WO2023272986A1 - 一种灌溉作业控制方法、装置、存储介质及灌溉设备 - Google Patents

一种灌溉作业控制方法、装置、存储介质及灌溉设备 Download PDF

Info

Publication number
WO2023272986A1
WO2023272986A1 PCT/CN2021/121176 CN2021121176W WO2023272986A1 WO 2023272986 A1 WO2023272986 A1 WO 2023272986A1 CN 2021121176 W CN2021121176 W CN 2021121176W WO 2023272986 A1 WO2023272986 A1 WO 2023272986A1
Authority
WO
WIPO (PCT)
Prior art keywords
irrigation
sowing
irrigation equipment
area
current
Prior art date
Application number
PCT/CN2021/121176
Other languages
English (en)
French (fr)
Inventor
苏家豪
张剑龙
Original Assignee
广州极飞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州极飞科技股份有限公司 filed Critical 广州极飞科技股份有限公司
Publication of WO2023272986A1 publication Critical patent/WO2023272986A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/007Metering or regulating systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C23/00Distributing devices specially adapted for liquid manure or other fertilising liquid, including ammonia, e.g. transport tanks or sprinkling wagons
    • A01C23/04Distributing under pressure; Distributing mud; Adaptation of watering systems for fertilising-liquids
    • A01C23/042Adding fertiliser to watering systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the present application relates to the agricultural field, and in particular, relates to an irrigation operation control method, device, storage medium and irrigation equipment.
  • sowing, fertilizing and watering are divided into manual operations and machine operations. Both manual sowing and machine sowing are sown once, and fertilization and watering are performed several times after sowing.
  • manual work is completely dependent on the experience of the operator, so it is difficult to ensure that the seeds are sown uniformly at a fixed distance, and after sowing, the seeds and the soil are integrated, and it is difficult for the human eye to distinguish the specific location of the seeds.
  • machine operation although it can ensure that the seeds are spread evenly at a fixed distance and quantitatively, the machine cannot identify the specific location of the seeds before the seeds break through the soil and become seedlings.
  • the purpose of the present application is to provide an irrigation operation control method, device, storage medium and irrigation equipment, so as to at least partially improve the above problems.
  • the embodiment of the present application provides an irrigation operation control method, which is applied to irrigation equipment, and the method includes:
  • the irrigation equipment obtains the working path
  • the minimum distance between the working path and each sowing position in the area to be irrigated is less than or equal to the first preset distance, and the first preset distance is the preset spraying distance of the irrigation equipment, so
  • the above sowing position is the position corresponding to the single sowing range;
  • the irrigation equipment travels along the working path
  • the irrigation equipment performs irrigation operations.
  • the sowing position is determined by an estimated center coordinate and a corresponding sowing radius, and the center coordinate is a coordinate corresponding to the center of a single sowing range;
  • the step of obtaining the operation path for the irrigation equipment includes:
  • the irrigation equipment generates the operation path according to the estimated center coordinates and the corresponding sowing radius in the area to be irrigated
  • the minimum distance between the estimated center coordinates and the working path is larger than the corresponding sowing radius.
  • the method before the step of obtaining the working path by the irrigation equipment, the method further includes:
  • the irrigation equipment obtains each estimated center coordinate and corresponding sowing radius according to the sowing coordinates, sowing height, preset sowing width and wind field strength of each sowing action of the sowing equipment.
  • the step of obtaining the working path by the irrigation equipment includes:
  • the irrigation equipment receives the operation path transmitted by the server.
  • the current irrigation area is an area whose center is the current coordinates of the irrigation equipment and whose radius is the first preset distance, wherein at least one sowing position is located at the irrigation
  • the irrigation equipment performs irrigation operations, including:
  • the first preset distance, and at least one sowing position in the area to be irrigated judging whether there is at least one sowing position in the current irrigation area of the irrigation equipment;
  • the irrigation equipment performs irrigation operations
  • the irrigation equipment stops the irrigation operation.
  • Steps for a seeding location including:
  • the method when at least one sowing position is located within the current irrigation area of the irrigation equipment, the method further includes:
  • the irrigation equipment adjusts the attitude parameters and/or dynamic parameters of the spraying device according to the current coordinates and the target position,
  • the target position is a sowing position whose distance from the current coordinates is less than or equal to the first preset distance.
  • the step of adjusting the attitude parameters and/or dynamic parameters of the spraying device according to the current coordinates and the target position of the irrigation equipment includes:
  • the irrigation equipment adjusts the attitude parameters and/or dynamic parameters of the spraying device according to the current coordinates, the target position and the spraying range,
  • the spraying range is the radius of the spraying area of the spraying device.
  • the working path includes a plurality of sub-paths, and each sub-path corresponds to a label, and the label is used to represent the irrigation equipment running on the corresponding sub-path. whether there is at least one sowing location within the device's current irrigation area,
  • the step of performing irrigation by the irrigation equipment includes:
  • the irrigation equipment judges whether there is at least one sowing position in the current irrigation area of the irrigation equipment according to the label corresponding to the sub-path currently traveling;
  • the irrigation equipment performs irrigation operations
  • the irrigation equipment stops the irrigation operation.
  • a first spraying device and a second spraying device are respectively provided on both sides of the irrigation equipment, and at least a part of the working path is a compound path, wherein the compound path and the two sides of the The minimum distance between each sowing position is less than or equal to the first preset distance,
  • the steps of performing irrigation operations by the irrigation equipment include:
  • the first spraying device and the second spraying device are used to irrigate the seeding positions on both sides simultaneously.
  • the embodiment of the present application provides an irrigation operation control device, which is applied to irrigation equipment, and the device includes:
  • an information acquisition unit used for equipment to acquire a job path
  • the minimum distance between the working path and each sowing position in the area to be irrigated is less than or equal to the first preset distance, and the first preset distance is the preset spraying distance of the irrigation equipment, so
  • the above sowing position is the position corresponding to the single sowing range;
  • a processing unit configured to control the irrigation equipment to travel along the working path
  • the processing unit is further configured to control the irrigation equipment to perform irrigation when at least one sowing position is located within the current irrigation area of the irrigation equipment.
  • the sowing position is determined by an estimated center coordinate and a corresponding sowing radius, and the center coordinate is a coordinate corresponding to the center of a single sowing range;
  • the information acquisition unit is used to generate the operation path according to the estimated center coordinates and the corresponding sowing radius in the area to be irrigated, wherein the distance between the estimated center coordinates and the operation path The minimum distance is greater than the corresponding seeding radius.
  • the information acquisition unit is further configured to acquire each estimated center coordinate and corresponding the seeding radius.
  • the information acquiring unit is configured to receive the job path transmitted by the server.
  • the current irrigation area is an area whose center is the current coordinates of the irrigation equipment and whose radius is the first preset distance
  • processing unit is also used for:
  • the first preset distance, and at least one sowing position in the area to be irrigated judging whether there is at least one sowing position in the current irrigation area of the irrigation equipment;
  • the processing unit is configured to:
  • the processing unit is further configured to: adjust the attitude parameters and/or dynamic parameters of the spraying device according to the current coordinates and the target position,
  • the target position is a sowing position whose distance from the current coordinates is less than or equal to the first preset distance.
  • the step of adjusting the attitude parameters and/or dynamic parameters of the spraying device according to the current coordinates and the target position of the irrigation equipment includes:
  • the irrigation equipment adjusts the attitude parameters and/or dynamic parameters of the spraying device according to the current coordinates, the target position and the spraying range,
  • the spraying range is the radius of the spraying area of the spraying device.
  • the working path includes a plurality of sub-paths, and each sub-path corresponds to a label, and the label is used to represent the irrigation equipment running on the corresponding sub-path. whether there is at least one sowing location within the device's current irrigation area,
  • processing unit is also used for:
  • a first spraying device and a second spraying device are respectively provided on both sides of the irrigation equipment, at least a part of the working path is a compound path, and the compound path is connected with each of the two sides.
  • the minimum distances between the sowing positions are all less than or equal to the first preset distance
  • processing unit is also used for:
  • the first spraying device and the second spraying device are controlled to simultaneously perform irrigation operations on the sowing positions on both sides.
  • the embodiment of the present application provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the irrigation operation control provided by any of the implementation modes in the above-mentioned first aspect is realized. method.
  • the embodiment of the present application provides an irrigation device, including: a processor and a memory, the memory is used to store one or more programs, and when the one or more programs are executed by the processor, the The irrigation operation control method provided in any implementation manner of the first aspect above.
