天线装置整体所辐射的信号具有交叉极化的特性(如,可以为正交极化),则无论移动终端的天线的极化特性如何,均能保证天线装置的其中一种极化特性与匹配对象的极化特性一致,使天线装置更易与匹配对象匹配连接,而无需被限制在特定的相对方位角方能匹配连接。同时,移动终端能够基于所接收的第一信号和第二信号的强度来确定反馈信号,反馈信号用于指示天线装置在第一信号及第二信号中确定目标通信信号,目标通信信号可以为第一信号及第二信号中信号强度较大者,就保证了移动终端与天线装置之间较佳的信号强度和通信质量。因此,上述的天线装置的连接步骤便捷、快速,可以保证天线装置与其匹配对象的匹配过程的效率较高。
请参阅图22,本申请实施例还提供一种天线匹配方法,该天线匹配适用于移动终端与上述的任一种天线装置进行匹配的情况。本实施例提供的天线匹配方法,与图21所示的实施例类似,相关步骤及条件的具体介绍可参考上文,此处不作赘述。本实施例提供的天线匹配方法包括以下步骤S310-S370:
步骤S310:接收天线装置发射的第一信号及第二信号,第一信号和第二信号的线性极化特性为交叉极化。
在本申请实施例中,移动终端基于自身所配置的天线模组接收第一信号及第二信号。天线装置发射第一信号及第二信号的步骤,可以参考步骤S110的介绍,此处不再赘述。
步骤S330:基于所接收的信号与天线装置通信,并接收天线装置基于第一信号发送的第一信息以及基于第二信号发送的第二信息。
在本申请实施例中,移动终端可以基于第一信号与天线装置通信,同时基于第二信号与天线装置通信,移动终端与天线装置二者之间的通信信息可以通过两路信号发送。在一些实施例中,由于移动终端的天线模组的极化特性对天线装置而言是未被确定得知的,为避免移动终端有可能接收不到某一路信号携带的信息,天线装置选择用两路信号分别发送第一信息和第二信息,第一信息和第二信息可以相同。因此移动终端能够接收到基于第一信号发送的第一信息,以及第二信号发送的第二信息。
由于第一信号及第二信号为交叉极化信号,移动终端在同一姿态下所接收到的第一信号和第二信号的信号强度不同。因此,为节省数据处理功耗,移动终端可以选择其中信号较强的一路信号所携带的信息进行数据处理。
步骤S350:基于第一信号的信号强度确定第一信息的置信度,基于第二信号的信号强度确定第二信息的置信度。
在本申请实施例中,天线装置与匹配对象之间的相对方位角一旦确定,匹配对象所接收的第一信号、第二信号的强度也已确定。因此,移动终端在接收到第一信号、第二信号后,两路信号的信号强度也随之确定。由于第一信号及第二信号具有交叉极化特性,两路信号的其中一者所到达移动终端的信号强度通常大于另一者。移动终端可以基于第一信号及第二信号的强度,计算两路信号所携带信息的置信度,例如,信号强度越大,其所携带的信息的置信度也越高。
S370:根据第一信息的置信度及第二信息的置信度,在第一信息及第二信息中确定目标信息,并对目标信息进行处理。
移动终端根据第一信息的置信度及第二信息的置信度,将置信度较高的信息作为目标信息,并对目标信息进行后续处理。后续处理的操作可以包括:读取目标信息、存储目标信息、编辑目标信息、计算目标信息、传送目标信息中的任一种。在一些实施例中,移动终端确定目标信息后,可以确定其所对应的信号作为目标通信信号,并在后续的通信过程中处理基于该目标通信信号所发送的目标信息,而可以忽略非目标通信信号所发送的信息。例如,当第一信息的置信度大于第二信息的置信度时,移动终端确定第一信息为目标信息,并确定第一信息所对应的第一信号作为目标通信信号。在后续的通信过程中,移动终端可以处理基于第一信号所发送的第一信息,而忽略基于第二信号所发送的信息。
在一些实施例中,移动终端在确定目标通信信号后,可以进一步地基于目标通信信号估计天线装置相对于移动终端的方位角。其中,方位角可以基于目标通信信号到达移动终端的天线模组的相位以及时间来计算,也可以通过查找预设表的方式确定方位角,其中,预设表包括相位、时间、方位角之间的对应关系。基于此,在一些实施例中,对目标信息进行处理的步骤可以包括:获取目标信息到达移动终端时的相位角以及到达时间,根据相位角以及到达时间,计算天线装置相对于移动终端的方位角。
