WO2023272521A1 - 距离确定方法、装置、设备及存储介质 - Google Patents

距离确定方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023272521A1
WO2023272521A1 PCT/CN2021/103265 CN2021103265W WO2023272521A1 WO 2023272521 A1 WO2023272521 A1 WO 2023272521A1 CN 2021103265 W CN2021103265 W CN 2021103265W WO 2023272521 A1 WO2023272521 A1 WO 2023272521A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
communication device
phase difference
signal
distance
Prior art date
Application number
PCT/CN2021/103265
Other languages
English (en)
French (fr)
Inventor
高宁
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202180096797.8A priority Critical patent/CN117120871A/zh
Priority to PCT/CN2021/103265 priority patent/WO2023272521A1/zh
Publication of WO2023272521A1 publication Critical patent/WO2023272521A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/02Systems for determining distance or velocity not using reflection or reradiation using radio waves

Definitions

  • the present application relates to the field of mobile communication, and in particular to a distance determination method, device, equipment and storage medium.
  • the first communication device sends to the second communication device a first signal for measuring distance, and sends a signal to the second communication device to indicate the sending time point of the first signal.
  • the second communication device determines the distance between the first communication device and the second communication device according to the receiving time point of receiving the first signal and the sending time point indicated by the second signal.
  • the clocks adopted by the first communication device and the second communication device may not be synchronized, the determined time difference between the sending time point and the receiving time point is inaccurate, and thus the determined distance is also inaccurate.
  • Embodiments of the present application provide a distance determination method, device, device, and storage medium, which eliminates the need to determine the first distance between the second communication device and the first communication device based on the time point of receiving the probe signal, and avoid The clocks of the device and the second communication device are not synchronized so that the determined distance is inaccurate, which improves the accuracy of the determined distance between the two communication devices. Described technical scheme is as follows:
  • a method for determining distance is provided, which is applied to a first communication device, and the method includes:
  • the second communication device is configured to receive a detection signal sent by the first communication device and the first phase difference, based on two of the detection signals signal components, determine a second phase difference between the two signal components, and determine the distance between the second communication device and the first communication device according to the first phase difference and the second phase difference the first distance of .
  • a method for determining a distance is provided, which is applied to a second communication device, and the method includes:
  • a first distance between the second communication device and the first communication device is determined according to the first phase difference and the second phase difference.
  • a device for determining distance which is set in a first communication device, and the device includes:
  • a receiving module configured to receive the probe signal if the probe signal has been sent to the second communication device
  • a phase difference determination module configured to determine a first phase difference between the two signal components based on the received two signal components in the detection signal, and the frequency corresponding to each of the signal components is the same as that of the detection signal.
  • the interval between the frequencies corresponding to the DC signal component in the signal is the target interval;
  • a sending module configured to send the first phase difference to the second communication device;
  • the second communication device is configured to receive the detection signal sent by the first communication device and the first phase difference, based on the detecting two signal components in the signal, determining a second phase difference between the two signal components, and determining the distance between the second communication device and the first phase difference based on the first phase difference and the second phase difference A first distance between communication devices.
  • a device for determining distance which is set in a second communication device, and the device includes:
  • a receiving module configured to receive a detection signal sent by the first communication device
  • a receiving module configured to receive a first phase difference sent by the first communication device, where the first phase difference is determined by the first communication device based on the received two signal components of the detection signal;
  • a phase difference determination module configured to determine a second phase difference between the two signal components based on the two signal components in the detection signal, and the frequency corresponding to each of the signal components is the same as that in the detection signal
  • the interval between the frequencies corresponding to the DC signal component is the target interval
  • a distance determining module configured to determine a first distance between the second communication device and the first communication device according to the first phase difference and the second phase difference.
  • a communication device includes: a processor; a transceiver connected to the processor; a memory for storing executable instructions of the processor; wherein, the The processor is configured to load and execute the executable instructions to implement the distance determination method as described in the above aspects.
  • a computer-readable storage medium wherein executable program code is stored in the readable storage medium, and the executable program code is loaded and executed by a processor to implement the above-mentioned aspect. method of determining the distance.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on a communication device, it is used to implement the distance determination method as described in the above aspect .
  • an embodiment of the present application provides a computer program product, the computer program product includes computer instructions, and the computer instructions are stored in a computer-readable storage medium;
  • the readable storage medium reads the computer instructions and executes the computer instructions, so that the communication device executes the method for determining distance as described in the above aspect.
  • an embodiment of the present application provides a computer program, where the computer program is executed by a processor of a communication device, so as to implement the method for determining distance as described in the above aspect.
  • both the first communication device and the second communication device will determine the first phase difference and sum of the detection signal according to the two signal components of the detection signal sent by the first communication device The second phase difference, and then the second communication device determines the first distance between the second communication device and the first communication device according to the first phase difference and the second phase difference, and there is no need to determine the first distance between the second communication device and the first communication device according to the time point when the detection signal is received.
  • the first distance between the second communication device and the first communication device avoids the problem that the determined distance is inaccurate due to the asynchronous clocks of the first communication device and the second communication device, and improves the determined distance between the two communication devices. The accuracy of the distance between.
  • Fig. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application.
  • Fig. 2 shows a schematic structural diagram between a first communication device and a second communication device provided by an exemplary embodiment of the present application.
  • Fig. 3 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application.
  • Fig. 4 shows a spectrum diagram of a detection signal provided by an exemplary embodiment of the present application.
  • Fig. 5 shows a spectrum diagram of a detection signal provided by an exemplary embodiment of the present application.
  • Fig. 6 shows a spectrum diagram of a detection signal provided by an exemplary embodiment of the present application.
  • Fig. 7 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application.
  • Fig. 8 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application.
  • Fig. 9 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a control field provided by an exemplary embodiment of the present application.
  • Fig. 11 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application.
  • Fig. 12 shows a schematic diagram of a header format of a protocol data unit provided by an exemplary embodiment of the present application.
  • Fig. 13 shows a schematic diagram of types of CTE fields provided by an exemplary embodiment of the present application.
  • Fig. 14 shows a schematic diagram of optional information fields provided by an exemplary embodiment of the present application.
  • Fig. 15 shows a schematic diagram of the format of a PHY data packet provided by an exemplary embodiment of the present application.
  • Fig. 16 shows a schematic diagram of the format of a PHY data packet provided by an exemplary embodiment of the present application.
  • Fig. 17 shows a schematic diagram of an extended header format of a protocol data unit provided by an exemplary embodiment of the present application.
  • Fig. 18 shows a flow chart of sending signals in a periodic broadcast mode between a first communication device and a second communication device provided by an exemplary embodiment of the present application.
  • Fig. 19 shows a flow chart of sending signals between a first communication device and a second communication device when a connection has been established.
  • Fig. 20 shows a block diagram of an apparatus for determining distance provided by an exemplary embodiment of the present application.
  • Fig. 21 shows a block diagram of a distance determining device provided by an exemplary embodiment of the present application.
  • Fig. 22 shows a block diagram of an apparatus for determining distance provided by an exemplary embodiment of the present application.
  • Fig. 23 shows a block diagram of an apparatus for determining a distance provided by an exemplary embodiment of the present application.
  • Fig. 24 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • FIG. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present application, and the communication system may include: a first communication device 12 and a second communication device 13 .
  • the first communication device 12 and the second communication device 13 may include various handheld devices, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to a wireless modem with wireless communication functions, as well as various forms of user equipment, Mobile station (Mobile Station, MS), terminal equipment (Terminal device) and so on.
  • mobile station Mobile Station, MS
  • terminal equipment Terminal device
  • communication devices can be performed between the first communication device 12 and the second communication device 13 .
  • the first communication device 12 is a user equipment
  • the second communication device is a BLE (Bluetooth Low Energy, Bluetooth Low Energy) device
  • a BLE connection can be established between the first communication device 12 and the second communication device 13
  • the second communication device determines the distance between the second communication device 13 and the first communication device 12 through the established BLE connection.
  • the first communication device is a full-duplex communication device, and the first communication device includes a first baseband unit and a first antenna, a second baseband unit and a second antenna, and the first baseband unit and the first antenna An antenna constitutes a sending module of the first communication device, and the second baseband unit and the second antenna constitute a receiving module of the first communication device, so that the first communication device constitutes a full-duplex communication device.
  • the second communication device is any one of full-duplex communication device, half-duplex communication device or simplex communication device.
  • half-duplex communication equipment uses the same baseband unit and antenna in a time-division multiplexing manner, and cannot receive signals when transmitting signals, and cannot transmit signals when receiving signals.
  • Simplex communication devices only support receiving signals, not sending signals.
  • the first communication device is a full-duplex communication device
  • the second communication device is a half-duplex communication device
  • the relationship between the first communication device and the second communication device is shown in FIG. 2 .
  • the first communication device is a master device
  • the second communication device is a slave device.
  • the master device sends a signal to the slave device
  • the slave device receives the signal sent by the master device, and then executes the distance determining method in the embodiment of the present application.
  • Fig. 3 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application, which is applied to the first communication device and the second communication device as shown in Fig. 1, and the method includes at least part of the following contents :
  • Step 301 The first communication device receives the detection signal in a condition that the detection signal has been sent to the second communication device.
  • the detection signal is generated by the first communication device, or is generated by other devices and sent to the first communication device.
  • the detection signal is used by the second communication device to determine the distance from the first communication device.
  • the first communication device If the first communication device has sent the detection signal to the second communication device, it will also receive the detection signal sent by itself.
  • the detection signal is a Sounding Sequence (detection sequence) signal, or other types of signals.
  • the self-interference cancellation function of the first communication device is turned off, and the self-interference cancellation function is used to interfere with the received signal eliminate.
  • the first communication device includes DSIC (Digital Self-Interference Cancellation, digital self-interference cancellation module) and ASIC (Analog Self-Interference Cancellation, analog self-interference cancellation module), the DSIC and ASIC both have self-interference cancellation function.
  • DSIC Digital Self-Interference Cancellation, digital self-interference cancellation module
  • ASIC Analog Self-Interference Cancellation, analog self-interference cancellation module
  • Step 302 The first communication device determines a first phase difference between the two signal components of the received detection signal based on the two signal components.
  • the first communication device after the first communication device receives the detection signal sent by itself, it analyzes the detection signal to determine the frequency spectrum of the detection signal, and then determines the two signal components of the detection signal based on the frequency spectrum, and then determines the detection signal The first phase difference between the two signal components in .
  • the interval between the frequency corresponding to each signal component and the frequency corresponding to the DC signal component in the detection signal is the target interval, and the DC component of the detection signal is the corresponding signal amplitude when the frequency is 0 Hz (Hertz).
  • the detection signal includes multiple bit sequences, and each bit sequence includes the same number of bits.
  • multiple bit sequences included in the detection signal are the same.
  • the number of bits included in each bit sequence is 2, each bit sequence can be [0, 1], then the detection signal is [0, 1, 0, 1, 0, 1, 0, 1...], and Or, the number of bits included in each bit sequence is 4, then each bit sequence can be [1, 1, 0, 0], and the detection signal is [1, 1, 0, 0, 1, 1, 0, 0...].
  • the target interval is a ratio of a symbol rate of the sounding signal to a sequence period of the plurality of bit sequences.
  • the sequence period is the number of bits in the bit sequence in the detection signal.
  • the first communication device determines a ratio between a symbol rate of the sounding signal and the sequence periods of the plurality of bit sequences, and determines the ratio as the target interval.
  • three detection signals can be defined:
  • the first type a detection signal with a period of 2 bits.
  • Each bit sequence in the detection signal is [1, 0], then the formed detection signal is [1, 0, 1, 0, 1, 0...], and the period is 2 bits.
  • the symbol rate is 1 Msym/s
  • the baseband signal spectrum of the detection signal is shown in FIG. 3 .
  • a signal component is included at an interval of 500 kHz (kilohertz) on both sides of the DC component having a frequency of 0 Hz.
  • the second type a detection signal with a period of 4 bits.