  • the irrigation operation control method, device, storage medium and irrigation equipment provided by the embodiment of the present application can enable the irrigation equipment to cover every sowing position when the irrigation equipment is traveling along the operation path; and, When there is no sowing position in the irrigation area, the irrigation equipment can be controlled to stop the irrigation operation, avoiding the irrigation operation of the open space, thereby avoiding waste and realizing precise irrigation.
  • Fig. 1 is the connection schematic diagram of the irrigation equipment that the embodiment of the present application provides;
  • Fig. 2 is a schematic flow chart of the irrigation operation control method provided by the embodiment of the present application.
  • Fig. 3 is a schematic diagram of a working path provided by the embodiment of the present application.
  • Fig. 4 is a schematic diagram of the distance change provided by the embodiment of the present application.
  • Fig. 5 is a schematic flow chart of another irrigation operation control method provided by the embodiment of the present application.
  • Fig. 6 is a schematic diagram of another working path provided by the embodiment of the present application.
  • Figures 7a-7c are schematic diagrams of parameters related to the sowing operation provided by the embodiment of the present application.
  • Fig. 8 is a schematic flowchart of another irrigation operation control method provided by the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a composite path provided by an embodiment of the present application.
  • Fig. 10 is a schematic flowchart of another irrigation operation control method provided by the embodiment of the present application.
  • Fig. 11 is a schematic flowchart of another irrigation operation control method provided by the embodiment of the present application.
  • Fig. 12 is a schematic flowchart of another irrigation operation control method provided by the embodiment of the present application.
  • Figure 13 is a schematic diagram of spraying provided by the embodiment of the present application.
  • Fig. 14 is yet another spraying schematic diagram provided by the embodiment of the present application.
  • Figure 15 is another spray schematic diagram provided by the embodiment of the present application.
  • Fig. 16 is a unit schematic diagram of the irrigation operation control device provided by the embodiment of the present application.
  • setting and “connection” should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Integral connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection, or Integral connection; it can be mechanical connection or electrical connection; it can be direct connection or indirect connection through an intermediary, and it can be the internal communication of two components.
  • an embodiment of the present application provides an irrigation operation control method, which is applied to the irrigation equipment shown in FIG. 1 .
  • FIG. 1 is a schematic diagram of connection of irrigation equipment provided by the embodiment of the present application.
  • the irrigation device includes a processor 10 , a memory 11 and a bus 12 .
  • the processor 10 and the memory 11 are connected through a bus 12 , and the processor 10 is used to execute executable modules stored in the memory 11 , such as computer programs.
  • the processor 10 may be an integrated circuit chip with signal processing capabilities.
  • each step of the irrigation operation control method can be completed by an integrated logic circuit of hardware in the processor 10 or instructions in the form of software.
  • processor 10 can be general-purpose processor, comprises central processing unit (Central Processing Unit, be called for short CPU), network processor (Network Processor, be called for short NP) etc.; Can also be digital signal processor (Digital Signal Processor, be called for short DSP) ), Application Specific Integrated Circuit (ASIC for short), Field Programmable Gate Array (Field-Programmable Gate Array, FPGA for short) or other programmable logic devices, discrete gate or transistor logic devices, and discrete hardware components.
  • CPU central processing unit
  • Network Processor Network Processor
  • NP Network Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the memory 11 may include a high-speed random access memory (RAM: Random Access Memory), and may also include a non-volatile memory, such as at least one disk memory.
  • RAM Random Access Memory
  • non-volatile memory such as at least one disk memory.
  • the bus 12 may be an ISA (Industry Standard Architecture) bus, a PCI (Peripheral Component Interconnect) bus or an EISA (Extended Industry Standard Architecture) bus, etc. Only one double-headed arrow is used in FIG. 1 to indicate, but it does not mean that there is only one bus 12 or one type of bus 12 .
  • ISA Industry Standard Architecture
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the memory 11 is used to store programs, such as programs corresponding to the irrigation operation control device.
  • the irrigation operation control device includes at least one software function module that can be stored in the memory 11 in the form of software or firmware (firmware) or solidified in the operating system (operating system, OS) of the irrigation equipment.
  • the processor 10 executes the program to realize the irrigation operation control method.
  • the irrigation equipment provided in the embodiment of the present application further includes a communication interface 13 .
  • the communication interface 13 is connected to the processor 10 through the bus 12 .
  • the irrigation equipment can receive information or instructions sent by other terminals (such as clients or servers) through the communication interface 13 .
  • the irrigation equipment also includes at least one spraying device, a two-axis pan-tilt and a spraying controller.
  • the spraying device includes an atomizing device.
  • the spraying device is used to spray water or liquid fertilizer, etc.
  • the two-axis gimbal is composed of a pitch motor and a yaw motor, which are used to adjust the attitude of the spraying device so that the spraying device can achieve 360-degree omni-directional spraying.
  • the spraying controller is used to adjust the power parameter information of the spraying device, thereby changing the spraying range of the spraying device.
  • the irrigation equipment further includes a driving unit, which is used to drive the irrigation equipment to move.
  • FIG. 1 is only a structural schematic diagram of some components of the irrigation equipment, and the irrigation equipment may also include more or fewer components than those shown in FIG. 1 , or have a configuration different from that shown in FIG. 1 .
  • Each component shown in Fig. 1 may be implemented by hardware, software or a combination thereof.
  • An irrigation operation control method provided in the embodiment of the present application can be applied to, but not limited to, the irrigation equipment shown in Figure 1, and the specific process can be shown in Figure 2:
  • the irrigation equipment obtains the working path.
  • the minimum distance between the operation path and each sowing position in the area to be irrigated is less than or equal to the first preset distance
  • the first preset distance is the preset spraying distance of the irrigation equipment
  • the sowing position is the single sowing range the corresponding location.
  • sowing equipment Take the drone as an example of the sowing equipment.
  • the drone When the drone is sowing in the field, it will repeat the sowing action. Every time the sowing action is repeated, a corresponding sowing range will be generated.
  • the sowing position corresponding to each sowing range is as follows: Shown in A in Figure 3.
  • Fig. 3 is a schematic diagram of a working path provided by the embodiment of the present application, in which the dotted arrow indicates the working path, and the solid circle around the sowing position A indicates a point whose distance from the sowing position A is the first preset distance gather.
  • the working path intersects or is tangent to the solid line circle corresponding to each sowing position A, thereby ensuring that the minimum distance between the working path and each sowing position in the area to be irrigated is less than or equal to the first preset distance.
  • the irrigation range can cover every sowing position A.
  • C in Figure 4 represents the irrigation equipment, and the irrigation equipment C moves in the direction of the dotted arrow in Figure 4.
  • the distance between the irrigation equipment C and the planting position A is constantly changing, Such as changing from d1 to d5.
  • the current irrigation area is an area whose center is the current coordinates of the irrigation equipment and whose radius is a first preset distance (for example, the maximum spraying distance or the preset spraying distance of the irrigation equipment).
  • the sowing position A is located outside the current irrigation area of the irrigation equipment, and the distance between the irrigation equipment and the sowing position A is d2 to d4 When , the sowing position A is located in the current irrigation area of the irrigation equipment.
  • the irrigation equipment when at least one sowing position is located in the current irrigation area of the irrigation equipment, the irrigation equipment performs irrigation operations, and when no sowing position A is located in the irrigation area, the irrigation equipment does not perform irrigation operations, Avoid irrigating open spaces, thereby avoiding waste and achieving precision irrigation.
  • irrigation raw material in the embodiment of the present application may be water or water fertilizer, which is not limited here.
  • the embodiment of the present application provides an irrigation operation control method, the method includes: the irrigation equipment obtains the operation path, wherein the minimum distance between the operation path and each sowing position in the area to be irrigated is less than or equal to the first A preset distance, the first preset distance is the preset spraying distance of the irrigation equipment, and the sowing position is the position corresponding to the single sowing range; the irrigation equipment travels along the working path; at least one sowing position is located in the current irrigation area of the irrigation equipment In the case of within, the irrigation equipment performs irrigation operations.
  • the irrigation range can cover every sowing position. Under the circumstances, the irrigation equipment does not perform irrigation operations, avoiding irrigation operations on open spaces, thereby avoiding waste and achieving precise irrigation.
  • the sowing position is determined by an estimated center coordinate and a corresponding sowing radius, wherein the center coordinate is a coordinate corresponding to the center of a single sowing range.
  • O represents the estimated center coordinates
  • R represents the corresponding sowing radius.
  • S102 in FIG. 2 the embodiment of the present application also provides a possible implementation.
  • S102 includes:
  • the irrigation equipment generates an operation path according to the estimated center coordinates in the area to be irrigated and the corresponding sowing radius.
  • the minimum distance between the estimated center coordinates and the working path is greater than the corresponding sowing radius.
  • the dotted arrow indicates the working path
  • the solid circle indicates the set of points whose distance to the estimated central coordinate O is the first preset distance