在另一些实施例中,移动终端的天线模组可以包括第一天线单元以及第二天线单元(例如图19中所示,移动终端500的天线模组510可以包括第一天线单元511以及第二天线单元513),第一天线单元及第二天线单元均用于接收目标信息。在本实施例中,第一天线单元与第二天线单元并列间隔设置,移动终端被配置 为基于第一天线单元以及第二天线单元所接收的目标信息,计算天线装置相对于移动终端的方位角。基于此,步骤S370中,对目标信息进行处理的步骤,可以包括:获取目标信息到达第一天线单元时的第一相位角,获取目标信息到达第二天线单元的第二相位角;基于第一相位角及第二相位角,确定目标信息到达第一天线单元、第二天线单元之间的相位差;确定目标信息到达第一天线单元、第二天线单元的时间差;根据相位差以及时间差,计算天线装置相对于移动终端的方位角。下文将举例介绍基于第一天线单元、第二天线单元计算天线装置相对于移动终端的方位角的计算过程。
请参阅图23,天线装置100发送电磁波或脉冲,从天线装置100到第一天线单元511的信号路径长于到第二天线单元513的路径,因此,从天线装置100所发射的携带目标信息的信号到第一天线单元511、第二天线单元513之间存在相位差(phase different of arrival,PDOA)。该相位差可以由为第一天线单元511和第二天线单元513处的信号的到达时间差(time different of arrival,TDOA)表征。根据携带目标信息的信号到达第一天线单元511的到达角θ 1、到达第二天线单元513的到达角θ 2,以及到达角与相位差之间的函数关系,可以计算天线装置100相对于移动终端在竖直方向上的方位角α(angle of arrival,AOA),具体的换算过程列出如下:
设:
目标信息所对应的信号频率f的范围为6.25~8.25GHz;
波长λ的范围为36.4~48mm;
第一天线单元511、第二天线单元513之间的间距d=18mm;
天线装置100与移动终端的天线模组之间的距离D远大于波长λ。天线装置100与移动终端的天线模组之间的距离D足够远时,携带目标信息的信号到达第一天线单元511的到达角θ 1、到达第二天线单元513的到达角θ 2以及到达天线模组的到达角θ大致可以相等;其中,天线模组整体的参考位置,以第一天线单元511、第二天线单元513的连线的中点为基准。
则:
天线装置100与第一天线单元511、第二天线单元513的距离之差d1为:
d 1=d*cosθ=d*sinα,其中,α为θ的余角;
携带目标信息的信号到达第一天线单元511、第二天线单元513的到达时间差(TDOA)t 1为:
t 1=d*sinα/c,其中,c为电磁波速度;
因此可得携带目标信息的信号到达第一天线单元511、第二天线单元513的相位差(PDOA)
Figure PCTCN2022077673-appb-000001
为:
Figure PCTCN2022077673-appb-000002
所以,携带目标信息的信号到达移动终端的天线模组的到达角,也即天线装置100相对于移动终端在竖直方向上的方位角α(AOA)为:
Figure PCTCN2022077673-appb-000003
因此,本实施例中,移动终端的天线模组通过两个天线单元中所接收的目标信息来计算天线装置相对于移动终端的相位角,可以使该移动终端对天线装置的定位更为精确。
在本实施例提供的方法中,计算天线装置相对于移动终端的相位角可以根据上述实施例所提供的计算式计算得出,还可以通过下文提供的查表法获得。在查表法中,预先构建一个校准表,该校准表包括移动终端所接收到的电磁来波的极化状态、电磁来波到达天线模组的两个天线单元的相位差、天线装置相对于移动终端的方位角之间的关系,然后根据移动终端所接收的目标信息,在校准表中查找天线装置相对于移动终端的方位角。
例如,在一些实施例中,步骤S370中对目标信息进行处理的步骤可以包括:计算目标信息到达天线模组的第一天线单元及第二天线单元的相位差;获取目标信息所对应的通信信号的极化状态,根据该极化状态以及该相位差,基于预设的极化状态-到达相位差-相对方位角关系表,查找天线装置相对于移动终端的方位角。该关系表可以被预先建立在移动终端中,例如,可以分别在两种极化状态下,对天线装置和移动终端之间的匹配连接进行多次测试和验证,在每次测试和验证过程中,天线装置的方位角可视为已知参数,天线装置发射的信号到达两个天线单元的相位差也可计算得出,因此依据多次测试和验证得出的数据,可以建立极化状态-到达相位差-相对方位角关系表。该关系表包括了移动终端所接收到的电磁来波的极化状态、电磁来波到达移动终端的天线模组的两个天线单元的相位差、天线装置相对于移动终端的方位角之间的关系,该关系表即体现了在不同的极化状态下,上述的相位差和相对方位角之间的关系,该表的示例如下表1。因此,移动终端确定了目标信息所对应的通信信号的极化状态后,可以基于目标信息的到达相位、通过查表的方法得知天线装置相对于移动终端的方位角。其中,“电磁来波到达天线模组的两个天线单元的相位差”、“计算移动终端所接收的信号到达第一天线单元及第二天线单元的相位差”可以参考上述步骤S370中的计算,此处不再赘述。采用查表法,可以使移动终端的数据处理量相对较少,效率较高。