  • Each bit sequence in the detection signal is [1, 1, 0, 0], then the formed detection signal is [1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0 ...], the period is 4 bits.
  • the symbol rate is 1 Msym/s
  • the baseband signal spectrum of the detection signal is shown in FIG. 4 .
  • a signal component is included at 250 kHz on both sides of the DC component at a frequency of 0 Hz.
  • the third type a detection signal with an 8-bit period.
  • Each bit sequence in the detection signal is [1, 1, 1, 1, 0, 0, 0], then the formed detection signal is [1, 1, 1, 1, 0, 0, 0 , 1, 1, 1, 1, 0, 0, 0...], the period is 8 bits.
  • the symbol rate is 1 Msym/s
  • the baseband signal spectrum of the detection signal is shown in FIG. 5 .
  • a signal component is included at 125kHz intervals on both sides of the DC component at a frequency of 0Hz.
  • Step 303 the first communication device sends the first phase difference to the second communication device.
  • Step 304 The second communication device receives the detection signal sent by the first communication device.
  • Step 305 The second communication device receives the first phase difference sent by the first communication device.
  • the first phase difference is determined by the first communication device based on the two signal components of the received detection signal.
  • the first communication device After the first communication device determines the first phase difference, it will send the first phase difference to the second communication device, and then the second communication device can receive the first phase difference.
  • steps 302-305 in sequence as an example.
  • the execution order of steps 302-303, 304, and 305 is not limited, and steps 302-303, 304, and 305 may be executed in other order.
  • Step 306 The second communication device determines a second phase difference between the two signal components based on the two signal components in the detection signal.
  • the process of determining the second phase difference by the second communication device is similar to the process of determining the first phase difference by the first communication device in step 302 above, and will not be repeated here.
  • Step 307 The second communication device determines a first distance between the second communication device and the first communication device according to the first phase difference and the second phase difference.
  • the second communication device After the second communication device obtains the first phase difference and the second phase difference, it can determine the first distance between the second communication device and the first communication device.
  • the embodiment of the present application provides a method for determining the distance between two communication devices. Both the first communication device and the second communication device will determine the distance of the detection signal according to the two signal components of the detection signal sent by the first communication device. The first phase difference and the second phase difference, and then the second communication device determines the first distance between the second communication device and the first communication device according to the first phase difference and the second phase difference, without further receiving the detection signal Determine the first distance between the second communication device and the first communication device at the time point, avoiding the problem that the determined distance is inaccurate due to the asynchronous clocks of the first communication device and the second communication device, and improving the accuracy of the determination. The accuracy of the distance between two communicating devices.
  • the first communication device samples the detection signal to determine the phase difference between the two signal components
  • Figure 7 shows a distance determination method provided by an exemplary embodiment of the present application
  • the method includes at least some of the following contents:
  • the first communication device samples the detection signal according to the sampling period to obtain the A digital signal from which a first phase difference between the two signal components is determined.
  • T s is the sampling period.
  • the two signal components of the probe signal comprise a first signal component and a second signal component.
  • the first signal component is
  • the second signal component is a
  • is the complex gain of the first signal component or the second signal component
  • f is the frequency of the first signal component or the second signal component
  • t is the time of the first signal component or the second signal component
  • j is a constant.
  • Step 702 The first communication device determines the phases of the two signal components based on the digital signal, the sampling period, and the frequencies corresponding to the two signal components.
  • the first communication device may determine the phases of the first signal component and the second signal component based on the digital signal, the sampling period, and frequencies corresponding to the two signal components.
  • the phase of the first signal component is The phase of the second signal component is
  • M is a constant
  • T s is the sampling period
  • is the complex gain of the first signal component or the second signal component
  • f is the frequency of the first signal component or the second signal component
  • t is the first signal component or the second signal component time
  • j is a constant.
  • Step 703 The first communication device determines a first phase difference based on the phases of the two signal components.
  • the first communications device determines the difference in phase of the two signal components as the first phase difference.
  • the first phase difference determined in the embodiment of the present application is
  • the embodiment of the present application provides a method for determining the phase difference of the detection signal.
  • the detection signal is sampled according to the sampling period to obtain the digital signal of the detection signal, and then the phase difference between the two signal components of the detection signal is determined based on the obtained digital signal.
  • the method based on the phase difference determined by the sampling method can improve the accuracy of the acquired detection signal.
  • FIG. 8 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application. Referring to FIG. 8, the method includes at least part of the following content:
  • Step 801 the first communication device sends a second distance to the second communication device.
  • the second distance is the distance between the sending module for sending the detection signal and the receiving module for receiving the detection signal, and the second communication device is used to determine the second phase difference according to the first phase difference, the second phase difference and the second distance.
  • the second communication device determines the distance from the first communication device based on the first phase difference sent by the first communication device, since the determined first phase difference is received by the first communication device The influence of the second distance between the module and the receiving module, so the distance determined based on the first phase difference will also be affected by the second distance, so the first communication device sends the second distance to the second communication device, and the subsequent second The communication device determines the first distance to the first communication device according to the second distance, and improves the accuracy of determining the first distance to the first communication device from the determined second distance.
  • Step 802 The second communication device receives the second distance sent by the first communication device.
  • steps 801-802 included in the embodiment of the present application may be performed after step 302 or after step 303, and the execution order of steps 801-802 is not limited in the embodiment of the present application.
  • Step 803 The second communication device determines a first distance between the second communication device and the first communication device according to the first phase difference, the second phase difference, and the second distance.
  • the second communication device determines a difference between the second phase difference and the first phase difference, and based on the difference, determines a ratio of frequencies corresponding to the signal components, based on the ratio, the signal transmission speed, and the second distance , to determine a first distance between the second communication device and the first communication device.
  • the first distance is the first distance
  • D is the first distance
  • the first phase difference is the second phase difference
  • f is the frequency corresponding to the signal component
  • c is the speed of light
  • d is the second distance.
  • the second communication device determines the distance between the second communication device and the first communication device based on the first phase difference and the second phase difference, it will also consider the first distance including the first communication device.
  • the second distance between the sending module for sending the detection signal and the receiving module for receiving the detection signal, the first distance is determined based on the second distance, and the distance between the sending module and the receiving module in the first communication device is eliminated interference, improving the accuracy of the determined distance between the second communication device and the first communication device.
  • FIG. 9 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application. See FIG. 9 , the The method includes at least some of the following:
  • Step 901 the second communication device sends a first request message to the first communication device.
  • Step 902 The first communication device receives the first request message sent by the second communication device.
  • the second communication device if the second communication device needs to measure the distance to the first communication device, the second communication device actively sends a first request message to the first communication device, and then obtains the first request message based on the first request message.
  • the detection signal sent by the communication device, and then based on the received detection signal, the first distance between the second communication device and the first communication device is determined.
  • the first communication device in the embodiment of the present application receives the first request message sent by the second communication device, determines that the second communication device needs to determine the distance from the first communication device, and the first communication device sends The second communications device sends a probe signal.
  • Step 903 The first communication device sends a probe signal to the second communication device in response to the first request message.
  • Step 904 The second communication device receives the detection signal sent by the first communication device in response to the first request message.
  • the first request message is carried in a control field in the second data packet, and the control field is used to control the probe signal.
  • the second data packet can be LL_SS_REQ PDU, or other data packets.
  • control field includes a minimum duration field, and the minimum duration field is used to indicate the duration of the sounding signal.
  • control field includes an idle field
  • idle field includes idle bits
  • control field includes a second type field, and the second type field is used to indicate the type of the probe signal.
  • FIG. 10 shows a schematic diagram of a control field provided by an exemplary embodiment of the present application.
  • the control field includes a minimum hour length field, an idle field and a second type field.
  • the minimum hour length field includes 5 bits
  • the idle field includes 1 bit
  • the second type field includes 2 bits.
  • control field is the CtrData (control data) field
  • minimum hour length field is the MinSSLenReq (minimum sounding sequence duration request) field
  • idle field is the RFU field
  • second type field is the SSTypeReq (sounding sequence type request) field.
  • connection mode is a connection state between the first communication device and the second communication device.
  • the second communication device actively sends the first request message to the first communication device to inform the first communication device of determining the distance between the second communication device and the first communication device, and then the The first communication device sends the detection signal for the second communication device to determine the distance, which improves the communication efficiency between the communication devices.
  • FIG. 11 shows a flowchart of a distance determination method provided by an exemplary embodiment of the present application, see FIG. 11 , a method that includes at least some of the following:
  • Step 1101 the second communication device sends a second request message to the first communication device.
  • Step 1102 the first communication device receives a second request message sent by the second communication device.
  • the second communication device needs to measure the distance from the first communication device, and the first communication device will determine the first phase difference between the two signal components based on the received detection signal, and the first communication device The device does not actively send the first phase difference to the second communication device, but the second communication device actively sends a second request message to the first communication device, and after receiving the second request message, the first communication device further The second request message sends the first phase difference to the second communication device, and the second communication device receives the first phase difference sent by the first communication device.
  • the first communication device in the embodiment of the present application receives the first request message sent by the second communication device, determines that the second communication device needs to determine the distance from the first communication device, and the first communication device sends The second communications device sends a probe signal.
  • Step 1103 the first communication device sends the first phase difference to the second communication device in response to the second request message.
  • Step 1104 the second communication device receives the first phase difference sent by the first communication device in response to the second request message.
  • the second request message is carried in a third data packet.
  • the third data packet is LL_SS_PHASE_REQ PDU, or other types of data packets.
  • the detection signal in the embodiment of the present application is sent in a connection mode
  • the connection mode is that the first communication device and the second communication device are in a connection state.
  • the PHY data packet in the embodiment of the present application includes a target field, and the target field is used to indicate whether the optional field exists.
  • the PHY data packet includes a protocol data unit field, and the protocol data unit field includes a target field.
  • FIG. 12 shows the header format of the protocol data unit.
  • the header includes 2-bit LLID (Logical Link Identifier, Logical Link Identifier), 1-bit NESN (Next Expected Sequence Number, the next expected sequence number), 1-bit SN (Sequence Number, serial number), 1-bit MD (More Data, more data), 1-bit OP (OptionInfo, optional information field), 2 bits RFU (Reserve for Future Use, reserved for future use), 8-bit Length (length), 8-bit OptionInfo (optional information field).
  • 2-bit LLID Logical Link Identifier
  • 1-bit NESN Next Expected Sequence Number, the next expected sequence number
  • 1-bit SN Sequence Number, serial number
  • 1-bit MD Meore Data, more data
  • 1-bit OP OptionInfo, optional information field
  • 2 bits RFU Reserve for Future Use, reserved for future use
  • 8-bit Length length
  • 8-bit OptionInfo optional information field
  • FIG. 3 illustrates how to determine the distance between the second communication device and the first communication device according to the detection signal.
  • the detection signal may also be carried in a data packet, and then the first communication device sends the detection signal by sending a data packet.
  • the detection signal is carried in a PHY (Physical Layer, physical layer) data packet.
  • PHY Physical Layer, physical layer
  • the PHY data packet is an LE uncoded PHY data packet in the BLE standard, or another type of data packet, which is not limited in this embodiment of the present application.
  • the PHY data packet is AUX_SYNC_IND PDU, or LL_SS_RSP PDU, or other data packets.
  • the PHY packet includes an optional field, and the sounding signal is carried in the optional field.
  • the PHY data packet includes an optional information field, and the optional information field is used to configure optional fields in the PHY data packet.
  • the optional fields include CTE (Constant Tone Extension, constant tone extension) field or SS (Sounding Sequence, sounding sequence) field.
  • the optional field is the CTE field
  • the sounding signal is carried on the CTE field.
  • the optional field is the SS field
  • the sounding signal is carried on the SS field.
  • the optional information field includes a time field, and the time field is used to indicate the duration of the optional field.
  • the optional information field includes an indication field, and the indication field is used to indicate that the optional field is a CTE field or an SS field.
  • the optional field is the CTE field, and if the indication field is 1, the optional field is the SS field.