  • the dotted circle indicates the distance to the estimated central coordinate O is The set of points of the seeding radius
  • the dotted circle can also be understood as the range of each single seeding.
  • the working path intersects each solid-line circle, and the working path does not intersect each dotted-line circle. That is to say, the minimum distance between the operation path and each sowing position in the area to be irrigated is smaller than the first preset distance, and the minimum distance between the operation path and each estimated center coordinate is greater than the corresponding sowing radius .
  • Fig. 5 is a schematic flowchart of another irrigation operation control method provided in the embodiment of the present application, wherein a possible implementation manner of obtaining estimated center coordinates and corresponding sowing radius is provided. As shown in Figure 5, the irrigation operation control method also includes:
  • the irrigation equipment acquires each estimated center coordinate and corresponding sowing radius according to the sowing coordinates, sowing height, preset sowing width and wind field strength of each sowing action of the sowing equipment.
  • Figure 7a is a schematic diagram of the parameters corresponding to each sowing action of the UAV, where the sowing height H is 2m, the sowing radius R is 5m, and the sowing coordinates are The coordinates of where the UAV is when it performs the sowing action.
  • the preset sowing width is twice the sowing radius. In the absence of wind field influence, the sowing coordinate is the center of the sowing range.
  • Figure 7b and Figure 7c when there is a wind field effect, the sowing radius changes significantly (for example from R to R'), and the center of the sowing range also shifts.
  • sowing coordinates can be the RTK (Real Time Kinematic, real-time dynamic difference) coordinates of the UAV when performing the sowing action
  • the wind field strength can be the wind strength emitted by the UAV's sculls or its relationship with the current The comprehensive strength of the ambient wind force.
  • the determined sowing range will deviate greatly from the actual sowing range, which cannot be accurate. Locate the sowing position, which may cause the irrigation equipment to irrigate the open space, and it may also happen that some seeds cannot be irrigated.
  • the irrigation operation control method of the embodiment of the present application executes S101 to obtain the estimated center coordinates and the corresponding sowing radius based on the parameter information estimation of the sowing action, so as to accurately locate each sowing position and realize precise irrigation.
  • the UAV will transmit the sowing coordinates, sowing height, preset sowing width and wind field strength of each sowing action to the server during operation, and the server will then transmit it to the irrigation equipment.
  • S102 includes:
  • the irrigation equipment receives the job path transmitted by the server.
  • S101 in the foregoing implementation manner may be executed by a server.
  • the server After the server obtains the estimated center coordinates and corresponding sowing radius of each sowing position, the server then generates an operation path according to each estimated center coordinate and corresponding sowing radius, and transmits the operation path to the irrigation equipment.
  • Both sides of the irrigation equipment are respectively provided with a first spraying device and a second spraying device; at least a part of the working path is a composite path.
  • the composite path is a part where the minimum distance between each sowing position on the working path and each sowing position on both sides is less than or equal to the first preset distance.
  • the solid circle in FIG. 9 represents a set of points whose distance from the sowing position is the first preset distance
  • the dotted arrow represents a composite path.
  • the minimum distance between the composite path and each sowing position on both sides is less than or equal to the first preset distance.
  • the irrigation equipment when the irrigation equipment is irrigated along the compound path, assuming that the irrigation equipment needs to travel back and forth 6 times when using the single-sided irrigation method, then when the double-sided irrigation method is used, the irrigation equipment only needs to travel 3 times, which greatly shortens the time for irrigation operations .
  • the current irrigation area is an area whose center is the current coordinates of the irrigation equipment and whose radius is the first preset distance.
  • Fig. 10 is a schematic flowchart of another irrigation operation control method provided in the embodiment of the present application, wherein, after S103, the irrigation operation control method further includes:
  • the irrigation equipment stops the irrigation operation to avoid waste.
  • the embodiment of the present application also provides a possible implementation, that is, dividing the working path into multiple sub-paths, and adding labels to each sub-path.
  • the label when the irrigation equipment is driving on the sub-path, the label may represent at least one sowing position in the current irrigation area of the irrigation equipment; or, the label may also indicate that there is no sowing position in the current irrigation area of the irrigation equipment.
  • the operational burden of the irrigation equipment can be reduced, so that the irrigation equipment can maintain an efficient operation state.
  • S104 may include:
  • S104-1 Determine at least one current interval between the current coordinates and at least one sowing position in the area to be irrigated according to the current coordinates and at least one sowing position in the area to be irrigated.
  • the current interval may be d1 to d5 as shown in FIG. 4 .
  • S104-3 Determine that there is at least one sowing position in the current irrigation area of the irrigation equipment.
  • the irrigation operation control method may also include:
  • the irrigation equipment adjusts the attitude parameters and/or dynamic parameters of the spraying device according to the current coordinates and the target position.
  • the target position is a sowing position whose distance from the current coordinate is less than or equal to the first preset distance.
  • Attitude parameters include spraying direction and spraying angle
  • dynamic parameters include spraying distance.
  • irrigation equipment is constantly changing when driving along the path, so the posture and power need to be adjusted for better irrigation. Irrigation is performed when the spraying range of the irrigation equipment exceeds the preset distance, for example, irrigation can be performed at d2, d3, and d4, but no irrigation is performed at d1, d5.
  • the sowing position is determined by an estimated center coordinate and a corresponding sowing radius
  • the center coordinate is a coordinate corresponding to the center of a single sowing range. That is, the target position also has an estimated center coordinate and a corresponding seeding radius.
  • the irrigation equipment is provided with a corresponding spraying range, for example, 1 meter, 2 meters, 3 meters, 4 meters and 5 meters.
  • the embodiment of the present application also provides a possible implementation, that is, the irrigation equipment adjusts the attitude parameters and/or dynamic parameters of the sprinkler according to the current coordinates, the target position, and the current spraying range.
  • the spraying range of the irrigation equipment can be flexibly adjusted and controlled.
  • Figure 13 is a schematic diagram of spraying in which the spraying range is consistent with the sowing radius, assuming both are 5 meters
  • Figure 14 is a schematic diagram of spraying in which the spraying range is half of the sowing radius, assuming that the sowing radius is 5 meters and the spraying range is 2.5 meters
  • Figure 15 is the spraying Schematic diagram of spraying with a range much smaller than the sowing radius, assuming that the sowing radius is 5 meters and the spraying range is 1 meter.
  • the solid circle in the figure represents the sowing range determined by the sowing radius, and the dotted circle represents the spraying area determined by the spraying range.
  • the irrigation equipment can flexibly control the current spraying range, so as to form a comprehensive coverage of the sowing range.
  • Fig. 16 is an irrigation operation control device provided in an embodiment of the present application.
  • the irrigation operation control device is applied to the irrigation equipment described above.
  • the irrigation operation control device includes: an information acquisition unit 201 and a processing unit 202 .
  • the information acquiring unit 201 is configured to control the irrigation equipment to acquire the working path.
  • the minimum distance between the operation path and each sowing position in the area to be irrigated is less than or equal to the first preset distance
  • the first preset distance is the preset spraying distance of the irrigation equipment
  • the sowing position is the single sowing range the corresponding location.
  • the information acquiring unit 201 may execute the above S102.
  • the processing unit 202 is configured to control the irrigation equipment to travel along the working path.
  • the processing unit 202 is further configured to control the irrigation equipment to perform irrigation when at least one sowing position is located within the current irrigation area of the irrigation equipment.
  • the processing unit 202 may execute the above S103 and S106.
  • the irrigation operation control device provided in this embodiment can execute the method flow shown in the above method embodiment to achieve corresponding technical effects.
  • the embodiment of the present application also provides a storage medium, the storage medium stores computer instructions and programs, and when the computer instructions and programs are read and run, execute the irrigation operation control method of the above-mentioned embodiments.
  • the storage medium may include memory, flash memory, registers, or a combination thereof.
  • the embodiment of the present application also provides irrigation equipment, which may be, for example, an unmanned vehicle.
  • the irrigation equipment can realize the above-mentioned irrigation operation control method.
  • the irrigation equipment includes: a processor 10 , a memory 11 and a bus 12 .
  • Processor 10 may be a CPU.
  • the memory 11 is used to store one or more programs, and when the one or more programs are executed by the processor 10, the irrigation operation control method of the above-mentioned embodiment is executed.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently or in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified function or action , or may be implemented by a combination of dedicated hardware and computer instructions.
  • each functional module in each embodiment of the present application can be integrated together to form an independent part, or can exist as each module independently, or can be integrated by two or more modules to form an independent part.
  • the functions are realized in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a computer software product, and the computer software product is stored in a storage medium
  • several instructions are included to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Abstract