表1 极化状态-到达相位差-相对方位角关系表(示例)
Figure PCTCN2022077673-appb-000004
再如,在另一些实施例中,基于上述的查表法,图22所示的实施例中的天线匹配方法中,在步骤S330之后,该方法可以包括步骤S352~S354。
S352:确定第一信号的第一强度,确定第二信号的第二强度;根据第一强度和第二强度,确定移动终端所接收的信号的极化状态。
在本实施例中,当天线装置辐射射频信号时,第一信号和第二信号具有不同的线性极化特性,也即,第一信号及第二信号为交叉极化。在一些匹配场景下,天线装置与移动终端之间的相对方位角是基本确定的,第一信号及第二信号各自的极化特性也基本确定,因此,移动终端所接收的第一信号、第二信号的强度也已确定。移动终端在接收到第一信号、第二信号后,可基于所接收的第一信号或/及第二信号确定第一信号的第一强度以及第二信号的第二强度。由于移动终端的天线模组能够与和其极化特性一致(也即第一信号和第二信号的其中一者的极化特性)的天线装置形成较佳匹配,第一强度和第二强度通常大小不同。因此移动终端可以被配置为:基于天线装置发送的第一信号、第二信号与天线装置进行虚拟极化匹配,在虚拟极化匹配过程中确定第一信号的第一强度及第二信号的第二强度,基于第一强度和第二强度中的强度较大者,确定强度较大的信号的极化状态作为移动终端所接收的信号的极化状态。其中,移动终端与天线装置进行虚拟极化匹配,可以包括:基于第一信号的第一极化特性与天线装置进行匹配,获取第一强度;基于第二信号的第二极化特性与天线装置进行匹配,获取第二强度。在虚拟极化匹配过程中,天线装置可以通过开关模块依次切换向第一馈电点和第二馈电点输入激励电流,以依次切换地发送第一信号及第二信号,以允许移动终端能够依次基于第一信号、第二信号进行虚拟极化匹配。
步骤S354:计算移动终端所接收的信号到达第一天线单元及第二天线单元的相位差;根据该相位差以及移动终端所接收的信号的极化状态,基于预设的极化状态-到达相位差-相对方位角关系表,查找天线装置相对于移动终端的方位角。其中,计算移动终端所接收的信号到达第一天线单元及第二天线单元的相位差,可以参考上述步骤S370中的计算,本实施例不再赘述。在预设的极化状态-到达相位差-相对方位角关系表查找方位角的具体过程,可参考上文所述,此处不再赘述。
在本申请实施例提供的天线匹配方法中,移动终端接收天线装置辐射交叉极化的第一信号及第二信号,此时,天线装置整体所辐射的信号具有交叉极化的特性(如,可以为正交极化),则无论移动终端的天线的极化特性如何,均能保证天线装置的其中一种极化特性与匹配对象的极化特性一致,使天线装置更易与匹配对象匹配连接,而无需被限制在特定的相对方位角方能匹配连接。同时,移动终端能够基于所接收的第一信号和第二信号的强度来确定目标通信信号,目标通信信号可以为第一信号及第二信号中信号强度较大者,就保证了移动终端与天线装置之间较佳的信号强度和通信质量。因此,上述的天线装置的连接步骤便捷、快速,可以保证天线装置与其匹配对象的匹配过程的效率较高。
要说明的是,在本申请说明书中,当一个组件被认为是“设置于”另一个组件,它可以是连接于或者直接设置在另一个组件上,或者可能同时存在居中组件(也即二者间接连接);当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件,也即,两个组件之间可以是间接连接。
在本说明书中,描述的具体特征或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换, 并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (20)