  • the indication field is a CTE field
  • the CTE field includes two types: AoA type and AoD type. Each of these types has two slot lengths of 1 microsecond and 2 microseconds.
  • Fig. 13 shows the types of the CTE field.
  • AoA type and AoD type there are two types of CTE: AoA type and AoD type, and each type has two time slot lengths of 1 microsecond and 2 microseconds.
  • the duration corresponding to the protection period is 4 microseconds, represented by a block.
  • the corresponding duration of the reference period is 8 microseconds, represented by a tile.
  • the switching time slot is different from the sampling time slot.
  • the switching time slot and sampling time slot received by the AOA are 1 microsecond.
  • the switching time slot and sampling time slot for AOA reception are 2 microseconds.
  • the switching time slot for AOD transmission is 1 microsecond, or, the switching time slot for AOD transmission is 2 microseconds.
  • the sampling time slot received by the AOD is 1 microsecond, or the sampling time slot received by the AOD is 2 microseconds.
  • each switching slot and each sampling slot are represented by a tile.
  • FIG. 13 is only an example of a block, and the length of each block does not represent the actual length of a time slot.
  • the optional information field includes a first type field, and the first type field is used to indicate the type of the optional field.
  • the first type field includes 2 bits, and on the basis of the optional field indicated by the indication field, different bits of the first type field indicate different types of the optional field.
  • FIG. 14 shows a schematic diagram of optional information fields provided by an exemplary embodiment of the present application.
  • the time field is represented by 5 bits
  • the indication field is represented by 1 bit
  • the type field is represented by 2 bits.
  • the time field is a Time (time) field
  • the indication field is an Option (option) field
  • the first type field is a Type (type) field.
  • the PHY data packet includes a protocol data unit field
  • the protocol data unit field includes an optional information field
  • the PHY data packet further includes at least one of a preamble field, an access address field, or a cyclic redundancy check field.
  • the PHY data packet includes a preamble field, an access address field, a cyclic redundancy check field, a protocol data unit field, and a CTE field.
  • the preamble field includes 1 or 2 octets (bytes)
  • the access address field includes 4 octets
  • the cyclic redundancy check field includes 3 octets
  • the protocol data unit field includes 2- 258 octet
  • the duration of the CTE field is 16-160 microseconds.
  • the PHY data packet includes a preamble field, an access address field, a cyclic redundancy check field, a protocol data unit field, and an SS field.
  • the preamble field includes 1 or 2 octets (8 bits), the access address field includes 4 octets, the cyclic redundancy check field includes 3 octets, and the protocol data unit field includes 2 octets. -258 octet, SS field duration is 16-160 microseconds.
  • the sounding signal in the embodiment of the present application is sent in a periodic broadcast mode.
  • the extended header format of the protocol data unit field is as shown in FIG. ), 6 octets of TargetA (Target Address, target address field), 1 octet of OptionInfo (optional information field), 2 octets of ADI (AdvDataInfo, broadcast data information field), 3 octets of AuxPtr (Auxiliary Pointer , ancillary broadcast pointer field), 18 octets of SyncInfo (Synchronization Information, synchronization information field), 1 octet of TxPower (Transmit Power, sending power field) and changed ACAD (Additional Controller Advertising Data, additional controller advertising data field ).
  • TargetA Target Address, target address field
  • OptionInfo optional information field
  • 2 octets of ADI Advanced DataInfo, broadcast data information field
  • 3 octets of AuxPtr Auxiliary Pointer , ancillary broadcast pointer field
  • FIG. 18 shows a process of sending signals between the first communication device and the second communication device in a periodic broadcast mode.
  • the first communication device sends ADV_EXT_IND on three broadcast physical channels respectively.
  • the first communication device sends AUX_ADV_IND on another broadcast physical channel.
  • the first communication device periodically sends AUX_SYNC_IND on the broadcast physical channel to complete the establishment of the periodic broadcast.
  • the value of the optional field in the OptionInfo in the extended header in the Payload (payload) of the AUX_SYNC_IND PDU is 1, which is used to indicate that the PDU (Protocol Data Unit, protocol data unit) includes a probe signal. Values of the time field and the first type field are specified by the first communication device.
  • AUX_SYNC_IND is configured to point to an AUX_CHAIN_IND, and the AdvData field in the AUX_CHAIN_IND PDU carries the first phase difference and the second distance determined by the first communication device.
  • the second communication device receives the AUX_SYNC_IND containing the detection signal, and determines the second phase difference.
  • the second communication device receives AUX_CHAIN_IND and analyzes the first phase difference and the second distance, and determines the first distance between the second communication device and the first communication device according to the first phase difference, the second phase difference and the second distance .
  • FIG. 19 shows the process of sending signals between the first communication device and the second communication device when a connection has been established.
  • the second communication device sends an LL_SS_REQ PDU to the first communication device to request acquisition of a sounding signal.
  • the LL_SS_REQ PDU includes a minimum hour length field, an idle field and a second type field.
  • the first communication device After receiving the LL_SS_REQ PDU, the first communication device sends the LL_SS_RSP PDU containing the detection signal to the second communication device, and determines the first phase difference.
  • the value of the target field in the header of the LL_SS_RSP PDU is 1
  • the value of the indication field of the optional information field is 1
  • the time field is set to be greater than or equal to the value of the minimum hour length field in the LL_SS_REQ PDU
  • the first type field Set to the value of the second type field in the LL_SS_REQ PDU.
  • the first communication device if the first communication device fails to send the probe signal, it sends a rejection message to the second communication device.
  • the second communication device receives the LL_SS_RSP PDU sent by the first communication device, and determines the second phase difference.
  • the second communication device sends the LL_SS_PHASE_REQ PDU.
  • the first communication device receives the LL_SS_PHASE_REQ PDU, and sends the LL_SS_PHASE_RSP PDU to the second communication device.
  • the LL_SS_PHASE_RSP PDU includes the first phase difference and the second distance.
  • the second communication device receives the LL_SS_PHASE_REQ PDU and parses out the first phase difference and the second distance, and determines the first phase difference between the second communication device and the first communication device according to the first phase difference, the second phase difference and the second distance. distance.
  • Fig. 20 shows a block diagram of an apparatus for determining a distance provided in an exemplary embodiment of the present application, the apparatus is set in the first communication device, and the apparatus includes:
  • a receiving module 2001 configured to receive the probe signal in the case that the probe signal has been sent to the second communication device
  • the sending module 2003 is configured to send the first phase difference to the second communication device; the second communication device is configured to receive the detection signal and the first phase difference sent by the first communication device, and determine the two phase differences based on the two signal components in the detection signal. The second phase difference between the two signal components, and according to the first phase difference and the second phase difference, determine the first distance between the second communication device and the first communication device.
  • the sounding signal includes multiple bit sequences, each bit sequence includes the same number of bits, and the target interval is a ratio of the symbol rate of the sounding signal to the sequence periods of the multiple bit sequences.
  • the phase difference determination module 2002 includes:
  • the sampling unit 20021 is used to sample the detection signal according to the sampling period to obtain a digital signal of the detection signal;
  • a phase determining unit 20022 configured to determine the phases of the two signal components based on the digital signal, the sampling period and the frequency corresponding to the two signal components;
  • a phase difference determining unit 20023 configured to determine the first phase difference based on the phases of the two signal components.
  • the device further comprises:
  • a closing module 2004, configured to close the self-interference cancellation function of the first communication device during the time period between the time point when the probe signal is sent and the time point when the probe signal is received, and the self-interference cancellation function is used to interfere with the received signal eliminate.
  • the sending module 2003 is further configured to send the second distance to the second communication device, the second distance is the distance between the sending module for sending the detection signal and the receiving module for receiving the detection signal, the second distance
  • the second communication device is configured to determine a first distance between the second communication device and the first communication device according to the first phase difference, the second phase difference and the second distance.
  • the probe signal is carried in a PHY packet.
  • the PHY packet includes an optional field, and the sounding signal is carried in the optional field.
  • the PHY data packet includes an optional information field, which is used to configure optional fields in the PHY data packet.
  • the optional information field includes a time field, and the time field is used to indicate the duration of the optional field.
  • the optional information field includes an indication field, and the indication field is used to indicate that the optional field is a CTE field or an SS field.
  • the optional information field includes a first type field, and the first type field is used to indicate the type of the optional field.
  • the PHY data packet includes a protocol data unit field
  • the protocol data unit field includes an optional information field
  • optional fields include a CTE field or an SS field.
  • the PHY data packet further includes at least one of a preamble field, an access address field, or a cyclic redundancy check field.
  • the first phase difference is carried in a data field of the first data packet.
  • the sounding signal is sent in a periodic broadcast mode.
  • the PHY data packet further includes a target field, which is used to indicate whether the optional field exists.
  • the PHY packet includes a protocol data unit field, and the protocol data unit field includes a target field.
  • the receiving module 2001 is configured to receive the first request message sent by the second communication device
  • a sending module 2003 configured to send a detection signal to the second communication device in response to the first request message.
  • the first request message is carried in a control field of the second data packet, and the control field is used to control the probe signal.
  • control field includes a minimum duration field, which is used to indicate the duration of the sounding signal.
  • control field includes a spare field
  • spare field includes spare bits
  • control field includes a second type field for indicating the type of the sounding signal.
  • the receiving module 2001 is configured to receive a second request message sent by the second communication device
  • a sending module 2003 configured to send the first phase difference to the second communication device in response to the second request message.
  • the probe signal is sent in connected mode.
  • the division of the above-mentioned functional modules is used as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to the needs.
  • the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device and the method embodiment provided by the above embodiment belong to the same idea, and the specific implementation process thereof is detailed in the method embodiment, and will not be repeated here.
  • Fig. 22 shows a block diagram of an apparatus for determining a distance provided in an exemplary embodiment of the present application.
  • the apparatus is set in a second communication device, and the apparatus includes:
  • a receiving module 2201 configured to receive a detection signal sent by the first communication device
  • the receiving module 2201 is configured to receive a first phase difference sent by the first communication device, where the first phase difference is determined by the first communication device based on the two signal components of the received detection signal;
  • a phase difference determination module 2202 configured to determine a second phase difference between the two signal components based on the two signal components in the detection signal, where the frequency corresponding to each signal component is between the frequency corresponding to the DC signal component in the detection signal The interval between is the target interval;
  • a distance determining module 2203 configured to determine a first distance between the second communication device and the first communication device according to the first phase difference and the second phase difference.
  • the sounding signal includes multiple bit sequences, each bit sequence includes the same number of bits, and the target interval is a ratio of the symbol rate of the sounding signal to the sequence periods of the multiple bit sequences.
  • the phase difference determination module 2202 includes:
  • the sampling unit 22021 is configured to sample the detection signal according to the sampling period to obtain a digital signal of the detection signal
  • a phase determining unit 22022 configured to determine the phases of the two signal components based on the digital signal, the sampling period and the frequencies corresponding to the two signal components;
  • a phase difference determining unit 22023, configured to determine the second phase difference based on the phases of the two signal components.
  • the receiving module 2201 is configured to receive the second distance sent by the first communication device, and the second distance is the distance between the sending module for sending the detection signal and the receiving module for receiving the detection signal in the first communication device the distance between
  • a distance determining module 2203 configured to determine a first distance between the second communication device and the first communication device according to the first phase difference, the second phase difference and the second distance.
  • the probe signal is carried in a PHY packet.
  • the PHY packet includes an optional field, and the sounding signal is carried in the optional field.
  • the PHY data packet includes an optional information field, which is used to configure optional fields in the PHY data packet.
  • the optional information field includes a time field, and the time field is used to indicate the duration of the optional field.
  • the optional information field includes an indication field, and the indication field is used to indicate that the optional field is a CTE field or an SS field.
  • the optional information field includes a first type field, and the first type field is used to indicate the type of the optional field.
  • the PHY data packet includes a protocol data unit field
  • the protocol data unit field includes an optional information field
  • optional fields include a CTE field or an SS field.