一种灌溉作业控制方法、装置、存储介质及灌溉设备,方法包括:灌溉设备获取作业路径;其中,作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离,第一预设距离为灌溉设备的预设的喷洒距离,播种位置为单次播种范围对应的位置;灌溉设备沿作业路径行驶;在至少一个播种位置位于灌溉设备的当前灌溉区域内的情况下,灌溉设备进行灌溉作业。

Description

一种灌溉作业控制方法、装置、存储介质及灌溉设备 技术领域
本申请涉及农业领域,具体而言,涉及一种灌溉作业控制方法、装置、存储介质及灌溉设备。
发明背景
在农业耕种中,播种和施肥浇水分为人工作业和机器作业。人工播种或机器播种都是一次播种,并在播种后多次施肥浇水。其中,人工作业由于完全依赖于操作人员的经验,因此难以保证种子定距定量均匀播种,并且在播种之后,种子和土壤融为一体,人眼很难分辨出种子的具体位置。而机器作业中,虽然可以保证种子定距定量均匀播撒,但种子破土成苗前,机器也无法识别种子的具体位置。也就是说,不管是人工作业方式还是机器作业方式,都无法在种子破土之前(成苗阶段)对种子进行精准施肥浇水。导致当前的人工作业和机器作业中,在施肥浇水时均采用大面积区域覆盖方式,无法做到精准施肥浇水。
发明内容
本申请的目的在于提供一种灌溉作业控制方法、装置、存储介质及灌溉设备,以至少部分改善上述问题。
为了实现上述目的,本申请实施例采用的技术方案如下:
第一方面,本申请实施例提供一种灌溉作业控制方法,应用于灌溉设备,所述方法包括:
所述灌溉设备获取作业路径,
其中,所述作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离,所述第一预设距离为所述灌溉设备的预设的喷洒距离,所述播种位置为单次播种范围对应的位置;
所述灌溉设备沿所述作业路径行驶;
在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,所述灌溉设备进行灌溉作业。
在一种可能的实现方式中,所述播种位置由预估的中心坐标和对应的播种半径确定,所述中心坐标为单次播种范围的中心对应的坐标;
所述灌溉设备获取作业路径的步骤,包括:
所述灌溉设备依据所述待灌溉区域内的预估的中心坐标和对应的播种半径拟合生成所述作业路径,
其中,所述预估的中心坐标与所述作业路径之间的最小距离大于对应的播种半径。
在一种可能的实现方式中,在所述灌溉设备获取作业路径的步骤之前,所述方法还包括:
所述灌溉设备依据播种设备每一次播种动作的播种坐标、播种高度、预设播幅以及风场强度,获取每一个预估的中心坐标和对应的播种半径。
在一种可能的实现方式中,所述灌溉设备获取作业路径的步骤,包括:
所述灌溉设备接收服务器传输的所述作业路径。
在一种可能的实现方式中,所述当前灌溉区域为以所述灌溉设备的当前坐标为中心,以所述第一预设距离为半径的区域,其中,在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,所述灌溉设备进行灌溉作业的步骤,包括:
基于所述当前坐标、所述第一预设距离以及所述待灌溉区域内的至少一个播种位置,判断所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置;
若是,则所述灌溉设备进行灌溉作业;
若否,则所述灌溉设备停止灌溉作业。
在一种可能的实现方式中,所述基于所述当前坐标、所述第一预设距离以及所述待灌溉区域内的至少一个播种位置,判断所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置的步骤,包括:
依据所述当前坐标和所述待灌溉区域内的至少一个播种位置,确定所述当前坐标与所述待灌溉区域内的至少一个播种位置之间的至少一个当前间隔;
判断所述至少一个当前间隔中是否存在小于等于所述第一预设距离的当前间隔;
若是,则确定所述灌溉设备的当前灌溉区域内存在至少一个播种位置;
若否,则确定所述灌溉设备的当前灌溉区域内不存在任何一个播种位置。
在一种可能的实现方式中,在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,所述方法还包括:
所述灌溉设备依据所述当前坐标和目标位置调整喷洒装置的姿态参数和/或动力参数,
其中,所述目标位置为与所述当前坐标之间的距离小于等于所述第一预设距离的播种位置。
在一种可能的实现方式中,所述灌溉设备依据所述当前坐标和目标位置,调整喷洒装置的姿态参数和/或动力参数的步骤,包括:
所述灌溉设备依据所述当前坐标、所述目标位置以及喷洒幅度,调整所述喷洒装置的姿态参数和/或动力参数,
其中,所述喷洒幅度为所述喷洒装置的喷洒区域的半径。
在一种可能的实现方式中,所述作业路径包括多个子路径,每个所述子路径对应于一个标签,所述标签用于表征所述灌溉设备在对应的子路径上行驶时所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置,
其中,所述在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,所述灌溉设备进行灌溉作业的步骤,包括:
所述灌溉设备根据当前行驶中的子路径所对应的标签,判断所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置;
若是,则所述灌溉设备进行灌溉作业;
若否,则所述灌溉设备停止灌溉作业。
在一种可能的实现方式中,所述灌溉设备的两侧分别设有第一喷洒装置和第二喷洒装置,所述作业路径的至少一部分为复合路径,其中,所述复合路径与两侧的每一个播种位置之间的最小距离均小于等于第一预设距离,
其中,所述灌溉设备进行灌溉作业的步骤,包括:
当判断所述灌溉设备进入所述复合路径时,使用所述第一喷洒装置和所述第二喷洒装置同时对两侧的播种位置进行灌溉作业。
第二方面,本申请实施例提供一种灌溉作业控制装置,应用于灌溉设备,所述装置包括:
信息获取单元,用于设备获取作业路径,
其中,所述作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离,所述第一预设距离为所述灌溉设备的预设的喷洒距离,所述播种位置为单次播种范围对应的位置;
处理单元,用于控制所述灌溉设备沿所述作业路径行驶;
所述处理单元还用于在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,控制所述灌溉设备进行灌溉作业。
在一种可能的实现方式中,所述播种位置由预估的中心坐标和对应的播种半径确定,所述中心坐标为单次播种范围的中心对应的坐标;
所述信息获取单元用于依据所述待灌溉区域内的预估的中心坐标和对应的播种半径拟合生成所述作业路径,其中,所述预估的中心坐标与所述作业路径之间的最小距离大于对应的播种半径。
在一种可能的实现方式中,所述信息获取单元还用于依据播种设备每一次播种动作的播种坐标、播种高度、预设播幅以及风场强度,获取每一个预估的中心坐标和对应的播种半径。
在一种可能的实现方式中,所述信息获取单元用于接收服务器传输的所述作业路径。
在一种可能的实现方式中,所述当前灌溉区域为以所述灌溉设备的当前坐标为中心,以所述第一预设距离为半径的区域,
其中,所述处理单元还用于:
基于所述当前坐标、所述第一预设距离以及所述待灌溉区域内的至少一个播种位置,判断所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置;
若是,则控制所述灌溉设备进行灌溉作业;
若否,则控制所述灌溉设备停止灌溉作业。
在一种可能的实现方式中,所述处理单元用于:
依据所述当前坐标和所述待灌溉区域内的至少一个播种位置,确定所述当前坐标与所述待灌溉区域内的至少一个播种位置之间的至少一个当前间隔;
判断所述至少一个当前间隔中是否存在小于等于所述第一预设距离的当前间隔;
若是,则确定所述灌溉设备的当前灌溉区域内存在至少一个播种位置;
若否,则确定所述灌溉设备的当前灌溉区域内不存在任何一个播种位置。
在一种可能的实现方式中,所述处理单元还用于:依据所述当前坐标和目标位置,调整喷洒装置的姿态参数和/或动力参数,
其中,所述目标位置为与所述当前坐标之间的距离小于等于所述第一预设距离的播种位置。
所述灌溉设备依据所述当前坐标和目标位置,调整喷洒装置的姿态参数和/或动力参数的步骤,包括:
所述灌溉设备依据所述当前坐标、所述目标位置以及喷洒幅度,调整所述喷洒装置的姿态参数和/或动力参数,
其中,所述喷洒幅度为所述喷洒装置的喷洒区域的半径。
在一种可能的实现方式中,所述作业路径包括多个子路径,每个所述子路径对应于一个标签,所述标签用于表征所述灌溉设备在对应的子路径上行驶时所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置,
其中,所述处理单元还用于:
根据当前行驶中的子路径所对应的标签,判断所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置;
若是,则控制所述灌溉设备进行灌溉作业;
若否,则控制所述灌溉设备停止灌溉作业。
在一种可能的实现方式中,所述灌溉设备的两侧分别设有第一喷洒装置和第二喷洒装置,所述作业路径的至少一部分为复合路径,所述复合路径与两侧的每一个播种位置之间的最小距离均小于等于所述第一预设距离,
其中,所述处理单元还用于:
当判断所述灌溉设备进入所述复合路径时,控制所述第一喷洒装置和所述第二喷洒装置同时对两侧的播种位置进行灌溉作业。