  1. 一种天线装置,其特征在于,包括
    馈源模块;
    辐射模块,设有第一馈电点以及第二馈电点;
    第一馈线,电性连接于所述第一馈电点与所述馈源模块之间,所述馈源模块被配置为将激励电流经由所述第一馈线、所述第一馈电点馈入所述辐射模块,以使所述辐射模块辐射具有第一线性极化特性的信号;
    第二馈线,电性连接于所述第二馈电点与所述馈源模块之间,所述馈源模块被配置为将激励电流经由所述第二馈线、所述第二馈电点馈入所述辐射模块,以使所述辐射模块辐射具有第二线性极化特性的信号,其中,所述第一线性极化与第二线性极化为交叉极化;以及
    开关模块,设置于所述馈源模块向所述第一馈电点的馈电电路上,以及设置于所述馈源模块向所述第二馈电点的馈电电路上;所述开关模块被配置为用于控制所述馈源模块向所述辐射模块馈入的激励电流的通断。
  2. 如权利要求1所述的天线装置,其特征在于,所述辐射模块包括辐射体组,所述辐射体组包括彼此间隔设置的第一辐射体及第二辐射体,所述第一馈电点设置于所述第一辐射体,所述第二馈电点设置于所述第二辐射体。
  3. 如权利要求2所述的天线装置,其特征在于,所述第一辐射体及所述第二辐射体均为平面辐射体;所述第一辐射体具有第一长边,所述第一长边为所述第一辐射体上电流路径最长的直边;所述第二辐射体具有第二长边,所述第二长边为所述第二辐射体上电流路径最长的直边;所述第一长边所在直线与所述第二长边所在直线相交。
  4. 如权利要求2或3所述的天线装置,其特征在于,所述辐射体组为两个,两个所述辐射体组呈中心对称排布。
  5. 如权利要求2至4中任一项所述的天线装置,其特征在于,所述第一辐射体、所述第二辐射体中的至少一个为双频天线辐射体;或者
    所述第一辐射体包括第一辐射部及第二辐射部,所述第一辐射部及所述第二辐射部均设有所述第一馈电点;所述馈源模块被配置为将激励电流馈入所述第一辐射部,以使所述第一辐射部辐射第一频段的信号,且被配置为将激励电流馈入所述第二辐射部,以使所述第二辐射部辐射第二频段的信号,所述第二频段与所述第一频段不同。
  6. 如权利要求1至5中任一项所述的天线装置,其特征在于,所述天线装置还包括介质基板以及金属地板,所述介质基板设置于所述辐射模块与所述金属地板之间。
  7. 如权利要求6所述的天线装置,其特征在于,所述辐射模块包括第一辐射贴片、第二辐射贴片、第三辐射贴片以及第四辐射贴片,所述第一辐射贴片、所述第三辐射贴片均设有所述第一馈电点,所述第二辐射贴片以及所述第四辐射贴片均设有所述第二馈电点;所述第一辐射贴片、所述第二辐射贴片、所述第三辐射贴片以及所述第四辐射贴片按照预定的圆周极化旋转排列于所述介质基板。
  8. 如权利要求6至7中任一项所述的天线装置,其特征在于,所述辐射模块包括辐射贴片,所述辐射贴片设置于所述介质基板的表面,所述第一馈电点及所述第二馈电点均设置于所述辐射贴片;所述辐射贴片包括第一侧边以及与所述第一侧边相交的第二侧边,所述第一馈电点与所述第一侧边之间的距离小于所述第一馈电点与所述第二侧边之间的距离,所述第二馈电点与所述第二侧边之间的距离小于所述第二馈电点与所述第一侧边之间的距离。
  9. 如权利要求8所述的天线装置,其特征在于,所述介质基板为两个,所述金属地板设置于两个所述介质基板之间;所述辐射贴片包括第一辐射贴片及第二辐射贴片,所述第一辐射贴片设置于其中一个介质基板的表面,所述第二辐射贴片设置于另一个介质基板的表面。
  10. 如权利要求8至9中任一项所述的天线装置,其特征在于,所述辐射模块还包括彼此间隔设置的第一辐射体及第二辐射体,所述第一辐射体设有所述第一馈电点,所述第二辐射体设有所述第二馈电点,所述第一辐射体及所述第二辐射体均与所述辐射贴片相间隔。
  11. 如权利要求10所述的天线装置,其特征在于,所述辐射贴片为边射天线辐射体,所述第一辐射体及所述第二辐射体中的至少一个为端射天线辐射体。
  12. 如权利要求11所述的天线装置,其特征在于,所述天线装置还包括与所述开关模块电性连接的姿态传感器,所述姿态传感器被配置为获取所述天线装置的姿态,所述开关模块还被配置为基于所述天线装置的姿态,控制所述馈源模块向所述边射天线辐射体及所述端射天线辐射体馈入的激励电流的通断。