  • the PHY data packet further includes at least one of a preamble field, an access address field, or a cyclic redundancy check field.
  • the first phase difference is carried in a data field of the first data packet.
  • the sounding signal is sent in a periodic broadcast mode.
  • the PHY data packet further includes a target field, which is used to indicate whether the optional field exists.
  • the PHY packet includes a protocol data unit field, and the protocol data unit field includes a target field.
  • the device also includes:
  • a sending module 2204 configured to send a first request message to the first communication device
  • the receiving module 2201 is configured to receive a detection signal sent by the first communication device in response to the first request message.
  • the first request message is carried in a control field of the second data packet, and the control field is used to control the probe signal.
  • control field includes a minimum hour field, which is used to indicate the duration of the sounding signal.
  • control field includes a spare field
  • spare field includes spare bits
  • control field includes a second type field for indicating the type of the sounding signal.
  • the device also includes:
  • a sending module 2204 configured to send a second request message to the first communication device
  • the receiving module 2201 is configured to receive the first phase difference sent by the first communication device in response to the second request message.
  • the probe signal is sent in connected mode.
  • the division of the above-mentioned functional modules is used as an example for illustration. In practical applications, the above-mentioned function allocation can be completed by different functional modules according to the needs.
  • the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the device and the method embodiment provided by the above embodiment belong to the same idea, and the specific implementation process thereof is detailed in the method embodiment, and will not be repeated here.
  • FIG. 24 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the communication device includes: a processor 2401 , a receiver 2402 , a transmitter 2403 , a memory 2404 and a bus 2405 .
  • the processor 2401 includes one or more processing cores, and the processor 2401 executes various functional applications and information processing by running software programs and modules.
  • the receiver 2402 and the transmitter 2403 can be realized as a communication component, and the communication component can be a communication chip.
  • the memory 2404 is connected to the processor 2401 through the bus 2405 .
  • the memory 2404 may be used to store at least one program code, and the processor 2401 is used to execute the at least one program code, so as to implement various steps in the above method embodiments.
  • Memory 2404 can be realized by any type of volatile or nonvolatile storage device or their combination, volatile or nonvolatile storage device includes but not limited to: magnetic disk or optical disk, EEPROM (Electrically Erasable Programmable Read Only Memory , Electrically Erasable Programmable Read Only Memory), EPROM (Erasable Programmable Read Only Memory, Erasable Programmable Read Only Memory), SRAM (Static Random Access Memory, Static Random Access Memory), ROM (Read Only Memory, Read-only memory), magnetic memory, flash memory, programmable read-only memory (Programmable Read Only Memory, PROM).
  • volatile or nonvolatile storage device includes but not limited to: magnetic disk or optical disk, EEPROM (Electrically Erasable Programmable Read Only Memory , Electrically Erasable Programmable Read Only Memory), EPROM (Erasable Programmable Read Only Memory, Erasable Programmable Read Only Memory), SRAM (Static Random Access Memory, Static Random Access Memory), ROM (Read Only Memory, Read-only memory), magnetic memory, flash
  • a computer-readable storage medium is also provided, and executable program code is stored in the readable storage medium, and the executable program code is loaded and executed by a processor to implement the methods provided by the above-mentioned various method embodiments.
  • a distance determination method performed by a communication device.
  • a chip is provided, the chip includes a programmable logic circuit and/or program instructions, and when the chip is run on a communication device, it is used to implement the distance determining method provided by each method embodiment.
  • a computer program product includes computer instructions, the computer instructions are stored in a computer-readable storage medium; the processor of the communication device reads the computer instructions from the computer-readable storage medium, and executes the computer An instruction, so that the communication device executes the method for determining the distance as described above.
  • a computer program is provided, which is executed by a processor of a communication device to implement the distance determining method as in the above aspect.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种距离确定方法、装置、设备及存储介质,涉及移动通信领域。该方法包括:第一通信设备在已向第二通信设备发送探测信号的情况下,接收探测信号;基于接收到的探测信号中的两个信号分量,确定两个信号分量之间的第一相位差,向第二通信设备发送第一相位差,第二通信设备接收第一通信设备发送的探测信号和第一相位差,基于探测信号中的两个信号分量,确定两个信号分量之间的第二相位差,根据第一相位差和第二相位差,确定第二通信设备与第一通信设备之间的第一距离,避免由于第一通信设备和第二通信设备的时钟不同步而导致出现确定的距离不准确的问题,提高了确定的两个通信设备之间的距离的准确性。

Description

距离确定方法、装置、设备及存储介质 技术领域
本申请涉及移动通信领域,特别涉及一种距离确定方法、装置、设备及存储介质。
背景技术
随着通信技术的发展,无线测距技术得到了广泛的应用,通信设备能够根据与其他设备之间发送的通信信号,计算与其他通信设备之间的距离。以第一通信设备和第二通信设备为例,第一通信设备向第二通信设备发送用于测量距离的第一信号,并向第二通信设备发送用于指示第一信号的发送时间点的第二信号,第二通信设备根据接收到第一信号的接收时间点以及第二信号指示的发送时间点,确定第一通信设备和第二通信设备之间的距离。但是,由于第一通信设备与第二通信设备采用的时钟可能存在不同步的情况,导致确定的发送时间点与接收时间点之间的时间差不准确,进而导致所确定的距离也是不准确的。
发明内容
本申请实施例提供了一种距离确定方法、装置、设备及存储介质,无需再根据接收探测信号的时间点确定第二通信设备与第一通信设备之间的第一距离,避免由于第一通信设备和第二通信设备的时钟不同步而导致出现确定的距离不准确的问题,提高了确定的两个通信设备之间的距离的准确性。所述技术方案如下:
根据本申请的一个方面,提供了一种距离确定方法,应用于第一通信设备,所述方法包括:
在已向第二通信设备发送探测信号的情况下,接收所述探测信号;
基于接收到的所述探测信号中的两个信号分量,确定所述两个信号分量之间的第一相位差,每个所述信号分量对应的频率与所述探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
向所述第二通信设备发送所述第一相位差;所述第二通信设备用于接收所述第一通信设备发送的探测信号和所述第一相位差,基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离。
根据本申请的一个方面,提供了一种距离确定方法,应用于第二通信设备,所述方法包括:
接收第一通信设备发送的探测信号;
接收所述第一通信设备发送的第一相位差,所述第一相位差由所述第一通信设备基于接收的所述探测信号的两个信号分量确定;
基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,每个所述信号分量对应的频率与所述探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离。
根据本申请的一个方面,提供了一种距离确定装置,设置在第一通信设备中,所述装置包括:
接收模块,用于在已向第二通信设备发送探测信号的情况下,接收所述探测信号;