第三方面,本申请实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现上述第一方面中任一实现方式所提供的灌溉作业控制方法。
第四方面,本申请实施例提供一种灌溉设备,包括:处理器和存储器,所述存储器用于存储一个或多个程序,当所述一个或多个程序被所述处理器执行时,实现上述第一方面中任一实现方式所提供的灌溉作业控制方法。
相对于现有技术,本申请实施例所提供的一种灌溉作业控制方法、装置、存储介质及灌溉设备,能够使灌溉设备在沿作业路径行驶时,灌溉范围可以覆盖每一个播种位置;并且,当灌溉区域内不存在播种位置时,能够控制灌溉设备停止灌溉作业,避免对空地进行灌溉作业,从而避免浪费,实现精准灌溉。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,进行详细说明。
附图简要说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它相关的附图。
图1为本申请实施例提供的灌溉设备的连接示意图;
图2为本申请实施例提供的灌溉作业控制方法的流程示意图;
图3为本申请实施例提供的一种作业路径的示意图;
图4为本申请实施例提供的距离变化示意图;
图5为本申请实施例提供的另一种灌溉作业控制方法的流程示意图;
图6为本申请实施例提供的另一种作业路径的示意图;
图7a~7c为本申请实施例提供的播种作业相关参数的示意图;
图8为本申请实施例提供的另一种灌溉作业控制方法的流程示意图;
图9为本申请实施例提供的复合路径的示意图;
图10为本申请实施例提供的另一种灌溉作业控制方法的流程示意图;
图11为本申请实施例提供的另一种灌溉作业控制方法的流程示意图;
图12为本申请实施例提供的另一种灌溉作业控制方法的流程示意图;
图13为本申请实施例提供的一种喷洒示意图;
图14为本申请实施例提供的又一种喷洒示意图;
图15为本申请实施例提供的另一种喷洒示意图;
图16为本申请实施例提供的灌溉作业控制装置的单元示意图。
附图标记:
10-处理器;11-存储器;12-总线;13-通信接口;201-信息获取单元;202-处理单元。
实施本发明的方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
应当理解,相似的标号和字母在附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。同时,在本申请的描述中,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、
“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
在本申请的描述中,需要说明的是,术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯 常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的前提下,下述的实施例及实施例中的特征可以相互组合。
在播种之后,种子和土壤融为一体,很难再分辨种子的具体位置,因此现有技术中,在进行后期的施肥浇水时,不管是人工作业方式还是机器作业方式,都是采用大面积区域覆盖方式,无法做到精准施肥浇水。为了克服该问题,本申请实施例提供了一种灌溉作业控制方法,应用于图1所示的灌溉设备。
请参照图1,图1为本申请实施例提供的灌溉设备的连接示意图。灌溉设备包括处理器10、存储器11、总线12。处理器10、存储器11通过总线12连接,处理器10用于执行存储器11中存储的可执行模块,例如计算机程序。
处理器10可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,灌溉作业控制方法的各步骤可以通过处理器10中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器10可以是通用处理器,包括中央处理器(Central Processing Unit,简称CPU)、网络处理器(Network Processor,简称NP)等;还可以是数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
存储器11可能包含高速随机存取存储器(RAM:Random Access Memory),也可能还包括非不稳定的存储器(non-volatile memory),例如至少一个磁盘存储器。
总线12可以是ISA(Industry Standard Architecture)总线、PCI(Peripheral Component Interconnect)总线或EISA(Extended Industry Standard Architecture)总线等。图1中仅用一个双向箭头表示,但并不表示仅有一根总线12或一种类型的总线12。
存储器11用于存储程序,例如灌溉作业控制装置对应的程序。灌溉作业控制装置包括至少一个可以软件或固件(firmware)的形式存储于存储器11中或 固化在灌溉设备的操作系统(operating system,OS)中的软件功能模块。处理器10在接收到执行指令后,执行所述程序以实现灌溉作业控制方法。
可选地,本申请实施例提供的灌溉设备还包括通信接口13。通信接口13通过总线12与处理器10连接。灌溉设备可以通过通信接口13接收其他终端(例如客户端或服务器)发送的信息或指令。
可以理解的是,灌溉设备还包括至少一个喷洒装置、二轴云台以及喷洒控制器。在一种可能的实现方式中,喷洒装置包括雾化装置。其中,喷洒装置用于喷洒水或液体化肥等,二轴云台由俯仰电机和偏航电机组成,用于调节喷洒装置的姿态,以使喷洒装置实现360度全方位喷洒。喷洒控制器用于调节喷洒装置的动力参数信息,从而改变喷洒装置的喷洒范围。
可以理解的是,灌溉设备还包括行驶单元,行驶单元用于驱动所述灌溉设备移动。
应当理解的是,图1仅为灌溉设备的部分组件的结构示意图,灌溉设备还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置方式。图1中所示的各组件可以采用硬件、软件或其组合实现。
本申请实施例提供的一种灌溉作业控制方法,可以但不限于应用于图1所示的灌溉设备,具体的流程可以如图2所示:
S102,灌溉设备获取作业路径。
其中,作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离,第一预设距离为灌溉设备的预设的喷洒距离,播种位置为单次播种范围对应的位置。
以无人机作为播种设备进行示例说明,无人机在田间进行播种作业时,会重复进行播种动作,每重复一次播种动作,会产生一个对应的播种范围,每一个播种范围对应的播种位置如图3中的A所示。
图3为本申请实施例提供的一种作业路径的示意图,其中的虚线箭头表示作业路径,播种位置A周围的实线圆圈表示与播种位置A之间的距离为第一预设距离的点的集合。如图3所示,作业路径与每一个播种位置A对应的实线圆圈相交或相切,从而保障作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离。进一步地,能够使灌溉设备在沿作业路径行驶时,灌溉范围可以覆盖每一个播种位置A。
S103,灌溉设备沿作业路径行驶。
请参考图4,图4中的C表征灌溉设备,灌溉设备C沿图4中的虚线箭头方向移动,在移动过程中,灌溉设备C与播种位置A之间的距离在不停的发生变化,如从d1变化至d5。
S106,在至少一个播种位置位于灌溉设备的当前灌溉区域内的情况下,灌溉设备进行灌溉作业。
在一种可能的实现方式中,当前灌溉区域为以灌溉设备的当前坐标为中心,以第一预设距离(例如,灌溉设备的最大喷洒距离或预设的喷洒距离)为半径的区域。
请继续参考图4,假设灌溉设备C与播种位置A之间的距离为d1或d5时,播种位置A位于灌溉设备的当前灌溉区域外,灌溉设备与播种位置A之间的距离为d2至d4时,播种位置A位于灌溉设备的当前灌溉区域内。
在本申请实施例中,在至少一个播种位置位于灌溉设备的当前灌溉区域内的情况下,灌溉设备进行灌溉作业,在没有播种位置A位于灌溉区域内的情况下,灌溉设备不进行灌溉作业,避免对空地进行灌溉作业,从而避免浪费,实现精准灌溉。
需要说明的是,本申请实施例中的灌溉原料可以是水或水肥,在此不做限定。
综上所述,本申请实施例提供了一种灌溉作业控制方法,方法包括:灌溉设备获取作业路径,其中,作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离,第一预设距离为灌溉设备的预设的喷洒距离,播种位置为单次播种范围对应的位置;灌溉设备沿作业路径行驶;在至少一个播种位置位于灌溉设备的当前灌溉区域内的情况下,灌溉设备进行灌溉作业。基于本申请实施例提供的灌溉作业控制方法,能够使灌溉设备在沿作业路径行驶时,灌溉范围可以覆盖每一个播种位置,同时,在沿作业路径行驶过程中,在没有播种位置位于灌溉区域内的情况下,灌溉设备不进行灌溉作业,避免对空地进行灌溉作业,从而避免浪费,实现精准灌溉。
在一种可能的实现方式中,播种位置由预估的中心坐标和对应的播种半径确定,其中,中心坐标为单次播种范围的中心对应的坐标。如图4所示,O表示预估的中心坐标,R表示对应的播种半径。在此基础上,关于图2中的S102,本申请实施例还提供了一种可能的实现方式,如图5所示,S102包括:
S102-1,灌溉设备依据待灌溉区域内的预估的中心坐标和对应的播种半径拟合生成作业路径。