  13. 如权利要求1至12中任一项所述的天线装置,其特征在于,所述辐射模块为两个,两个所述辐射模块中的一个为边射天线模块,两个所述辐射模块中另一个为端射天线模块;所述天线装置还包括与所述开关模块电性连接的姿态传感器,所述姿态传感器被配置为获取所述天线装置的姿态,所述开关模块还被配置为基于所述天线装置的姿态,控制所述馈源模块向所述边射天线模块及所述端射天线模块馈入的激励电流的通断。
  14. 一种壳体,其特征在于,包括壳体本体以及权利要求1至13中任一项所述的天线装置,所述天线装置设置于所述壳体本体。
  15. 一种电子标签,其特征在于,包括如权利要求1至13中任一项所述的天线装置。
  16. 一种天线匹配方法,应用于如权利求1至13中任一项所述的天线装置与匹配设备之间的匹配,其特征在于,所述天线匹配方法包括:
    所述天线装置辐射具有第一线性极化特性的第一信号,以及辐射具有第二线性极化特性的第二信号;
    所述天线装置接收所述匹配对象发送的反馈信号,其中,所述反馈信号由所述匹配对象基于所接收的信号而生成,所述反馈信号包括所述匹配对象所接收的所述第一信号的第一强度和所述第二信号的第二强度;
    基于所述第一强度和所述第二强度,在所述第一信号及所述第二信号中确定目标通信信号;以及
    所述天线装置基于所述目标通信信号与所述匹配对象通信。
  17. 如权利要求16所述的天线匹配方法,其特征在于,所述辐射模块为两个,两个所述辐射模块中的一个为边射天线模块,两个所述辐射模块中另一个为端射天线模块;所述天线装置辐射具有第一线性极化特性的第一信号,以及辐射具有第二线性极化特性的第二信号,包括:
    确定所述天线装置的当前姿态,所述当前姿态包括相区别的第一姿态以及第二姿态;
    当所述天线装置的当前姿态为第一姿态时,所述馈源模块向所述端射天线模块馈入激励电流,以使所述端射天线模块辐射具有第一线性极化特性的第一信号,以及辐射具有第二线性极化特性的第二信号;以及
    当所述天线装置的当前姿态为第二姿态时,所述馈源模块向所述边射天线模块馈入激励电流,以使所述边射天线模块辐射具有第一线性极化特性的第一信号,以及辐射具有第二线性极化特性的第二信号。
  18. 一种天线匹配方法,应用于移动终端与如权利求1至13中任一项所述的天线装置之间的匹配,其特征在于,所述天线匹配方法包括:
    接收所述天线装置发射的第一信号及第二信号,所述第一信号和所述第二信号的线性极化特性为交叉极化;
    基于所接收的信号生成反馈信号,并将所述反馈信号发送至所述天线装置;其中,所述反馈信号包括所述移动终端所接收的所述第一信号的第一强度和所述第二信号的第二强度,所述反馈信号用于指示所述天线装置在所述第一信号及所述第二信号中确定目标通信信号;以及
    所述移动终端基于所述目标通信信号与所述天线装置通信。
  19. 一种天线匹配方法,应用于移动终端与如权利求1至13中任一项所述的天线装置之间的匹配,其特征在于,所述天线匹配方法包括:
    接收所述天线装置发射的第一信号及第二信号,所述第一信号和所述第二信号的线性极化特性为交叉极化;
    基于所接收的信号与所述天线装置通信,并接收所述天线装置基于所述第一信号发送的第一信息以及基于所述第二信号发送的第二信息;
    基于所述第一信号的信号强度确定所述第一信息的置信度,基于所述第二信号的信号强度确定所述第二信息的置信度;
    根据所述第一信息的置信度及所述第二信息的置信度,在所述第一信息及所述第二信息中确定目标信息;以及
    对所述目标信息进行处理。
  20. 如权利要求19所述的天线匹配方法,其特征在于,所述移动终端包括第一天线单元以及第二天线单元,所述第一天线单元及所述第二天线单元均用于接收所述目标信息;
    所述对所述目标信息进行处理,包括:
    获取所述目标信息到达所述第一天线单元时的第一相位角,获取所述目标信息到达所述第二天线单元的第二相位角;
    基于所述第一相位角及所述第二相位角,确定所述目标信息到达所述第一天线单元、所述第二天线单元之间的相位差;
    确定所述目标信息到达所述第一天线单元、所述第二天线单元的时间差;以及
    根据所述相位差以及所述时间差,计算所述天线装置相对于所述移动终端的方位角。
PCT/CN2022/077673 2021-03-23 2022-02-24 天线装置、壳体、电子标签设备以及天线匹配方法 WO2022199314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110310623.9 2021-03-23