相位差确定模块,用于基于接收到的所述探测信号中的两个信号分量,确定所述两个信号分量之间的第一相位差,每个所述信号分量对应的频率与所述探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
发送模块,用于向所述第二通信设备发送所述第一相位差;所述第二通信设备用于接收所述第一通信设备发送的探测信号和所述第一相位差,基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离。
根据本申请的一个方面,提供了一种距离确定装置,设置在第二通信设备中,所述装置包括:
接收模块,用于接收第一通信设备发送的探测信号;
接收模块,用于接收所述第一通信设备发送的第一相位差,所述第一相位差由所述第一通信设备基于接收的所述探测信号的两个信号分量确定;
相位差确定模块,用于基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,每个所述信号分量对应的频率与所述探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
距离确定模块,用于根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离。
根据本申请的一个方面,提供了一种通信设备,所述通信设备包括:处理器;与所述处理器相连的收发器;用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现如上述方面所述的距离确定方法。
根据本申请的一个方面,提供了一种计算机可读存储介质,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现如上述方面所述的距离确定方法。
根据本申请的一个方面,提供了一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于实现如上述方面所述的距离确定方法。
根据本申请的一个方面,本申请实施例提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;通信设备的处理器从所述计算机可读存储介质读取所述计算机指令,并执行所述计算机指令,使得所述通信设备执行如上述方面所述的距离确定方法。
根据本申请的一个方面,本申请实施例提供了一种计算机程序,所述计算机程序由通信设备的处理器执行,以实现如上述方面所述的距离确定方法。
本申请实施例提供的技术方案至少包括如下有益效果:
本申请实施例提供的方法、装置、设备及存储介质,第一通信设备和第二通信设备均会根据第一通信设备发送的探测信号的两个信号分量确定该探测信号的第一相位差和第二相位差,进而由第二通信设备根据该第一相位差和第二相位差确定第二通信设备与第一通信设备之间的第一距离,无需再根据接收探测信号的时间点确定第二通信设备与第一通信设备之间的第一距离,避免由于第一通信设备和第二通信设备的时钟不同步而导致出现确定的距离不准确的问题,提高了确定的两个通信设备之间的距离的准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个示例性实施例提供的通信系统的框图。
图2示出了本申请一个示例性实施例提供的第一通信设备与第二通信设备之间的结构示意图。
图3示出了本申请一个示例性实施例提供的距离确定方法的流程图。
图4示出了本申请一个示例性实施例提供的探测信号的频谱图。
图5示出了本申请一个示例性实施例提供的探测信号的频谱图。
图6示出了本申请一个示例性实施例提供的探测信号的频谱图。
图7示出了本申请一个示例性实施例提供的距离确定方法的流程图。
图8示出了本申请一个示例性实施例提供的距离确定方法的流程图。
图9示出了本申请一个示例性实施例提供的距离确定方法的流程图。
图10示出了本申请一个示例性实施例提供的控制字段的示意图。
图11示出了本申请一个示例性实施例提供的距离确定方法的流程图。
图12示出了本申请一个示例性实施例提供的协议数据单元的头部格式示意图。
图13示出了本申请一个示例性实施例提供的CTE字段的类型示意图。
图14示出了本申请一个示例性实施例提供的可选信息字段的示意图。
图15示出了本申请一个示例性实施例提供的PHY数据包的格式示意图。
图16示出了本申请一个示例性实施例提供的PHY数据包的格式示意图。
图17示出了本申请一个示例性实施例提供的协议数据单元的扩展头部格式示意图。
图18示出了本申请一个示例性实施例提供的第一通信设备与第二通信设备之间采用周期广播模式发送信号的流程图。
图19示出了第一通信设备与第二通信设备之间在已建立连接的情况下发送信号的流程图。
图20示出了本申请一个示例性实施例提供的距离确定装置的框图。
图21示出了本申请一个示例性实施例提供的距离确定装置的框图。
图22示出了本申请一个示例性实施例提供的距离确定装置的框图。
图23示出了本申请一个示例性实施例提供的距离确定装置的框图。
图24示出了本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
首先,对本申请的通信系统进行说明:
图1示出了本申请一个示例性实施例提供的通信系统的框图,该通信系统可以包括:第一通信设备12和第二通信设备13。
第一通信设备12和第二通信设备13可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备,移动台(Mobile Station,MS),终端设备(Terminal device)等等。为方便描述,上面提到的设备统称为通信设备。并且,第一通信设备12和第二通信设备13之间可以进行通信。
在一些实施例中,第一通信设备12为用户设备,第二通信设备为BLE(Bluetooth Low Energy,蓝牙低能耗)设备,则第一通信设备12和第二通信设备13之间可以建立BLE连接,并且第二通信设备通过已建立的BLE连接确定第二通信设备13与第一通信设备12之间的距离。
在一些实施例中,该第一通信设备为全双工通信设备,该第一通信设备中包括第一基带单元和第一天线,第二基带单元和第二天线,该第一基带单元和第一天线构成第一通信设备的发送模块,该第二基带单元和第二天线构成第一通信设备的接收模块,进而以使第一通信设备构成全双工通信设备。
在一些实施例中,该第二通信设备为全双工通信设备、半双工通信设备或者单工通信设备中的任一种。其中,半双工通信设备以时分复用的方式使用相同的基带单元和天线,在发送信号的时候不能接收信号,而在接收信号的时候不能发送信号。单工通信设备仅支持接收信号,而不支持发送信号。
例如,第一通信设备为全双工通信设备,第二通信设备为半双工通信设备,则第一通信 设备和第二通信设备之间的关系如图2所示。
在一些实施例中,该第一通信设备为主设备,第二通信设备为从设备。其中,主设备向从设备发送信号,从设备接收主设备发送的信号,进而执行本申请实施例中的距离确定方法。
图3示出了本申请一个示例性实施例提供的距离确定方法的流程图,应用于如图1所示的第一通信设备和第二通信设备中,该方法包括以下内容中的至少部分内容:
步骤301:第一通信设备在已向第二通信设备发送探测信号的情况下,接收探测信号。
其中,该探测信号由第一通信设备生成,或者由其他设备生成发送给第一通信设备。该探测信号用于第二通信设备确定与第一通信设备之间的距离。
该第一通信设备在已向第二通信设备发送探测信号的情况下,还会接收自身发送的探测信号。
在一些实施例中,该探测信号为Sounding Sequence(探测序列)信号,或者为其他类型的信号。
在一些实施例中,在发送探测信号的时间点与接收探测信号的时间点之间的时间段内,关闭第一通信设备的自干扰消除功能,自干扰消除功能用于对接收的信号进行干扰消除。
其中,第一通信设备包括DSIC(Digital Self-Interference Cancellation,数字自干扰消除模块)和ASIC(Analog Self-Interference Cancellation,模拟自干扰消除模块),该DSIC和ASIC均具有自干扰消除功能。
本申请实施例通过将第一通信设备的自干扰消除功能关闭,避免第一通信设备无法接收到自身发送的探测信号,提高通信效率,进而保证确定第二通信设备与第一通信设备之间的距离的流程顺利进行。
步骤302:第一通信设备基于接收到的探测信号的两个信号分量,确定两个信号分量之间的第一相位差。
在本申请实施例中,第一通信设备接收自身发送的探测信号后,对该探测信号进行解析以确定该探测信号的频谱,再基于该频谱确定探测信号的两个信号分量,再确定探测信号中两个信号分量之间的第一相位差。
其中,每个信号分量对应的频率与探测信号中的直流信号分量对应的频率之间的间隔为目标间隔,该探测信号的直流分量为频率为0Hz(赫兹)时对应的信号幅度。
在一些实施例中,探测信号包括多个比特序列,每个比特序列包括的比特位数相同。
在一种可能实现方式中,探测信号包括的多个比特序列相同。例如,每个比特序列包括的比特位数为2,每个比特序列可以为【0,1】,则探测信号为【0,1,0,1,0,1,0,1…】,又或者,每个比特序列包括的比特位数为4,则每个比特序列可以为【1,1,0,0】,则探测信号为【1,1,0,0,1,1,0,0…】。
在一些实施例中,目标间隔为探测信号的符号速率和多个比特序列的序列周期的比值。
其中,序列周期为探测信号中的比特序列的比特位数。
在本申请实施例中,第一通信设备确定探测信号的符号速率和这多个比特序列的序列周期的比值,将该比值确定为目标间隔。
在本申请实施例中,可以定义三种探测信号:
第一种:2比特周期的探测信号。
该探测信号中的每个比特序列为【1,0】,则构成的探测信号为【1,0,1,0,1,0…】,周期为2比特。在符号速率为1Msym/s时,该探测信号的基带信号频谱如图3所示。在频率为0Hz的直流分量的两边间隔500kHz(千赫兹)处各包括一个信号分量。
第二种:4比特周期的探测信号。
该探测信号中的每个比特序列为【1,1,0,0】,则构成的探测信号为【1,1,0,0,1,1,0,0,1,1,0,0…】,周期为4比特。在符号速率为1Msym/s时,该探测信号的基带信号频谱如图4所示。在频率为0Hz的直流分量的两边间隔250kHz处各包括一个信号分量。
第三种:8比特周期的探测信号。
该探测信号中的每个比特序列为【1,1,1,1,0,0,0,0】,则构成的探测信号为【1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0…】,周期为8比特。在符号速率为1Msym/s时,该探测信号的基带信号频谱如图5所示。在频率为0Hz的直流分量的两边间隔125kHz处各包括一个信号分量。
步骤303:第一通信设备向第二通信设备发送第一相位差。
步骤304:第二通信设备接收第一通信设备发送的探测信号。
步骤305:第二通信设备接收第一通信设备发送的第一相位差。
其中,第一相位差由第一通信设备基于接收的探测信号的两个信号分量确定。
第一通信设备确定第一相位差后,则会向第二通信设备发送该第一相位差,进而第二通信设备可以接收该第一相位差。
需要说明的是,本申请实施例仅是以依次执行步骤302-305为例进行说明。而在另一实施例中,步骤302-303、304、305的执行顺序不受限制,可以按照其他顺序执行步骤302-303、304、305。
步骤306:第二通信设备基于探测信号中的两个信号分量,确定两个信号分量之间的第二相位差。
在本申请实施例中,第二通信设备确定第二相位差的过程与上述步骤302中第一通信设备确定第一相位差的过程类似,在此不再赘述。
需要说明的是,第二通信设备具体如何确定第二相位差的过程与下述图7所示实施例的过程类似,具体请参见图7所示实施例。
步骤307:第二通信设备根据第一相位差和第二相位差,确定第二通信设备与第一通信设备之间的第一距离。
第二通信设备获取到第一相位差和第二相位差后,即可确定第二通信设备与第一通信设备之间的第一距离。
本申请实施例提供了一种确定两个通信设备之间的距离的方法,第一通信设备和第二通信设备均会根据第一通信设备发送的探测信号的两个信号分量确定该探测信号的第一相位差和第二相位差,进而由第二通信设备根据该第一相位差和第二相位差确定第二通信设备与第一通信设备之间的第一距离,无需再根据接收探测信号的时间点确定第二通信设备与第一通信设备之间的第一距离,避免由于第一通信设备和第二通信设备的时钟不同步而导致出现确定的距离不准确的问题,提高了确定的两个通信设备之间的距离的准确性。
在图3所示的实施例的基础上,第一通信设备对探测信号进行采样以确定两个信号分量之间的相位差,图7示出了本申请一个示例性实施例提供的距离确定方法的流程图,参见图7,该方法包括以下内容中的至少部分内容:
步骤701:第一通信设备按照采样周期对探测信号进行采样,得到探测信号的数字信号。
在本申请实施例中,需要确定探测信号的两个信号分量之间的第一相位差,并且由于探测信号为模拟信号,因此第一通信设备按照采样周期对探测信号进行采样,得到探测信号的数字信号,根据该数字信号确定两个信号分量之间的第一相位差。
在一些实施例中,探测信号为s 1(t),第一通信设备将s 1(t)采样为S 1(n,t)=s 1(t+nT s)。其中,T s为采样周期。
在一些实施例中,探测信号的两个信号分量包括第一信号分量和第二信号分量。
其中,第一信号分量为
Figure PCTCN2021103265-appb-000001
第二信号分量为
Figure PCTCN2021103265-appb-000002
其中,α为第一信号分量或第二信号分量的复增益,f为第一信号分量或第二信号分量的频率,t为第一信号分量或第二信号分量的时间,j为常数。
步骤702:第一通信设备基于数字信号、采样周期和两个信号分量对应的频率,确定两 个信号分量的相位。
在本申请实施例中,第一通信设备可以基于数字信号、采样周期和两个信号分量对应的频率确定第一信号分量和第二信号分量的相位。
在一些实施例中,第一信号分量的相位为
Figure PCTCN2021103265-appb-000003
第二信号分量的相位为
Figure PCTCN2021103265-appb-000004
其中,
Figure PCTCN2021103265-appb-000005
M为常数,T s为采样周期,α为第一信号分量或第二信号分量的复增益,f为第一信号分量或第二信号分量的频率,t为第一信号分量或第二信号分量的时间,j为常数。
步骤703:第一通信设备基于两个信号分量的相位确定第一相位差。
在一些实施例中,第一通信设备将两个信号分量的相位的差值确定为第一相位差。
在一些实施例中,本申请实施例确定的第一相位差为
Figure PCTCN2021103265-appb-000006
本申请实施例提供了一种确定探测信号的相位差的方法,按照采样周期对探测信号进行采样,得到探测信号的数字信号,进而基于得到的数字信号确定探测信号的两个信号分量的相位差,基于采样方式确定的相位差的方式能够提高获取的探测信号的准确率。
在图3所示的实施例的基础上,第一通信设备将包括的接收模块和发送模块之间的第二距离发送给第二通信设备,以使第二通信设备基于该第二距离确定与第一通信设备之间的距离,图8示出了本申请一个示例性实施例提供的距离确定方法的流程图,参见图8,该方法包括以下内容中的至少部分内容:
步骤801:第一通信设备向第二通信设备发送第二距离。