其中,预估的中心坐标与作业路径之间的最小距离大于对应的播种半径。
请参考图6,其中的虚线箭头表示作业路径,实线圆圈表示到预估的中心坐标O的距离为第一预设距离的点的集合,虚线圆圈表示到预估的中心坐标O的距离为播种半径的点的集合,虚线圆圈也可以理解为每一个单次播种范围。如图6所示,作业路径与每一个实线圆圈相交,作业路径与每一个虚线圆圈均不相交。也就是说,作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于第 一预设距离,作业路径与每一个预估的中心坐标之间的最小距离均大于对应的播种半径。通过这样设计作业路径,能够使灌溉设备(例如无人车)在沿作业路径行驶时,不会碾压到播种范围内的种子,同时还能保障灌溉范围能够覆盖每一个播种范围。
图5为本申请实施例提供的另一种灌溉作业控制方法的流程示意图,其中,提供了获取预估的中心坐标和对应的播种半径的一种可能的实现方式。如图5所示,灌溉作业控制方法还包括:
S101,灌溉设备依据播种设备每一次播种动作的播种坐标、播种高度、预设播幅以及风场强度,获取每一个预估的中心坐标和对应的播种半径。
继续以无人机作为播种设备进行示例说明,请参考图7a,图7a为对应于无人机每一次播种动作的参数示意图,其中,播种高度H为2m,播种半径R为5m,播种坐标为无人机在实施播种动作时所在位置的坐标,预设播幅为播种半径的二倍。在不存在风场影响的情况下,播种坐标即为播种范围的中心。请继续参考图7b和图7c,当存在风场影响的情况下,播种半径发生明显改变(例如由R变为R’),播种范围的中心也发生了偏移。需要说明的是,播种坐标可以为无人机在实施播种动作时的RTK(Real Time Kinematic,实时动态差分)坐标,风场强度可以为无人机的双桨所发出的风力强度或者其与当前环境风力的综合强度。
在存在风场影响的情况下,若将无人机当前的播种坐标确定为中心坐标,将预设播幅的一半确定为播种半径,则会导致确定的播种范围与实际偏差较大,不能准确定位播种位置,从而可能导致灌溉设备对空地进行灌溉作业,同时也有可能发生部分种子无法得到灌溉的情况。
因此,本申请实施例的灌溉作业控制方法通过执行S101,基于播种动作的参数信息估算得到预估的中心坐标和对应的播种半径,从而准确定位每一个播种位置,实现精准灌溉。
在一种可能的实现方式中,无人机在作业时会将每一次播种动作的播种坐标、播种高度、预设播幅以及风场强度传输给服务器,服务器再将其传输给灌溉设备。
如图8所示,本申请实施例还提供了获取作业路径的另一种可能的实现方式,其中,S102包括:
S102-2,灌溉设备接收服务器传输的作业路径。
可选地,上述实现方式中的S101可以由服务器执行。服务器获取每一个播种位置的预估的中心坐标和对应的播种半径后,再依据每一个预估的中心坐标和对应的播种半径拟合生成作业路径,并将作业路径传输给灌溉设备。
可选地,为了提升灌溉效率,在图2的基础上,本申请实施例还提供了一种可能的实现方式如下:
灌溉设备的两侧分别设有第一喷洒装置和第二喷洒装置;作业路径的至少一部分为复合路径。
其中,复合路径为作业路径上与两侧的每一个播种位置之间的最小距离均小于等于第一预设距离的部分。
具体地,请参考图9,图9中的实线圆圈表示与播种位置之间的距离为第一预设距离的点的集合,虚线箭头表示复合路径。如图9所示,复合路径与两侧的每一个播种位置之间的最小距离均小于等于第一预设距离。当灌溉设备在复合路径上行驶时,可以利用第一喷洒装置和第二喷洒装置同时对两侧的播种位置进行灌溉,从而提升灌溉的效率。
例如,灌溉设备沿复合路径进行灌溉作业时,假设采用单侧灌溉方式时灌溉设备需要来回行驶6次,那么采用双侧灌溉方式时,灌溉设备仅需要行驶3次,大大缩短了灌溉作业的时间。
在一种可能的实现方式中,当前灌溉区域为以灌溉设备的当前坐标为中心,以第一预设距离为半径的区域。图10为本申请实施例提供的另一种灌溉作业控制方法的流程示意图,其中,在S103之后,灌溉作业控制方法还包括:
S104,基于当前坐标、第一预设距离以及待灌溉区域内的至少一个播种位置,判断灌溉设备的当前灌溉区域内是否存在至少一个播种位置。若是,则执行S106;若否,则执行S107。
S107,灌溉设备停止灌溉作业。
具体地,灌溉设备的当前灌溉区域内不存在任何一个播种位置时,灌溉设备停止灌溉作业,避免浪费。
关于如何判断灌溉设备的当前灌溉区域内是否存在至少一个播种位置,本申请实施例还提供了一种可能的实现方式,即,将作业路径分成多个子路径,分别为每一子路径添加标签。其中,当灌溉设备行驶在该子路径时,标签可以表征灌溉设备的当前灌溉区域内存在的至少一个播种位置;或者,标签还可以表征灌溉设备的当前灌溉区域内不存在任何一个播种位置。
通过将作业路径进行分段并添加标签的方式,可以减轻灌溉设备的运行负担,使得灌溉设备可以保持高效运行状态。
在图10所示实现方式的基础上,对于S104中的内容,本申请实施例还提供了一种可能的实现方式,如图11所示,S104可以包括:
S104-1,依据当前坐标和待灌溉区域内的至少一个播种位置,确定当前坐标与待灌溉区域内的至少一个播种位置之间的至少一个当前间隔。
例如,当前间隔可以是如图4所示的d1至d5。
S104-2,判断至少一个当前间隔中是否存在小于等于第一预设距离的当前间隔。若是,则执行S104-3,若否,则执行S104-4。
S104-3,确定灌溉设备的当前灌溉区域内存在至少一个播种位置。
S104-4,确定灌溉设备的当前灌溉区域内不存在任何一个播种位置。
在图10的基础上,关于如何进一步提升灌溉的精准程度,本申请实施例还提供了一种可能的实现方式,如图12所示,灌溉作业控制方法还可以包括:
S105,灌溉设备依据当前坐标和目标位置,调整喷洒装置的姿态参数和/或动力参数。
其中,目标位置为与当前坐标之间的距离小于等于第一预设距离的播种位置。姿态参数包括喷洒方向和喷洒角度,动力参数包括喷洒距离。
具体地,请继续参考图4,因为灌溉设备在沿着路径行驶时,其与播种位置之间的距离和方位关系在不停的变化,所以需要调节姿态和动力,以更好地进行灌溉。灌溉设备的喷洒幅度能超过预设距离时,就进行灌溉,例如在d2,d3,d4处可以进行灌溉作业,而在d1,d5处则不执行灌溉。
在一种可能的实现方式中,播种位置由预估的中心坐标和对应的播种半径确定,中心坐标为单次播种范围的中心对应的坐标。即目标位置也具有的预估的中心坐标和对应的播种半径。灌溉设备设置有对应的喷洒幅度,例如为1米、2米、3米、4米以及5米等。
对于S105,本申请实施例还提供了一种可能的实现方式,即,灌溉设备依据当前坐标、目标位置以及当前喷洒幅度,调整喷洒装置的姿态参数和/或动力参数。
具体地,在一种可能的实现方式中,灌溉设备的喷洒幅度是可以灵活调节控制的。请参考图13至图15。图13为喷洒幅度与播种半径一致的喷洒示意图,假设都为5米;图14为喷洒幅度为播种半径的一半的喷洒示意图,假设播种半径为5米、喷洒幅度为2.5米;图15为喷洒幅度远小于播种半径的喷洒示意图,假设播种半径为5米、喷洒幅度为1米。图中实线圆圈表示由播种半径确定的播种范围,虚线圆圈表示由喷洒幅度确定的喷洒区域。
参考图13至图15可知,灌溉设备可以灵活控制当前的喷洒幅度,从而对播种范围形成全面的覆盖。
图16为本申请实施例提供的一种灌溉作业控制装置,可选的,该灌溉作业控制装置被应用于上文所述的灌溉设备。
灌溉作业控制装置包括:信息获取单元201和处理单元202。
信息获取单元201,用于控制灌溉设备获取作业路径。
其中,作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离,第一预设距离为灌溉设备的预设的喷洒距离,播种位置为单次播种范围对应的位置。
可选地,信息获取单元201可以执行上述的S102。
处理单元202,用于控制灌溉设备沿作业路径行驶。
处理单元202还用于在至少一个播种位置位于灌溉设备的当前灌溉区域内的情况下,控制灌溉设备进行灌溉作业。
可选地,处理单元202可以执行上述的S103和S106。
需要说明的是,本实施例所提供的灌溉作业控制装置,其可以执行上述方法实施例所示的方法流程,以实现对应的技术效果。为简要描述,本实施例中未提及的部分可参考上述的实施例中的相应内容。
本申请实施例还提供了一种存储介质,该存储介质存储有计算机指令、程序,该计算机指令、程序在被读取并运行时执行上述实施例的灌溉作业控制方法。该存储介质可以包括内存、闪存、寄存器或者其结合等。
本申请实施例还提供一种灌溉设备,例如可以是无人车。该灌溉设备如图1所示,可以实现上述的灌溉作业控制方法。具体的,该灌溉设备包括:处理器10,存储器11、总线12。处理器10可以是CPU。存储器11用于存储一个或多个程序,当一个或多个程序被处理器10执行时,执行上述实施例的灌溉作业控制方法。
应该理解,本申请所提供的实施例中所揭露的装置和方法也可以通过其它的方式实现,以上所描述的实施例仅仅是示意性的。例如,附图中的流程图和框图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,或者也可以按相反的顺序执行,这依所涉及的功能而定。还要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以作为各个模块单独存在,也可以由两个或两个以上模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其它的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (15)