CN202110310623.9A CN113067129B (zh) 2021-03-23 2021-03-23 天线装置、壳体、电子标签设备以及天线匹配方法

Publications (1)

Publication Number Publication Date
WO2022199314A1 true WO2022199314A1 (zh) 2022-09-29

Family

ID=76561754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077673 WO2022199314A1 (zh) 2021-03-23 2022-02-24 天线装置、壳体、电子标签设备以及天线匹配方法

Country Status (2)

Country Link
CN (1) CN113067129B (zh)
WO (1) WO2022199314A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020116676A1 (en) * 2018-12-05 2020-06-11 Samsung Electronics Co., Ltd. A patch antenna structure and an antenna feeder board with adjustable patterns
CN113067129B (zh) * 2021-03-23 2023-08-29 Oppo广东移动通信有限公司 天线装置、壳体、电子标签设备以及天线匹配方法
CN113859128A (zh) * 2021-11-04 2021-12-31 银芯微(无锡)科技有限公司 一种具有车载单元的车内后视镜装置
CN114824761B (zh) * 2022-05-16 2024-02-27 Oppo广东移动通信有限公司 天线装置及电子设备
US20230387589A1 (en) * 2022-05-31 2023-11-30 KYOCERA AVX Components (San Diego), Inc. Switchable antenna assemblies for omni-directional 6e wifi signaling
CN115084867B (zh) * 2022-07-19 2023-01-10 荣耀终端有限公司 一种天线切换方法和终端天线

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286854A (ja) * 2004-03-30 2005-10-13 Kumamoto Technology & Industry Foundation 偏波切換え機能を有するアンテナ
CN101325280A (zh) * 2008-06-13 2008-12-17 旭丽电子(广州)有限公司 多输入多输出天线系统
CN109633523A (zh) * 2018-12-21 2019-04-16 天津大学 用于室内定位的采用方向图叠加天线估计来波角度的方法
CN110444876A (zh) * 2019-07-29 2019-11-12 华南理工大学 高增益宽带圆极化天线及无线通信设备
CN110534870A (zh) * 2018-05-24 2019-12-03 三星电子株式会社 相控阵天线模块和包括相控阵天线模块的通信设备
US20200303833A1 (en) * 2017-12-12 2020-09-24 Murata Manufacturing Co., Ltd. Radio frequency module and communication device
WO2021006578A1 (ko) * 2019-07-05 2021-01-14 삼성전자 주식회사 안테나 구조체 및 그를 포함하는 전자 장치