第二距离为用于发送探测信号的发送模块与用于接收探测信号的接收模块之间的距离,第二通信设备用于根据第一相位差、第二相位差和第二距离,确定第二通信设备与第一通信设备之间的第一距离。
在本申请实施例中,第二通信设备基于第一通信设备所发送的第一相位差,确定与第一通信设备之间的距离,由于确定的第一相位差受到第一通信设备中的发送模块和接收模块之间的第二距离的影响,因此基于第一相位差确定的距离也会受到第二距离的影响,因此第一通信设备将第二距离发送给第二通信设备,后续第二通信设备根据该第二距离确定与第一通信设备之间的第一距离,提高确定的第二距离确定与第一通信设备之间的第一距离的准确性。
步骤802:第二通信设备接收第一通信设备发送的第二距离。
需要说明的是,本申请实施例包括的步骤801-802可以在步骤302之后执行,也可以在步骤303之后执行,本申请实施例对步骤801-802的执行顺序不作限定。
步骤803:第二通信设备根据第一相位差、第二相位差和第二距离,确定第二通信设备与第一通信设备之间的第一距离。
在一些实施例中,第二通信设备确定第二相位差与第一相位差之间的差值,基于该差值确定与信号分量对应的频率的比值,基于比值、信号传输速度和第二距离,确定第二通信设备与第一通信设备之间的第一距离。
例如,第一距离
Figure PCTCN2021103265-appb-000007
其中,D为第一距离,
Figure PCTCN2021103265-appb-000008
为第一相位差,
Figure PCTCN2021103265-appb-000009
为第二相位差,f为信号分量对应的频率,c为光速,d为第二距离。
本申请实施例提供的方法,第二通信设备基于第一相位差和第二相位差确定的第二通信设备与第一通信设备之间的距离后,还会考虑第一距离包括第一通信设备中用于发送探测信号的发送模块与用于接收探测信号的接收模块之间的第二距离,基于第二距离确定第一距离,消除了第一通信设备中发送模块与接收模块之间的距离的干扰,提高了确定的第二通信设备与第一通信设备之间的距离的准确性。
在图3所示的实施例的基础上,第二通信设备还会主动请求获取探测信号,图9示出了本申请一个示例性实施例提供的距离确定方法的流程图,参见图9,该方法包括以下内容中 的至少部分内容:
步骤901:第二通信设备向第一通信设备发送第一请求消息。
步骤902:第一通信设备接收第二通信设备发送的第一请求消息。
在本申请实施例中,第二通信设备需要测量与第一通信设备之间的距离,则第二通信设备主动向第一通信设备发送第一请求消息,进而基于该第一请求消息获取第一通信设备发送的探测信号,进而基于接收的探测信号确定第二通信设备与第一通信设备之间的第一距离。
需要说明的是,本申请实施例中的第一通信设备接收到第二通信设备发送的第一请求消息,确定第二通信设备需要确定与第一通信设备之间的距离,第一通信设备向第二通信设备发送探测信号。
步骤903:第一通信设备响应于第一请求消息,向第二通信设备发送探测信号。
步骤904:第二通信设备接收第一通信设备响应于第一请求消息发送的探测信号。
在一些实施例中,第一请求消息承载在第二数据包中的控制字段中,该控制字段用于控制探测信号。
其中,该第二数据包可以为LL_SS_REQ PDU,或者为其他数据包。
可选地,该控制字段包括最小时长字段,最小时长字段用于指示探测信号的持续时长。
可选地,控制字段包括空闲字段,空闲字段包括空闲比特。
可选地,控制字段包括第二类型字段,第二类型字段用于指示探测信号的类型。
例如,图10示出了本申请一个示例性实施例提供的控制字段的示意图。参见图10,该控制字段包括最小时长字段、空闲字段和第二类型字段。最小时长字段包括5个比特,空闲字段包括1个比特,第二类型字段包括2个比特。
其中,控制字段为CtrData(控制数据)字段,最小时长字段为MinSSLenReq(最小探测序列时长请求)字段,空闲字段为RFU字段,第二类型字段为SSTypeReq(探测序列类型请求)字段。
需要说明的是,本申请实施例中的探测信号在连接模式下发送。该连接模式为第一通信设备与第二通信设备之间处于连接状态。
本申请实施例提供的方法,由第二通信设备主动向第一通信设备发送第一请求消息,以告知第一通信设备确定第二通信设备与第一通信设备之间的距离的情况,进而由第一通信设备执行发送探测信号以供第二通信设备确定距离,提高了通信设备之间的通信效率。
在图3所示的实施例的基础上,第二通信设备还会主动请求获取第一相位差,图11示出了本申请一个示例性实施例提供的距离确定方法的流程图,参见图11,该方法包括以下内容中的至少部分内容:
步骤1101:第二通信设备向第一通信设备发送第二请求消息。
步骤1102:第一通信设备接收第二通信设备发送的第二请求消息。
在本申请实施例中,第二通信设备需要测量与第一通信设备之间的距离,第一通信设备会基于接收的探测信号确定两个信号分量之间的第一相位差,而第一通信设备不会主动向第二通信设备发送第一相位差,而是第二通信设备主动向第一通信设备发送第二请求消息,第一通信设备接收到该第二请求消息后,进而基于该第二请求消息向第二通信设备发送第一相位差,第二通信设备接收第一通信设备发送的第一相位差。
需要说明的是,本申请实施例中的第一通信设备接收到第二通信设备发送的第一请求消息,确定第二通信设备需要确定与第一通信设备之间的距离,第一通信设备向第二通信设备发送探测信号。
步骤1103:第一通信设备响应于第二请求消息,向第二通信设备发送第一相位差。
步骤1104:第二通信设备接收第一通信设备响应于第二请求消息发送的第一相位差。
在一些实施例中,该第二请求消息承载在第三数据包中。其中,该第三数据包为LL_SS_PHASE_REQ PDU,或者为其他类型的数据包。
需要说明的是,本申请实施例中的探测信号在连接模式下发送,该连接模式为第一通信设备与第二通信设备之间处于连接状态。
另外,若第一通信设备与第二通信设备之间处于连接状态,本申请实施例中的PHY数据包中包括目标字段,目标字段用于指示可选字段是否存在。
PHY数据包包括协议数据单元字段,协议数据单元字段中包括目标字段。
在一些实施例中,图12示出了协议数据单元的头部格式,参见图12,该头部包括2比特的LLID(Logical Link Identifier,逻辑链路标识符),1比特的NESN(Next Expected Sequence Number,下一个预期序列号),1比特的SN(Sequence Number,序列号),1比特的MD(More Data,更多数据),1比特的OP(OptionInfo,可选信息字段),2比特的RFU(Reserve for Future Use,留作未来使用),8比特的Length(长度),8比特的OptionInfo(可选信息字段)。
图3所示的实施例对如何根据探测信号确定第二通信设备与第一通信设备之间的距离进行了说明。而在一些实施例中,探测信号还可以承载在数据包中,进而第一通信设备通过发送数据包的方式发送探测信号。
其中,探测信号承载在PHY(Physical Layer,物理层)数据包中。下面对PHY数据包进行说明。
在一些实施例中,PHY数据包为BLE标准中的LE未编码PHY数据包,或者为其他类型的数据包,本申请实施例并不做限定。
其中,该PHY数据包为AUX_SYNC_IND PDU,或者为LL_SS_RSP PDU,或者为其他数据包。
在一些实施例中,PHY数据包包括可选字段,探测信号承载在可选字段中。
在一些实施例中,该PHY数据包包括可选信息字段,该可选信息字段用于配置PHY数据包中的可选字段。
其中,可选字段包括CTE(Constant Tone Extension,恒定音扩展)字段或SS(Sounding Sequence,探测序列)字段。
若可选字段为CTE字段,则探测信号承载在CTE字段上。而若可选字段为SS字段,则探测信号承载在SS字段上。
在一些实施例中,该可选信息字段包括时间字段,时间字段用于指示可选字段的持续时长。
在一些实施例中,可选信息字段包括指示字段,指示字段用于指示可选字段为CTE字段或SS字段。
其中,若指示字段包括1比特,若该指示字段为0,则可选字段为CTE字段,若该指示字段为1,则可选字段为SS字段。
在一种可能实现方式中,若指示字段为CTE字段,该CTE字段包括AoA类型和AoD类型两种类型。其中每种类型有1微秒和2微秒两种时隙长度。
例如,图13示出了CTE字段的类型,参见图13,CTE具有AoA类型和AoD类型两种类型,且每种类型具有1微秒和2微秒两种时隙长度。
如图13所示,无论CTE字段为何种类型,保护期对应的时长均为4微秒,以一个图块表示。参考期对应的时长均为8微秒,以一个图块表示。而对于AOA接收、AOD传输或AOD接收来说,切换时隙和采样时隙不同。
其中,AOA接收的切换时隙和采样时隙为1微秒。或者,AOA接收的切换时隙和采样时隙为2微秒。
AOD传输的切换时隙为1微秒,或者,AOD传输的切换时隙为2微秒。AOD接收的采样时隙为1微秒,或者,AOD接收的采样时隙为2微秒。
并且,每个切换时隙和每个采样时隙均采用一个图块表示。
需要说明的是,图13仅是以图块作为示例,每个图块的长度并不代表真实的时隙长度。
在一些实施例中,可选信息字段包括第一类型字段,第一类型字段用于指示可选字段的类型。
其中,第一类型字段包括2比特,在指示字段指示的可选字段的基础上,第一类型字段的不同比特指示可选字段的不同类型。
其中,第一类型字段不同的比特指示的含义如表1所示。
表1
Figure PCTCN2021103265-appb-000010
例如,图14示出了本申请一个示例性实施例提供的可选信息字段的示意图。参见图14,时间字段采用5比特表示,指示字段采用1比特表示,类型字段采用2比特表示。
其中,时间字段为Time(时间)字段,指示字段为Option(选项)字段,第一类型字段为Type(类型)字段。
在一些实施例中,PHY数据包包括协议数据单元字段,协议数据单元字段中包括可选信息字段。
在一些实施例中,PHY数据包还包括前导码字段、接入地址字段或循环冗余校验字段中的至少一项。
在一种可能实现方式中,PHY数据包包括前导码字段、接入地址字段、循环冗余校验字段、协议数据单元字段和CTE字段。
例如,如图15所示,前导码字段包括1个或2个octet(字节),接入地址字段包括4个octet,循环冗余校验字段包括3个octet,协议数据单元字段包括2-258个octet,CTE字段持续时长为16-160微秒。
在另一种可能实现方式中,PHY数据包包括前导码字段、接入地址字段、循环冗余校验字段、协议数据单元字段和SS字段。
例如,如图16所示,前导码字段包括1个或2个octet(8个比特),接入地址字段包括4个octet,循环冗余校验字段包括3个octet,协议数据单元字段包括2-258个octet,SS字段持续时长为16-160微秒。
其中,需要说明的是,本申请实施例中的探测信号在周期广播模式下发送。
在一些实施例中,协议数据单元字段的扩展头部格式如图17所示,该扩展头部格式包括1个octet的Flags(标志位字段),6个octet的AdvA(Advertising Address,广播地址字段),6个octet的TargetA(Target Address,目标地址字段),1个octet的OptionInfo(可选信息字段),2个octet的ADI(AdvDataInfo,广播数据信息字段),3个octet的AuxPtr(Auxiliary Pointer,附属广播指针字段),18个octet的SyncInfo(Synchronization Information,同步信息字段),1个octet的TxPower(Transmit Power,发送功率字段)以及变化的ACAD(Additional Controller Advertising Data,附加控制器广播数据字段)。
需要说明的是,上述各个实施例之间可以拆分或者自由组合,本申请对各个实施例之间的拆分或组合不作限定。
例如,图18示出了第一通信设备与第二通信设备之间采用周期广播模式发送信号的过程。
1、第一通信设备分别在三个广播物理信道上发送ADV_EXT_IND。
2、第一通信设备在另一个广播物理信道上发送AUX_ADV_IND。
3、第一通信设备在广播物理信道上周期性地发送AUX_SYNC_IND,完成周期广播的建立。
其中,AUX_SYNC_IND PDU的Payload(有效载荷)中的扩展头部中的OptionInfo中的可选字段取值为1,用于表示该PDU(Protocol Data Unit,协议数据单元)中包括探测信号。时间字段和第一类型字段的取值由第一通信设备指定。并且,AUX_SYNC_IND被配置为指向一个AUX_CHAIN_IND,该AUX_CHAIN_IND PDU中在AdvData字段携带第一通信设备确定的第一相位差和第二距离。
4、第二通信设备接收含有探测信号的AUX_SYNC_IND,并确定第二相位差。
5、第二通信设备接收AUX_CHAIN_IND并解析出第一相位差和第二距离,根据第一相位差、第二相位差和第二距离确定第二通信设备与第一通信设备之间的第一距离。
其次,图19示出了第一通信设备与第二通信设备之间在已建立连接的情况下发送信号的过程。
1、第二通信设备向第一通信设备发送LL_SS_REQ PDU以请求获取探测信号。
其中,该LL_SS_REQ PDU中包括最小时长字段、空闲字段和第二类型字段。
2、第一通信设备接收到LL_SS_REQ PDU后,向第二通信设备发送含有探测信号的LL_SS_RSP PDU,并确定第一相位差。
其中,LL_SS_RSP PDU的头部中的目标字段取值为1,可选信息字段的指示字段取值为1,时间字段设置为大于或等于LL_SS_REQ PDU中的最小时长字段的取值,第一类型字段设置为LL_SS_REQ PDU中第二类型字段的取值。
在一些实施例中,第一通信设备若无法发送探测信号,则向第二通信设备发送拒绝消息。
3、第二通信设备接收第一通信设备发送的LL_SS_RSP PDU,并确定第二相位差。
4、第二通信设备发送LL_SS_PHASE_REQ PDU。
5、第一通信设备接收LL_SS_PHASE_REQ PDU,向第二通信设备发送LL_SS_PHASE_RSP PDU。
其中,LL_SS_PHASE_RSP PDU中包括第一相位差和第二距离。
6、第二通信设备接收LL_SS_PHASE_REQ PDU并解析出第一相位差和第二距离,根据第一相位差、第二相位差和第二距离确定第二通信设备与第一通信设备之间的第一距离。
图20示出了本申请一个示例性实施例提供的距离确定装置的框图,该装置设置在第一通信设备中,该装置包括:
接收模块2001,用于在已向第二通信设备发送探测信号的情况下,接收探测信号;
相位差确定模块2002,用于基于接收到的探测信号中的两个信号分量,确定两个信号分量之间的第一相位差,每个信号分量对应的频率与探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
发送模块2003,用于向第二通信设备发送第一相位差;第二通信设备用于接收第一通信设备发送的探测信号和第一相位差,基于探测信号中的两个信号分量,确定两个信号分量之间的第二相位差,根据第一相位差和第二相位差,确定第二通信设备与第一通信设备之间的第一距离。
在一些实施例中,探测信号包括多个比特序列,每个比特序列包括的比特位数相同,目标间隔为探测信号的符号速率和多个比特序列的序列周期的比值。
在一些实施例中,参见图21,相位差确定模块2002,包括:
采样单元20021,用于按照采样周期对探测信号进行采样,得到探测信号的数字信号;
相位确定单元20022,用于基于数字信号、采样周期和两个信号分量对应的频率,确定两个信号分量的相位;
相位差确定单元20023,用于基于两个信号分量的相位确定第一相位差。
在一些实施例中,参见图21,装置还包括:
关闭模块2004,用于在发送探测信号的时间点与接收探测信号的时间点之间的时间段内,关闭第一通信设备的自干扰消除功能,自干扰消除功能用于对接收的信号进行干扰消除。
在一些实施例中,发送模块2003,还用于向第二通信设备发送第二距离,第二距离为用于发送探测信号的发送模块与用于接收探测信号的接收模块之间的距离,第二通信设备用于根据第一相位差、第二相位差和第二距离,确定第二通信设备与第一通信设备之间的第一距离。
在一些实施例中,探测信号承载在PHY数据包中。
在一些实施例中,PHY数据包包括可选字段,探测信号承载在可选字段中。
在一些实施例中,PHY数据包包括可选信息字段,可选信息字段用于配置PHY数据包中的可选字段。
在一些实施例中,可选信息字段包括时间字段,时间字段用于指示可选字段的持续时长。
在一些实施例中,可选信息字段包括指示字段,指示字段用于指示可选字段为CTE字段或SS字段。
在一些实施例中,可选信息字段包括第一类型字段,第一类型字段用于指示可选字段的类型。
在一些实施例中,PHY数据包包括协议数据单元字段,协议数据单元字段中包括可选信息字段。
在一些实施例中,可选字段包括CTE字段或SS字段。
在一些实施例中,PHY数据包还包括前导码字段、接入地址字段或循环冗余校验字段中的至少一项。
在一些实施例中,第一相位差承载在第一数据包的数据字段中。
在一些实施例中,探测信号在周期广播模式下发送。
在一些实施例中,PHY数据包还包括目标字段,目标字段用于指示可选字段是否存在。
在一些实施例中,PHY数据包包括协议数据单元字段,协议数据单元字段中包括目标字段。
在一些实施例中,接收模块2001,用于接收第二通信设备发送的第一请求消息;
发送模块2003,用于响应于第一请求消息,向第二通信设备发送探测信号。
在一些实施例中,第一请求消息承载在第二数据包的控制字段中,控制字段用于控制探测信号。
在一些实施例中,控制字段包括最小时长字段,最小时长字段用于指示探测信号的持续时长。
在一些实施例中,控制字段包括空闲字段,空闲字段包括空闲比特。
在一些实施例中,控制字段包括第二类型字段,第二类型字段用于指示探测信号的类型。
在一些实施例中,接收模块2001,用于接收第二通信设备发送的第二请求消息;
发送模块2003,用于响应于第二请求消息,向第二通信设备发送第一相位差。
在一些实施例中,探测信号在连接模式下发送。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图22示出了本申请一个示例性实施例提供的距离确定装置的框图,该装置设置在第二通信设备中,该装置包括:
接收模块2201,用于接收第一通信设备发送的探测信号;
接收模块2201,用于接收第一通信设备发送的第一相位差,第一相位差由第一通信设备基于接收的探测信号的两个信号分量确定;
相位差确定模块2202,用于基于探测信号中的两个信号分量,确定两个信号分量之间的第二相位差,每个信号分量对应的频率与探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
距离确定模块2203,用于根据第一相位差和第二相位差,确定第二通信设备与第一通信设备之间的第一距离。
在一些实施例中,探测信号包括多个比特序列,每个比特序列包括的比特位数相同,目标间隔为探测信号的符号速率和多个比特序列的序列周期的比值。
在一些实施例中,相位差确定模块2202,包括:
采样单元22021,用于按照采样周期对探测信号进行采样,得到探测信号的数字信号;
相位确定单元22022,用于基于数字信号、采样周期和两个信号分量对应的频率,确定两个信号分量的相位;
相位差确定单元22023,用于基于两个信号分量的相位确定第二相位差。
在一些实施例中,接收模块2201,用于接收第一通信设备发送的第二距离,第二距离为第一通信设备中用于发送探测信号的发送模块与用于接收探测信号的接收模块之间的距离;
距离确定模块2203,用于根据第一相位差、第二相位差和第二距离,确定第二通信设备与第一通信设备之间的第一距离。
在一些实施例中,探测信号承载在PHY数据包中。
在一些实施例中,PHY数据包包括可选字段,探测信号承载在可选字段中。
在一些实施例中,PHY数据包包括可选信息字段,可选信息字段用于配置PHY数据包中的可选字段。
在一些实施例中,可选信息字段包括时间字段,时间字段用于指示可选字段的持续时长。
在一些实施例中,可选信息字段包括指示字段,指示字段用于指示可选字段为CTE字段或SS字段。
在一些实施例中,可选信息字段包括第一类型字段,第一类型字段用于指示可选字段的类型。
在一些实施例中,PHY数据包包括协议数据单元字段,协议数据单元字段中包括可选信息字段。
在一些实施例中,可选字段包括CTE字段或SS字段。
在一些实施例中,PHY数据包还包括前导码字段、接入地址字段或循环冗余校验字段中的至少一项。
在一些实施例中,第一相位差承载在第一数据包的数据字段中。
在一些实施例中,探测信号在周期广播模式下发送。
在一些实施例中,PHY数据包还包括目标字段,目标字段用于指示可选字段是否存在。
在一些实施例中,PHY数据包包括协议数据单元字段,协议数据单元字段中包括目标字段。
在一些实施例中,装置还包括:
发送模块2204,用于向第一通信设备发送第一请求消息;
接收模块2201,用于接收第一通信设备响应于第一请求消息发送的探测信号。
在一些实施例中,第一请求消息承载在第二数据包的控制字段中,控制字段用于控制探测信号。
在一些实施例中,控制字段包括最小时长字段,最小时长字段用于指示探测信号的持续 时长。
在一些实施例中,控制字段包括空闲字段,空闲字段包括空闲比特。
在一些实施例中,控制字段包括第二类型字段,第二类型字段用于指示探测信号的类型。
在一些实施例中,装置还包括:
发送模块2204,用于向第一通信设备发送第二请求消息;
接收模块2201,用于接收第一通信设备响应于第二请求消息发送的第一相位差。
在一些实施例中,探测信号在连接模式下发送。
需要说明的是,上述实施例提供的装置,在实现其功能时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的装置与方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图24示出了本申请一个示例性实施例提供的通信设备的结构示意图,该通信设备包括:处理器2401、接收器2402、发射器2403、存储器2404和总线2405。
处理器2401包括一个或者一个以上处理核心,处理器2401通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器2402和发射器2403可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器2404通过总线2405与处理器2401相连。
存储器2404可用于存储至少一个程序代码,处理器2401用于执行该至少一个程序代码,以实现上述方法实施例中的各个步骤。
存储器2404可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦除可编程只读存储器),EPROM(Erasable Programmable Read Only Memory,可擦除可编程只读存储器),SRAM(Static Random Access Memory,静态随时存取存储器),ROM(Read Only Memory,只读存储器),磁存储器,快闪存储器,可编程只读存储器(Programmable Read Only Memory,PROM)。
在示例性实施例中,还提供了一种计算机可读存储介质,可读存储介质中存储有可执行程序代码,可执行程序代码由处理器加载并执行以实现上述各个方法实施例提供的由通信设备执行的距离确定方法。
在示例性实施例中,提供了一种芯片,芯片包括可编程逻辑电路和/或程序指令,当芯片在通信设备上运行时,用于实现如各个方法实施例提供的距离确定方法。
在示例性实施例中,提供了计算机程序产品,计算机程序产品包括计算机指令,计算机指令存储在计算机可读存储介质中;通信设备的处理器从计算机可读存储介质读取计算机指令,并执行计算机指令,使得通信设备执行如上述方面的距离确定方法。
在示例性实施例中,提供了计算机程序,计算机程序由通信设备的处理器执行,以实现如上述方面的距离确定方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (56)

  1. 一种距离确定方法,其特征在于,应用于第一通信设备,所述方法包括:
    在已向第二通信设备发送探测信号的情况下,接收所述探测信号;
    基于接收到的所述探测信号中的两个信号分量,确定所述两个信号分量之间的第一相位差,每个所述信号分量对应的频率与所述探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
    向所述第二通信设备发送所述第一相位差;所述第二通信设备用于接收所述第一通信设备发送的探测信号和所述第一相位差,基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离。
  2. 根据权利要求1所述的方法,其特征在于,所述探测信号包括多个比特序列,每个比特序列包括的比特位数相同,所述目标间隔为所述探测信号的符号速率和所述多个比特序列的序列周期的比值。
  3. 根据权利要求1所述的方法,其特征在于,所述基于接收到的所述探测信号中的两个信号分量,确定所述两个信号分量之间的第一相位差,包括:
    按照采样周期对所述探测信号进行采样,得到所述探测信号的数字信号;
    基于所述数字信号、所述采样周期和所述两个信号分量对应的频率,确定所述两个信号分量的相位;
    基于所述两个信号分量的相位确定所述第一相位差。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在发送所述探测信号的时间点与接收所述探测信号的时间点之间的时间段内,关闭所述第一通信设备的自干扰消除功能,所述自干扰消除功能用于对接收的信号进行干扰消除。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    向所述第二通信设备发送第二距离,所述第二距离为用于发送所述探测信号的发送模块与用于接收所述探测信号的接收模块之间的距离,所述第二通信设备用于根据所述第一相位差、所述第二相位差和所述第二距离,确定所述第二通信设备与所述第一通信设备之间的第一距离。
  6. 根据权利要求1所述的方法,其特征在于,所述探测信号承载在PHY数据包中。
  7. 根据权利要求6所述的方法,其特征在于,所述PHY数据包包括可选字段,所述探测信号承载在所述可选字段中。
  8. 根据权利要求7所述的方法,其特征在于,所述PHY数据包包括可选信息字段,所述可选信息字段用于配置所述可选字段。
  9. 根据权利要求8所述的方法,其特征在于,所述可选信息字段包括时间字段,所述时间字段用于指示所述可选字段的持续时长。
  10. 根据权利要求8所述的方法,其特征在于,所述可选信息字段包括指示字段,所述指示字段用于指示所述可选字段为CTE字段或SS字段。
  11. 根据权利要求8所述的方法,其特征在于,所述可选信息字段包括第一类型字段,所述第一类型字段用于指示所述可选字段的类型。
  12. 根据权利要求8所述的方法,其特征在于,所述PHY数据包包括协议数据单元字段,所述协议数据单元字段中包括所述可选信息字段。
  13. 根据权利要求8至12任一项所述的方法,其特征在于,所述可选字段包括CTE字段或SS字段。
  14. 根据权利要求6所述的方法,其特征在于,所述PHY数据包还包括前导码字段、接入地址字段或循环冗余校验字段中的至少一项。
  15. 根据权利要求1所述的方法,其特征在于,所述第一相位差承载在第一数据包的数据字段中。
  16. 根据权利要求6至15任一项所述的方法,其特征在于,所述探测信号在周期广播模式下发送。
  17. 根据权利要求7所述的方法,其特征在于,所述PHY数据包还包括目标字段,所述目标字段用于指示所述可选字段是否存在。
  18. 根据权利要求17所述的方法,其特征在于,所述PHY数据包包括协议数据单元字段,所述协议数据单元字段中包括所述目标字段。
  19. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收所述第二通信设备发送的第一请求消息;
    响应于所述第一请求消息,向所述第二通信设备发送所述探测信号。
  20. 根据权利要求19所述的方法,其特征在于,所述第一请求消息承载在第二数据包的控制字段中,所述控制字段用于控制所述探测信号。
  21. 根据权利要求20所述的方法,其特征在于,所述控制字段包括最小时长字段,所述最小时长字段用于指示所述探测信号的持续时长。
  22. 根据权利要求20所述的方法,其特征在于,所述控制字段包括空闲字段,所述空闲字段包括空闲比特。
  23. 根据权利要求20所述的方法,其特征在于,所述控制字段包括第二类型字段,所述第二类型字段用于指示所述探测信号的类型。
  24. 根据权利要求1所述的方法,其特征在于,所述向所述第二通信设备发送所述第一相位差,包括:
    接收所述第二通信设备发送的第二请求消息;
    响应于所述第二请求消息,向所述第二通信设备发送所述第一相位差。
  25. 根据权利要求17至24任一项所述的方法,其特征在于,所述探测信号在连接模式下发送。
  26. 一种距离确定方法,其特征在于,应用于第二通信设备,所述方法包括:
    接收第一通信设备发送的探测信号;
    接收所述第一通信设备发送的第一相位差,所述第一相位差由所述第一通信设备基于接收的所述探测信号的两个信号分量确定;
    基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,每个所述信号分量对应的频率与所述探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
    根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离。
  27. 根据权利要求26所述的方法,其特征在于,所述探测信号包括多个比特序列,每个比特序列包括的比特位数相同,所述目标间隔为所述探测信号的符号速率和所述多个比特序列的序列周期的比值。
  28. 根据权利要求26所述的方法,其特征在于,所述基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,包括:
    按照采样周期对所述探测信号进行采样,得到所述探测信号的数字信号;
    基于所述数字信号、所述采样周期和所述两个信号分量对应的频率,确定所述两个信号分量的相位;
    基于所述两个信号分量的相位确定所述第二相位差。
  29. 根据权利要求26所述的方法,其特征在于,所述方法还包括:
    接收所述第一通信设备发送的第二距离,所述第二距离为所述第一通信设备中用于发送 所述探测信号的发送模块与用于接收所述探测信号的接收模块之间的距离;
    所述根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离,包括:
    根据所述第一相位差、所述第二相位差和所述第二距离,确定所述第二通信设备与所述第一通信设备之间的第一距离。
  30. 根据权利要求26所述的方法,其特征在于,所述探测信号承载在PHY数据包中。
  31. 根据权利要求30所述的方法,其特征在于,所述PHY数据包包括可选字段,所述探测信号承载在所述可选字段中。
  32. 根据权利要求31所述的方法,其特征在于,所述PHY数据包包括可选信息字段,所述可选信息字段用于配置所述可选字段。
  33. 根据权利要求32所述的方法,其特征在于,所述可选信息字段包括时间字段,所述时间字段用于指示所述可选字段的持续时长。
  34. 根据权利要求32所述的方法,其特征在于,所述可选信息字段包括指示字段,所述指示字段用于指示所述可选字段为CTE字段或SS字段。
  35. 根据权利要求32所述的方法,其特征在于,所述可选信息字段包括第一类型字段,所述第一类型字段用于指示所述可选字段的类型。
  36. 根据权利要求32所述的方法,其特征在于,所述PHY数据包包括协议数据单元字段,所述协议数据单元字段中包括所述可选信息字段。
  37. 根据权利要求32至36任一项所述的方法,其特征在于,所述可选字段包括CTE字段或SS字段。
  38. 根据权利要求30所述的方法,其特征在于,所述PHY数据包还包括前导码字段、接入地址字段或循环冗余校验字段中的至少一项。
  39. 根据权利要求27所述的方法,其特征在于,所述第一相位差承载在第一数据包的数据字段中。
  40. 根据权利要求31至39任一项所述的方法,其特征在于,所述探测信号在周期广播模式下发送。
  41. 根据权利要求32所述的方法,其特征在于,所述PHY数据包还包括目标字段,所述目标字段用于指示所述可选字段是否存在。
  42. 根据权利要求41所述的方法,其特征在于,所述PHY数据包包括协议数据单元字段,所述协议数据单元字段中包括所述目标字段。
  43. 根据权利要求27所述的方法,其特征在于,所述接收第一通信设备发送的探测信号,包括:
    向所述第一通信设备发送第一请求消息;
    接收所述第一通信设备响应于所述第一请求消息发送的所述探测信号。
  44. 根据权利要求43所述的方法,其特征在于,所述第一请求消息承载在第二数据包的控制字段中,所述控制字段用于控制所述探测信号。
  45. 根据权利要求44所述的方法,其特征在于,所述控制字段包括最小时长字段,所述最小时长字段用于指示所述探测信号的持续时长。
  46. 根据权利要求44所述的方法,其特征在于,所述控制字段包括空闲字段,所述空闲字段包括空闲比特。
  47. 根据权利要求44所述的方法,其特征在于,所述控制字段包括第二类型字段,所述第二类型字段用于指示所述探测信号的类型。
  48. 根据权利要求26所述的方法,其特征在于,所述接收所述第一通信设备发送的第一相位差,包括:
    向所述第一通信设备发送第二请求消息;
    接收所述第一通信设备响应于所述第二请求消息发送的所述第一相位差。
  49. 根据权利要求41至48任一项所述的方法,其特征在于,所述探测信号在连接模式下发送。
  50. 一种距离确定装置,其特征在于,所述装置设置在第一通信设备中,所述装置包括:
    接收模块,用于在已向第二通信设备发送探测信号的情况下,接收所述探测信号;
    相位差确定模块,用于基于接收到的所述探测信号中的两个信号分量,确定所述两个信号分量之间的第一相位差,每个所述信号分量对应的频率与所述探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
    发送模块,用于向所述第二通信设备发送所述第一相位差;所述第二通信设备用于接收所述第一通信设备发送的探测信号和所述第一相位差,基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离。
  51. 一种距离确定装置,其特征在于,所述装置设置在第二通信设备中,所述装置包括:
    接收模块,用于接收第一通信设备发送的探测信号;
    接收模块,用于接收所述第一通信设备发送的第一相位差,所述第一相位差由所述第一通信设备基于接收的所述探测信号的两个信号分量确定;
    相位差确定模块,用于基于所述探测信号中的两个信号分量,确定所述两个信号分量之间的第二相位差,每个所述信号分量对应的频率与所述探测信号中的直流信号分量对应的频率之间的间隔为目标间隔;
    距离确定模块,用于根据所述第一相位差和所述第二相位差,确定所述第二通信设备与所述第一通信设备之间的第一距离。
  52. 一种通信设备,其特征在于,所述通信设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储所述处理器的可执行程序代码的存储器;
    其中,所述处理器被配置为加载并执行所述可执行程序代码以实现如权利要求1-25任一所述的距离确定方法,或者以实现如权利要求26-49任一所述的距离确定方法。
  53. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有可执行程序代码,所述可执行程序代码由处理器加载并执行以实现如权利要求1至49任一所述的距离确定方法。
  54. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中;通信设备的处理器从所述计算机可读存储介质读取所述计算机指令,并执行所述计算机指令,使得所述通信设备执行如权利要求1-25任一所述的距离确定方法,或者执行如权利要求26-49任一所述的距离确定方法。
  55. 一种计算机程序,其特征在于,所述计算机程序由通信设备的处理器执行,以实现如权利要求1-25任一所述的距离确定方法,或者以实现如权利要求26-49任一所述的距离确定方法。
  56. 一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片在通信设备上运行时,用于实现如权利要求1-25任一所述的距离确定方法,或者以实现如权利要求26-49任一所述的距离确定方法。
PCT/CN2021/103265 2021-06-29 2021-06-29 距离确定方法、装置、设备及存储介质 WO2023272521A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180096797.8A CN117120871A (zh) 2021-06-29 2021-06-29 距离确定方法、装置、设备及存储介质
PCT/CN2021/103265 WO2023272521A1 (zh) 2021-06-29 2021-06-29 距离确定方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/103265 WO2023272521A1 (zh) 2021-06-29 2021-06-29 距离确定方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023272521A1 true WO2023272521A1 (zh) 2023-01-05

Family

ID=84689863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/103265 WO2023272521A1 (zh) 2021-06-29 2021-06-29 距离确定方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN117120871A (zh)
WO (1) WO2023272521A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236251A (zh) * 2007-01-30 2008-08-06 王海舟 鉴相测距方法
WO2011020738A1 (en) * 2009-08-21 2011-02-24 Mitsubishi Electric R&D Centre Europe B.V. Determination of system characteristics
CN108387902A (zh) * 2017-12-30 2018-08-10 武汉灵途传感科技有限公司 一种光测距方法及设备
US20180310130A1 (en) * 2017-04-21 2018-10-25 Lg Electronics Inc. Method and apparatus for tracking position using phase information
CN110187331A (zh) * 2019-05-21 2019-08-30 泰凌微电子(上海)有限公司 一种无线节点的间距测量方法及装置
WO2019181695A1 (ja) * 2018-03-23 2019-09-26 パイオニア株式会社 測距装置
DE102019201742A1 (de) * 2019-02-11 2020-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transceiver und Verfahren zur Distanzmessung
CN112995081A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 一种测距的方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236251A (zh) * 2007-01-30 2008-08-06 王海舟 鉴相测距方法
WO2011020738A1 (en) * 2009-08-21 2011-02-24 Mitsubishi Electric R&D Centre Europe B.V. Determination of system characteristics
US20180310130A1 (en) * 2017-04-21 2018-10-25 Lg Electronics Inc. Method and apparatus for tracking position using phase information
CN108387902A (zh) * 2017-12-30 2018-08-10 武汉灵途传感科技有限公司 一种光测距方法及设备
WO2019181695A1 (ja) * 2018-03-23 2019-09-26 パイオニア株式会社 測距装置
DE102019201742A1 (de) * 2019-02-11 2020-08-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Transceiver und Verfahren zur Distanzmessung
CN110187331A (zh) * 2019-05-21 2019-08-30 泰凌微电子(上海)有限公司 一种无线节点的间距测量方法及装置
CN112995081A (zh) * 2019-12-12 2021-06-18 华为技术有限公司 一种测距的方法和装置

Also Published As

Publication number Publication date
CN117120871A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
US20230403667A1 (en) Methods for timing advance indication and timing relationships indication for non-terrestrial networks
CN112134673B (zh) 同步信号块检测方法、同步信号块传输方法、装置及系统
KR101158171B1 (ko) 듀얼 무선통신 디바이스 내의 자기유도 간섭을 방지하는 장치, 방법 및 컴퓨터 판독가능 저장 매체
US11844035B2 (en) Method and device for signal detection
US20090245279A1 (en) Apparatus and method for coordinating bluetooth and wireless local area network (wlan) and wimax communications
CN114246014A (zh) 一种随机接入方法、终端设备和网络设备
WO2022002137A1 (zh) 信息传输方法、装置、终端及网络侧设备
US20220286265A1 (en) Time-domain resource determination method and apparatus, and terminal device
WO2023272521A1 (zh) 距离确定方法、装置、设备及存储介质
CN116615875A (zh) 蓝牙通信方法及装置
CN111817830B (zh) 传输、接收控制方法、终端及网络侧设备
CN116744462A (zh) 资源确定方法、指示方法及设备
CN114503722A (zh) 传输上行控制信息的方法和装置
CA2799455C (en) System and method for mobile communications
WO2021204155A1 (zh) 资源确定方法及终端
CN112469131B (zh) 一种配置srs资源符号数的方法及终端设备
CN111756509B (zh) 一种传输公共信号块的方法和装置
KR20170064990A (ko) 통신 링크 메커니즘을 갖는 컴퓨팅 시스템
CN115314984A (zh) 通信方法以及通信装置
CN116709433B (zh) 一种确定终端设备网速上限的方法及电子设备
WO2024164897A1 (zh) 处理探测参考信号的方法、终端及网络侧设备
JP2003209508A (ja) 無線通信システム
US20240022887A1 (en) Exchange of ranging data
WO2023134530A1 (zh) 参考信号的导频图案映射方法、系统及相关装置
RU2809833C1 (ru) Способ и устройство беспроводной связи, терминал и носитель данных

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947477

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947477

Country of ref document: EP

Kind code of ref document: A1