  1. 一种灌溉作业控制方法,其特征在于,应用于灌溉设备,所述方法包括:
    所述灌溉设备获取作业路径,其中,所述作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离,所述第一预设距离为所述灌溉设备的预设的喷洒距离,所述播种位置为单次播种范围对应的位置;
    所述灌溉设备沿所述作业路径行驶;
    在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,所述灌溉设备进行灌溉作业。
  2. 如权利要求1所述的灌溉作业控制方法,其特征在于,所述播种位置由预估的中心坐标和对应的播种半径确定,所述中心坐标为单次播种范围的中心对应的坐标;
    所述灌溉设备获取作业路径的步骤,包括:
    所述灌溉设备依据所述待灌溉区域内的预估的中心坐标和对应的播种半径拟合生成所述作业路径,
    其中,所述预估的中心坐标与所述作业路径之间的最小距离大于对应的播种半径。
  3. 如权利要求2所述的灌溉作业控制方法,其特征在于,在所述灌溉设备获取作业路径的步骤之前,所述方法还包括:
    所述灌溉设备依据播种设备每一次播种动作的播种坐标、播种高度、预设播幅以及风场强度,获取每一个预估的中心坐标和对应的播种半径。
  4. 如权利要求1所述的灌溉作业控制方法,其特征在于,所述灌溉设备获取作业路径的步骤,包括:
    所述灌溉设备接收服务器传输的所述作业路径。
  5. 如权利要求1-4中任一项所述的灌溉作业控制方法,其特征在于,所述当前灌溉区域为以所述灌溉设备的当前坐标为中心,以所述第一预设距离为半径的区域,
    其中,所述在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,所述灌溉设备进行灌溉作业的步骤,包括:
    基于所述当前坐标、所述第一预设距离以及所述待灌溉区域内的至少一个播种位置,判断所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置;
    若是,则所述灌溉设备进行灌溉作业;
    若否,则所述灌溉设备停止灌溉作业。
  6. 如权利要求5所述的灌溉作业控制方法,其特征在于,所述基于所述当前坐标、所述第一预设距离以及所述待灌溉区域内的至少一个播种位置,判断所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置的步骤,包括:
    依据所述当前坐标和所述待灌溉区域内的至少一个播种位置,确定所述当前坐标与所述待灌溉区域内的至少一个播种位置之间的至少一个当前间隔;
    判断所述至少一个当前间隔中是否存在小于等于所述第一预设距离的当前间隔;
    若是,则确定所述灌溉设备的当前灌溉区域内存在至少一个播种位置;
    若否,则确定所述灌溉设备的当前灌溉区域内不存在任何一个播种位置。
  7. 如权利要求5或6所述的灌溉作业控制方法,其特征在于,在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,所述方法还包括:
    所述灌溉设备依据所述当前坐标和目标位置,调整喷洒装置的姿态参数和/或动力参数,
    其中,所述目标位置为与所述当前坐标之间的距离小于等于所述第一预设距离的播种位置。
  8. 如权利要求7所述的灌溉作业控制方法,其特征在于,所述灌溉设备依据所述当前坐标和目标位置,调整喷洒装置的姿态参数和/或动力参数的步骤,包括:
    所述灌溉设备依据所述当前坐标、所述目标位置以及喷洒幅度,调整所述喷洒装置的姿态参数和/或动力参数,
    其中,所述喷洒幅度为所述喷洒装置的喷洒区域的半径。
  9. 如权利要求1-4中任一项所述的灌溉作业控制方法,其特征在于,所述作业路径包括多个子路径,每个所述子路径对应于一个标签,所述标签用于表征所述灌溉设备在对应的子路径上行驶时所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置,
    其中,所述在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,所述灌溉设备进行灌溉作业的步骤,包括:
    所述灌溉设备根据当前行驶中的子路径所对应的标签,判断所述灌溉设备的当前灌溉区域内是否存在至少一个播种位置;
    若是,则所述灌溉设备进行灌溉作业;
    若否,则所述灌溉设备停止灌溉作业。
  10. 如权利要求1-9中任一项所述的灌溉作业控制方法,其特征在于,所述灌溉设备的两侧分别设有第一喷洒装置和第二喷洒装置;所述作业路径的至少一部分为复合路径;
    其中,所述复合路径与两侧的每一个播种位置之间的最小距离均小于等于所述第一预设距离。
  11. 如权利要求10所述的灌溉作业控制方法,其特征在于,所述灌溉设备进行灌溉作业的步骤,包括:
    当判断所述灌溉设备进入所述复合路径时,使用所述第一喷洒装置和所述第二喷洒装置同时对两侧的播种位置进行灌溉作业。
  12. 一种灌溉作业控制装置,其特征在于,应用于灌溉设备,所述装置包括:
    信息获取单元,用于获取作业路径,其中,所述作业路径与待灌溉区域内的每一个播种位置之间的最小距离均小于等于第一预设距离,所述第一预设距离为所述灌溉设备的预设的喷洒距离,所述播种位置为单次播种范围对应的位置;
    处理单元,用于控制所述灌溉设备沿所述作业路径行驶;
    所述处理单元还用于在至少一个播种位置位于所述灌溉设备的当前灌溉区域内的情况下,控制所述灌溉设备进行灌溉作业。
  13. 根据权利要求12所述的灌溉作业控制装置,其特征在于,所述播种位置由预估的中心坐标和对应的播种半径确定,所述中心坐标为单次播种范围的中心对应的坐标;
    所述信息获取单元用于依据所述待灌溉区域内的预估的中心坐标和对应的播种半径拟合生成所述作业路径,
    其中,所述预估的中心坐标与所述作业路径之间的最小距离大于对应的播种半径。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-11中任一项所述的灌溉作业控制方法。
  15. 一种灌溉设备,包括:处理器和存储器,所述存储器用于存储一个或多个程序,其特征在于,当所述一个或多个程序被所述处理器执行时,实现如权利要求1-11中任一项所述的灌溉作业控制方法。
PCT/CN2021/121176 2021-06-30 2021-09-28 一种灌溉作业控制方法、装置、存储介质及灌溉设备 WO2023272986A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110737941.3 2021-06-30
CN202110737941.3A CN113349038B (zh) 2021-06-30 2021-06-30 一种灌溉作业控制方法、装置、存储介质及灌溉设备