CN113067129A (zh) * 2021-03-23 2021-07-02 Oppo广东移动通信有限公司 天线装置、壳体、电子标签设备以及天线匹配方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252553B1 (en) * 2000-01-05 2001-06-26 The Mitre Corporation Multi-mode patch antenna system and method of forming and steering a spatial null
JP4155226B2 (ja) * 2004-05-06 2008-09-24 株式会社リコー アンテナモジュールおよび無線モジュール、無線システムならびにその制御方法
TWI309487B (en) * 2005-04-20 2009-05-01 Arcadyan Technology Corp Dual band monopole antenna
US8154455B2 (en) * 2006-12-18 2012-04-10 University Of Utah Research Foundation Mobile communications systems and methods relating to polarization-agile antennas
CN202817178U (zh) * 2012-08-07 2013-03-20 基信康信息技术(上海)有限公司 双频单级天线及其移动终端
CN103311647A (zh) * 2013-05-15 2013-09-18 东莞宇龙通信科技有限公司 一种天线装置和提高天线装置信号收发性能的方法
CN104269617B (zh) * 2014-09-19 2016-10-05 电子科技大学 一种平面型的双极化uwb-mimo天线
CN105680179A (zh) * 2014-11-21 2016-06-15 深圳市通用测试系统有限公司 北斗导航移动终端测试系统及其天线组件和信号收发装置
US10263319B2 (en) * 2016-03-23 2019-04-16 Mediatek Inc. Antenna with swappable radiation direction and communication device thereof
WO2017205998A1 (zh) * 2016-05-28 2017-12-07 华为终端(东莞)有限公司 通信终端
CN107240774B (zh) * 2017-04-28 2023-10-17 歌尔股份有限公司 一种可穿戴设备及其控制方法
WO2019017075A1 (ja) * 2017-07-18 2019-01-24 株式会社村田製作所 アンテナモジュール及び通信装置
CN111725628B (zh) * 2019-03-18 2021-09-07 Oppo广东移动通信有限公司 毫米波天线模组和电子设备
CN209561609U (zh) * 2019-04-09 2019-10-29 湖南迈克森伟电子科技有限公司 天线
CN111864362A (zh) * 2019-04-30 2020-10-30 Oppo广东移动通信有限公司 天线模组及电子设备
CN110350302B (zh) * 2019-06-13 2020-10-16 深圳大学 一种低交叉极化的全极化可重构天线及其控制方法
CN212626047U (zh) * 2020-09-11 2021-02-26 上海移远通信科技有限公司 天线模组和无线设备
CN112467353B (zh) * 2020-11-20 2023-12-08 Oppo广东移动通信有限公司 天线装置及电子设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005286854A (ja) * 2004-03-30 2005-10-13 Kumamoto Technology & Industry Foundation 偏波切換え機能を有するアンテナ
CN101325280A (zh) * 2008-06-13 2008-12-17 旭丽电子(广州)有限公司 多输入多输出天线系统
US20200303833A1 (en) * 2017-12-12 2020-09-24 Murata Manufacturing Co., Ltd. Radio frequency module and communication device
CN110534870A (zh) * 2018-05-24 2019-12-03 三星电子株式会社 相控阵天线模块和包括相控阵天线模块的通信设备
CN109633523A (zh) * 2018-12-21 2019-04-16 天津大学 用于室内定位的采用方向图叠加天线估计来波角度的方法
WO2021006578A1 (ko) * 2019-07-05 2021-01-14 삼성전자 주식회사 안테나 구조체 및 그를 포함하는 전자 장치
CN110444876A (zh) * 2019-07-29 2019-11-12 华南理工大学 高增益宽带圆极化天线及无线通信设备
CN113067129A (zh) * 2021-03-23 2021-07-02 Oppo广东移动通信有限公司 天线装置、壳体、电子标签设备以及天线匹配方法

Also Published As

Publication number Publication date
CN113067129B (zh) 2023-08-29
CN113067129A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
WO2022199314A1 (zh) 天线装置、壳体、电子标签设备以及天线匹配方法
WO2022179324A1 (zh) 天线装置、壳体及电子设备
US8294620B2 (en) Integrated dual-band antenna for laptop applications
US9240631B2 (en) Reduced ground plane shorted-patch hemispherical omni antenna
US20040113848A1 (en) Integrated tri-band antenna for laptop applications
US20120068892A1 (en) Antenna with Dual Polarization and Mountable Antenna Elements
US7595756B2 (en) Methods and apparatus for improving wireless communication by antenna polarization position
WO2021104191A1 (zh) 天线单元及电子设备
CN102842756B (zh) 双极化mimo天线阵
CN113193356B (zh) 天线装置、电子标签设备及通信系统
CN113193358B (zh) 天线装置、电子标签设备及通信系统
CN113659305B (zh) 电子设备
WO2022199321A1 (zh) 电子设备
WO2023273619A1 (zh) 天线模组及通信设备
WO2021083223A1 (zh) 天线单元及电子设备
US20160204501A1 (en) Closely coupled re-radiator compound loop antenna structure
Lin et al. Design of an omnidirectional polarized RFID tag antenna for safety glass applications
WO2023273785A1 (zh) 天线组件、电子设备及通信系统
WO2023273618A1 (zh) 天线模组及通信设备
TWI280687B (en) Multi-patch antenna which can transmit radio signals with two frequencies
CN113067151B (zh) 天线组件、电子设备及通信系统
CN112467353B (zh) 天线装置及电子设备
US8134507B2 (en) Mobile electronic device
WO2023179113A1 (zh) 天线、超宽带天线阵列及电子设备
CN113013595A (zh) 天线装置、壳体及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22773976

Country of ref document: EP

Kind code of ref document: A1