Publications (1)

Publication Number Publication Date
WO2023272986A1 true WO2023272986A1 (zh) 2023-01-05

Family

ID=77537524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121176 WO2023272986A1 (zh) 2021-06-30 2021-09-28 一种灌溉作业控制方法、装置、存储介质及灌溉设备

Country Status (2)

Country Link
CN (1) CN113349038B (zh)
WO (1) WO2023272986A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113349038B (zh) * 2021-06-30 2023-03-24 广州极飞科技股份有限公司 一种灌溉作业控制方法、装置、存储介质及灌溉设备
CN114223414B (zh) * 2021-12-31 2023-05-02 广州极飞科技股份有限公司 一种棉花打顶控制方法、棉花打顶设备及相关装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280685A (en) * 1992-06-01 1994-01-25 Turner James R Mobile plant chemical application devices
EP2454928A1 (fr) * 2010-11-18 2012-05-23 Sulky Burel Dispositif d'épandage à goulotte permettant de prendre en compte l'effet débit
CN110597279A (zh) * 2019-08-30 2019-12-20 南京精微迅智能科技有限公司 一种农业无人机的作业方法及其控制方法
CN111741897A (zh) * 2019-04-29 2020-10-02 深圳市大疆创新科技有限公司 无人机的控制方法、设备、喷洒系统、无人机及存储介质
CN111744690A (zh) * 2020-05-29 2020-10-09 广州极飞科技有限公司 喷洒作业控制方法、装置、载具及存储介质
CN111752298A (zh) * 2019-09-30 2020-10-09 广州极飞科技有限公司 无人机作业航线生成方法及相关装置
CN112219177A (zh) * 2019-10-31 2021-01-12 深圳市大疆创新科技有限公司 喷洒无人机的作业规划方法、系统和设备
CN112381663A (zh) * 2020-11-10 2021-02-19 北京博创联动科技有限公司 变量作业处理方法、装置、平台及存储介质
CN112799416A (zh) * 2019-10-24 2021-05-14 广州极飞科技股份有限公司 航线生成方法、设备和系统、无人作业系统及存储介质
CN113349038A (zh) * 2021-06-30 2021-09-07 广州极飞科技股份有限公司 一种灌溉作业控制方法、装置、存储介质及灌溉设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108021720A (zh) * 2016-10-31 2018-05-11 哈尔滨派腾农业科技有限公司 一种基于温室农业自动化作业的行走机构的设计方法
CN109661979B (zh) * 2017-10-13 2021-04-06 中国农业机械化科学研究院 一种基于精准控制作物位置的信息化种植方法
CN108293853A (zh) * 2018-01-31 2018-07-20 深圳春沐源控股有限公司 一种智能补水装置及方法
CN109104949B (zh) * 2018-07-27 2020-05-19 北京农业智能装备技术研究中心 一种播种施肥喷药对穴作业方法
CN109089831A (zh) * 2018-08-08 2018-12-28 张朝晖 园林智能灌溉方法、装置、存储介质和处理器
CN110873557A (zh) * 2018-08-30 2020-03-10 一飞智控(天津)科技有限公司 一种农业植保无人机的作业面积统计方法
CN109220089B (zh) * 2018-10-25 2021-09-03 山东省计算中心(国家超级计算济南中心) 基于北斗卫星定位的小区播种路径对齐方法
CN109634270A (zh) * 2018-10-25 2019-04-16 丰疆智慧农业股份有限公司 用于无人驾驶农机的作业控制系统及作业控制方法
CN110810220A (zh) * 2019-10-11 2020-02-21 西安科成新果信息科技有限公司 基于信息处理的农业自动灌溉控制方法及系统
CN111421561B (zh) * 2020-04-13 2022-06-21 湖北文理学院 喷洒机器人、喷洒机器人控制方法及存储介质
CN112772098A (zh) * 2021-02-22 2021-05-11 中国农业大学 一种大型喷灌机变量灌溉施肥分区方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5280685A (en) * 1992-06-01 1994-01-25 Turner James R Mobile plant chemical application devices
EP2454928A1 (fr) * 2010-11-18 2012-05-23 Sulky Burel Dispositif d'épandage à goulotte permettant de prendre en compte l'effet débit
CN111741897A (zh) * 2019-04-29 2020-10-02 深圳市大疆创新科技有限公司 无人机的控制方法、设备、喷洒系统、无人机及存储介质
CN110597279A (zh) * 2019-08-30 2019-12-20 南京精微迅智能科技有限公司 一种农业无人机的作业方法及其控制方法
CN111752298A (zh) * 2019-09-30 2020-10-09 广州极飞科技有限公司 无人机作业航线生成方法及相关装置
CN112799416A (zh) * 2019-10-24 2021-05-14 广州极飞科技股份有限公司 航线生成方法、设备和系统、无人作业系统及存储介质
CN112219177A (zh) * 2019-10-31 2021-01-12 深圳市大疆创新科技有限公司 喷洒无人机的作业规划方法、系统和设备
CN111744690A (zh) * 2020-05-29 2020-10-09 广州极飞科技有限公司 喷洒作业控制方法、装置、载具及存储介质
CN112381663A (zh) * 2020-11-10 2021-02-19 北京博创联动科技有限公司 变量作业处理方法、装置、平台及存储介质
CN113349038A (zh) * 2021-06-30 2021-09-07 广州极飞科技股份有限公司 一种灌溉作业控制方法、装置、存储介质及灌溉设备

Also Published As

Publication number Publication date
CN113349038B (zh) 2023-03-24
CN113349038A (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
WO2023272986A1 (zh) 一种灌溉作业控制方法、装置、存储介质及灌溉设备
US9043951B2 (en) System and method for creating agricultural tramlines
US20190072937A1 (en) Device, method, and program for controlling agricultural machine
US20200019159A1 (en) Agricultural control and interface system
EP3540464A2 (en) Ranging method based on laser radar system, device and readable storage medium
JP2021506321A (ja) 機械の制御方法、機械の制御装置、及びコンピュータ読み取り可能記憶メディア
CN110708948A (zh) 使用机器学习工作流进行灌溉管理的系统与方法
US10368505B2 (en) System and method for image-based determination of irrigation system dispersal routes
US10817812B2 (en) System and methods for identifying fields and tasks
CN111295332B (zh) 农业植保无人机的控制方法、农业植保无人机和计算机可读存储介质
US11937530B2 (en) GPS location augmentation and outage playthrough
US20190133058A1 (en) System and method for integrated use of field sensors for dynamic management of irrigation and crop inputs
WO2019080067A1 (zh) 农用机控制方法、装置及系统
CN111744690B (zh) 喷洒作业控制方法、装置、载具及存储介质
WO2021081896A1 (zh) 喷洒无人机的作业规划方法、系统和设备
CN105210814A (zh) 基于物联网的智能节水灌溉系统
CN106296866A (zh) 一种获取设备作业费用信息的系统和方法
Mukherjee et al. Application of IoT-Enabled 5G Network in the Agricultural Sector
WO2019167210A1 (ja) 制御装置、移動体及びプログラム
RU2818744C1 (ru) Дополнение местоположения по gps и воспроизведение при перебое в работе
US20200241524A1 (en) Intelligent area and dispersal management using autonomous vehicles
RU2818807C1 (ru) Компьютеризированный способ и система для применения сельскохозяйственного орудия
KR20200067638A (ko) 농업용 드론을 이용한 살포 시스템
CN116543309B (zh) 一种作物异常信息获取方法、系统、电子设备及介质
WO2021056409A1 (zh) 无人机的喷洒控制方法、无人机和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE